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Abstract

We study two possible solutions to a semi-discrete allocation problem by com-

paring two different spatial allocations: the first one, the efficient allocation, is

obtained through the minimization of the total distance traveled by students to

reach their school; the second one, the fair allocation, is the result of an application

of a generalized version of the Gale and Shapley algorithm. We develop a notion of

distance between spatial allocations that allows us to establish a comparison and

subsequently study in which cases the two allocations coincide. We then apply the

generalized Gale and Shapley algorithm to the many-to-one allocation of kinder-

garten and elementary school students to public schools in the New York City area

and observe that the resulting allocations are stable, but unequal.
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1. Introduction

Consider a one-to-many matching problem, with the “many” side of the market

consists of infinitely many points. As an example consider a city of dimensions

[0, 1]× [0, 1] and let the city be populated by students X with a distribution P over

the territory. For now assume that P is a uniform distribution, so that the number

of students in a given area of the city will simply be the Lebesgue measure of that

area. Let Y = {y1, ..., ym} be a discrete set of points representing schools in the

area, and indicate with qj > 0 the capacity of center j. If we assume
∑
j qj = 1 we

will have that each student must be assigned to a school. An allocation mechanism

is a map T : X ⇒ Y such that student x ∈ X is allocated to school T (x) ∈ Y .

The map should satisfy P {x |T (x) = yj } = qj , which describes that the number

of students that attend school j is qj . In 1984 Aurenhammer et al. proposed an

allocation on the plane based on power diagrams or Laguerre diagrams. We will call

such solution the efficient allocation. It is called efficient because such allocation

minimizes the sum of total distances traveled by each student to get to the school

they are assigned to. The allocation is in fact the solution to a Monge-Kantorovich

problem with cost being equal to the Euclidean distance. The resulting cells are

convex polytopes as depicted in the following graph.

In their 2006 paper Hoffman et al. propose a different solution to the spatial

allocation problem which they call the fair allocation. The solution is the result

of a generalized Gale and Shapley algorithm applied to the spatial setting, where

preferences both for students and schools are defined by their reciprocal Euclidean

distance. In other words it is costly for a school and a student that are far away

to match with each other, and this cost is split between them. The allocation is

obtained by growing circles around each school until conflicts arise. The geometry

of the resulting cells is more complex than the one of the efficient allocation, as

cells need not be convex and need not be connected.
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In the first case the allocation coincides with a matching in a transferable utilities

regime, while the second one is the resulting allocation of a matching algorithm

with non transferable utilities. In this paper we study the intermediate case of

exponential transferable utilities, which allows us to develop a metric of distance

between allocations. We describe in detail the two extreme allocations, which we

will call efficient and fair, in the one and two dimensional cases. We will then

propose a discretized version of this algorithm, that we can apply to the school

student allocation in New York City, using real data on population density and

school location. We show some results from both the efficient and fair allocation,

applied to kindergartens and elementary schools in the five boroughs of New York.

In particular, we show that the fair allocaiton is not really fair. The match resulting

from absence of blocking pairs assigns some lucky students to nearby schools, while

assigns others to schools in a different borough, that requires them to travel an

unreasonably long distance.

1.1. Exponential Transferable Utility. Consider the equilibrium in the Ex-

ponential Transferable Utility problem


(PF ) : µ ∈M(P,Q)

(DF ) : exp
(
u(x)−α(x,y)

τ

)
+ exp

(
v(y)−γ(y,x)

τ

)
≥ 2

(NC) : (x, y) ∈ Supp(π) =⇒ exp
(
u(x)−α(x,y)

τ

)
+ exp

(
v(y)−γ(y,x)

τ

)
= 2
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Notice that when τ → ∞ we have optimal transport (TU matching) and when

τ → 0 we have Gale and Shapley (NTU matching).

We in particular consider the case when α(x, y) = γ(y, x) = −d2(x, y) where d2

is the square of the Euclidean distance. The ETU problem then becomes
(PF ) : µ ∈M(P,Q)

(DF ) : exp
(
u(x)+d2(x,y)

τ

)
+ exp

(
v(y)+d2(x,y)

τ

)
≥ 2

(NC) : (x, y) ∈ Supp(π) =⇒ exp
(
u(x)+d2(x,y)

τ

)
+ exp

(
v(y)+d2(x,y)

τ

)
= 2


(PF ) : µ ∈M(P,Q)

(DF ) : exp
(
u(x)
τ

)
+ exp

(
v(y)
τ

)
≥ 2 exp

(
−d(x,y)τ

)
(NC) : (x, y) ∈ Supp(π) =⇒ exp

(
u(x)
τ

)
+ exp

(
v(y)
τ

)
= 2 exp

(
−d(x,y)τ

)
Let U(x) = exp

(
u(x)
τ

)
, V (y) = exp

(
v(y)
τ

)
and let φ(x, y) = 2 exp

(
−d(x,y)τ

)
,

so that the problem becomes


(PF ) : µ ∈M(P,Q)

(DF ) : U(x) + V (y) ≥ φ(x, y)

(NC) : (x, y) ∈ Supp(π) =⇒ U(x) + V (y) = φ(x, y)

and one can easily notice that (U, V ) that solves the above problem is also the

solution to the Monge-Kantorovich problem

min
U,V

∫
U(x)dP (x) +

∫
V (y)dQ(y)

s.t. U(x) + V (y) ≥ 2 exp

(
−d

2(x, y)

τ

)
Hence the ETU version of the problem with alignment of preferences can be also

formulated as an optimization problem. The equilibrium matching in the ETU case

solves

max
π∈M(P,Q)

∫
2 exp

(
−d

2(x, y)

τ

)
dµ(x, y)

and in particular in the TU case (τ →∞) it solves

max
π∈M(P,Q)

∫ (
−d2(x, y)

)
dµ(x, y)
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in the NTU case (τ → 0) the solution is a coupling µ ∈M(P,Q) such that d(x, y)

is minimized in lexicographic order, minimizing those with smallest distances first.

2. One Dimensional Case

More in general assume that students are uniformly distributed on the interval

[0, 1] , and there are j schools Y = {y1, ..., yj}. Site j is located at point yj ∈ [0, 1]

and has capacity qj . Let the surplus function be

φλ(x, y) =
exp

(
−λ |x− y|2

)
− 1

λ

Assume that the utility function of a student located at x and going to school

yj is

φλ(x, y)− vj
where vj is the price charged by site j. The resulting assignment maximizes

max
π∈M(P,Q)

Eπ

exp
(
−λ |x− y|2

)
λ


When λ→∞ the matching tends to the Gale and Shapley matching; in particular

the matching will minimize the value of |x− y|2 in lexicographic order, starting

from the lowest one.

When λ → 0 this is the matching that minimizes Eπ
[
|x− y|2

]
which is the

Positive Assortative Matching (PAM) matching, or the matching obtained solving

the maximization problem with transferable utilities.

When λ → −∞ the matching will tend to the one that minimizes the value of

|x− y|2 in lexicographic order starting from the highest value. We will call this the

bottle neck matching.

In other words we can interpret λ as the degree at which students care about

having to pay a fee versus the distance they have to travel. When λ is close to

0 it means that individuals care way more about the value of the transfer than

they do about the distance they have to travel. Therefore it is easy to induce the

PAM allocation. When λ → ∞ students care infinitely more about the distance

they travel than they do about the price they pay, so it is impossible to obtain an

allocation that is different than the one obtained through Gale and Shapley, which

we can interpret as the one that will naturally arise from the market without the

intervention of a planner. Lastly when λ → −∞ people care about the distance
5



they travel enormously more than they do about a transfer but the ones that will

be at an advantage are the ones that are further away from the centers.

Consider the following example. Let X = [0, 1] and P be a uniform distribution.

P being uniform implies that the mass of students that live in the section [0.1, 0.2]

of X is equal to the Lebsegue measure of the section, that is 0.1. Let the schools

be located at Y = {0.4, 0.5, 0.6} and let them have capacity 1
3 each. The efficient

allocation is the PAM allocation, that is

T (x) =


0.4 if x ∈

[
0, 13
)

0.5 if x ∈
[
1
3 ,

2
3

)
0.6 if x ∈

[
2
3 , 1
]

The fair allocation instead is the following

T (x) =


0.4 if x ∈ [0.15, 0.45)

0.5 if x ∈ [0, 0.15) ∪ [0.45, 0.55) ∪ [0.85, 1)

0.6 if x ∈ [0.55, 0.85)
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Now suppose the centers can charge a price vk, and let v1 = v3 and without loss

of generality set them both equal to 0 so that the only non zero price is v2. Suppose

x ∈
[
0, 12
]
. The ranking for x in this case will be either 1 � 2 � 3 or 2 � 1 � 3, in

either case x will prefer 1 over 3. In particular the utility of going to 1 will be

U(x, y1) =
exp

(
−λ |x− y1|2

)
λ

The utility of going to center 2 will be

U(x, y2) =
exp

(
−λ |x− y2|2

)
λ

− v2

x is indifferent between going to center 1 and center 2 when

exp
(
−λ |x− y1|2

)
λ

=
exp

(
−λ |x− y2|2

)
λ

− v2
or in other words when

v2 =
exp

(
−λ |x− y2|2

)
− exp

(
−λ |x− y1|2

)
λ

x will choose 2 over 1 if and only if φλ(x, y2) − v2 ≥ φλ(x, y1). Therefore the

equilibrium price will be set so that

∫ 1
2

0

I {φλ(x, y2)− φλ(x, y1) ≥ v2} dt =
1

6

A v2 that satisfies the above expression will induce the PAM allocation as de-

picted in the image below

7



2.1. Critical Point. An interesting question is what is the value of λ at which

it becomes welfare maximizing to send x = 0 to y2 and x = 1
3 to y1. Or in other

words, what is the value of λ such that the assignment the maximizes

max
π∈M(P,Q)

Eπ

exp
(
−λ |x− y|2

)
λ


is the fair allocation rather than the PAM one.

It will be better to have x = 0 go to y2 and x = 1
3 go to y1 when the surplus

generated in such a way is greater or equal than the one generated in the PAM

allocation - where we have x = 0 going to y1 and x = 1
3 going to y2. That

translates into

exp
(
−λ |y2|2

)
λ

+
exp

(
−λ
∣∣y1 − 1

3

∣∣2)
λ

≥
exp

(
−λ |y1|2

)
λ

+
exp

(
−λ
∣∣y2 − 1

3

∣∣2)
λ

where again the left handside is the surplus generated by 0 and 1
3 in the “fair”

allocation, and the right handside is the surplus generated in the PAM allocation.

Now plugging in the values of y1 = 0.4 and y2 = 0.5 as in our example and

simplifying we obtain

exp
(
−λ |0.5|2

)
+ exp

(
−λ
∣∣∣∣0.4− 1

3

∣∣∣∣2
)
≥ exp

(
−λ |0.4|2

)
+ exp

(
−λ
∣∣∣∣0.5− 1

3

∣∣∣∣2
)

exp

(
−1

4
λ

)
+ exp

(
− 1

225
λ

)
≥ exp

(
− 4

25
λ

)
+ exp

(
− 1

36
λ

)
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That has a numerical solution of λ ≈ 7.23355. So for values of λ ≥ 7.23355 the

solution to the optimization problem is the fair allocation.

2.2. Inducing Positive Assortative Matching with Transfers. With-

out prices both x = 0 and x = 1
3 will prefer to go to y1 . In order to induce x = 1

3

to go to y2 instead we will have to compensate him for at least

φλ(
1

3
, y1)− φλ(

1

3
, y2)

Thus the subsidy to go to y2 should be v2 ≥ φλ( 1
3 , y1) − φλ( 1

3 , y2) . However we

want at the same time that the subsidy is not as high as to induce x = 0 to go to

y2, so

v2 < φλ(0, y1)− φλ(0, y2)

With the values of y1 and y2 that we have the two inequalities are

exp
(
−λ |y1|2

)
λ

−
exp

(
−λ |y2|2

)
λ

≥ v2

exp
(
−λ
∣∣y1 − 1

3

∣∣2)
λ

−
exp

(
−λ
∣∣y2 − 1

3

∣∣2)
λ

≤ v2

Notice how it is possible to induce the above allocation only as long as

exp
(
−λ |y1|2

)
λ

−
exp

(
−λ |y2|2

)
λ

≥
exp

(
−λ
∣∣y1 − 1

3

∣∣2)
λ

−
exp

(
−λ
∣∣y2 − 1

3

∣∣2)
λ

which leads to λ ≈ 7.23355 as above. So we conclude that for λ ≥ 7.23355 it

is not only not optimal to induce PAM, it is also impossible to induce it through

transfers. Intuitively, when students care significantly more about the distance

they travel rather than the price they pay or the subsidy they get to go to a certain

school, it’s impossible to induce an allocation different than the one that naturally

arises in the market, but that’s not a problem as it wouldn’t be optimal to induce

PAM anyway.
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3. Two Dimensional Case

We will now consider the problem of finding both the efficient and the fair allocation

in the two dimensional case, that is when we assume that sites are located on the

surface of a city, and the continuum of agents represented by the surface itself are

facing the decision of what site to go to. In principle we can assume the shape of

the city and the distribution of agents on the surface of the city to be of whatever

sorts. However, for the sake of a clearer exposition we will assume that the city

is a [0, 1] × [0, 1] square and that the distribution of agents on it is uniform, so

that the mass of agents on an area A ⊂ [0, 1]× [0, 1] will be given by the Lebesgue

measure L(A) of the area. We will initially assume that the sites coordinates are

exogenously given, and will determine from there the fair and efficient allocation.

3.1. Generalized Gale and Shapley Algorithm. The algorithm that I

propose here is a generalization of the Gale and Shapley algorithm with preferences

completely described by distance. Agents on both sides of the market want to

minimize the distance they travel to reach their counterpart. Let’s now consider

the algorithm that will lead us to the fair allocation in the two dimensional case.

The algorithm will be as follows

(1) Proposal Phase: students - represented by the continuum of points on the

surface of the area - will apply for their favorite school that hasn’t rejected

them yet.

(2) Disposal Phase: schools will tentatively accept students up to capacity. If a

school receives more applications than it can serve, it will reject their least

favorite students.

(3) Update Phase: students that have been rejected in the previous step apply

to their favorite school that has not rejected them yet.

Example 1. Continuous case. Consider the following application of the algorithm.

As mentioned before we will consider a square surface of [0, 1]× [0, 1]. And consider

4 sites randomly positioned on the territory.

Iteration 1:
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Proposal Phase: Students will apply to the closest school. This results in the

Voronoi allocation. The lines in the graph represent students that are equidistant

between two centers.

Disposal Phase: Schools that have an excess of demand choose the students that
they prefer to admit, up to capacity.

Schools that have an excess of supply tentatively accept all students that have

applied. Consider now the rejected territories in grey in the graph.

At the second iteration of the algorithm the students living in these territories

will apply again to their favorite school among the ones that have not rejected them

at a previous step. Again the schools with an excess of demand will choose among

their favorite students, that is the closest ones. Some other students will be rejected

and will need to reapply, starting the third iteration of the algorithm and so on,

until convergence.

The final allocation in this particular case is the following
11



3.2. Efficient Allocation. We want now to answer a different question, that is

which is the allocation that minimizes the total distance traveled by students and

respects the capacity constraints of schools. In other words, we want to find an

allocation ψ such that

∫
X
d(x, ψ(x))dx = min

ψ

∫
X
d(x, y)dx

s.t.

∫
X
I {x |ψ(x) = y } = qy ∀y ∈ Y

We can obtain this allocation by imposing a system of transfers from students to

schools that will make students go to the prescribed school, similarly to the example

discussed in the one dimensional case. Here is an example of the algorithm

We initially have the Voronoi tasselation, and then imposing an increasingly

large transfer t that students have to pay to go to a certain school boundaries will

shift parallelly until we obtain the final allocation

Notice that similarly to the one dimensional case certain centers end up being

outside of the territory they serve.

3.3. When Fair and Efficient Allocation Coincide. Now an interesting

question is whether ex-ante we could place centers in such a way that the fair

allocation obtained through the Gale and Shapley algorithm and the efficient allo-

cation coincide. The answer is yes, and the location of the sites on the territory

will depend on the shape of the territory itself. So for now we can focus on the

square territory [0, 1]× [0, 1] and try and answer that question for the case at hand.

Consider for instance the location of the following points.
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It’s easy to see that if we calculate the efficient allocation and the fair allocation

the two coincide, and as a matter of fact the algorithm for the fair allocation stops

after the first iteration. However it is interesting to notice, that there are infinite

other possible locations for 4 points on the surface of the city such that the fair

and the efficient allocation coincide, and some are better than others. In particular

consider the following possible locations that all give rise to the same allocation.

Notice that in the last one the total distance travelled by students is less than

the one travelled by students in the second graph, which is in turn less than what

they have to travel in the first graph.

3.4. Bottleneck Algorithm for Inequality Minimization. Let a labeling

of pairs be defined in the following way: l : X×Y → N, such that if d(x, y) < d(x, y′)

then l(x, y) < l(x′, y). The labeling gives higher ranking to the pair that is most

desirable, in the sense that involves the least distance traveled. We know adapt the

bottleneck algorithm to this setting, to develop an algorithm of spatial allocation

that minimizes inequality.

Consider a labeling L = {1, ..., L} with 1 � 2 � ... � L.

Threshold strategy:
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The smallest value l? for which the corresponding problem allows for a perfect
match is the value of the Bottleneck problem.

Example 2. Let I = {1, 2, 3, 4} and J = {a, b, c, d}. Consider the following labeling

l Pairs

1 (3, a)
2 (2, a), (4, a), (1, b)
3 (1, c), (1, d), (4, d)
4 (3, d)
5 (2, c), (4, b)
6 (4, c)
7 (2, b)
8 (2, d), (3, c), (1, a)
9 (3, b)

(1) l0 = 1 and l1 = 9. L? = {l : 1 < l < 9} 6= ∅ . The median of L? is l? = 5.
Is there a feasible match such that no couple with labeling l > 5 is

assigned? Yes
{(3, a), (1, b), (2, c), (4, d)}

Therefore l1 = 5
(2) l0 = 1 and l1 = 5, L? = {l : 1 < l < 5} 6= ∅ . The median of L? is l? = 3.

Is there a feasible match such that no couple with labeling l > 3 is
assigned? No, we should assign both b and c to 1 which is not possible

Therefore l0 = 3
(3) l0 = 3 and l1 = 5, L? = {l : 3 < l < 5} 6= ∅. The median of L? is l? = 4.

Is there a feasible match such that no couple with labeling l > 4 is
assigned? No, again in any allocation with l ≤ 4, we need to have both b
and c both assigned to 1, which is not possible.

Therefore l0 = 4
(4) l0 = 4 and l1 = 5, L? = {l : 4 < l < 5} = ∅. Therefore the algorithm has

converged.

The smallest value l? for which the corresponding problem allows for a perfect
match is the value of the Bottleneck problem. In this case l? = 5.

4. Discretization of the Problem

Now consider a discretized version of the problem, where the “many” side of the

market is composed of a finite number of agents. I consider the problem of match-

ing different students to different schools. The type of a student and a school is

fully determined by their geographical location. Let x be the vector of geographical
14



coordinates of a student of type x, (longx, latx), and let y be the vector of geo-

graphical coordinates of school y (longy, laty). Let dxy be the Euclidean distance

between points x and y, formally

dxy =
[(

longx − longy
)2

+ (latx − laty)
2
] 1

2

Let px be the mass of students at geographical coordinates x and qy the number

of students that a school at location y can accept. Again we study, as in the one-

dimensional case, both the fair and efficient allocation in this setting. The efficient

allocation is the feasible matching µ that minimizes total distance traveled by the

students, subject to the capacity constraints of the schools and students. Formally

min
µ

∑
xy

dxyµxy

s.t.
∑
y

µxy ≤ 1

∑
x

µxy ≤ qy

On the other hand the stable allocation, obtained through the generalized Gale

and Shapley, is an allocation with absence of blocking pairs. That is, let µ(x) ∈ Y
be the school x is matched with and let µ(y) ⊂ X be the set of students that are

assigned to school y. The allocation µ is stable if

dxy < dxµ(x) =⇒ @x′ ∈ µ(y) s.t.dx′y > dxy

and

∃x /∈ µ(y) and x′ ∈ µ(y) s.t. dxy < dx′y =⇒ dxµ(x) < dxy

In words, the allocation is stable if for every school that x would prefer to its

current assignment µ(x), the school is matched only to students that live closer to

the school than x, and if for every student that y would prefer to any of its current

assigned students, x is not interested in a match with y because they are assigned

to a closer school. Notice that we can reformulate the stability concept in a cleaner

way as

dxy < dxµ(x) =⇒ max
x′∈µ(y)

dx′y < dxy

and

∃x /∈ µ(y) s.t. dxy < max
x′∈µ(y)

dx′y =⇒ dxµ(x) < dxy

The quantity maxx∈µ(y) dxy is the radius of school y.

The following Figures 4.1 and 4.2 display an example of efficient (distance mini-

mizing) and fair allocation in the two dimensional case. The first one is a linear

programming problem computed using Gurobi, the second one using a Gale and

Shapley generalized algorithm. Notice that by using the monotone transformation

proposed in Section 2 as the objective function rather than the distance, we obtain

“intermediate” allocations that are neither fair, nor efficient in the classical sense.
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Figure 4.1. Efficient Allocation

5. Data

The data are open data from the NYC Department of Education, publicly avail-

able, merged with US Census data about New York City tracts and population

demographics in each tract. The data include 2166 census tracts in the New York

City area. The sample of schools from the NYCDOE includes the locations of 1701

public schools, that consist of 256 kindergartens, 905 elementary, 602 middle and

564 high schools. Some schools may belong to more than one category, for example

if they offer schooling for grades 1st to 12th. School locations are shown in the

following maps, together with demographics of each tract. In order to estimate

supply, I obtain information about school capacity for each school in the database

from the NYC Department of Education, Enrollment, Capacity and Utilization Re-

port for the 2016-2017 school year. For the 50 schools observations that do not have

data on their capacity I use their current enrollment instead. In order to estimate

demand, I use Census data for each tract to derive information about the number

of kids in the age range of interest. I take the number of potential students in each

Census tract to be the total number of kids in the age of interest in that census

tract. Since I will be using distance as the only driver of utility in school search
16



Figure 4.2. Fair Allocation (Generalized Gale and Shapley)

for both the school and the student, and since information on the specific address

within a tract of a child in the age range of interest is not available, I approximate

the distance that a student has to travel to go to the school as the distance between

the centroid of the tract and the school.

6. Application to New York City

Suppose that both students and schools care about the distance the student has

to travel to the school. This can be somewhat of a reasonable metric of utility for

the student, and can be justified for schools by saying that schools need to provie

yellow bus services to students, and prefer therefore to have their students live close

to the school in order to save on time of bus services they need to provide. Since

data on the specific location of students within the census tract is not available,

I will approximate the distance a student needs to travel to the school with the

distance from the centroid of the census tract to the school. In this sense, all

students living in a given census tract will be regarded as equal. Formally, let µ be

a matching and let qi be the capacity of school i. In order for it to be a feasible
17



allocation it needs to satisfy the following

µij ∈ {0, 1}∑
j

µij ≤ qi∑
i

µij ≤ 1

It is important to note that there are more kids in school age in New York City

than schools have capacity. Since the NYC public school system cannot satisfy the

demand, some of the students remain unmatched at the end of the algorithm, so

that effectively the allocation that we obtain satisfies the following:

µij ∈ {0, 1}∑
j

µij = qi∑
i

µij ≤ 1

Students that are not allocated to any school, are assumed to go to a private

school.

Assume that both students and schools care about the distance the student has

to travel to the school. This seems an intuitive approximate metric of utility for the

student, and can be justified for schools saying that schools need to provide yellow

bus services to students, and prefer therefore, to have their students live close to

the school in order to save on time of bus service they need to provide.

The assignment algorithm proceeds as follows:

(1) Proposal Phase:

Students apply to the school that is closest to their home.

(2) Disposal Phase:

Schools with an excess of supply temptatively accept all students.

Schools with an excess of demand reject some students in order to re-

spect their capacity constraint. Rejection is based, whenever possible, on

distance. Ties are broken randomly.

(3) Update Phase:

Rejected students apply to their favorite school among the ones that

have not rejected them.

Notice that since all students in a tract are assumed to be equally distant to each

school, in the first iteration of the proposal phase of the algorithm all students in

a tract apply to the same school. If a school has an excess of demand, it accepts
18



first students that live closest. If the school needs to decide rejection or approval of

students that are equally distant to the school the choice is assumed to be random

with equal probability to each student of being accepted. This implies that some

schools might reject part of the students from a census tract while accepting others,

giving rise to unequal treatment. It also means that kids that live in the same

Census tract might be going to different schools, traveling different distances.

We can now use the algorithm to apply it to the New York City public school

system. First of all, we need to take into account the uneven distribution of the

population in the NYC territory, which makes it unrealistic to assume that we can

use a Lebesgue measure of the territory. I will consider the allocations for students

in the NYC territory for kindergarten, elementary school, middle school and high

school. First of all I present some maps to show the density and demographics of

population in the NYC territory and the location of the schools that interest that

type of population. The following maps show the density of population by census

tract. The grey crossess indicate the locations of kindergartens, elementary, middle

and high schools respectively.

19



6.1. Kindergarten Allocation. We can now move on to find the generalized

Gale and Shapley allocation. First of all consider a map of the distribution of

children under the age of 5 in each Census tract.

In the first iteration of the algorithm, all kids under 5 years of age are assumed

to apply to the closest kindergarten. If the kindergarten can accept all applicants

while respecting its capacity constraint, it does so. If it cannot, it rejects a number

of students equal to r
(1)
i = a

(1)
i − qi, where a

(1)
i is the number of applicants to

school i at iteration 1 and qi is the capacity of school i. The set of students who

are rejected will be the set of students who live furthest to the school. In case of

ties, the choice is randomly assigned with equal probability to every student.

It is interesting to see the first iteration of the algorithm because it provides

insight into who are the schools that present an excess of supply versus the schools

that present an excess of demand. Tracts of the same color are tracts whose students
20



apply to the same school in the first roung. In the following figure the black dots

present schools with an excess of demand at the first stage, and the white dots

represent schools with an excess of supply in the first phase. It is interesting to see

that in certain areas where schools are concentrated - like the area North of central

park - schools present an excess of supply. In other areas where on the other hand

there is a scarcity of public schools, school face an excess of demand.
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Running the full algorithm until convergence I obtain the following allocation.

Notice how the allocation can be very unequal, both from the point of view of

the students and the point of view of the schools. For instance consider students

that live in Census tract 2: they are assigned to two schools, very close to the tract

itself. This means that they need to travel a very short distance to the schools, and

since the schools are very close to each other, they students that live in the same

tract are treated quite equally.
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On the other hand, students of tract 3 are assigned to 24 different schools and

they need to travel a moderate distance to the school. Also inequality among

students within the same tract is higher than in the previous case. Some students

that live in tract 3 will be randomly accepted by a closer school and other students

will have to travel a longer distance.
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Finally, as an extreme example, students of tract 5 are assigned to 78 different

schools. The tract is located in East Queens, close to Long Island. Some of the

schools it is assigned to through the generalized Gale and Shapley allocation mech-

anism are located all the way in East Harlem, the Upper West side, and downtown

Brooklyn. Some of them at a distance of approximately 90 km from the center of

the tract.
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6.2. Increasing school capacity. One natural question that might arise is what

happens if we increase school capacity to satisfy the potential demand. For the

following simulation of Gale and Shapley, I substitue the actual school capacity as

found in the data with the school capacity that is necessary to have a spot in a

kindergarten for every kid in New York City. I assume that the capacity of each

school is uniform and equal to k = n
K where n is the number of children under the

age of 5 in New York City and K is the number of kindergartens in New York City.

Results are much better in terms of inequality. Looking again at the same census

tracts as before, we can see that they are now all fully assigned to a single school,

which is especially for tracts 3 and 5 much closer to what they were assigned to

without full and uniform capacity.
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It is important to notice that however, even with full and uniform capacity,

certain census tracts are assigned to multiple schools, some of which might be far.

As an example consider the assignment of census tract 9.
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6.3. Elementary School Allocation. Once again, let us start by considering the

number of children with ages between 6 and 10 per census tract.

And we can now procede to applying the generalized Gale and Shapley algorithm

using the actual school capacities. Here are the allocations of some of the tracts.

Again, white dots are all the elementary schools in NYC, and the red dots are the

schools that the students of the tract under consideration (also in red) are assigned

to. Again in certain cases the allocation is very close to the tract, as in the case of

Tract 2. In other cases, the tract is assigned to several schools, and the distance

traveled is longer. The degree of inequality crucially depends on whether the supply

is significantly less than the demand or not. One of the stark characteristics of the

fair allocation is that the school a tract is assigned to must not necessarily be the

school that is in the tract’s territory, as in the case of Tract 37 (last image).
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7. Conclusions

In conclusion, we explored some geographical applications of different matching

algorithms, ranging from a linear optimization problem that yields that distance

minimizing allocation, the a generalized version of the Gale and Shapley algorithm,

that yields the so-called “fair” allocation. We adapt the algorithm by Gale and

Shapley to fit a many-to-one matching problem, in a discretized version of Hoffman

(2006) and we present some examples of the matching in a one-dimensional and two-

dimensional setting. The simulations provide an intuition of how such algorithm,

while providing a stable allocation, can yield unequal results. Going forward, we

are interested in formalizing a notion of inequality that allows us to compare the

degree of inequality delivered in the stable allocation, when compared to the one

delivered by an efficient allocation.
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