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ABSTRACT. Stable allocations are often called “fair,” due to the fact that stability
eliminates all justifiable envy. In spite of this, we show how stability as a solution
concept often comes at the cost of extreme forms on inequality. Restricting our attention
to aligned preferences, we show that the stable matching results from the lexicographic
welfare maximization of the pairs’ welfare, starting with the best-off. We compare this
solution with an alternative allocation, that although unstable, maximizes the welfare

lexicographically starting with the worst-off pairs.

1. INTRODUCTION

In this note, we highlight the tension between stability and equality in matching with
non transferable utilities. We consider many-to-one matchings and refer to the two sides
of the market as students and schools. The latter have aligned preferences, as in Niederle
and Yariv (2009), which in this context means that a school’s utility is the sum of its
students’ utilities. A special case of aligned preferences, known as spatial, arises when
utilities are determined by commuting distance to school.

We show existence and uniqueness of a stable one-to-many matching, under similar
assumptions to the ones used by Eeckhout (2000), Clark (2006) and Niederle and Yariv
(2009) to prove existence and uniqueness of an equilibrium in the one-to-one case. This
stable matching can be obtained through the Deferred Acceptance Algorithm (DAA) of
Gale and Shapley (1962).

Stable matchings eliminate all justifiable envy, hence are sometimes called “fair”.
For instance Kojima and Manea (2010) point out that, due to the fact that stability
is regarded as a normative fairness criterion, it is used in many practical assignment

problems, such as student placement in New York City and Boston. However, we show
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that this fairness comes at the cost of extreme forms of inequality of allocation®. In the
spatial allocation case, this results in some students going to school across the street
while other travel across the city. The intuition is that students and schools that are
close to each other can block any allocation that involves a pair that is further away, and
peripheral or marginal students get the long end of the subway ride.

We formalize this intuition by showing that the stable matching lexicographically
maximizes the welfare of the matched pairs, starting with the best-off. We propose a
simple algorithm that reflects this lexicographic ordering and makes the proof of our result
transparent. We call this algorithm max-max-lex. Similarly, we propose an algorithm,
adapted from the bottleneck algorithm in Burkard et al. (2009), Section 6.2, that reverses
the balance between stability and inequality, and matches pairs in lexicographic order
maximizing the welfare of the worst-off. We call this algorithm max-min-lex. The

resulting matching is Rawlsian at the expense of stability.

2. MODEL

Consider a one-to-many matching problem with two sides Z and J. We will call
the elements of 7 students, and the elements of 7 schools. Let [J be a discrete set
with cardinality weakly smaller than the cardinality of Z. Let each school j € J have
capacity g;, which is the number of students it is equipped to serve. Finally, let u;; be the
utility of a student ¢ when matched with j, and similarly let v;; be the utility of a school
J when matched with a set of students I C Z. We normalize the utility of unmatched
students to —oo. We assume that utilities are strictly positive, i.e., u;; > 0 for every
1 and j; there are no indifferences, i.e., there are no pairs 7,7 € Z and j,7 € J such
that w;; = wy; or u;; = w;;, and preferences are strictly aligned, by which we mean that

forall j € J and I CZ, vj; =Y . u;;. Strictly aligned preferences are so called because

iel
they require alignment between the utilities of the two sides of the market. They are a

particular type of altruistic preference. When the matching is one-to-one, the definition of

!The inequality discussed here is between matched pairs, and within each side of the market, not between
the two sides of the market as in in Gusfield and Irving (1989). In the latter, notions of equality and
fairness relate to equalizing outcomes of both sides of the market while maintaining stability.
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strictly aligned preferences coincides with the definition of aligned preferences in Niederle
and Yariv (2009). 2

An allocation is a function p : ZU J — 22 U J such that u(i) € J U {i} and
w(7) € ZU{j}. The notation u(i) = ¢ indicates that student ¢ is unassigned, and
J € u(y) indicates that the number of students assigned to school j under p is less than
its capacity, that is ¢; > |u(j) N Z|. An allocation is called feasible if each student is
assigned to at most one school, and all school capacity constraints are respected, that is
if [p(i)| =1 for all i € Z and |u(j)] < g; for all j € J. An allocation is stable when there

are no blocking pairs. In our context, this is equivalent to the following.

Definition 2.1. The allocation p : Z U J — 2L U J is stable zfﬂ 1,7 € T x J such

that wij > wiuy and [[|p(7))] < g] or [[u(g)] = g5 and 3" € p(7), wij < uyyl].

The following algorithm will be shown to produce the unique stable matching.

(1) Match Step: select i and j such that the utility of their match is the highest in the
set of students that are unassigned and schools that have some residual capacity.
(2) Update Step: reduce the capacity of the school found in the previous step by 1.

Remove the assigned student from the set of unassigned students.

We call this algorithm the max-max-lex algorithm ? because it iteratively pairs the
students and schools that are each other’s top choice among the schools and students
that are still available. It does so in a lexicographic order, until there are no further
students and schools to match. The max-max-lex algorithm is formally described below.
It converges in a finite number of steps. In the algorithm, we denote e’/ the j-the vector
of the canonical basis of R, which is the vector whose j-th entry is equal to one, and

whose other entries are equal to zero.

Theorem 2.1 shows three important results: first, the allocation resulting from the

max-max-lex algorithm is the one that maximizes the vector of students’ utilities in

2The condition is related but stronger than the top coalition property in Banerjee et al. (2001) and

weaker than the condition in Pycia (2012).

3The max-max-lex algorithm is lexicographic, starting from the top. This feature is shared with rank-

maximal allocations, see Irving et al. (2006), where the number of agents receiving their first choice is

maximized, subject to which a maximum number of remaining agents receive their second choice, etc...
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Algorithm 1: Max-max-lex Algorithm

Initialization:
Set t=0,1°=7and ¢ = ¢
while I' # () and ¢* # 0 do

i', j' = arg max; ; u;
s.t. i€ 1" and ¢} # 0
Set pu(i) = j;

qt+1 — qt . ejt;
I = I,
t=t+1

end

lexicographic order from higher to lower utility pairs. Second, it proves that the allocation
is stable. Finally, it shows that the stable allocation is unique, therefore implying that the
resulting matching outcome of the max-max-lex algorithm is identical to the matching

outcome of the DAA.

Theorem 2.1. (a) The maz-maz-lex algorithm mazximizes (among all feasible allocations)
the vector of ranked ordered utilities of student-school pairs in the lexicographic order,
starting from the pair with the highest utility. (b) The assignment resulting from the

mazx-maz-lex algorithm is stable. (c) The stable allocation is unique.

Proof. (a) Let U C RIZI represent the set of utilities that are achievable in the economy
in a feasible allocation. Formally, let v = (u;);er be a vector in RFI. If 4 € U then
there exists a feasible allocation p such that wu;,;) = u;. Let u® represent the k-th order
statistic of vector u, with u(®) being the highest component of vector «, and u*) being its
smallest. The first iteration of the max-max-lex algorithm selects among the vectors in U

Izl

the ones with the highest value of (). The n-th iteration of the max-max-lex algorithm

selects among the vectors selected at the previous step, the ones with the highest value

7I=7) " and so on. Therefore, the max-max-lex algorithm maximizes lexicographically

of u!
the utility of students, starting from the pairs with the highest utility.
(b) Let ™ML be the match resulting from the max-max-lex algorithm, and assume

by contradiction that it is unstable. This means that there exists ¢ and j such that
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Uij > Uiy and for some ' € pu(j), u; > uyj. However, this implies that the max-max-
lex algorithm would have matched ¢ and j, before matching ¢’ and j, which leads to a
contradiction.

(c) Let u® be a stable match and let **~ be the stable match arising from the max-
max-lex algorithm. Suppose by contradiction that p° # p™M~. This means that there
exists i € Z such that u°(i) # pMME(4). Since by Assumption 2 there are no indifferences,
it must be that either (a) w;, ey < sy or (b) wnmmey > s ;). First suppose that
(a) holds. Since i and ;% (i) are not assigned through the max-max-lex algorithm, it must
be that at the stage of the algorithm when i is assigned, school p°(i) is already at full
capacity. This implies that 31 C T s.t. |I]| > q,s5(;) and minges wy sy > u,,5(;). But this
implies that any i’ € I would form a blocking pair with z(i) in p°. This contradicts
that p(s) is stable. Suppose then that (b) holds, i.e., w;,mumr(;y > sy, This implies

MML(3)) form

that 31 C 7 s.t. || > ¢; and miny¢s Ujry MML () > Uy mmr (). But then (7, i

a blocking pair in p°, which is a contradiction. Therefore p% = MM~ O

An illustration of the severe inequality displayed by the stable allocation in matching
with aligned preferences is given in Figure 2.1. The latter shows the stable matching
between a large number of students uniformly distributed on [0, 1]? and 15 distinct schools
in [0, 1]* with heterogeneous capacities. Utilities are spatial, i.e., u;; = V2 —d;;, where d;;
denotes Fuclidean distance between ¢ and j. For illustrative purposes, Figure 2.1 actually
represents the limit allocation when Z = [0,1]?. See Hoffman et al. (2006) for details.
Dots in the figure represent schools, and territories of the same color represent students
who attend the same school. One characteristic of this assignment is that all schools lie
in the territory that they serve. As one can see from the figure, some students in the red
territory have to travel almost the maximum distance that can be traveled in the square,
while others travel no distance at all. This results in very dispersed utilities in the stable
allocation.

The lexicographic nature of the stable allocation suggests a Rawlsian alternative, where
pairs are matched in lexicographic order, starting with the lowest utility pair within a set

that is iteratively determined. The corresponding algorithm we propose below is adapted
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FiGURE 2.1. Stable allocation of students uniformly distributed on the
unit square and 15 schools, represented by black dots. Student preferences
are inversely proportional to distance traveled. Colored regions indicate
sets of students attending the same school.

from the bottleneck algorithm in, for instance, Burkard et al. (2009). The algorithm is

made of three steps:

(1) Feasibility Step: among the feasible allocations of unassigned students and schools,
select one that maximizes the lowest utility «* obtained by anyone in the allocation.

(2) Match Step: match all i and j’s in the feasible allocation identified at the previous
step that obtain utility «* from their match.

(3) Update Step: reduce the capacity of the school found in the previous step by 1.

Remove the assigned student from the set of unassigned students.
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This algorithm converges in finite time and produces an allocation that maximizes the
utility of the worst-off student, by maximizing at each step the utility of the worst-off

students among those remaining. We thus call this algorithm max-min-lex.

Algorithm 2: Max-min-lex Algorithm

Initialization:

Sett=0,I"'=7Z,¢"=¢q

while I' # () and ¢* # 0 do

Ut = {(uy):ie€l', j:q; #0}

By dichotomy, find the largest u* in U* such that there exists a feasible match
with no assigned student obtaining a utility below u*;

Match i, j* such that w;;e = u*

Set I+ = I*\ {i};

qt+1 — qt _ ejt;
t=t+1
end

The equalitarian nature of max-min-lex allocations comes at the expense of stability.
This is straightforward, given the uniqueness of the stable allocation. It also stems from
the logic of the max-min-lex algorithm, which creates blocking pairs. It is most easily
seen in a 2 students, 2 schools example, with u;; > w;y > wuy; > wuyy. In this case,
the max-max-lex algorithm matches (7, j) and (i'j"), whereas the max-min-lex algorithm

matches (i,j") and (i'j), thereby decreasing inequality but creating a blocking pair.

3. CONCLUSION

In conclusion, this paper shows that under certain conditions on preferences, the stable
allocation leads to extreme inequality between the agents in the economy. Focusing on
the case of aligned preferences, we make our result transparent by showing how the unique
stable allocation is obtained by lexicographically matching pairs, starting from the best-off
in the economy. We provide a visual representation of the inequality using the particular

case of spatial preferences. Finally, we contrast with a solution that reverses the logic of
7



the stable allocation, by lexicographically maximizing the welfare of the worst-off in the

economy, at the expense of stability.
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