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1 Spectral Features

1.1 Absorption Lines

Most stars are surrounded by outer layers of gas that are less dense than the core (ρouter <
ρcore. The photons emitted from the core cover all frequencies ν) (and energies). Photons of
specific frequency can be absorbed by electrons in the diffuse outer layer of gas, causing the
electron to change energy levels. Eventually the electron will de-excite and jump down to
a lower energy level, emitting a new photon of specific frequency. However, the direction of
this re-emission is random, so the chance of the re-emitted photon travelling along the same
path as the original incident photon is very small. The net effect is that the intensity of
light at the wavelength of that photon will be less in the direction of an observer
and the resultant spectrum will show dark absorption lines.

2 Stellar Timescales

Timescales just measure when the internal processes of stars come to equilibrium. There are
4 important timescales:

Dynamical Timescale Suppose the internal pressure of the sun were suddenly removed.
The outer radius, R, would collapse under gravity according to

d2R

dt2
=
−GM�
R2(t)

where R(0) = R� and dR
dt

(0) = 0.

The radius would shrink to zero after an elapsed free-fall time:
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2 STELLAR TIMESCALES

tff =
π√
8

(
R3
�

GM�

)1/2

Dimensional analysis gives a similar result: it is clear that the collapse time should involve
the initial surface gravity g� ≡ GM�

R2
�

and radius R� in the combination
√
R�/g�. Ignoring

all dimensionless factors of order unity, the dynamical time is therefore:

tdyn =

(
R3
�

GM�

)1/2

≈ 1600 s

in terms of the mean density:

tdyn =
1√
Gρ̄

While the sun is in no such danger of sudden collapse, this is the characteristic period on
which the solar interior vibrates in response to small mechanical disturbances such as solar
flares, convection, or even the impacts of in-falling comets. It is roughly the time required
for a sound wave to cross the sun.

Collisional (Microscopic) Timescale Photons created in the core of the sun scatter
many times on their way out to the surface; actually they are absorbed and re-emitted more
than scattered, but never mind that for now. The mean-free path between scatterings is
λ = (neσ)−1, where ne is the number of electrons per unit volume, and σ is the scattering
cross section per electron. Since the sun is mostly hydrogen, ne ≈ ρ/mH . The mass density
averaged over the volume of the sun is:

ρ̄� =
3M�
4πR3

�

(similar to that of the human body!), hence ne ≈ 1024 cm3. The cross section is generally of
order the Thomson cross section,

σT =
8π

3

(
e2

mec2

)2

≈ 6× 10−25 cm2

so λ̄ ≈ 1 cm. The corresponding collision time is:

teγ =
λ̄

c
≈ 10−10 s

It can be shown that the proton-electron and proton-proton collision times are similarly short,
or even shorter, compared to tdyn and the other relevant macroscopic timescales discussed
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2 STELLAR TIMESCALES

below. Importantly therefore, all regions of the interior quickly relax to local thermodynamic
equilibrium (LTE). Thermal equilibrium can never be perfect, however, since the surface,
which radiates freely to space, is inevitably colder than the core. The temperature gradient
drives an outward flux of heat.

Kelvin-Helmholtz (photon diffusion and thermal) Timescale: The thermal time
scale is the time required for the Sun to radiate all its reservoir of thermal energy. Impor-
tant time scale: determines how quickly a star contracts before nuclear fusion
starts - i.e. sets roughly the pre-main sequence lifetime.

From the Virial Theorem, in which the thermal energy U is roughly equal to the gravitational
potential energy:

tKH =
U

L

Photons escape by a random walk of step length λ. The root-mean-square distance after
N steps is dN = N1/2λ. Setting this distance equal to R� gives the typical number of

steps needed to travel from center to surface: N ≈ R�
λ

2 ≈ 1022. The corresponding photon
diffusion time is:

tdiff = Nteγ ≈ 1012 s ≈ 3× 104 yr

A related timescale is the time required to radiate the current gravitational binding energy
of the sun at its current luminosity; this is the Kelvin-Helmholtz time:

tKH =
GM2

�/R�
L�

≈ 3× 107 yr

This is the timescale on which the sun would contract if its nuclear energy sources were
turned off. It is much longer than the dynamical time (tdyn) because pressure support is lost
only gradually, as heat escapes. It is also significantly longer than the photon-diffusion time
above. The reason for the latter is that most of the sun’s thermal energy is stored in the
random motions of electrons and ions rather than photons, even though photons dominate
the outward transport of energy. Photons carry a larger fraction of the thermal energy of
stars more massive than the sun, as will be shown.

Nuclear Timescale: This is just the time scale on which the star will exhaust its sup-
ply of nuclear fuel if it keeps burning it at the current rate. This is a reasonable estimate of
the main-sequence lifetime of the Sun.

The heat released by fusing a mass ∆M of hydrogen into helium is approximately 0.007∆Mc2.
Therefore the time required to exhaust all the sun’s hydrogen at its current luminosity would
be:
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3 WHITE DWARFS

tnuc =
0.007∆M�c

2

L�
≈ 1011 yr

The actual lifetime of the sun will be about one tenth of this because its luminosity will
increase greatly when it becomes a red giant.

SUMMARY: Stellar structure and evolution are quantitatively predictable in large part
because of the disparity of timescales:

tnuc � tKH , tdiff � tdyn � tcollisions

When analyzing processes associated with one of these timescales, one can usually ignore
the slower processes and assume that the more rapid ones are at equilibrium. Most unsolved
problems in stellar theory have to do with breakdown in these assumptions: for example,
convection and wind-borne mass loss are departures from dynamical equilibrium that have
thermal and nuclear consequences.

3 White Dwarfs

3.1 Gravitational Redshift:

Gravitational redshift tells you the ratio of the star’s mass to its radius, M/R. There is
another quantity that is measurable from stellar spectra, the surface gravity g of the star
(the acceleration experienced by a falling body near the surface). This second quantity tells
you the ratio of the object’s mass to the square of its radius, g ≈M/R2. Combining the two
quantities, one can extract both the object’s mass M and its radius R.

In other words, combine the following to find mass M and radius R:

1. Gravitational redshift: M/R

2. Surface gravity: g ≈M/R2

3.2 Spectra:

The dominant factor in the appearance of a star’s spectrum is its temperature Teff , not its
composition.

Continuity: stars are not perfect blackbodies because some atoms absorb strongly in some
wavelength ranges. This causes the emission in these ranges to originate at much higher
layers in the atmosphere which are cooler.
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3.2 Spectra: 3 WHITE DWARFS

With access to surface gravity and effective temperature (the temperature at the photo-
sphere), one can determine key properties such as mass and radius.

3.2.1 Temperature Teff :

By computing the temperature ranges for various atoms and ions, it became obvious that
the correct ordering of the letter spectral types is OBAFGKM.

3.2.2 Surface Gravity g:

It can be determined to about 25 − 50% precision through spectroscopy, but this requires
diluting a stars light through a spectrograph, meaning the technique is only applicable to
relatively bright stars.

Asteroseismology, the measurement of stellar oscillations, is even more precise only about
2% uncertain but also requires the ability to distinguish minute flux variations, and so only
the very brightest stars can be studied. This means that while we know the temperatures
of a huge number of stars fairly accurately, we only have good measures of surface gravities
for a tiny subset.

The shape of a spectral line, the line profile, reflects the conditions at a range of heights
so that the average gas velocities vavg,gas at different heights have an effect on the range of
wavelengths λ included in the spectral line. The line profiles change shape depending on the
surface gravity of the star.

Surface gravity has an important effect on stellar oscillations: the higher the gravity, the
faster the rate of oscillations (this is why asteroseismology is able to measure gravity).

For most stars, the only chance we have to infer the surface gravity is based on the analysis
of spectral features: lines and continuum.

Generalities of spectral lines:

1. The intensity of a spectral line is related to the number of absorbers, i.e. atoms or ions
of the given elements at the lower level of the transition.

2. In Local Thermodynamic Equilibrium (LTE), when only one ionization stage is avail-
able, the fraction of ions that can absorb is given by the Saha equation that regulates
the ionization case

We know that pressure effects in stellar spectra are very weak if compared to temperature
effects; in a few words we can say that, while temperatures span a factor of ten or so from
O-M stars, pressure ranges over six orders from dwarfs to supergiants. Nevertheless, this is
the only effect that we can measure if we want to have a determination of surface gravity.
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3.3 Surface Temperatures Teff 3 WHITE DWARFS

Photospheres are comprised of gas so,

P = nkT

Fgrav =
GMm

R2
= gρH

where H is the pressure scale height and g = GM
R2 .

The pressure and gravitational force must balance:

P = gρH

For stars of comparable temperatures, those with higher surface gravities will have higher
pressures and vice-versa.

3.3 Surface Temperatures Teff

The surface temperature of a single white dwarf, for a given mass, directly yields its lumi-
nosity and hence its evolutionary thermal cooling time (age).

Teff, single wd ∝ L ∝ τcool

This is NOT the case for white dwarfs in CVs.

LS = Laccg + Lshear + Lrad + Lcool − Lν
Teff = [LS/(4πRR

2
wdσ)]1/4

where Laccg is the long-term average rate at which the gravitational potential energy is liber-
ated in response to accretion. Lcool is the thermal cooling luminosity, Lrad is the luminosity
due to instantaneously radiated accretion luminosity, Lshear is the luminosity resulting from
shear mixing (rotational kinetic energy (KE) converted into heat and stored inside the white
dwarf eventually to be released as surface luminosity), and Lν is the neutrino luminosity.

• Tsurf,eff may not be the intrinsic value independent of accretional heating but instead
an upper limit to the baseline Teff value– due to the possible contribution of the
accretion disk

• The cooling evolution time τcool cannot be directly inferred and is a lower limit to the
stellar cooling age
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3.4 Lagrangian Points L: 3 WHITE DWARFS

3.4 Lagrangian Points L:

The volume of space inside of which matter feels a stronger pull from star 1 than star 2
defines the Roche Lobe for star 1, and the volume of space inside of which matter feels a
stronger pull from star 2 than star 1 defines the Roche Lobe for star 2.

The two Roche Lobes for stars in a binary system are approximately teardrop shaped, and
they meet at a point known as L1, or the first Lagrangian point L1. At L1, the gravitational
force from both stars is exactly equal, so matter can actually go from being bound to one
star to the other by passing through the L1 point.

3.5 Eddington Limit and Super-Eddington Luminosities:

The Eddington luminosity (Eddington limit), is the maximum luminosity a body (such as a
star) can achieve when there is balance between the force of radiation acting outward and
the gravitational force acting inward.

The maximum luminosity of a source in hydrostatic equilibrium is the Eddington lumi-
nosity. If the luminosity exceeds the Eddington limit, then the radiation pressure drives an
outflow.

LEdd = Lmax when Frad,out = Fgrav,in

The state of balance is called hydrostatic equilibrium (HE).

When a star exceeds the LEdd:

• Intense radiation-driven stellar wind from outer layers

– Most stars have L < LEdd, so winds are from less-intense line absorption.

• Explains observed luminosity of accreting black holes

LEdd =
4πGMmpc

σT
≈ 3.2× 104

(
M

M�

)
L�

mp appears because in the typical environment for the outer layers of a star, the radiation
pressure acts on e−, which are driven away from the center. Because protons are negligibly
pressured by the analog of Thomson scattering, due to their larger mass, there’s a slight
charge separation and therefore a radially directed electric field, acting to lift the positive
charges, which are typically free protons. When the outward electric field is sufficient to
levitate the protons against gravity, both electrons and protons are expelled together.
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4 AGN

3.5.1 Super Eddington Luminosities:

How do we explain very high mass loss rates (high Ṁ) (e.g. η Carinae)? Regular, line driven
stellar winds can only stand for a mass loss rate of around Ṁ ≈ 10−4 − 10−3 M� per yr,
whereas mass loss rates of up Ṁ ≈ 0.5 M� per yr are needed to understand the η Cari-
nae outbursts. This can be done with the help of the super-Eddington broad spectrum
radiation-driven winds.

• Exceeds LEdd for very short times, resulting in short and highly intensive mass loss
rates:

– GRB

– Novae

– SNe

• Exceeds LEdd for very long times :

– X-ray binaries

– AGN

• LEdd reduces/cuts off the accretion flow, imposing an Eddington limit on accretion
(just like it does on luminosity):

– CVs (accreting WDs)

– Accreting neutron stars (NS)

Note: for notes on accretion rates and the fluid equations, check out Ohio State’s Notes on
Accretion Flows.

4 AGN

An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has
a higher than normal luminosity over portions of the electromagnetic spectrum. AGN are
the most luminous sources of electromagnetic radiation in the Universe, and their evolution
puts constraints on cosmological models. In quasars and other types of AGN, the black hole
is surrounded by a gaseous accretion disk. As gas in the accretion disk falls toward the
black hole, energy is released in the form of electromagnetic radiation. This radiation can
be observed across the electromagnetic spectrum at radio, infrared, visible, ultraviolet, and
X-ray, and gamma wavelengths.

The majority of AGN are very distant and show large Doppler shifts. This suggests that
active galaxies occurred in the early Universe and, due to cosmic inflation, are receding away
from the Milky Way at very high speeds. The observation of AGN at large distances and
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4.1 Seyfert Galaxies: 4 AGN

their scarcity in the nearby Universe suggests that they were much more common in the early
Universe, implying that active galactic nuclei could be early stages of galactic evolution.

4.1 Seyfert Galaxies:

Seyfert galaxies are one of the two largest groups of active galaxies, along with quasars.
They have quasar-like nuclei (very luminous, distant and bright sources of electromagnetic
radiation) with very high surface brightnesses whose spectra reveal strong, high-ionisation
emission lines,but unlike quasars, their host galaxies are clearly detectable. Seyfert galaxies
are much closer than quasars.

Seyfert galaxies account for about 10% of all galaxies and are some of the most intensely
studied objects in astronomy, as they are thought to be powered by the same phenomena
that occur in quasars, although they are closer and less luminous than quasars. These
galaxies have supermassive black holes at their centers which are surrounded by accretion
discs of in-falling material. The accretion discs are believed to be the source of the
observed ultraviolet radiation. Ultraviolet emission and absorption lines provide the
best diagnostics for the composition of the surrounding material.

In a typical Seyfert galaxy, the nuclear source emits at visible wavelengths an amount of
radiation comparable to that of the whole galaxy’s constituent stars.

Seyfert galaxies have extremely bright nuclei, with luminosities ranging between 108L� −
1011L�. Only about 5% of them are radio bright; their emissions are moderate in gamma
rays and bright in X-rays. Their visible and infrared spectra shows very bright emission
lines of hydrogen, helium, nitrogen, and oxygen. These emission lines exhibit strong Doppler
broadening, which implies velocities from 500−4, 000km/s and are believed to originate near
an accretion disc surrounding the central black hole.

4.1.1 Calculating the mass of the central black hole:

A lower limit can be calculated using the Eddington luminosity. This limit arises because
light exhibits radiation pressure. Assume that a black hole is surrounded by a disc of
luminous gas. Both the attractive gravitational force FG acting on electron-ion pairs in the
disc and the repulsive force exerted by radiation pressure Frad follow an inverse-square law
1/r2. If the FG < Frad, the disc will be blown away by radiation pressure.

4.1.2 Emissions:

Emission lines may come from:

1. The surface of the accretion disc itself
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4.2 Quasars: 4 AGN

2. Clouds of gas illuminated by the central engine in an ionization cone

The exact geometry of the emitting region is difficult to determine due to poor resolution of
the galactic center. However, each part of the accretion disc has a different velocity relative
to our line of sight, and the faster the gas is rotating around the black hole, the broader
the emission line will be. Similarly, an illuminated disc wind also has a position-dependent
velocity.

Narrow lines are believed to originate from the outer part, where velocities are lower, while
the broad lines originate closer to the black hole. This is confirmed by the fact that the
narrow lines do not vary detectably, which implies that the emitting region is large, contrary
to the broad lines which can vary on relatively short timescales. Reverberation mapping
uses this variability to determine the location and morphology of the emitting region.

1. Calculates the mass of the central black hole

2. Calculates the size of the broad line regions

3. Measures the structure and kinematics of the broad line emitting region by observing
the changes in the emitted lines as a response to changes in the continuum

4. Requires the assumption that the continuum originates in a single central source

Bands of emission are:

1. Radio emission – synchrotron emission from the jet

2. Infrared emission – from radiation in other bands being reproessed by dust near the
nucleus

3. Highest energy – inverse compton scattering by a high temp corona near the black hole

Unified models explain the difference between Seyfert I and Seyfert II galaxies as being
the result of Seyfert II galaxies being surrounded by obscuring toruses which prevent
telescopes from seeing the broad line region. Quasars and blazars can be fit quite easily
in this model. The main problem of such an unification scheme is trying to explain
why some AGN are radio loud while others are radio quiet. It has been suggested that
these differences may be due to differences in the spin of the central black hole.

4.2 Quasars:

A quasar (also known as a QSO or quasi-stellar object) is an extremely luminous active
galactic nucleus (AGN). It has been theorized that most large galaxies contain a supermas-
sive central black hole with mass ranging from 106−109M�. The power radiated by quasars
is enormous: the most powerful quasars have L ≈ 1041W , thousands of times greater than
an ordinary large galaxy such as the Milky Way.

The huge luminosity of quasars results from the accretion discs of central supermassive black
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4.2 Quasars: 4 AGN

holes, which can convert between 6% 32% of the mass of an object into energy, compared to
just 0.7% for the p-p chain nuclear fusion process that dominates the energy production in
Sun-like stars.

It is now thought that all large galaxies have a black hole of this kind, but only a small
fraction have sufficient matter in the right kind of orbit at their center to become active and
power radiation in such a way to be seen as quasars.

This also explains why quasars were more common in the early universe, as this energy
production ends when the supermassive black hole consumes all of the gas and dust near
it. This means that it is possible that most galaxies, including the Milky Way, have gone
through an active stage, appearing as a quasar or some other class of active galaxy that
depended on the black hole mass and the accretion rate, and are now quiescent because they
lack a supply of matter to feed into their central black holes to generate radiation.

4.2.1 Quasar Properties:

• Radiation is partially non-thermal (not black-body)

– 10% have jets and lobes like radio galaxies

• Extremely high energies (brighter than constituent stars by a factor of 100 from:

– Fermi acceleration

– Centrifugal acceleration

• Detectable over entire EM spectrum, but brightest in near-UV

• Strong radio emission from jets of matter moving ∼ c

• Appear as blazars when viewed downward

– Regions move away from center faster than c (superluminal expansion)– optical
illusion from special relativity.

• Emission lines of: H, He, C, Mg, Fe, and O

– Atoms range from neutral to highly ionized – makes it highly charged

– Wide range of ionization→ gas is highly irradiated (thus not just hot gas created
by stars, which can’t produce a wide range of ionization).

4.2.2 Re-Ionization:

Oldest known quasars (z = 6) indicate that the intergalactic medium at that time was neu-
tral gas. More recent quasars show no absorption region but rather their spectra contain a
spiky area known as the Lyman-alpha forest; this indicates that the intergalactic medium
has undergone re-ionization into plasma, and that neutral gas exists only in small clouds.
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5 HYDROSTATIC EQUILIBRIUM:

The intense production of ionizing UV radiation is also significant, as it would provide a
mechanism for re-ionization to occur as galaxies form. Despite this, current theories suggest
that quasars were not the primary source of re-ionization; the primary causes of re-ionization
were probably the earliest generations of stars, known as Population III stars (possibly 70%),
and dwarf galaxies (very early small high-energy galaxies) (possibly 30%).

Quasars show evidence of elements heavier than helium, indicating that galaxies under-
went a massive phase of star formation, creating population III stars between the time of
the Big Bang and the first observed quasars.

5 Hydrostatic Equilibrium:

Mass within some radius r is the mass equation or the equation of mass conservation:

M(r) =

∫ r

0

4πr2ρ dr.

Imagine we have a differential volume of our star defined by the following:

Density = ρ(r)

V olume = V = drdA

Mass = dm = ρ(r)× V = ρdrdA

If we ask ”what is the Force of gravity acting on this differential volume?”,

Fgrav = −GMdm

r2
= −GM

r2
× ρ(r)drdA

But g = GM
r2

, so:
Fgrav = −gρ(r)drdA

This gravitational force must be balanced by the force of pressure, where

P (r + dr)− P (r) = Pnet

Recall that pressure P is just force per area: P = F
A

, so FP = PA:

FP = (P (r + dr)− P (r))dA

For the star to be in equilibrium, these forces must be balanced:

Fgrav = FP

−gρ(r)drdA = (P (r + dr)− P (r))dA
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5.1 Dynamical (Free-Fall) Time: 5 HYDROSTATIC EQUILIBRIUM:

−gρ(r)drdA = dPdA

In other words,

dP

dr
= −gρ(r)

dP

dr
= −GM

r2
ρ(r)

5.1 Dynamical (Free-Fall) Time:

Now, imagine we are not in hydrostatic equilibrium. Let’s consider 2 (τff ) in more detail.

τff =
distance

velocity
=
d

v

The distance d is just the radius of the star R, and the relevant velocity is the escape

(free-fall) velocity v =
√

2GM
R2 . Thus,

τff =
R√
2GM
R2

or:

τff = τdyn =
R3/2

(2GM)1/2

This is the free-fall, or dynamical, time. This is the time it takes to re-equilibriate with a
force imbalance. Realistically, it is more of an oscillation timescale. For the Sun, ρ ≈ 1g/cm3,
so τff = 1 hr.

5.2 Bookkeeping:

5.2.1 The average mass per particle, m:

Neutral H has a single p and single e−, so m = mp +me

Ionized H (H+) occurs when the atom has lost an e− and therefore has free p and free
e−. Thus, we need to consider the pressure due to p and e− separately:

P = Pp + Pe− = npkBT + ne−kBT = 2nkBT

dP

dz
= 2kBT

dn

dz
= −(ρpg + ρe−g) = −(mp +me−)ng ≈ −mpng

dn

dz
= −mpgn

2kBT
=
−mgn
kBT

=⇒ m =
mp

2
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5.2 Bookkeeping: 5 HYDROSTATIC EQUILIBRIUM:

Briefly consider charge neutrality. Hydrostatic equilibrium for p and e− is shown by:

dPp
dz

= −nmpg + neE ,
dPe−

dz
= −nme−g − neE

Adding these,

2kBT
dn

dz
= −(mp −me−)gn

Subtracting these,
2eE = (mp −me−)g

E does not contribute to hydrostatic equilibrium, but it does maintain charge neutrality.

5.2.2 Mass fractions of e− and p:

Let’s define the mean molecular weight µ to handle the average mass per particle. Consider
the gas pressure due to ions: Pions =

∑
nikT . We can write ni in terms of the total mass

density: ni = Xρ
Aimp

, where Ai is the atomic mass and Xi is the mass fraction of ion i. Thus,

Pions =
ρ

mp

kBT
∑ Xi

Ai
=

ρ

µionmp

kBT

where
1

µion
=
∑ Xi

Ai

Now, consider electrons:

Pe− = ne−kBT =
ρ

µe−mp

kBT

Here, ne− =
∑
Zini, where Zi is the number of electrons per element/ion, and 1

µe−
=
∑

ZiXi
Ai

.

The total pressure is thus:

P = Pion + Pe− =
ρ

µmp

kBT

where 1
µ

= 1
µion

+ 1
µe−

For pure H: µion = µe− = 1 =⇒ µ = 1/2.
For pure He: µion = 4, µe− = 2 =⇒ µ = 4/3

Redshift zero cosmic composition is ∼ 75% H, ∼ 23% He, and ∼ 2% other =⇒ µ ≈ 0.62.
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6 VIRIAL THEOREM:

6 Virial Theorem:

The Virial Theorem states that, for a stable, self-gravitating, spherical distribution of equal
mass objects (stars, galaxies, etc), KEtot = −1

2
PEgrav.

We can derive the Virial Theorem for stars using hydrostatic equilibrium: dP
dr

= −GM
r2
ρ(r).

Let’s multiply HE ×4πr3dr and integrate:

RHS:− ρGMr

r2
× 4πr3dr =⇒ −

∫ R

0

4πr2ρdr · GMr

r2
= −

∫ M
0

GMr

r
dMr = U

LHS:4πr3dP

dr
dr =

d

dr

(
(4πr3P )− (3 · 4πr2P )

)
=⇒ 4πr3P

∣∣∣R
0
− 3

∫ R

0

4πr2Pdr = −3〈P 〉V

by integration by parts. Thus,
U = −3〈P 〉V

To calculate the relation Etot = U + K = −3〈P 〉V + KE, we need to relate K, P , and V
(recall stat-mach and thermo). Recall that Pideal gas = nKT , so K

V
= 3

2
nKT =⇒ P = 2K

3V
.

Thus, we can calculate the pressure due to the collisions of particles with a surface as a force:

F = P · A =
∆ρ

∆t

where ∆ρ
∆t

= nAvxρx. Thus,

P = nvxρx =
1

3
n〈ρv〉

For non-relativistic particles, ρ = mv, so:

P =
2

3
n〈1

2
mv2〉 =

2

3

K

V

plugging into U = −3〈P 〉V
=⇒ U = −2K

=⇒ Etot = U +K =
U

2
= −K

For relativistic particles (photons), E = ρc, so:

P =
1

3
n〈ρc〉 =

1

3

K

V

=⇒ U = −K

=⇒ Etot = U +K = 0
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6.1 Example case: 6 VIRIAL THEOREM:

6.1 Example case:

Consider the following star:

• Non-relativstic star, such that Etot = U
2

= −K

• No internal source of energy (fusion), but has a temperature T , and thus radiation
with luminosity L

• Energy of star is decreasing because of L, so =⇒ |Etot| is increasing

• Assuming the star remains in hydrostatic equilibrium, K increases, and T increases.
It follows that |U | increases and R decreases

This process is called Kelvin-Helmholtz contraction (KH contraction). The timescale is:

τKH ∼
|Etot|
L

=
|U |/2

2

For the Sun, τKH ≈ 3 × 107 yr. Now, consider a star that has a little too much fusion or
energy generation:

|Etot| =↓ K and ↓ T, |U | ↓ and R ↑

Extra energy is used to maintain hydrostatic equilibrium, which causes temperature T ↓ and
radius R ↑. We see that stars are stable. More fusion leads to an increase in energy which,
due to hydrostatic equilibrium, causes a drop in temperature and less fusion. Stars have
self-regulating and stable fusion (assuming everything doesn’t happen too fast and there’s
time to adjust).

6.2 When is Prad important?

Let’s use the Virial Theorem to estimate the temperature inside of a star. We’ll then plug
that temperature into the equation for hydrostatic equilibrium, and solve for Prad.

K =
|U |
2
∼ GM2

2R

K =
3

2
kBT ·

M

µmp

(for an ideal gas).

=⇒ kBT ∼
GMµmp

3R

For the Sun, T ≈ 5× 106 K. (Whereas Teff ≈ 5800 K and Tc ≈ 1.5× 107 K.

We can use this to estimate when radiation pressure is important in a star:

dPrad
dr
≥ ρ

GMr

r2
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7 ENERGY TRANSPORT:

=⇒ Prad ≥
GM2

R4

We also know that Prad ∼ 1
3
aT 4 ∼ 1

3
a

(
GMµmp

3kBR

)4

. So, it’s important if:

M ≥ 10

(
k4
B

aG3µ4m4
p

)2

∼ 100M�

Most stars are not this massive. Gas pressure is generally more important!

7 Energy Transport:

We’re interested in 3 main modes of energy transport in stars: 1) Radiation; 2) Conduction;
3) Convection.

7.0.1 Flux F :

Let’s zoom into a small scale where we aren’t worried about random walks– particles move
in straight lines. We define the mean free path, l, as the distance particles travel before
colliding/scattering and exchanging energy.

l =
1

nσ

where σ is the cross section of collision/scattering, and n is the number density of scatterers.
Imagine you have cool material falling, and hot material rising. What is the flux passing
through the line where the cool material meets the hot material?

F = Fdown − Fup =
1

6
vU(x− l)− 1

6
vU(x+ l)

where v is the velocity and U is the volumetric energy density.

F =
1

6

[
U(x)− dU

dx
l

]
− 1

6

[
U(x) +

dU

dx
l

]

=⇒ F = −1

3

dU

dx
lv

Since we care about the temperature gradient, let dU
dx

= dU
dT

dT
dx

:

=⇒ F = −1

3
lv
dU

dT

dT

dx
= X dT

dx

where X is the thermal diffusivity.

Sarafina Nance 17 @starstrickenSF



7.1 Radiation: 7 ENERGY TRANSPORT:

7.0.2 Example:

Consider an ideal gas of particles in an ionized stellar interior. Assume Pgas � Prad, and
Ugas � Urad.

U =
3

2
nkBT =⇒ F ≈ 1

2
lvnkB

dT

dx
≈ 1

2

vkB
σ

dT

dx

Since we are dealing with Coulomb scattering, we want to estimate a Coulomb cross-section.
If we assume significant deflection for kBT ≈ e2/b,

σ ∼ πb2 ∼ πe4

(kBT )2
ln

(
bmax
bmin

)
Now, we can estimate X for an ionized ideal gas:

X ≈ 1

2

kBv

σ
≈ 1

2

√
kBT

m
· (kBT )2

πc2
· kB ∝

T 5/2

m1/2

This dependence on m−1/2 implies that electrons dominate the flux.

Lastly, the total power/luminosity flowing through the sphere can be approxiamted as:

L = 4πr2F = −4πr2X dT
dr
∼ 4πRTX ∼ 10−4

(
R

R�

)(
T

107 K

)7/2

7.1 Radiation:

A more general expresion for flux F is: ~F = −1
3
lv dU

dT
~∇T . For photons, U = aT 4, v = c, and

σ is the photon-matter cross-section, so:

~Frad = −1

3
lc~∇aT 4 = lc~∇Prad

since Prad = 1
3
aT 4.

=⇒ ~Frad = −4

3
l~∇σSBT 4 = X ~∇T

where X = 4
3
claT 3.

7.1.1 Opacity:

Opacity measures how effectively a microscopic process of absorption or scattering reduces
radiation traveling along a line of sight. Absorption is the destruction of photons when they
converted into other forms of energy. Scattering is the absorption of photons coming from
one direction that are then re-emitted into other directions, reducing the amount of radiation
along a given line of sight. Scattering can either by a continuum process, such as Compton
Scattering, or a line process, such as photo-excitation of electrons from a ground state to an
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7.1 Radiation: 7 ENERGY TRANSPORT:

excited state that then fall back into that same ground state.

We consider the radiative flux incident on a slab of gas of a given density and how the
opacity reduces the outgoing flux along the line of sight. The amount of flux exiting the
slab depends on the width of the slab ds, the density ρ, and the effectiveness of the absorp-
tion/scattering which we will call the opacity κ. Each of these factors reduces the amount
of radiation that can flow through the slab and therefore the flux is reduced.

dF = −κρFds

dF

ds
= −κρF

Many absorption and emission processes are frequency dependent and anisotropic, and there-
fore we transform this flux into a specific intensity Iν . We also can equate the product of
opacity κ and density ρ to the absorption coefficient αν to obtain a similar form as the
Radiative Transfer Equation where there is assumed to be no emission:

dI

ds
= −ανI

αν = κνρ

In general, opacity has a power law dependence on both the density of the gas as well as its
temperature.

κ ' κ0ρ
nT s

Tgysm κ has a dependence on ρ, T , and composition. Let’s look at a few interesting cases:

7.1.2 Electron (Thompson) Scattering:

Case where the photon scatters off of a free electron e−. Requires sufficient ionization (lots
of e−), so it decreases rapidly for temperatures below the ionization temperature (∼ 104 K
for H and ∼ 5× 104 K for He).

κe− = 0.2(1 +X) cm2/g

where X is the hydrogen mass fraction. It is also less important when there are a lot of
heavy elements. We see that n = s = 0.

7.1.3 Rosseland Mean Opacity and Free-Free Absorption:

A free electron can also gain energy during a collision with an ion by absorbing a photon.
This is free-free absorption (requires ions and free e−).
Theorem 1. Bremsstrahlung Radiation occurs when an electron passing close to an ion
feels an acceleration. An accelerating charge produces radiation. This is free-free emission,
also called Bremsstrahlung. It’s important at high temperatures, when the plasma is highly
ionized.

Sarafina Nance 19 @starstrickenSF



7.1 Radiation: 7 ENERGY TRANSPORT:

A free electron passing an ion can emit or absorb radiation while it is close enough. At
temperature T , thermal velocity v is:

1

2
mev

2 ≈ kT

and the time they are close enough will be proportional to:

t ∝ v−1 ≈ T−1/2

For plasmas in thermodynamic equilibrium, we can take a flux-weighted mean opacity called
the Rosseland mean opacity. Often this opacity is represented with its absorption coefficient
counter-part:

αR = κRρ

=⇒ κR = αR/ρ = σ/m

if the mean free path is l = 1
nσ

= 1
κρ

, where σ and ρ are frequency-averaged quantities. The
averaged κR is the Rosseland mean opacity:

1

αR
=

∫∞
0

1
αR

∂Bν(T )
∂ν

dν∫∞
0

∂Bν(T )
∂ν

dν

or:
1

κ
=

∫∞
0

1
κν

∂Bν
∂ν∫∞

0
∂Bν
∂ν

An example of a Rosseland mean opacity κR is Kramers Opacity κR,ff . For this opacity we
assume that we are dominated by free-free absorption.

Kramer’s Opacity, κR,ff , is relevant when we are dominated by free-free absorption, i.e.
when the temperature T of the plasma is hot enough to ionize most electrons e− while still
having a low enough T for those e− to be pulled in by the proton’s electron potential well.

If the density is ρ, the number of systems able to participate n is:

n ∝ ρT−1/2

A single system has an absorption coefficient proportional to Z2ν−3, where Z is the charge
number of the ion. Then,

κν ∝ Z2ρT−1/2ν−3

Most absorption happens near the peak of Bν(T ), so since νmax ∼ T , an intensity-weighted
integral over frequency gives Kramer’s Law:

κR,ff ∝ ρT−7/2

More specifically,

κR,ff ≈ 1023 ρZ2
c

µeµion
T−7/2 cm2/g

where Zc is the average nuclear charge. Note that µe → ∞ when no electrons are present.
This is a form of Kramer’s opacity: n = 1, s = 7/2.
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7.1.4 Bound-Free and Bound-Bound Absorption:

Case where a bound electron absorbs a photon and either escapes the atom or changes energy
levels. Typically drops off for T < 104 K, since most photons cannot fully ionize atoms (for
Bound-Free).

κ ≈ 4× 1025Z(1 +X)ρT−7/2 cm2/g

κ ≈ 4× 1022(X + Y )ρT−7/2 cm2/g

where X, Y, and Z are the hydrogen, helium, and metal mass fractions, respectively. This is
a form of Kramer’s opacity, n = 1, s = 7/2.

7.1.5 H− Opacity:

Case where bound-free transitions and bound-bound transitions occur in H−. Requires
neutral H and free e−, which typically only coexist with high enough abundances when there
are sufficient metals nad T is high enough to ionize the metals, but not too high as to ionize
all of the H− (3000 K− 8000 K.

κH− ≈ 2.5× 10−31

(
Z

0.02

)
ρ1/2T 9 cm2/g

Note that n = 1/2 and s = −9. This is important in stellar atmospheres.

7.1.6 Other Sources of Opacity:

Below temperatures of ∼ 3000 K, molecules and small grains become the primary opacity
source. This is important in low-mass stars and brown dwarfs. The plot below shows
the Rosseland Mean Opacity, or the combination of these cases:

7.1.7 Photon Flux:

Now, let’s consider the flux due to electrons and the flux due to photons:

Frad
Fe−

=
Xrad
Xe−

=
aT 3 · c · 1/(nσγ−e−)

kB · ve− · /σe−−i
=

aT 4 · c · 1/σγ−e−
nkBT · ve− · /σe−−i

Frad
Fe−

=
Prad
Pgas

· c

ve−
· lγ
le−

But Prad
Pgas
� 1, c

ve−
� 1 lγ

le−
�� 1, so photons dominate the flux. We also see this when

we compare the Thomson cross-section (collisions between photons and electrons) and the
Coulomb cross-section (collisions between electrons and ions):

σT =
8π

3

(
e2

mec2

)2

≈ 0.6652× 1042 cm2
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Figure 1: The Rosseland Mean Opacity curve for free-free and bound-free cases. Note
that H− dominates for T < 104 K, Kramer’s dominates for high ρ and T > 104 K, and
e− scattering dominates for low ρ and T > 104 K. The numbers below each curve are
R = log (ρ/T 3

6 ). So, opacity is lower for lower densities (κ ↓ as ρ ↓).

=⇒ σT
σCoulomb

=

(
kBT

mec2

)2/
ln Λ ≤ 10−6

Now, let’s estimate the luminosity of a star where the flux is dominated by photons that
scatter via Thomson scattering! We also assume Pgas � Prad:

Frad = −4

3
claT 3dT

dr
= −4

3
c
aT 3

neσT

dT

dr

=⇒ L ∼ 4πR · caT
4

neσT

But ne ∼ ρ
µemp

∼ M
4R3µemp

and T ∼ GMµmp
3kBR

:

=⇒ L ∼ ca(µmp)
4µempG

4M3

σTk4
B

∼ 1038

(
M

M�

)
erg/s

=⇒ L ∼M3µ4µe

We find that a star’s luminosity is dependent on a photon’s ability to random walk, which is
decided by the stellar mass and composition. Recall that for He, M and µe are higher than
they are for H. This means that stars grow brighter as they fuse H→ He.

Here is a relation that is good to know as a rule of thumb:

Teff
Tc
∼
(
l

L

)1/4

Sarafina Nance 22 @starstrickenSF



7.1 Radiation: 7 ENERGY TRANSPORT:

For the Sun, l ∼ 1 cm and L ∼ R� ∼ 7× 1011 cm, so

Tc ∼ 500 · Teff ∼ 3× 106 K

7.1.8 Eddington Luminosity

Now, let’s look at how we can derive the Eddington Luminosity (Ledd) and polytropic equia-
tion of state by considering Prad.

F = −cldPrad
dr

= − c

κρ

dPrad
dr

=
Lr

4πr2

=⇒ dPrad
dr

=
−κρ
c

Lr
4πr2

Divide by the hydrostatic equilibrium equation dP
dr

= −ρGMr

r2
:

dPrad
dρ

=
Lrκ

4πGMrc
=

Lr
Ledd(r)

where Ledd is the Eddington luminosity,

Ledd =
4πGMrc

κ
= 1.3× 1038 erg/s

(
M

M�

)(
κ

0.4

cm2

g

)−1

=⇒ Ledd = 3× 104L�

(
M

M�

)(
κ

0.4

cm2

g

)−1

So, we see that Lr ≈ Ledd when P ≈ Prad, i.e. when the star is almost entirely supported by
radiation pressure!

Since L ∝M3 and Ledd ∝M, L ∼ Ledd for M ∼ 100M�.

7.1.9 Polytropic Equation of State

We now introduce the assumption that dPrad
dP

= constant, and P = Prad + Pgas. For Pgas ∝
Prad, we find T ∝ ρ1/3. Thus, P ∝ Prad ∝ ρ4/3. We can now solve HE:

dMr

dr
= 4πr2ρ

and
r2

ρ

dP

dr
= −GMr
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=⇒ d

dr

(
r2

ρ

dP

dr

)
= 4πGr2ρ

If P (ρ), then we can solve. There is a class of models that assume

P = κργ = κρ1+1/n

This is the polytropic equation of state.

• Non-relativistic Fermi gas, fully convective stars/planets: γ = 5/3, n = 3/2

• Relativistic Fermi gas, white dwarfs, and neutron stars: γ = 4/3, n = 3

7.1.10 Lane-Emden Equation:

We use the Lane-Emden Equation to solve for the density profiles of polytropes:

1

ξ2

d

dξ

(
ξ2dθ

dξ

)
= −θn

where θ = (ρ/ρc)
1/n, ξ = r/a, a =

(
(n+1)κρ

(1/n−1)
c

4πG

)1/2

. This equation has analytic solutions

for n = 0, 1, 5 and must be solved numerically otherwise.

7.2 Convection:

Understanding of convection in stars stems from mixing length theory (MLT). Assumes
parcels of stellar fluid that arise from instabilities move between regions of different heat
content and transport heat. The distance a parcel is transported by buoyancy is the mixing
length l. It assumes the following:

• Parcel has characteristic length of same order as l

• l is much shorter than any length associated with the structure of the star.

• Parcel is always in pressure equilibrium with its surroundings. Buoyancy time is much
greater than the sound crossing time tbuoy � tsound crossing

• Acoustic phenomena, like shocks, may be ignored

• T and ρ within and outside of the parcel differ by only a small amount

• Parcel’s motion is adiabatic, such that the energy loss timescale is much greater than
the buoyancy timescale (tenergy loss � tbuoy)
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7.2.1 Schwazschild Criterion:

Assume a schematic with external gravity g, a parcel with ρp, Tp, Pp, Sp and ρ∗, T∗, P∗, S∗
separated a distance δr from a parcel below with ρ, T, P, S (the parcel and the background
star are the same at this location). At the new position, is ρp < ρ∗ (unstable) or is ρp > ρ∗
(stable)?

Recall that S ∝ ln (P/ργ) for an ideal gas. Consider the following cases:

(a) dS
dr
< 0 =⇒ S∗ < S, Pp = P∗, and SP = S > S∗. Thus, ρp < ρ∗

(b) dS
dr
> 0 =⇒ S∗ > S, Pp = P∗, and SP = S < S∗. Thus, ρp > ρ∗

So, the criterion for convection (Schwarzschild Criterion) is that:

dS

dr
< 0

We can express this criterion in terms of T and ρ:

S ∝ ln (
P

ργ
) ∝ ln (ρ1−γT γ)

=⇒ dS

dr
∝ (1− γ)

d lnP

dr
+ γ

d lnT

dr
< 0

So, convection sets in iff:

d lnT

dr
<
γ − 1

γ

d lnP

dr

or: ∣∣∣∣d lnT

dr

∣∣∣∣ > γ − 1

γ

∣∣∣∣d lnP

dr

∣∣∣∣
since T and P ↓ with ↑ r. Now, recall that Prad ∝ T 4, and dPrad

dP
= Lr

Ledd(r)
.

=⇒ d lnPrad
d lnP

=
4d lnT

d lnP
=

P

Prad

Lr
Ledd(r)

The critical gradient d lnT/d lnP between radiative and convective transport is thus:

1

4

P

Prad

Lr
Ledd(r)

=
γ − 1

γ

If the LHS > RHS, convection is induced. Note that the LHS ∝ κ, so higher opacity
means more likely convection. Let’s consider the following cases:

(a) Sun:

(a) P/Prad ∼ 103, L/Ledd ≈ 4× 10−5 κ
κT

, and γ = 5/3.
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(b) Convection sets in where κ
κT
≥ 20, which occurs around R ≈ 0.7R�, where

T ≤ 2× 106 K and κ ≥ 10cm2/g

(b) Low-mass stars:

(a) ρ ↑ and T ↓ =⇒ κ ↑

(b) For M ≤ 0.3M�, stars on the MS are fully convective.

(c) High-mass stars:

(a) ρ ↓ and T ↑ =⇒ κ ↓

(b) Don’t have surface convection like the Sun, but have core convection. Highest-
mass stars are fully radiative.

7.2.2 Brunt-Väisälä Frequency

Convective instability can also be derived using linear perturbation theory. We find: δr̈ +
N2δr = 0, where N2 is the Brunt-Väisälä Frequency. Note that:

N2 = −g
(
d ln ρ

dr
− 1

γ

d lnP

dr

)
=

g

cs

dS

dr
=
gmp

κ

γ − 1

γ

dS

dr

For N2 > 0, you get stable oscillations via internal gravity wave (g-waves). For N2 < 0, you
get exponential instabilities.

7.2.3 Convective velocity vc:

We can study the convective velocity vc by looking at the total energy flux, where F =
KE + Ethermal:

F =
1

2
ρv2

c · vc + ρ∆E · vc

where ∆E is the thermal energy per unit mass difference, ∆E = cp∆T , and ∆T is the
temperature difference between blob (parcel) and surroundings. Assuming l = αH (where
H is the pressure scale height and α = 1), we can derive an expression for vc:

v2
c ∼ al ∼ |N2|l2 =

gl2

H

∣∣∣∣Hcp dSdr
∣∣∣∣ = gHα2

∣∣∣∣Hcp dSdr
∣∣∣∣

=⇒ v2
c = α2c2

s

∣∣∣∣Hcp dSdr
∣∣∣∣

=⇒ vc = αcs

∣∣∣∣Hcp dSdr
∣∣∣∣1/2
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and

Fc ∼
1

2
ρα3c3

s

∣∣∣∣Hcp dSdr
∣∣∣∣−3/2

For the Sun at the base of the convective zone (R ∼ 0.7R�): ρ ∼ 1 g/cm3, T ∼ 106 K, cs ∼
100km/s, Fc ∼ L�

4πR2
�

=⇒ vc ∼ 30km/s ∼ 3× 10−4cs,

∣∣∣∣Hcp dSdr
∣∣∣∣ ∼ 10−7� 1

The dimensionless entropy gradient is very small, so entropy is approximately constant.
Thus, P ∝ ργ to high accuracy (which means that it’s well-modeled by polytropes).

=⇒ Timescaleτ ∼ H/vc ∼ 1 month

For the Sun in the photosphere:

H ∼ 10−3R�, vc ∼ 7 km/s,

∣∣∣∣Hcp dSdr
∣∣∣∣ ∼ 1

=⇒ Timescale τ ∼ H/vc ∼ 1 minute

Thus, eddies become smaller near the surface.

7.2.4 Fully Convective Stars:

These are typically stars on the MS that have M ≤ 0.3M� and stars that are pre- and
post-MS. We saw before that radiative stars where σ = σT dominates have L ∝ M3. Let’s
find the analogous relation for convective stars.

Assuming the star is adiabatic, an ideal gas, and is best described by n = 3/2:

P ∝ ρ5/3 ∝ ρT

=⇒ P ∝ T 5/2

We can now learn about the photosphere of the star:

Pc
Pph

=

(
Tc
Teff

)5/2

For an n = 3/2 polytrope:

Pc = 0.77
GM2

R4
=⇒ kBTc = 0.54

GMµmp

R

We can use these to find Teff and L. Note that the photosphere is where T = Teff and
lmfp = 1

κρ
= H = P

ρg
.

=⇒ Pph ≈
g

κph
=

GM

κphR2
=
ρphkBTeff
µmp
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=⇒ kBTeff = kBTc

(
Pph
ρc

)2/5

= −0.6
GMµmp

R

(
R2

Mκph
)2/5

=⇒ ρph ≈
gµmp

kBTeffκph

For fully convective objects: κph = κH− ∝ ρ
1/2
ph T

9
eff :

=⇒ Teff ≈ 4000 K

(
M

M�

)1/7(
R

R�

)1/49

=⇒ L = 4πR2σT 4
eff = 0.2L�

(
M

M�

)4/7(
R

R�

)102/49

∝M4/7R2

=⇒ Teff ≈ 4000 K

(
L

L�

)1/102(
M

M�

)7/51

So, fully convective stars have approximately constant temperatures while they evolve onto
the MS via the Hayashi Track. Stars evolving on the Hayashi Track undergo Kelvin-
Helmholtz contraction.

7.2.5 Kelvin-Helmholtz Contraction of Fully Convective Stars:

Recall L = −dEtot
dt

= −dU/2
dt

. For an n = 3/2 polytrope:

U =
−G
7

GM2

R

. For L = 0.2L�( M
M�

)4/7( R
R�

)2 ∝M4/7R2:(
R

R�

)
≈
(

2× 107yr

t

)1/3(
M

M�

)1/2

=⇒ R ∝ t−1/3 =⇒ L ∝ R2 ∝ t−2/3

So the luminosity due to convection decreases with time. Radiative energy transport takes
over when Lrad > Lconv. This occurs around: trad ≈ 106 yr( M

M�
)−15/7. So, lower mass stars

spend more time as fully convective and higher-mass stars become radiative more quickly.

8 Fusion:

8.0.1 Basics of fusion:

Let’s be explicit about the notation:
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Figure 2: This plot shows the stability of different Z, N pairs. Adding more neutrons for
nuclei of higher charges increases stability to radioactivity. If #p > #n, p decay to n. If
#n > #p, n decay to p. Fermi-Dirac statistics tend to create an equal number of p and n.

Z proton mpc
2 938.259 MeV

N neutron mnc
2 939.553 MeV

n/a n/a mn −mp 1.3 MeV
n/a n/a mec

2 511 KeV

A = Z +N ≡ atomic mass

rn ≈ 1.3× 10−3 cmA1/3

ρn =
mpA

4/3πr3
n

∼ 2× 1014 g/cm3

Example of Fermi-Dirac statistics (β decay):

n→ p+ e− + ν̄e

p→ n+ e+ + νe

Upon fusing, nuclei release energy equal to the binding energy Eb. For atoms lighter than
Fe-56, Eb provides enough energy for subsequent atoms to overcome the Coulomb barrier.
For atoms heavier than Fe-56, Eb decreases with A, so subsequent atoms cannot overcome
the Coulomb barrier.
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The expected lifetime of stars from fusion is:

τfusion =
E

L

For 4He, Eb = 28.3 MeV and Eb/A = 7 MeV. Thus, more generally,

E = 28 MeV
M�
4mp

=⇒ τfusion ∼ 1011 yrs

8.1 Coulomb Barrier and WKB Approximation:

Two positively charged nuclei must overcome Coulomb barrier (long range force ∝ 1/r2), to
reach separation distances where strong force dominates (10−15 m, typical size of nucleus.
Let’s assume a barrier height energy of:

Ec =
ZAZBe

2

rN

in cgs. Then, the energy of approach is:

E =
ZAZBe

2

rc

in cgs. Classically, overcoming the barrier requires kBT ≥ Ec. This just means that we’d
need T ≥ 1010ZAZB K, which is WAY too high. So, what happens instead?

Clearly, we can’t treat this classically. Atoms overcome the barrier and enter the strong
force regime thanks to quantum tunneling. Tunneling becomes important when the de Broglie
wavelength exceeds the distance of closest approach:

λ ≥ rc

=⇒ h

ρ
≥ e2ZAZB2m

ρ2

=⇒
√
mkBT ≥

e2ZAZB2m

h

=⇒ T ≥ 4Z2
AZ

2
Be

4m

kBh2

=⇒ T ≥ 3× 107ZAZB
m

mp

K

Another important quantity to consider is the fusion cross-section. For a particle passing
through a medium containing n target particles per unit volume, the probability that the
incoming particle reacts as it travels a distance ∆x,

P (react) = σn∆x
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The cross-section σ is composed of a factor dependent on the nuclear physics of fusion
(strong/weak forces, mostly empirical) and a factor that describes the probability of pene-
tration due to quantum tunneling. Let’s investigate this further by solving the Schrodinger
Equation:

−~2

2m
∇2 +

e2ZAZB
r

Ψ = EΨ

Let Ψ(r, θ, φ) = Yml(θφ)fl(r) = Efl(r)/r:[
−~2

2m
∇2 +

e2ZAZB
r

]
fl(r) = Efl(r)

If we assume l = 0, we get:
d2f

dr2
+ g(r)f = 0

where g(r) = 2m
~2

(
E − e2ZAZB

r

)
< 0. We must now consider the WKB short wavelength

solution, which is valid if λ is small compared to the lengthscale over which the potential
is changing.

The WKB approximation is a method for obtaining an approximate solution to a time-
independent one-dimensional differential equation, in this case the Schrodinger Equationr
equation. Its principal applications for us will be in calculating bound-state energies and
tunneling rates through potential barriers.

Note that both examples involve what is called the classical turning point, the point
at which the potential energy V is approximately equal to the total energy E. This is the
point at which the kinetic energy equals zero, and marks the boundaries between regions
where a classical particle is allowed and regions where it is not.
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Classically, the particle would be confined to the region where E ≥ V (x).

E > V : a classically allowed region The Schrodinger Equation equation,

−~2

2m

d2Ψ

dx2
+ V (X)Ψ = EΨ

can be re-written without approximation as

d2Ψ

dx2
=
−ρ2

~2
Ψ

where ρ(x) =
√

2m(E − V (x). If E > V , then ρ(x) is real and oen can write Ψ(x) =
A(x)eiΨ(x), where A and Ψ are both real functions of x.

Substituting this expression for Ψ into the re-written Schrodinger equation yields:

A′′ + 2i′φ′ + iA(φ)′′ −A(φ′)2 =
−ρ2

~2
φ

The real and imaginary parts of this equation must both hold. After some manipulation,
these two equations become

A′′ = A[(φ)2 − ρ2

~2
]

(A2φ′)′ = 0 =⇒ A =
C√
φ′

The first equation cannot be solved in general, leading to the principal approximation of
the WKB method.
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WKB method: Assume that A varies sufficiently slowly that A′′/A� (φ′)2 and ρ2/φ2.

Let’s apply the WKB approximation to our Schrodinger equation. If g is almost constant,

f = ei(r) → f ′ = iφ′f → f ′′ = iφ′′f − φ′2f

=⇒ iφ′′f − φ′2f + g(r)f = 0

For φ(r) =
√
g(r)r and φ′′ ≈ 0, φ′(r) =

√
g(r)→

∫ r′√
g(r)dr.

Now, the tunneling probability is |f(r)|2 ∼ e−τ .

I = 2

∫ rc

rn

√
|g(r)|dr =

2
√

2m

~

∫ rc

rn

(
e2ZAZB

r
− E

)1/2

dr

I =
2
√

2mE

~

∫ rc

rn

(
e2ZAZB
Er

− 1

)1/2

dr =
2
√

2mE · rc
~

∫ rc

rn

(
rc
r
− 1

)1/2

dr

Let x = r/rc

I =
2
√

2mE · rc
~

∫ 1

rn/rc

(
1

x
− 1

)1/2

dx ≈ 2
√

2mE · rc
~

(
π

2

)
=
π
√

2mErc
~

=⇒ I =
π
√

2mErc
~

Note that if we let E = ρ2

2m
, I ∼ rc

~/ρ ∼
rc
λ

. Thus, the tunneling probability only
becomes high if λ ≥ rc.

=⇒ I =
2
√

2mEZAZBe
2

E~
=

(
EG
E

)1/2

The probability of tunneling is thus:

I = e
√
EG/E

where EG is the Gamow energy, defined as:

EG =
2
√

2mEZAZBe
2

~
≈ 1 MeV Z2

AZ
2
B

(
m

mp

)
The cross-section can be written as a function of E:

σ(E) =
S(E)

E
· e
√
EG/E

where S(E) is the intrinsically nuclear physics part of the cross-section. σ is commonly
written in units of “barns” (10−24 cm 2). Thus,

[S] = barn KeV

At the center of a star, E ∼ 1 KeV. For strong interactions, S ∼ 1 barn KeV→ σ ∼ 1 barn ∼
10−24 cm2. For weak interactions, S ∼ 10−22 barn KeV→ σ ∼ 10−22 barn ∼ 10−44 cm2.
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The Gamow Window: Stars are composed of hot gases in which the atoms and
molecules are almost completely ionized in the interior (this is plasma). The question of
whether fusion reactions can occur in this plasma is primarily one of the ρ, P , and T .
The density ρ controls the number of collisions n and the temperature T controls their
average energy KT .

The higher the electric charges of the interacting nuclei, the greater the Coulomb repul-
sive force, hence the higher the kinetic energy and temperature required before reactions
occur. Highly charged nuclei are the more massive, so reactions between light elements
occur at lower temperature than reactions between heavy elements. But, in other words,
classical mechanics prevents the two protons from fusing because they will never have
enough energy to overcome the Coulomb repulsion. The energy of the coulomb barrier
is:

EC =
ZAZBe

2

r0

where r0 is the radius at which nuclear attraction overcomes Coulomb repulsion, r0 ∼
10−15m. For 2p, E ≈ 1 MeV. Recall that the mean kinetic energy is proportional to T :

E =
1

2
mv2 =

3

2
KT

But in the solar core, Tc ∼ 1.5 × 107 K. This yields E ∼ 10−3Ec. So, the core isn’t hot
enough to bring the protons close enough to trigger fusion– it only brings protons within
10−3r0 of each other. Thus, the protons aren’t close enough by a factor of 103.

Gamow calculated that protons with E − 3 − 10 MeV (which there are plenty of in
the Sun’s core) can overcome the Coulomb barrier (of 1 MeV) through a process of quan-
tum tunneling (or barrier penetration). It is the following constraints that make stars
have lifetimes of ∼ 109 years:

1. The low probability of quantum tunneling, along with

2. The need for a weak interaction in order to fuse 2 protons into a deuterium (2H,
or heavy hydrogen) nucleus

The Coulomb barrier for charged particle reactions and the distribution of velocities
implied by the kinetic theory of gases imply there is a narrow range of energies
where nuclear reactions involving charged nuclei occur in stars. This window is
called the Gamow window.
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The peak is the product of the two curves decreasing in opposite directions: The prob-
ability for penetrating the Coulomb barrier decreases rapidly with decreasing energy
(Ppenetrate barrier ↓ with ↓ E since E = λν). With a Maxwell-Boltzmann distribution, at
a given T , the possibility of having a particle of high KE ( =⇒ high v for the particle
behavior) decreases rapidly with increasing energy (because of E = mc2 and mass resists
to acceleration, that is, a change in velocity). Put in other words:

Pparticle with high KE ↓ with ↑ E

Gamow peak is:

Peak = Maxwellian distribution× tunneling probability

Peak ∝ e−mv2/2KT × e−πZAZBe2/hνE
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The area under the Gamow peak determines the reaction rate.

AGamow peak ∝ R

where R is the reaction rate. The higher the electric charges q of the interacting nuclei,
the greater the repulsive force, hence the higher the Ekin and T before reactions occur.

↑ q =⇒ ↑ Frepulsive =⇒ ↑ Ekin =⇒ ↑ T

Highly charged nuclei are obviously the more massive, so reactions between light elements
occur at lower T than reactions between heavy elements.

To conclude, the sum of these opposing effects produces an energy window for the nuclear
reaction: only if the particles have energies approximately in this window can the reaction
take place.

Another important quantity to consider is the reaction rate R, or the number of reactions
per unit time per unit volume.

R ∝ #reactions/time/volume

The reaction rate occurs between two types of particles, 1 and 2.

R12 = n1n2〈σv〉

where 〈σv〉:

〈σv〉 =

∫
d3v · vσ(E)

(
mr

2πkBT

)3/2

e
−1/2mrv

2

kBT

=

(
2

kBT

)
1

√
πmr

∫
dE · Eσ(E)e−E/kBT

=

(
2

kBT

)
1

√
πmr

∫
dE · S(E)e−E/kBT−

√
EG/E

(1)
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If we assume S(E) is constant and everything is concentrated at one energy,

〈σv〉 ∝
∫ ∞

0

dE · e−f(E) (2)

where f(E) = E
kBT

+ (EG
E

)1/2 Thus, the reaction rate peaks at an energy E0, known as the
Gamow peak. E0 is defined by f ′(E0) = 0, which implies:

E0 = (
1

2
E

1/2
G kBT )2/3

≈ 5.7 KeV · Z2/3
A Z

2/3
B T

2/3
7

(
mr

mp

)1/3 (3)

Now, we can write f(E) = f(E0) + 1
2
(E − E0)2f ′′(E0), so:

〈σv〉 ∝ e−f(E0)

∫ ∞
0

dE · e−4(E−E0)2/∆2

(4)

where f(E0) = 3
(
EG

4kBT

)1/3
and f ′′(E0) = 3

4

(
EG
E5

0

)1/2
, and ∆ ≈ 5.1 KeVT

5/6
7 Z

1/3
A Z

1/3
B

(
mr
mp

)1/6
<

E0. If we consider the E range from −∞ to ∞, we find:

〈σv〉 ∝ e−f(E0)
√
π∆/2 =⇒ 〈σv〉 ≈ 2.6 eV · S(E0)

EG

(kBT )3/2m
1/2
r

e
−3
(

EG
4kBT

)1/3
(5)

Now that we know the reaction rate, we can find the energy generated by fusion. Let’s use
the following units:

[ε(ρ, T, composition)] = erg/s/g

Note that

Lr =

∫ r

0

dMr · ε

where ε12 = Q12r12
ρ

, and ε =
∑
ε12. Here, Q12 is the energy released in one reaction. It follows

that the proportionalities are:

ε ∝ ρS

T 2/3
e
−3
(

EG
4kBT

)1/3
∝ ραT β

where α = 1 for 2-body interactions and β = d ln ε
d lnT

= −2
3

+
(
EG

4kBT

)1/3
.

Let’s look at this for the Sun. Relevant quantities:

T 107 K

ρ 1 g/cm3

Q 10 MeV

EG 0.5 MeV (p + p → ...)

S 1 barn KeV (strong interaction)

ε 1020 erg/s/g

L ≈
∫
dMr · ε ∼ 0.1M� · ε ∼ 1053 erg/s ∼ 1019L� (6)
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This is WAY too high! That means we could have two solutions:

1. Weak interaction is slow (dominating) step. (p-p chain, M ≤M�)

2. Strong interaction is slow step but fusion of p to He uses high-Z catalysts (CNO
cycle, M ≥M�).

For the Sun, p-p dominates with some CNO present.

Let’s look at the p-p chain:

weak =
{
p+ p→ 2He+ e+ + νe strong =

{
2H + p→ 3He+ γ
3He+ 3He→ 4He+ 2p

(7)

In this case, the first (weak) step is the slowest. You end up with:

εpp = 5.2× 105erg/s/g · ρX
2

T
2/3
7

e−15.7T
−1/3
7

Now, let’s look at the CNO cycle. Here, H → He using CNO as a catalyst.

12C + p→ 13N + γ
13N → 13C + e+ + νe

13C + p→ 14N + γ
14N + p→ 15O + γ ← slowest step

15O → 15N + e+ + νe
15N + p→ 12C + 14He

(8)

The slow step in this case gives a different value for S(E0). You end up with:

εCNO = 4.4× 1027erg/s/g · ρXZCNO
T

2/3
7

e−70.7T
−1/3
7

For CNO at T ∼ 107 K, εCNO ∝ ρT 20.

In sum, the core temperature is important for determining which mechanism dominates.
For M ≥ M� (higher Tc), there’s mostly CNO. For M ≤ M� (lower Tc), there’s mostly p-p
chain.

8.2 Main Sequence Stars:

Let’s recall our relations for luminosity:
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Lrad M3 Thompson scattering dominated
Lrad M5.5R−0.5 free-free opacity dominated

Lconv M4/7R2 fully convective
Lfusion

∫
dMr · ε overall

Steady-state hydrogen fusion main sequence occurs when Lfusion = Lrad/Lconv. Initially,
stars are very large and have little-to-no fusion. Luminosity at this point comes from K-H
contraction:

LKH ≈ Lrad/conv → R ↓→ Tc ↑→ Lfusion ↑

Once Lfusion ≈ Lrad/conv, K-H contraction stops. For:

• Lower mass stars (M ≤M�), Lfusion is mostly p− p fusion

• Higher mass stars (M ≥M�), Lfusion is mostly CNO fusion

8.2.1 Low Mass Stars on the MS:

Let’s derive some scaling relations for low-mass MS stars (M ∼ 0.5M� − 1.0M�), Assume
the star is:

• Gas pressure supported

• Energy transport = radiative transport and free-free opacity

• Fusion = p− p chain.

Lrad ∝M5.5R−0.5

Lpp ∝Mεpp ∝M2R−3 ·M4.5R−4.5 ∝M6.5R−7.5

But:
Lrad = Lpp

=⇒ M5.5

R0.5
∝ M6.5

R7.5

=⇒ R ∝M1/7

=⇒ Tc ∝
M

R
∝M6/7 =⇒ L ∝M5.4

Thus, we get the following scaling relations:

R = R0(M/M�)1/7

Tc = 1.5× 107 K (M/M�)6/7

L ∝ L�(M/M�)5.4
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8.2.2 High Mass Stars on the MS:

Let’s now look at the scaling relations for high-mass stars on the MS. Assume the star is:

• Gas pressure supported

• Energy transport = radiative diffusion with e− scattering

• Fusion = CNO cycle

Lrad ∝M3

Lpp ∝MεCNO ∝MρT 20 ∝M2R−3 ·M20R−20 ∝M22R−23

But:
Lrad = LCNO

=⇒ M3 ∝ M22

R23

=⇒ R ∝M19/23 ∝M0.8

=⇒ Tc ∝
M

R
∝M0.2 =⇒ L ∝ R2T 4

eff ∝M1.6T 4
eff ∝ L1/2T 4

eff

=⇒ Teff ∝ L1/8 ∝M3/8

Thus, we get the following scaling relations:

R = R0(M/M�)0.8

Tc = 1.5× 107 K (M/M�)0.2

Teff = 5777 K(M/M�)3/8

8.2.3 Very Massive Stars on the MS:

Here, our assumption that the star is gs pressure supported breaks down, and radiation
pressure becomes important. Very high-mass stars (M ≥ 1.5M�) also have convective cores,
so we must also consider convective energy transfer. Assume the star is:

• Radiation pressure supported

• Energy transport = convective transport

• Fusion = p− p and CNO chain?
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For radiation pressure-dominated stars, Prad ∝ M2

R4 ∝ T 4, so

T ∝ M1/2

R

Recall that convection sets in iff dS
dr
< 0. In other words:

d lnT

d lnP
>
γ − 1

γ
=

2

5
forγ =

5

3

Now, recall the radiative/convective critical gradient:

d lnT

d lnP
=

1

4

P

Prad

Lr
Ledd(r)

=
1

4

P

Prad

Lr
Ledd(r)

Lr/L

Mr/M

So, convection is induced if:
P

Prad

Lr
Ledd(r)

Lr/L

Mr/M
≥ 8

5

=⇒ Mr

M
≤ L

Ledd(r)

Lr
L

P

Prad

Since εCNO ∝ ρT 20, luminosity generation occurs in a very small volume (i.e., Lr/L = 1 at
a small Mr/M). Also, P

Prad
↓ as L

Ledd(r)
↑, so L

Ledd(r)
· P
Prad
≈ 1. Thus, convection sets in at

approx:
Mr

M
≤ 5

8

Stars remain on the MS as they burn hydrogen. τMS is:

τMS ≈
Efusion
L

≈ 1010 yr

(
M

M�

)−2

where L ∝M3 and εfusion ≈ Np ·∆E ≈ 0.1 M
mp
· 27

4
MeV. For He and heavier, fusion timescale

decreases because the binding energy per particle difference decreases.

8.3 Minimum and Maximum Stellar Mass:

Today, (z = 0), stars don’t exist with masses M ≤ 0.08M� or M ≥ 100− 200M�.

8.3.1 Minimum Stellar Masses:

Minimum mass has to do with the effects of electron degeneracy pressure. Quantum statistics
of free particles is important when λ = h/ρthermal ≥ n−1/3. Thus,

n ≥ ρ3
thermal

h3
≈
(
mkBT

h2

)3/2
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The quantum density of electrons is:

nQ =

(
2πmekBT

h2

)3/2

≈ 1026T
3/2
7 cm−3

Thus, if ne ≥ nQ, quantum mechanics becomes important. Recall that at the center of the
Sun,

ρc 150 g/cm3

ne 1026 g/cm3

nQ ≈ ne

For very low masses, R ≈M3/4 → ρ ∝ n ∝ M
R3 ↑ forM ↓ , andT ↓→ nQ ↓. It thus becomes

easier to become electron degenerate for decreasing mass. For stars like this, pressure has
an electron and ion component:

P = Pe− + Pi =
h2

5me

(
3

8π

)2/3

n5/3
e +

ρkBT

µimp

Low-mass stars (M ≤ 0.3M�) are fully convective n = 3/2 polytropes, for which

Pc ≈ 0.5GM2/3ρ4/3
c

=⇒ 1

2
GM2/3ρ4/3 =

h2

5me

(
3

8π

)2/3(
ρckBT

µimp

)5/3

+
ρkBT

µimp

=⇒ Tc ≈ 6.4× 106 K

(
M

M�

)2/3

ρ1/3
c − 1.2× 105 Kρ2/3

c

At low ρc, gas pressure dominates and Tc ↑ with ρc ↑. But at some point Tmax this reverses
until Tc = 0 for some ρc. These are cold degenerate objects in hydrostatic equilibrium (i.e.
brown dwarfs, where R ∝M−1/3).

Tmax occurs when dTc
dρc

= 0 =⇒ Tmax ≈ 8 × 107 K
(
M
M�

)4/3
. Physically, this means that

a star with mass M and central temperature Tc cannot be self-gravitating if T ≥ Tmax.

Scenarios:

1. As R ↓ and Tc ↑, the object becomes hot enough for H fusion. If Lfusion ≈ Lrad/conv,
it becomes a MS star.

2. As R ↓ and Tc ↑, the object does not become hot enough for H fusion.

• Instead, ρc becomes so high that e− degeneracy pressure balances gravity.

• These objects become brown dwarfs.

Now, let’s look at this boundary. Given Tc is Lfusion ≈ Lrad/conv? For low-mass, fully
convective stars:

Lconv ≈ 0.26
( R
R�

)2( M
M�

)4/7
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εpp ≈ 5.2× 105erg/s/g · ρe
−15.7T

−1/3
7

T
2/3
7

This temperature Tc thus is:
Tc ≈ 2× 106

K. Thus, for T ≥ 2 × 106 K, we get an MS star. For T ≤ 106 K, we get a brown dwarf.
This boundary corresponds to M = 0.06M�.

You can distinguish brown dwarfs and giant planets by looking to see if they’ve burned
their deuterium 2H or lithium. Brown dwarfs (M ≥ 10MJ have burned thesem, while
giant planets do not get hot enough to. Brown dwarf sizes:

Rbd ∝M−1/3

Rbd ≈ 0.04R�
( M
M�

)−1/3

As M ↓, R ↑. The R ∝M−1/3 law breaks down at low masses and switches to R ∝M1/3

for planets.

8.3.2 Maximum Stellar Masses:

Stars are formed with a mass distribution (Initial Mass Function, or IMF).

dN

dM
∝M−α

For M ≥ 0.5M�, α ≈ 2.35.

Mtot =

∫
dN

dM
MdM → dominated by lower mass stars

Ltot =

∫
dN

dM
L(M)dM → dominated by higher mass stars

since L(M) ∼M3.5

Is there an Mmax? What would physically cause this? Stellar physics suggests that Mmax ∼
100− 300M� at Z = 0.3− 1Z0.

Star formation models suggest M ≥ Mmax stars are unstable and cannot always form. It’s
possible that high luminosities blow away material needed to form. Most likely explanation
is radiative instability, though.

IMF

Observations tend to converge on the same result for the IMF of stars larger than ∼ 1M�.
For these stars, Φ(M) ∝ M−2.35, or equivalently ε(M) ∝ M−1.35. Here, ε is the number
of stars per logarithm in mass equal numbers of stars in intervals that cover an equal
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range in logarithm, so there would be the same number from 0.1− 1M�, from 1− 10M�,
from 10− 100M�, etc.

This value of −2.35/− 1.35 for the exponent is known as the Salpeter slope, after Edwin
Salpeter, who first obtained the result. This result means that massive stars are rare
both by number and by mass, since Φ and ε are strongly declining functions of M .

Mass-Luminosity Relation

The drastic changes seen in the massluminosity relation with mass are primarily due to
the different opacity sources at work.

1. High mass stars:

• High Tc → fully ionized atoms

• Scattering of x-rays from free e− dominates the opacity, with no temperature dependence

2. Mid mass stars:

• Atoms are only partially ionized =⇒ strong T dependence in the number of
ions ni.

3. Low mass stars:

• Very cool temperatures =⇒ H2 (molecular hydrogen) forms, removing the
dominant opacity source for solar-type stars.

9 Stellar Atmospheres and Spectra:

To first approximation, stars are blackbodies with Teff = 5800 K
(
M
M�

)3/8
. The emission we

see from stars comes from the photosphere, which corresponds to the region where the mean
free path of light is approximately equal to the pressure scale height.

l ≈ H

=⇒ 1

ρκ
=
P

ρg

=⇒ P ≈ g

κ

=⇒ n ≈ g

kBTeffκ

In the Sun’s atmosphere, n ≈ 1017 cm3, ρ ≈ 10−7 g/cm3, P ≈ 0.1 atm. Stellar atmospheres
are roughly in thermal equilibrium, which means:

Ni ∝ ge−Ei/kBT
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9.1 The Saha Equation

The Saha Equation is used to determine the number densities of species in systems that are
in thermodynamic equilibrium, which is possible because of the known relation of chemical
potentials in these types of systems.

Recall the Fermi-Dirac and Bose-Einstein distributions (+ and −):

n(p) =
g

h3

1

e(Ep−µ)/kBT ± 1

where E2
p = ρ2c2 + m2c4 and µ =

(
∂E
∂N

)
S,V

. Also note that n =
∫
d3ρ · n(ρ). For T = 0

fermions, µ = EF , where EF is the Fermi energy.

Classically, λ� n−1/3. In this case, we can assume e(Ep−µ)/kBT � 1

=⇒ n(p) =
g

h3
e(Ep−µ)/kBT

If we set Ep = mc2 + ρ2

2m
, we get:

n =

∫
d3ρ · n(p) =

4πg

h3
e(µ−mc2)/kBT ×

∫
dρ · ρ2 · e−ρ2/2mkBT

= g

(
2πmkBT

h2

)3/2

e(µ−mc2)/kBT

= gnQe
(µ−mc2)/kBT

(9)

Thus, the classical limit is n � nQ, λ � n−1/3, and e(µ−mc2)/kBT � 1. Thus, the chemical
potential for a non-relativistic chemical gas is:

µ = mc2 − kBT ln
(nQ
n

)
Now, imagine a system consisting of particles of type A,B,C, andD such that:

A+B ←→ C +D

Thermodynamic equilibrium is reached when:

µ(A) + µ(B) = µ(C) + µ(D)

Note: we couldn’t do this for fusion because those reactions are not in thermal equilibrium
(it only goes one way). You only get statistical thermal equilibrium with Iron/Nickel, at
which point the core is hot enough for photodisintegration to take place.

Consider the following example:
e− + p←→ H + γ
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→ µ(e−) + µ(p)←→ µ(H) + µ(γ)

Now, list their chemical potentials:

µ(e−) = mec
2 − kBT ln

(
ge
nQ,e
ne

)

µ(p) = mpc
2 − kBT ln

(
gp
nQ,p
np

)
µ(H) = mHc

2 − kBT ln

(
gH
nQ,H
nH

)
µ(γ) = 0

Also note that mHc
2 = mpc

2 + mec
2 − X, where X = 13.6 eV for ground state H. This

gives:
−X
kBT

− ln

(
gH
nQ,H
nH

)
= − ln

(
gp
nQ,p
np

)
− ln

(
ge
nQ,e
ne

)
=⇒ X

kBT
= ln

(
gHnQ,Hnpne

nHgpgenQ,pnQ,e

)
=⇒ npne

nH
=
gpge
gH
· nQ,ee−X/kBT

This is the Saha equation.

9.1.1 Pure H gas:

At what temperatures is H gas half ionized? Let nH = ne + np, and gH = 2, gp = 1, ge = 2.
Then

nH =

(
2πmekBT

h2

)3/2

e−X/kBT

If n = 107 cm−3, we get T = 1.5 × 104 K. Since kBT = X when T = 1.5 × 105 K, we get
half ionization when kBT ≈ 0.1Xion. This is a general relationship:

He and Ne Xion ≈ 25 eV Tion ≈ 30, 000 K
H, C, N, O Xion ≈ 10 eV Tion ≈ 10, 000 K

Ca, K, Mg, Na Xion ≈ 5 eV Tion ≈ 5, 000 K

For hydrogen, transition lines in optical are Balmer lines (n′ = 2) (we don’t see Lyman emis-
sion (n′ = 1) because it requires IR and the Sun’s spectrum peaks in the visible). We can
find nn=2/ntot as a function of T . There is a strong dropoff at high and low temperatures,
because all electrons are in n = 1 state.

There’s an important dimensionless number: nn=2/ntot ≥ 10−8 for there to be different
random walks out of the system and for transitions to be visible.
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Last, remember that absorption lines are due to temperature gradients in stellar photo-
spheres. Consider frequencies ν1 and ν2 such that σν, 1 > σν, 2. Since we see photons from
where lv = H = 1

nσν
, lν, 2 > lν, 1. Since Tν increases for larger lν (deeper into the star),

Tν, 2 > Tν, 1. As a result, ν2 has a higher Fν than ν1. This creates dips in the spectrum.

10 Stellar Evolution:

10.1 Post-Main Sequence Evolution:

As we have emphasised before, the details of the ways stars evolve off the main sequence
and their ultimate fate all depend on the stellar mass. In this section, we consider low mass
stars, with M ∼ 1M�.

10.1.1 The Red Giant Branch (RGB):

Let’s begin at the end of the main sequence evolution, where the star is burning H in a shell
encompassing an isothermal He core. Because of the mirror action of the shell, the outer
layers expand and cool and the star moves to the right in the H-R diagram. During this
phase, which for a 1M� lasts ∼ 2 Gyr, the star moves along the ”subgiant branch” (SGB).
At the end of this stage, the He core becomes degenerate.

As the star expands, however, the effective temperature cannot continue to fall indefinitely.
With the expansion of the stellar envelope and the decrease in effective temperature, the
photospheric opacity increases due to the additional contribution from H- ions. When the
temperature of the outer layers of the star falls below ∼ 5000 ≡ 5×103 K, they become fully
convective. This enables a greater luminosity to be carried by the outer layers and hence
abruptly forces the evolutionary track to travel almost vertically upwards to the red giant
branch (RGB).

envelope expands→↓ Teff →↓ κphotosphere
when Teff ≤ 5× 103 K,→ fully convective outer layers

=⇒ greater Louter → forces evolutionary track to travel vertically upwards to the RGB

The star now moves along the same path, but in reverse, followed by a fully convective
pre-main-sequence star on its approach to the main sequence, which is a nearly vertical line
in the H-R diagram known as the Hayashi track.

• Hayashi Track→ the region to the right is forbidden; there’s no mechanism that can
transport the luminosity out of the star at such a low Teff

A 1M� star will spend 0.5 Gyr on the RGB to the He flash at an accelerating evolutionary
pace, driven by what is occurring in the core.
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Figure 3: Schematic diagrams of the evolution of a 1M� star of solar metallicity, from the
main sequence to a white dwarf.

• As H-fusion in the shell deposits more He onto the core, the mass of the core increases.

• For a fully degenerate gas → increased mass makes core contract

• Core contracts → ρshell, H increases

• ↑ ρshell ,H →↑ fusion efficiency→↑ L

– This is a runaway process

• By the end of the RGB, the degenerate He core reaches a mass of ∼ 0.5M� and has
contracted enough to achieve the temperature required to ignite He fusion

For a star with a degenerate core, the density contrast between the core and the envelope is
so large that the two are practically decoupled. The pressure at the bottom of the extended
envelope is very small compared to the pressure at the edge of the core and in the H-burning
shell separating core and envelope.

efficiency of the shell burning ≡MHe core (NOT by the envelope)

=⇒ MHe core ∝ LRG ≡ hydrogen shell-burning source

L ≈ 2.3× 105

(
Mc

M�

)6

L�
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Thus, the evolutionary tracks of stars of different masses all converge onto the Hayashi line
that is the RGB; from the position of a star on the RGB we can deduce the value of Mc, but
the total mass is more difficult.

10.1.2 Metallicity Dependence of the RGB:

The red giant branch does however exhibit a metallicity dependence. As we discussed in
earlier lectures, fully convective stars are on the Hayashi line which is the locus of the
lowest values of Teff at which a star of a given luminosity can shine. Convection is related
to the opacity, and the opacities of stellar atmospheres depend on metallicity. This is the
case even when H is the main source of opacity because the metals provide the free electrons
that form H.

Convection

An increase in opacity κ in a stellar atmosphere will lead to a larger temperature gradient
dT/dr (if the luminosity stays the same). This is from the Eddington equation for thermal
equilibrium:

dT

dr
=
−3

4
· 1

ac
· κρ
T 3
· Lr

4πr2

where a is the radiation constant, a = 4σ/c, σ is Stefan-Botltzmann constant, κ is the
opacity and the other symbols have their usual meanings. As the temperature decreases
from Tsim107 K, the opacity rises steeply with a Kramers law κ ∝ T−3.5. Thus, as we
move from the core to the outer regions within a stellar interior, the temperature gradient
is expected to become increasingly steep. A very steep temperature gradient is unstable,
whether in a star or the Earths atmosphere.

Which Stars are Convective?

From the above equation, we see that the temperature gradient is proportional to the
opacity κ; thus, we expect that in layers where the opacity is very high, the tempera-
ture gradient required for radiative energy transport becomes unachievably steep. We
also know that stellar opacities increase dramatically as T decreases from 106to105 K;
at T ∼ 105 K the gas is only partly ionised (at typical stellar densities); the rise in κ is
produced by the availability of many bound-bound and bound-free transitions.

Hand in hand with this is the increase in the specific heats, and therefore the increase in
γ as the gas becomes partly, as opposed to fully, ionised. As we have discussed, this will
increase the adiabatic |d lnP/d lnT | gradient, leading to convection.

• For both reasons, convection will occur in the outer layers of cool stars.

• In a G0 V star the convective layer is thin, while main sequence M stars are almost
fully convective.
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• Red giants and supergiants are also convective over most of their interiors.

• Convection is also important in stellar layers where the ratio L/4πr2 is high (see
above equation), that is where large luminosities are generated over small volumes.
This is the situation in the cores of massive stars, given the steep temperature
dependencies of the CNO cycle and the triple-alpha process

The above figure shows the following: Zones of convection and radiation in main-sequence
stars of various masses. The lowest mass stars are completely convective. A radiative
core develops at M ≈ 0.4M�, and a star is fully radiative at M ≈ 1.5M�. The core
region is again convective for masses M ≥ 2.0M� . The relative sizes of the stars shown
here are approximately correct, while on the main sequence.

With a higher metallicity, an optical depth τ ≈ 2/3 is reached sooner, or at lower density, as
we travel from the stellar ”surface” to the core (recall τ ≈ 2/3 is approx the photosphere).
Thus, metal-rich stars of a given mass have slightly larger radii and lower effective temper-
atures than stars of the same mass but lower metallicity. For the same reason, the RGB of
metal-rich stars runs at slightly lower temperatures than that of metal-poor stars. A vivid
demonstration is provided by the colour-magnitude diagrams of stellar systems consisting of
multiple populations:

↑ metallicity → ↑ R and ↓ Teff
=⇒ RGB runs at slightly lower temperatures than metal-poor stars

The very steep temperature dependence of the opacity at the effective temperatures of red
giants, κ ∝ T 9, provides an intuitive explanation for the fact that the Hayashi line is close
to vertical on a L− Teff diagram. Suppose that a cool star of constant L could increase its
radius, even by a small amount. This would lower the value of Teff and therefore the opacity
κ of the outer layers. As a result, we would be able to see deeper into the star, down to a
depth where τ ≈ 2/3, at nearly constant Teff .
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Figure 4: Colour-magnitude diagram (CMD) of 60, 000 stars in the field of the globular
cluster M54, which also includes the dwarf spheroidal galaxy Sagittarius (Sgr), which is in
the process of merging with our own Galaxy. Multiple populations, of different ages and
metallicities, can be distinguished in this complex CMD, allowing the past history of star
formation of this companion galaxy to the Milky Way to be reconstructed. Highlighted in
panel (a) are two well-separated red giant branches, whose metallicities differ by two orders
of magnitude.
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10.1.3 Mass Loss on the RGB:

As the stellar luminosity and radius increase while a star evolves along the giant branch, the
envelope becomes loosely bound and it is relatively easy for the large photon flux to remove
mass from the stellar surface via radiation pressure on atoms and grains.

Grains are microscopic solid particles that can condense out of the gas phase at the val-
ues of temperature and pressure typical of the extended atmospheres of late-type giant and
supergiant stars. Their presence in these environments is indicated by a number of infrared
spectral features, such as the 9.7µm band due to silicates, which can appear in emission
or absorption in the spectra of red giants and supergiants. The winds from these stars are
responsible for distributing grains into the interstellar medium, where they can subsequently
grow through accretion of atoms. Interstellar grains, or dust as they are often referred to,
are an important constituent of the diffuse interstellar medium. They regulate the heating
and cooling of the ISM, act as a catalyst in the formation of H2 molecules, and of course are
responsible for interstellar extinction, the process that reddens the light of all stars.

Returning to mass loss on the RGB, red giant stars are observed to lose mass in the form of
a slow wind (vwind ≈ 5−30 kms−1) at a rate Ṁ ≈ 10−8M� yr−1. A 1M� star loses ∼ 0.3M�
of its envelope mass by the time it reaches the tip of the giant branch. When calculating the
effect of mass loss in evolution models an empirical formula due to Reimers is often used:

Ṁ = −4× 10−13η
L

L�

R

R�

M�
M

M� yr−1

where the efficiency factor η ≈ 0.25 − 0.5. However, this relation is based on observations
of only a handful of stars with well-determined stellar parameters. Note that this implies
that a fixed fraction of the stellar luminosity is used to lift the wind material out of the
gravitational potential well of the star.

10.1.4 The First Dredge-up:

As the star climbs up the RGB, its convection zone deepens until the base reaches down
into regions where the chemical composition has been modified by nuclear processes. This
transports processed material from the deep interior to the surface in what is referred to
as the first dredge-up phase. This phase provides us with the first opportunity to verify
empirically our ideas about nuclear burning which, up to this point, has been completely
hidden from view.

For example, Li is destroyed by collisions with protons at relatively low temperatures,
T → 2.7 × 106 K; as a consequence of the first dredge-up the atmospheres of evolved stars
exhibit a Li deficiency compared to the Li abundance of the proto-stellar nebula. Indeed,
the Li abundance is often used as a test to decide whether the atmospheric abun-
dances can be trusted to represent the composition of the gas from which the star
formed.
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Similarly, the surface He abundance increases and the H abundance decreases while a star
ascends the RGB. In intermediate mass stars (M ≈ 5M�), the convective envelope brings
material processed by the CNO cycle to the surface. The C-N cycle reaches equilibrium be-
fore the O-N cycle, and thus CN-processed material (N enriched, C depleted) is first exposed
on the surface. The N abundance increases by a factor of ∼ 2, C is de- creased by 30%
and O is unchanged. Many red giants are observed to have CN-processed material in their
atmospheres.

10.1.5 The Red Giant Tip and the Helium Flash:

At the tip of the RGB, the central temperature and density have finally become high enough
(T > 108 K) for quantum tunnelling to overcome the Coulomb barrier between He nuclei,
allowing the triple-alpha process to begin. Some of the resulting 12C is further processed
into 16O via capture of an alpha particle. This is the onset of the helium burning phase of
evolution. Unlike H-burning, the reactions involved in He-burning are the same for all stellar
masses. However, the conditions in the core at the ignition of helium are very different in
low-mass stars (which have degenerate cores) from stars of higher mass (with non-degenerate
cores).

• Low mass stars (1M�)

– Electrons in the core are completely degenerate by the time the star reaches the
tip of the RGB.

– Ignition in a degenerate core results in an explosive start of the fusion known as
the Helium Flash.

– Ignition of He-fusion raises the temperature of the core, but this does not raise
the pressure, because in a degenerate gas P 6= f(T )

– Thus, as T increases the core does not expand, and the density remains the same.
The energy generation rate of the triple alpha reaction has an extraordinarily
steep dependence on T (ε3α ∝ Y 3ρ2T 40 =⇒ rise in T leads to more efficient
fusion, which in turn raises the T =⇒ a degenerate core is ignited acts like a
bomb

– Thermonuclear runaway leads to an enormous overproduction of energy: at max-
imum, the local luminosity in the helium core is Lc ∼ 1010L�, comparable to the
luminosity of a small galaxy! (τ ∼ several seconds).

∗ All the nuclear energy released is absorbed by expansion of the non-degenerate
layers surrounding the core, so none of this luminosity reaches the surface.

∗ The short duration τ , and the presence of a very extended convective envelope
that can absorb the energy created by the flash explain why the He flash has
never been observed, other than in our computers.
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Figure 5: The helium flash. Evolution with time of the surface luminosity (Ls), the He-
burning luminosity (L3α) and the H-burning luminosity (LH) during the onset of He burning
at the tip of the RGB in a low-mass star. Time t = 0 corresponds to the start of the main
helium flash.

∗ Since the temperature increases at almost constant density, degeneracy is
eventually lifted when Tc ≈ 3 × 108K. Further energy release increases the
pressure when the gas starts behaving like an ideal gas and thus causes ex-
pansion and cooling.

∗ Results in ↓ energy generation rate until it balances the energy loss rate and
the core settles in thermal equilibrium at Tc ≈ 108 K.

∗ Further nuclear burning is thermally stable.

– After the He flash, the whole core expands somewhat but remains partially de-
generate. In detailed models, a series of smaller flashes follows the main He flash
for ∼ 1.5 Myr, before degeneracy in the centre is completely lifted and further He
burning proceeds stably in a convective core.

– This is the situation when stars with a non-degenerate core reach Tc ∼ 108 K at
the tip of the RGB.

∗ ↑ Tc =⇒ ↑ P

∗ Core expands→ Tc ↓ and P ↓ =⇒ energy production drops and Rcore ↓ until
it reaches hydrostatic equilibrium again

∗ Gravity acts like a regulator and the star does NOT experience a HE flash

The dividing line between stars with degenerate and non-degenerate cores at the
tip of the RGB is ∼ 2M�; stars with M ≤ 2M� undergo a He flash, while in those
with M ≥ 2M� He burning is ignited without a thermonuclear runaway event.

So, in this case, gravity acts like a regulator and the star does not experience a He flash.
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10.1.6 The Horizontal Branch

The evolution of the star is resumed at point G when the star has settled into a new equilib-
rium configuration with an expanded non-degenerate core which is hot enough to burn He.
The star now has 2 sources of energy generation:

1. Core He fusion

2. Shell H fusion

• H-burning shell has also expanded and now has lower T and ρ =⇒ generates
less energy than when star was at the upper end of the RGB

• Lower Ltot is insufficient to keep the star in this distended red giant phase =⇒
R ↓ and L ↓ (star shrinks and dims) and settles on the horizontal branch

• L and R have decreased by more than 1 order of magnitude from their values just
before the He flash

– Core has expanded (from a degenerate to a non-degenerate state)

– Envelope has simultaneously contracted, with the H-burning shell acting as
a mirror

• The horizontal branch is the core He-burning equivalent of the core H-burning
main sequence

– 1M� star spends τ ∼ 1× 1010 yrs on the main sequence

– 1M� star spends ∼ 120 Myr, or 1% of its main sequence lifetime on the HB
branch because of the much higher luminosity of the He-burning phase

10.1.7 The Horizontal Branch Morphology

The location of the star in the H-R diagram does not change very much while on the horizon-
tal branch, always staying close to (but somewhat to the left of) the RGB. Its luminosity is
∼ 50 : L� for most of the time, a value determined mainly by the core mass. Since the core
mass at the start of helium burning is ∼ 0.45M� for all low-mass stars, irrespective of stellar
mass, the luminosity at which He burning occurs is also almost independent of
the total stellar mass. Thus, it is only the envelope mass that varies from star
to star, either because of differences in mass on the ZAMS, or as a result of
different amounts of mass loss on the RGB.

• Solar metallicity– all core He-burning stars occupy a similar locus in the H-R diagram,
which is referred to as the ‘red clump’.

– May be the red extreme of the HB
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Figure 6: The Fe abundances of the stars in these two Galactic globular clusters differ by
a factor of ∼ 40. In the more metal-poor globular cluster, M15 on the right, the horizontal
branch extends much further to the blue (hotter effective temperatures, implying smaller
radii) than in the more metal-rich one (47 Tuc, on the left).

• Metal-poor globular clusters– stars are found to be spread out over a range of effec-
tive temperatures at the same approximate luminosityhence the ‘horizontal branch’
nomenclature.

– Location of a star on the HB is a reflection of its envelope mass: stars with smaller
envelopes (and hence radii) are bluer (and are therefore found on the left of the
HB).

– The extent of the horizontal branch in globular clusters seems to be related to
their metallicity.

• Metal-rich globular clusters– tend to have a red HB

Metallicity may not be the only factor at play here: let’s invoke a second parameter. Age,
He content, and rotation have been proposed, but the underlying cause of different HB
morphologies remains a long-standing problem in stellar astrophysics.

Once a star has entered the HB (on the left, the right or in between), evolution moves it
to the right during the core He fusion phase, due to the increasing depth of the convection
zone.

10.1.8 The Asymptotic Giant Branch (AGB):

At this point, the star has exhausted its supply of He in the core which now consists of C
and O. The core contracts again:
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Figure 7: Location of the zero-age horizontal branch (thick grey line) for a metallicity Z =
0.001 which is typical of Galactic globular clusters. The models shown all have the same
core mass (Mc = 0.489M�) but varying total (i.e. envelope) mass, which determines their
position in the H-R diagram. Evolution tracks during the HB phase for several total mass
values are shown as thin solid lines.

1. M < 8M� stars

• Insufficient gravitational energy to generate the high temperatures required to
fuse C and O into heavier nuclei. Thus, no more core fusion takes place in these
stars.

• Core contraction generates sufficient heat for the surrounding layer of He to start
fusing in a shell.

• Contracting core → strong expansion of the star’s outer layers, causing Tsurf ↓
and moves the star to the right and up in the H-R diagram along the AGB

• A 1M� AGB can reach L ∼ 105L�

The AGB is the shell He-burning analogue of the shell H-burning RGB.

1. Solar metallicities

• AGB close to the RGB

2. Metal-poor globular clusters

• AGB and RGB are well separated

A this point, the star consists of:

1. A degenerate C+O core

2. A He- burning shell
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Figure 8: Schematic structure of a solar mass star during the RGB phase.

3. An inert He-shell around it

4. A H-burning shell

5. An outer H-rich convective envelope

The evolution is now complex because the huge differences between the two nuclear fusion
processes do not allow a steady state to exist. The two shells supply the luminosity of the
AGB star alternately in a cyclical process, or a thermal pulsation, which has a period of
τ ∼ 103 yr, with the changes triggered by shell flashes.

1. 1M� stars

• Spend ∼ 5× 106 yr on the AGB

• Expansion and cooling → κ ↑ and ↑ depth of the convection zone, which can
reach down to the chemical discontinuity between the H- rich outer layer and the
He-rich region between the two burning shells.

• Mixing that results during this second dredge-up phase increases the He and N
content of the envelope

2. Stars > 2M�

• There a third dredge-up as the tip of the AGB is approached, driven by thermal
pulsations → brings to the surface C-rich material and ‘s-process’ elements
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– Stars > 3M�

∗ Base of the convective envelope becomes hot enough for the CN cycle to
operate and the dredged-up C is converted to N in a process called ‘hot
bottom burning’

At the low temperatures of the atmospheres of AGB stars, most of the C and O atoms are
bound into CO molecules, since this is the most stable molecule. In the protostellar nebula,
C/O ∼ 0.5. If this initial abundance has not been changed appreciably and all the C is locked
in CO molecules, then the remaining O atoms form oxygen-rich molecules and dust particles,
such as TiO, H2O and silicate grains. The spectra of such O-rich AGB stars are classified as
type M or S. However, as a result of repeated dredge-up events, at some point the C/O ratio
can exceed unity. In this case all O is locked into CO molecules and the remaining C forms
carbon-rich molecules and dust grains, e.g. C2, CN, CnHn, and carbonaceous grains like
graphite and SiC. Such more evolved AGB stars are classified as carbon stars with spectral
type C. Besides carbon, the surface abundances of many other elements and isotopes change
during the Thermal-Pulse (TP) AGB phase.

10.1.9 Slow Neutron Capture Nucleosynthesis:

Direct evidence for active nucleosynthesis in AGB stars was provided in 1953 by the detection
of technetium (43Tc), the lowest atomic number element without any stable isotopes: every
form of it is radioactive. The longest lived isotope, 99Tc, decays on a timescale of only 2×105

yr.

Neutron Capture

Neutron capture is the mechanism whereby elements heavier than Fe are thought to be
produced in stars.

At T ≈ 1.5× 109 K, photodisintegration of nuclei becomes important and creates a mix-
ture of neutrons, protons and other nuclei. Neutrons play an important role here. Since
neutrons do not experience a Coulomb barrier, they can easily penetrate the nuclei of
even fully ionized heavy elements, such as Fe+26. If they are captured by the nucleus,
new neutron-rich isotopes can be produced. Such isotopes can be either stable or unstable.

It is important to distinguish between slow and rapid neutron capture (termed the s-
process and the r-process), depending on the relative timescales of β-decay and neutron
capture. In the example of the s-process in Figure 10.1.9, 56Fe absorbs a neutron to form
57Fe. Subsequent capture of two more neutrons leads to the formation of 59Fe. Of the
four Fe isotopes shown, the three lighter ones are stable, but 59Fe is unstable, with a
half- life of 44.5 days. Thus, if the flux of neutrons is not high and the interval between
successive n-captures is longer than the half-life of 59Fe, there is time for 59Fe to decay to
59Co by β-decay (n→ p+ e− + νe. The process can continue to form higher and higher
mass elements, as shown in Figure 10.1.9.
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On the other hand, if the flux of neutrons is sufficiently high and the time interval between
subsequent neutron captures is small compared to the half-life of the isotopes concerned,
super-neutron-rich isotopes can be formed, as in the example of the r-process shown
in Figure 10.1.9. When the neutron flux stops, these super-neutron-rich isotopes will
undergo a series of β-decays until a stable isotope is reached.

• r-process

– Eu

– Takes place in supernova explosions

• s-process

– Cu and Pb
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– Takes place in AGB stars

Trans-Fe-peak elements can be formed by either s- or r-process nucleosynthesis, or both,
depending on the stability of their neighbors in the Periodic Table.

Spectroscopic observations actually show that many AGB stars are enriched in elements
heavier than Fe, such as Zr, Y, Sr, Tc, Ba, La and Pb. These elements are produced via
slow neutron capture reactions on Fe nuclei, the s-process.

In this context slow means that the time between successive neutron captures is long com-
pared to the β-decay timescale of unstable, neutron-rich isotopes. The synthesis of s-process
elements requires a source of free neutrons, which can be produced in the He-rich intershell
region by a number of reactions. AGB stars are nowadays considered to be major producers
in the Universe of carbon, nitrogen and of elements heavier than iron synthesised via the
s-process. They also make an important contribution to the production of 19F, 25Mg, 26Mg
and other isotopes.

10.1.10 Mass loss and the post-AGB phase:

During the AGB phase, the mass loss increases dramatically from Ṁ ≈ 108 to Ṁ ≈
104M� yr−1. We can easily see this:

dMstar

dt
=
−dMwind

dt

dMenv

dt
=
−dMwind

dt
− dMcore

dt

but
dMwind

dt
= f(L)

and
L = f(Mcore)

In fact, mass loss becomes so strong on the AGB that the entire H-rich envelope can be
removed before the core has had time to grow significantly. The lifetime of the TP-AGB
phase, tTPAGB ∼ 1− 2× 106 yr, is essentially determined by the mass-loss rate.

The high mass-loss rate distributes the chemical elements and dust grains found in the
outer atmospheres of AGB stars into the surrounding interstellar medium. Many AGB stars
(known as OH/IR stars) are completely enshrouded in a dusty circumstellar envelope which
renders them invisible at optical wavelengths. The mechanisms driving such strong mass
loss are not fully understood, but it is likely that both dynamical pulsations and radiation
pressure on dust particles play a role.

AGB stars undergoing strong radial pulsations are known as ‘Mira variables’. Observa-
tionally, a correlation is found between the pulsation period and the mass-loss rate. As a
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star evolves towards larger radii along the AGB, the pulsation period increases and so does
the mass-loss rate, from Ṁ ∼ 10−8 to ∼ 10−4M� yr−1 for pulsation periods in excess of
about 600 days. This phase of very strong mass loss is sometimes called a superwind. Once
an AGB star enters this superwind phase, the H-rich envelope is rapidly removed marking
the end of the AGB phase. The high mass-loss rate during the superwind phase therefore
determines both the maximum luminosity that a star can reach on the AGB, and its final
mass, i.e. the mass of the white-dwarf remnant.

The mass loss rate increases until the mass of the remaining envelope has reached some
minimum value, 10−2 − 103M�, such that a convective envelope can no longer be sustained
and the envelope starts to contract into radiative equilibrium and the star leaves the AGB.

• ↓ R occurs at constant L b/c H-burning shell is still fully active and the star keeps
following the core mass-luminosity relation

• Star thus follows a horizontal track in the H-R diagram towards higher Tf (post-AGB
phase of evolution).

– Star remains in complete equilibrium during this phase

– Evolution towards higher Teff is caused by the decreasing mass of the envelope
(↓Menvelope), which is eroded at the bottom by H-shell burning and at the top by
continuing mass loss.

– τ ∼ 104 yr

10.1.11 Planetary Nebulae:

As the star gets hotter and Teff exceeds 30000 K, two effects come into play: (1) the star
develops a weak but fast wind (Ṁ ≈ 106M� yr−1, vexp ≈ 1000 textkm s−1), driven by radi-
ation pressure in UV absorption lines (similar to the winds of massive OB-type stars); and
(2) the strong UV flux destroys the dust grains in the circumstellar envelope, dissociates the
molecules and finally ionizes the gas. Part of the circumstellar envelope thus becomes ionized
(an HII region) and starts radiating in recombination lines: a young Planetary Nebula (PN)
is born. (PNs have nothing to do with planets, of course. The name has its origin in the fact
that, like planets, they are not point- like sources, and therefore did not appear to twinkle
due to atmospheric turbulence when observed with the naked eye by early astronomers. The
misnomer has stuck).

Planetary nebulae result from the interaction between the slow AGB wind (v ≈ 10 −
15 km s−1 and the fast wind from the central star (v ≈ 50 km s−1). The fast wind sweeps
up and accelerates the AGB wind, forming a compressed optically thin shell from which the
radiation is emitted.
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10.1.12 The spectra of planetary nebulae:

10.2 Small Stars:

Let’s start at the end of the hydrogen fusion (main sequence) stage. The MS lifetime is

τMS ≈ 1010 yr

(
M

M�

)−2/5

After MS, star is left with a He core with M ≈ 0.1M∗. He fusion does not begin immediately.
The core undergoes KH contraction, and the envelope expands. Tc and ρc increase until one
of the 2 fates is met:

1. The core is supported by electron degeneracy pressure and becomes a white dwarf

• Requires:

– Mc ≤ 1.4M�

– MZAMS ≤ 8M�

– Tc,max = 7× 108 K

• Fusion usually stops at C/O (sometimes O/Ne).

• Generally occurs after He fusion

2. Core collapses into neutron star or black hole (sometimes with a supernova)

• If M ≥ 1.4M�, electron degeneracy pressure cannot support contracting core and
heavier elements (up to Fe) begin to fuse

• Core collapses eventually into NS, BH, or SN

• MZAMS ≥ 8M�

• For MZAMS ≥ 120M� − 150M�:

– Pair-instability supernovae → star explodes completely and fuses heavier el-
ements as it collapses

For He cores, degeneracy pressure isn’t very important if M ≥ 2M�. He fusion requires
T ≈ 108 K. Since T ∝M/R, the core radius decreases by a factor of 10.

10.2.1 M ≥ 2M�:

1. On MS:

• This star has a He core. The He core contracts with a constant temperature (i.e.
dT/dr ≈ 0→ Fe ≈ 0). Hydrogen shell fusion occurs and supplies the luminosity
(Lshell ≈ Lsurafce). This increases the mass of the He core. As the core continues
to KH contract, T and ρ of H shell increase, increasing Lshell. Once Lshell > Lrad,
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convection kicks in. The envelope becomes fully convective and the star becomes
a red giant, moving up the Hayashi track until He core fusion begins

2. on RGB:

• Star moves up RGB until He fusion begins. It undergoes the ”Blue Loop” until
it’s left with a C/O core

10.2.2 M ≤ 2M�:

The star has a He core. This core becomes degeneracy pressure supported. In the core,
R ∝ M−1/3, so Tshell ∝ M

R
∝ M4/3. H shell fusion increases the mass of the core, so Tshell

and Lshell increase. The star becomes a red giant until Tcore increases enough for He fusion
to begin.

• This does NOT begin if M∗ ≤ 0.5M�

– Never begins He fusion → left with He degenerate cores.

– Binary stripping leaves a He white dwarf

• 0.5M� − 2.0M� stars with degenerate He cores: undergo H shell fusion until the core
becomes hot enough for He fusion. Fusion under degenerate conditions is unstable.
Thus, there’s runaway fusion:

– “Helium Flash”:

∗ ↑ T while P = const, so ε ↑

∗ Yields L ∼ 1011  L�

∗ Contributes to the expansion of the envelope

∗ Next steps are dependent on metallicity:

· Low metallicity stars go onto “Horizontal Branch”

· High metallicity stars go to “Red Clump”

10.2.3 He Fusion:

This reaction is called the triple-α reaction: 4He +4He + +4He → 12C. The full reaction
is:

4He+4 He→8 Be

4He+8 Be→12 C

12C∗ →12 C + [2γ or (e+ + e−)]

Let’s break this down:
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1. Step (1): 8Be decays into 24He rapidly, but if sufficiently high T (≥ 108 K), statistical
thermal equilibrium can occur

2. Step (2): 4He - 8Be resonance causes fusion to excited state of 12C, 12C∗.

3. Step (3): 12C∗ mostly decays to 8Be +4He or 34He, but sometimes to 12C+[2γ or (e+ +
e−)]. Statistical equilibrium eventually reached where dn12

dt
= n12

t

Using the Saha method gives:

ε = 5.4× 1011 erg/s/g
ρ2Y 3

T 3
8

e−44/T8

where Y ≡ He mass fraction and ε ∝ ραT β uses α = 2, and β = −3 + 44/T8 ≈ 24− 40.

Note that 4He +12C →16O at similar temperatures, so you normally get a mix of C and
O.

10.2.4 End product of low mass stars:

• End product of stars with 0.5M� ≤M ≤ 8M� is a C/O core with H- and He- burning
shells.

• Star enters the “Asymptotic Giant Branch” as the convective envelope expands and
the core contracts.

• The C/O core with M ≤ 1.4M� becomes degenerate

• Envelope loses mass until left with a C/O white dwarf.

10.2.5 Mass Loss Mechanisms:

• Dust-driven winds

– If T ≤ 3000 K, solids can condense in the photosphere and be blown off by a high
L. We can estimate Ṁ by using momentum conservation:

L

c
∼ Ṁvesc → Ṁ = 10−5M�/yr

(
L

104L�

)
for vesc ≈ 30 km/s

• Pulsations

– He shell fusion is unstable and causes pulsations.

– ↑ R means ↓ T and more material condenses.
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10.2.6 White Dwarfs:

The core of a white dwarf is mostly He, or C and O.

• Stars with M ≤ 0.5M�

– Do not have sufficient gravitational energy to heat up their core to the temperature
required to ignite He fusion, and they will end up as He white dwarfs.

– Lifetimes of these stars τ ≥ τuniverse → He white dwarfs should not exist yet!

∗ Possible solution–binary evolution? Mass transfer happens before He ignition,
so further evolution of the star is halted and that leaves the white dwarf made
up mostly of He.

• Stars with M ≈ 1− 8M�

– Leaving a white dwarf with a CO core of mass M ≈ 0.6�

Let’s discuss the equilibrium structure of WDs. For a non-relativistic degenerate elec-
tron gas,

P =
h2

5me

(
3

8π

)2/3

n5/3

This can be rewritten as: P =
hP 2

F

5meV
, where PF =

(
3n
8π

)1/3
h. Since n = ρ

µemp
, P =

h2

5me

(
3

8π

)2/3 1
(µemp)5/3

ρ5/3 = κρ5/3. So, NR WDs are well-described by n = 3/2 polytropes.

Thus, we can use: Pc = 0.77GM
2

R4 and ρc = 6〈ρ〉 = 9M
2πR3 .

=⇒ κρ5/3
c = 0.77

GM2

R4
=⇒ κ

(
9

2π

)5/3
M5/3

R5
= 0.77

GM2

R4

=⇒ R = 2.43
κ

G
M−1/3

where κ = 1013µ
−5/3
e

(
M
mc

)−1
, and µe = 2 for C/O.

=⇒ R = 0.013R�

(
M

M�

)−1/3(
µe
2

)−5/3(
m

mc

)−1

This doesn’t give a high enough central density or mass! (We need ρc ∼ 104−107 g/cm3 and
M ∼ 1M�, but we get M ∼ 1MJ). Let’s instead consider the structure of a relativistic
degenerate electron gas.

For a relativistic degenerate electron gas,

P =
hc

4

(
3

8π

)1/3

n4/3 =
hc

4

(
3

8π

)1/3
1

(µemp)4/3
ρ4/3
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So, relativistic WDs are well-described by n = 3 polytropes. Thus,

Pc = 11
GM2

R4
= 30.4κ

M4/3

R4
=⇒ M2/3 = 2.76

κ

G

M = 1.45M�

(
Me

2

)−2

This is the Chandrasekhar Mass. Note that the non-relativistic mass-radius relation is
still valid for M ≤ 0.25M�. WD (and NS) cannot have M > Mch, since pressure needed
to maintain HE (P ∝ M2

R4 ) grows faster than pressure supplied by relativistic degeneracy

pressure (P ∝ M4/3

R4 ) for increasing M . If a WD accretes M > Mch, it undergoes a runaway
thermonuclear reaction (Type Ia SN).

10.2.7 White Dwarf Cooling:

WDs start with T ≈ 108 K and cool over time. Since most mass is degenerate, con-
duction is very important for energy transport. Opacity for a degenerate gas is κdegen ∼
κclassical

(
EF
kBT

)3/2
:

=⇒ κdegen = κclassical

(
mec

2

kBT

)3/2

= 5000T
−3/2
8 κclassical =

κ2h3Tni
32e4m2

e

WDs have no internal energy source but are born with thermal energy (∼ NikBT ) that can
be radiated away. The timescale to redistribute energy in a WD interior is:

τcond =
NikBT

4πR2F
=
NikBTR

4πR2κT
=

R2

(κ/nikB)
≈ 5× 106T−1

8 yrs

(if we assume e− scattering).

Degenerate cores become isothermal relatively rapidly. Core does not set rate at which
energy leaves the object; the ENVELOPE sets the luminosity (non-degenerate layers).

Next, the WD becomes non-degenerate (ND), where EF ≤ kBT , or n ≤ nQ =
(

2πmekBT
h2

)3/2
=

2 × 1027T
3/2
8 cm−3, or ρ ≤ 104T

3/2
8 gcm−3. Since ρc ≈ 4 × 106 g cm−3(M/M�)2, most mass

must be degenerate, with a thin ND surface layer. Assuming a radiative envelope:

dP

dr
= −ρg

F =
L

4πr2
=
−4

3

1

κρ

d

dr
(σBT

4)
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Assuming Kramer’s opacity: F = −4σB
3

T 7/2

κ0ρ2
d
dr
T 4 ∝ gT 7/2

ρ
dT 4

dρ
. But, since ρ ∝ P/T : F ∝

gT 9/2

P
dT 4

dP
:

=⇒ PdP ∝ g

F
T 15/2dT

=⇒ P 2 ∝ g

F
T 17/2

=⇒ T ∝ P 4/17(g/F )−2/17

=⇒ ρ ∝ T 13/4(g/F )1/2

We can now relate L to ρ and T using the photosphere, where l = H:

Pph =
g

κ
→ ρph =

g

κkBTeff
∝
gT

5/2
eff

ρphkB
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