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Abstract

Psychostimulant dependence (including cocaine, amphetamine, and methamphetamine) 
is a chronic relapsing disorder with significant personal, health, and financial burdens. 
Attempts at abstinence produce a severe and protracted withdrawal syndrome charac-
terized by stress hypersensitivity that can facilitate drug craving, anxiety, and dyspho-
ria. These negative withdrawal symptoms can induce relapse, maintaining the addiction 
cycle. The hippocampus mediates cognitive, emotional, and endocrine responses to 
stressors. The ventral hippocampus is in a pivotal position to regulate the mesoaccumbal 
dopamine reward system, and interacts with serotonergic and glucocorticoid systems that 
mediate anxiety and stress responsiveness. Psychostimulant actions on the hippocampus 
induce long-term changes to these systems and impact the process of adult neurogenesis 
in the hippocampus, which may facilitate drug dependence by altering drug-cue learning 
and emotional regulation. Multiple studies indicate that psychostimulant-induced hip-
pocampal neuroadaptations heighten hippocampal-mesoaccumbal activity to amplify 
drug- and drug-cue responses while persistent dysregulation of hippocampal emotional 
systems potentiate negative affect. Understanding how psychostimulants modulate the 
hippocampus to alter hippocampal-mesoaccumbal activity—and how hippocampal neu-
rogenesis influences drug-related memories and reward—is important for identifying 
novel treatment strategies that can ameliorate negative affect and relapse vulnerability in 
psychostimulant addiction.

Keywords: psychostimulant, hippocampus, stress, withdrawal, serotonin, corticosterone, 
neurogenesis
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1. Introduction

1.1. The problem of stimulant abuse

Abuse of psychostimulants such as cocaine and amphetamines affects millions of people 
worldwide, as psychostimulants are the second most widely abused class of illicit drug glob-

ally behind marijuana [1–5]. In general, drug addiction and subsequent relapse vulnerability 
are thought to occur through counter-adaptive neurochemical changes within brain circuits 
that normally conserve an emotional homeostasis [6–8]. Dysregulation of the homeostatic 
system—through genetics, environment (stress), history of drug taking, or current emotive 
states—produces susceptibility to become dependent and to relapse during long-term absti-
nence [9, 10]. Psychostimulants produce a severe and protracted withdrawal syndrome which 
includes symptoms of stress hypersensitivity, intense drug craving, anxiety, and dysphoria 
[11–16]. These symptoms are reproduced in animal models [17–21], and can induce craving 
and relapse in humans [13, 22, 23], thus maintaining the addiction cycle [24–27]. The under-

lying mechanisms that enable stress-sensitive and dysphoric states in withdrawal to induce 
relapse are thought to involve alterations to the mesolimbic dopamine reward system and 
anti-reward/stress systems [9, 26, 28] that include the hippocampus [28–30]. Currently, no 
medications have proven effective for treating psychostimulant withdrawal [13, 16, 31]. Thus, 
understanding the neurobiology underlying the aversive states during psychostimulant with-

drawal is an essential component of relapse prevention [32].

1.2. The hippocampus, stress and addiction

The hippocampus, a brain region associated with spatial learning and memory, has been 
established as a critical region for reward- and stress-associated responses and drug-seeking 
behaviors [30, 33–37]. Exposure to conditioned contextual cues and aversive or stressful stim-

uli are powerful triggers of drug cravings [38–41] and are associated with activation of limbic 
brain regions, including the hippocampus, in both human and rodent models [42–46]. Dorsal 
and ventral subdivisions of the rodent hippocampus have been proposed based on anatomi-
cal connectivity and behavioral output [47–51]. The rodent dorsal hippocampus, analogous 
to the human posterior hippocampus, receives exteroceptive information from the entorhinal 
cortex and has a major role in rapid spatial learning (Figure 1) [52]. The ventral hippocampus, 
analogous to the human anterior hippocampus, receives interoceptive information through 
reciprocal connections to limbic regions that modulate motivational and affective states; 
the other limbic brain regions involved include the nucleus accumbens, amygdala, medial 
prefrontal cortex, and hypothalamus (Figure 1) [50–54]. Notably, both regions of the hippo-

campus are involved in memory formation [55]; dorsal neurons form contextual representa-

tions of specific single events while ventral neurons form representations of multiple events 
(related by a distinct context) over time [56].

The subiculum, the major output structure of the hippocampus, provides projections to the 
nucleus accumbens, which also receives input from ventral tegmental area (VTA) dopamine 
terminals [34, 57–59]. The nucleus accumbens integrates affective and motivational information  
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to produce goal-directed behavioral output [60–62]. Thus, the hippocampus is poised to play 
an important role in mediating the effects of drugs of abuse (e.g., psychostimulants) through 
its interactions with the mesoaccumbal dopamine system. Importantly, the dorsal and ventral 
hippocampus may differentially regulate accumbal activity [60, 63], since the ventral subicu-

lum projects to the medial shell of the nucleus accumbens while the dorsal subiculum projects 
to the more lateral accumbens and core (Figure 1) [51, 54, 64]. The dorsal and ventral hip-

pocampus also influences accumbal activity indirectly, via multi-synaptic projections to the 
VTA (Figure 1) [65–67]. Consequently, glutamatergic output from the hippocampus facilitates 
dopaminergic activity in the mesolimbic dopamine pathway [34, 57, 68, 69]. In the nucleus 
accumbens shell, this communication is vital for forming place-reward associations [70–72] 

and mediating reward salience [63]. Thus, context-related processing within the hippocam-

pus may drive reward-related processes mediated by the nucleus accumbens.

The hippocampus also regulates anxiety and avoidance behaviors. Anxiety is an innate 
response coordinated to protect an animal from potential harm, which is linked to maximiz-

ing chances of reward in approach-avoidance conflict situations. The hippocampus has been 
proposed to underlie anxiety behaviors by detecting novelty or uncertainty [73, 74] and then 

increasing attention and behavioral inhibition [75, 76]. However, maladaptive changes to the 
circuits underlying this response can constrain normal functioning and lead to a disruptive 
pathological state.

The ventral hippocampus in particular plays a predominant role in mediating anxiety/avoid-

ance behaviors. For example, glutamatergic activation of the ventral hippocampus is important 
for expressing anxiety-like behaviors [77, 78] and lesioning the ventral—but not dorsal—hip-

pocampus reduces innate avoidance behavior in unconditioned anxiety tests, and reduces 

Figure 1. Schematic of afferent/efferent connections and functions of the dorsal and ventral hippocampus related to 
reward and stress processes. Abbreviations: Cx, cortex; HPA, hypothalamic-pituitary-adrenal; PFC, prefrontal cortex; 
PVN, paraventricular nucleus of the hypothalamus; VTA, ventral tegmental area.
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conditioned responding to anxiogenic cues [79–84]. Moreover, a recent study in humans 
found that the anterior (ventral) hippocampus is necessary for passive avoidance behavior 
[85], and studies in rats and humans have shown that increased activity between the ventral/
anterior hippocampus and the medial prefrontal cortex is necessary for expressing anxiety 
in anxiogenic environments [86–89]. Also, activating basolateral amygdala (BLA) inputs to 
the ventral hippocampus increases—while inhibition decreases—anxiety-like behaviors [90]. 
Together, these findings suggest that activation of the ventral hippocampus by glutamatergic 
input from the BLA and its subsequent communication with regions like the prefrontal cortex 
is essential for the appropriate expression of anxiety/avoidance behaviors.

Related to its involvement in emotional regulation, the ventral hippocampus also exerts influ-

ence on the hypothalamic-pituitary-adrenal (HPA) axis and coordinates stress responses 
(Figure 1) [36, 91, 92]. The HPA axis organizes neuroendocrine responses to physical and 
psychogenic stressors through release of the glucocorticoid hormone cortisol (humans) or 
corticosterone (rodents) [92]. The hippocampus is the primary target for glucocorticoids in the 
brain [93] and the ventral subiculum is thought to be the primary limbic region that utilizes 
glucocorticoid feedback to inhibit HPA axis activity [91, 94–96]. This feedback inhibition is 
mediated through corticosteroid activation of corticosterone’s mineralocorticoid (MR) and 
glucocorticoid (GR) receptors that are both cytosolic (genomic) and membrane-bound (non-
genomic) [96–99].

Cytosolic MRs (cMRs), with restricted expression (highest in the hippocampus), have 10-fold 
higher affinity for corticosterone than GRs, and are ~90% occupied under basal conditions 
[100–103]. They are attributed with regulating HPA inhibition at basal corticosterone levels, 
and thus determine HPA “set point” [96, 104–108]. cMRs also sustain cellular stability, which 
maintains stress sensitivity thresholds and preserves limbic network communication [97, 103, 

107, 109, 110]. Cytosolic GRs (cGRs) are ubiquitously expressed, with high expression in the 
hippocampus [95], and regulate delayed feedback inhibition of HPA activity after diurnal cor-

ticosterone peaks and acute stress [92, 96, 104, 105]. cGRs are also attributed with normalizing 
neuronal excitability in response to stress and normalizing network activity, which dampens 
initial stress responses, and promotes adaptive stress coping [107, 109, 110].

Corticosterone stress responses that occur too quickly to attribute to genomic effects are 
credited to activation of non-genomic membrane-bound receptors (mMRs/mGRs) in the hip-

pocampus (and other regions). These membrane receptors have ≥10-fold lower affinity for 
corticosterone than their cytosolic counterparts [97, 103, 108] and thus act as hippocampal 

“cortico-sensors” [99, 111]. mMRs rapidly and reversibly enhance excitatory glutamatergic 
transmission in the hippocampus [97, 99, 107]; they contribute to rapid inhibition of HPA 
activity and activate rapid and reversible behavioral stress responses important for appraisal 
and coping [99, 110]. mGRs have lower corticosterone affinity than mMRs and augment inhib-

itory GABAergic interneuronal transmission [112] to suppress excitability; they also promote 
spinogenesis [97, 113]. Alterations in these receptors’ expression, function, and ratios relative 
to one another—especially within the hippocampus—can diminish stress responsiveness and 
coping ability, which is associated with multiple disease states, including depression and 
psychostimulant withdrawal [113, 114].
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Glucocorticoid stress responses in the hippocampus also vary based on hippocampal region 
(dorsal vs. ventral): acute foot shock rapidly increases corticosterone levels in the dorsal hip-

pocampus, followed by a more delayed elevation in the ventral hippocampus [115]. Also, 
acute swim stress decreases long-term potentiation (LTP) in the dorsal hippocampus, but 
increases LTP in the ventral hippocampus [116]. This differential response may temporarily 
suppress the dorsal hippocampus’ cognitive cortical communication and facilitate ventral 
hippocampal transmission of emotional information [117].

1.3. Goals of this review

Overall, the ventral hippocampus is in a pivotal position to play a key role in addictive pro-

cesses via its role in modulating activity of reward and stress pathways such as the meso-

accumbal dopamine system and HPA axis respectively. This review will provide evidence 
for psychostimulant-induced changes in the hippocampus leading to negative affect that 
promotes psychological withdrawal symptoms and maintains the cycle of psychostimulant 
dependence. Specifically, this review will evaluate and integrate various studies concerning 
alterations of hippocampal activity and structural plasticity due to chronic drug exposure 
that contribute to the pathophysiology of drug abuse through maladaptive reward responses 
and/or the promotion of dysphoric states. In doing so, potential mechanisms underlying psy-

chostimulant withdrawal symptoms and relapse to drug-seeking will be revealed and future 
directions identified.

2. Psychostimulants and hippocampal-mesoaccumbens circuitry

The mesoaccumbal dopaminergic system (VTA to nucleus accumbens) is involved in rein-

forcement learning and motivated behavior. Dopamine release in the nucleus accumbens 
shell is associated with reward salience [63] and drug/reward context conditioning [118], and 

is enhanced by drug use [42, 118], drug-predictive contexts [118, 119], and during novel envi-
ronment exploration [120]. In line with its role as a novelty detector, the ventral hippocampus 
controls the novelty-induced dopamine response in the nucleus accumbens [73]. Novelty-
induced activation of the ventral hippocampal-nucleus accumbens pathway is thought to be 
important for long-term memory formation [121]. In support of this, place-reward associations 
depend on communication between the ventral hippocampus and the nucleus accumbens 
shell [68, 69]. Likewise, neuronal activity between the nucleus accumbens, hippocampus, and 
prefrontal cortex during goal-directed behavior learning is believed to contribute to reward-
context memory consolidation and strengthening [122–125]. Finally, co-activation of the ante-

rior (ventral) hippocampus and VTA dopamine neurons is linked to long-term reward-related 
memory enhancement [126, 127]. Thus, reward enhances memory formation, and this effect 
is closely linked to reward-context engagement of the hippocampal-mesoaccumbal pathway.

The dopamine system has long been associated with stress/aversion as well as reward-related 
behaviors [128, 129]. For example, stress increases dopamine levels in the nucleus accumbens 
shell (but not core) [130]. Preliminary studies in rats suggest that mimicking the hippocampal 
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glucocorticoid stress response [131–134] by infusing corticosterone into the ventral subiculum 
stimulates dopamine efflux in the nucleus accumbens shell [29], thus indicating a role for the 
ventral hippocampus in enabling stress to enhance accumbal dopamine output. Stressors also 
increase VTA dopamine activity, and this increase is dependent upon ventral hippocampal 
activity [135]. The ventral hippocampus-VTA dopamine pathway is also potentiated in mice 
with increased social avoidance after chronic social defeat stress, and is necessary for this 
behavioral outcome [136]. Thus, it is suggested that the ventral hippocampus uses prior expe-

rience to bias the responsive state of accumbal dopamine [135]. In line with this suggestion, 
mice with increased avoidance behavior following chronic stress also display increased VTA 
dopamine neuron burst firing [137, 138]. Therefore, a behaviorally salient stimulus (aversive 
or rewarding) within a given context would heightened activation of the ventral hippocam-

pus-accumbens pathway.

The ventral hippocampal-nucleus accumbens pathway also influences psychostimulant 
responses. Rats with greater dopaminergic responses to novelty will self-administer psy-

chostimulants more readily [139, 140] and rats with repeated cocaine exposure display 
enhanced accumbal dopamine responses to glutamatergic stimulation of the ventral hip-

pocampus [141]. This is likely reflective of the finding that repeated cocaine exposure and 
withdrawal selectively potentiates ventral hippocampal input to the nucleus accumbens 
shell [142, 143]. Furthermore, rats that exhibit behavioral sensitization to amphetamine dis-

play enhanced VTA neuronal firing and accumbal dopamine output, and these behavioral 
and neurophysiological effects are dependent on ventral hippocampal input [144, 145]. 
Hippocampal activity is also associated with psychostimulant-induced conditioned place 
preference (CPP) acquisition and expression [146, 147]. For example, lesions or inactivation 
of the hippocampus inhibit CPP acquisition and context-induced drug-seeking behavior 
[148–152]. Specifically, interactions between ventral hippocampal glutamatergic projections 
to neurons expressing postsynaptic D1 dopamine receptors in the nucleus accumbens shell 
contribute to drug-context memory formation and subsequent drug-seeking reinstatement 
[37, 153, 154]. Thus, ventral hippocampal facilitation of accumbal dopamine may gener-

ate drug-seeking behavior. Further, ventral hippocampal inhibition reduces cocaine- cue- 
or context-induced reinstatement of drug-seeking behavior [37, 148, 149, 155, 156] and its 

activity primes context-dependent relapse to drug-seeking for cocaine or d-amphetamine 
[37, 154, 157]. Overall, it appears that ventral hippocampal enhancement of accumbal dopa-

mine activity likely promotes storage and retrieval of drug-reward information that under-

lies drug-seeking behaviors (Figure 2).

The mechanisms by which psychostimulants enhance ventral-hippocampal-regulated dopa-

mine activity are not fully understood. Stress and repeated cocaine exposure independently 
increase LTP in the ventral hippocampus [116, 158]. Interestingly, acute stress-induced hip-

pocampal plasticity is mediated by MRs and GRs in the ventral hippocampus; whereas 
cocaine-induced hippocampal plasticity seems to instead involve D2 dopamine receptors [116, 

158, 159]. Related, repeated cocaine increases trafficking of glutamate receptors toward the 
membrane in the rat hippocampus [160], suggesting that psychostimulant-induced changes 

in hippocampal glutamate receptor availability contribute to increased hippocampal excitabil-
ity and enhanced elevation of accumbal dopamine [141]. Repeated amphetamine exposure 
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also results in a reduced GR to MR ratio in the ventral hippocampus [114], which could fur-

ther alter hippocampal excitability [97, 108] and hippocampal-accumbens activity. Further, 
repeated psychostimulant exposure alters neurotransmitter and endogenous neuropeptide 
levels in the hippocampus. For example, intrahippocampal oxytocin is decreased following 
chronic cocaine, whereas exogenous administration inhibits psychostimulant-induced behav-

iors [161]. Oxytocin alters hippocampal excitability by increasing the firing rate of inhibitory 
interneurons, likely influencing hippocampal terminal regions including the mesoaccumbal 
dopaminergic system [162]. Together, these findings suggest that psychostimulants can alter 
synaptic plasticity in the ventral hippocampus, facilitating hippocampal-accumbal pathways 
to amplify responses to drug reward- or stressor-associated cues (Figure 2).

3. Psychostimulants and hippocampal affect regulation: spotlight on 
serotonin and glucocorticoids

A critical modulator of hippocampal activity is serotonin (5-HT). The serotonergic median 
raphe nucleus innervates the entire dorsal-ventral axis of the hippocampus while the ventral 
hippocampus receives additional projections from the dorsal raphe nucleus (Figure 1) [161, 

162]. Thus, the ventral hippocampus receives a higher density of serotoninergic innervations 
than the dorsal hippocampus [163]. The expression of 5-HT receptors is also differentiated 
along the dorsal-ventral axis of the hippocampus [164], which supports distinct 5-HT contri-
butions to regionally distinct hippocampal functions.

Various stressors increase extracellular 5-HT levels in the hippocampus [165–172], and this is 

thought to be mediated by GR activation [114, 172, 173]. In rats, total brain 5-HT depletion 
increases stress sensitivity and abolishes stress adaptation [174], while specific 5-HT deple-

tion in the ventral hippocampus increases anxiety-like behavior [175]. This supports the 
role of the ventral hippocampus as regulating anxiety behavior, and comports findings that 
suggest 5-HT acts as an inhibitory modulator in the hippocampus by activating inhibitory  

Figure 2. Overview of the effects of psychostimulant use on the ventral hippocampus that lead to increased sensitivity to 
psychostimulants, cues, stress and withdrawal symptoms. As discussed in the text, repeated psychostimulant exposure 
may either increase or decrease neurogenesis in the hippocampus under differing conditions, with either outcome 
contributing to the symptoms of dependence. Abbreviations: 5-HT, serotonin; GR, glucocorticoid receptor; OCT3, 
organic cation transporter 3.
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5-HT
1A

 receptors [176–182]. For example, 5-HT
1A

 receptor activation in the hippocampal dentate 
gyrus inhibits LTP and impairs fear-related memory acquisition and consolidation [183–185]. 
Also, post-stress injection of a selective 5-HT reuptake inhibitor or activation of 5-HT

1A
 receptors 

in the hippocampus prevents stress-induced behavioral deficits [186–188]. Overall, increased 
5-HT in the hippocampus seems to be important for repeated stress habituation, while reduced 
ventral hippocampal 5-HT heightens anxiety [172, 175, 189, 190].

A reciprocal and regulatory interaction exists between the serotonergic and glucocorticoid 
systems [191–193]. Systemic corticosterone enhances—and blocking corticosterone synthesis 
or GRs reduces—hippocampal 5-HT turnover and release [114, 194, 195]. These and other 
findings suggest that hippocampal GR activation in response to stress enhances hippocampal 
5-HT transmission [114, 174], which may hold implications for behavioral and emotive stress 
responses such as anxiety [172, 175]. For example, many antidepressants that decrease anxiety 
states increase GR expression and 5-HT transmission [196]. In relation to psychostimulant 
use, chronic amphetamine pretreatment reduces GR protein expression in the ventral hippo-

campus and abolishes the 5-HT response to physiologically relevant hippocampal corticoste-

rone levels after 24 hours of withdrawal [114], when heightened anxiety states emerge [197]. 
Overall, blunted stress-induced 5-HT signaling in the ventral hippocampus may contribute to 
negative affect during psychostimulant withdrawal.

Interestingly, rats with high anxiety behavior and diminished stress-induced 5-HT release 
also have increased levels of 5-HT transporter (SERT) in the raphe and hippocampus, suggest-
ing enhanced 5-HT clearance from the synaptic cleft also contributes to a reduced serotoner-

gic stress response [189]. Acute amphetamine administration can increase SERT activity at the 
membrane [198]; however, repeated administration of amphetamine or its derivatives con-

sistently fails to alter SERT expression or function in the hippocampus [199–204]. Therefore, 
while psychostimulants interact acutely with SERT, chronic psychostimulant exposure does 
not appear to alter SERT expression or function in the hippocampus to alter 5-HT activity 
during withdrawal.

The organic cation transporter 3 (OCT3) is a low affinity, high capacity transporter that 
contributes to 5-HT clearance, and a high density of OCT3 is present in the hippocampus 
[205–210]. OCT3 is directly linked to anxiety behavior, as OCT3 knockout mice display an 
anxiolytic phenotype [211] and OCT3 inhibition has antidepressant-like effects in rats [210]. 
Similarly, SERT knockout mice consistently display heightened OCT3 activity in the hippo-

campus [212, 213] and increased anxiety-like behavior [214, 215], as well as increased OCT3 
mRNA in the hippocampus (but not other brain regions) [213]. This suggests that OCT3 
may have a region-specific role for 5-HT reuptake in the hippocampus [209, 211, 213, 216]. 
Accordingly, amphetamine inhibits OCT3 monoamines transport [208, 217] (although see 

[218]) and withdrawal from methamphetamine is associated with decreased OCT3 mRNA in 
whole brain homogenates [212]. However, OCT3 expression and function are increased in the 

ventral hippocampus of rats at 24 hours of withdrawal from chronic amphetamine, resulting 
in increased 5-HT clearance in this region [203, 204]. Thus, psychostimulant exposure may 
enhance OCT3-mediated serotonin uptake in the hippocampus to produce the heighten anxi-
ety states observed in these animals.
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In addition, chronic cocaine administration increases 5HT1B autoreceptors [219], which regu-

late serotonin release and anxiety-like behavior in the ventral hippocampus [220, 221]. Thus, 
psychostimulant-induced increases of 5HT1B- and OCT3 expression in the ventral hippocam-

pus may reduce ventral hippocampal 5-HT levels and enhance anxiety/avoidance behavior 
during withdrawal (Figure 2) [175, 197, 222–225]. Furthermore, reductions in evoked 5-HT 
release in the ventral hippocampus have been linked to augmented reinforcing properties of 
cocaine and ecstasy (MDMA) [226, 227]. Overall, psychostimulant exposure can induce mul-
tiple detrimental effects on serotonin signaling during withdrawal that can alter hippocam-

pal activity, disrupt hippocampal communication with reward processing regions (nucleus 
accumbens), and may culminate in maladaptive behaviors (Figure 2).

The hippocampal glucocorticoid stress system may play a key role in anhedonia and dysphoria 
that drive relapse during psychostimulant withdrawal. In support of this suggestion, major 
depressive disorder—with core features of anhedonia and dysphoria—is associated with 
reduced hippocampal GR to MR ratio (GR/MR) [228] and reduced GR expression and func-

tion [229–231]. Knocking out central GR expression (except in the hypothalamus) produces a 
reliable depression-like phenotype in rodents, which is restored with tricyclic antidepressant 
treatment [232]. Antidepressants also increase hippocampal GR/MR ratio, expression, and 
function [233–236], and short-term treatment with the GR antagonist mifepristone improves 
depressive symptoms in hypercortisolemic patients [237, 238].

Repeated psychostimulant exposure—which produces dysphoric states in withdrawal [13, 

16, 239, 240]—also results in reduced GR expression—and a reduced GR/MR ratio—in the 
ventral hippocampus (in rats) [114]. The reduced GR/MR ratio may result in MRs having a 
more pronounced effect in the ventral hippocampus [114], which may function to preserve 
HPA regulation and homeostasis, since MRs are thought to preserve basal HPA tone [103, 

104]. In support of this possibility, neither plasma nor hippocampal corticosterone levels are 
altered under basal conditions after repeated amphetamine exposure [114]. However, reduced 
GR/MR ratio is associated with depression [228], and may thus contribute to the dysphoric 
states that cause relapse during psychostimulant withdrawal. Further, the reduced GR/MR 
ratio may alter hippocampal excitability and result in dysregulated serotonin- and dopamine 
responses to stress (Section 2 and [114]).

Interestingly, protracted amphetamine withdrawal (2 weeks) results in an enhanced corti-
costerone stress response in the ventral hippocampus, without altering basal hippocampal 
or plasma corticosterone levels, or stress-induced plasma corticosterone levels [134]. This 
enhanced hippocampal corticosterone stress response—paired with the possible persistence 
of lower GR/MR ratio in the ventral hippocampus [114]—may affect hippocampal regulation 
of accumbal dopamine output and drug salience (Section 2 and [29]). For example, prelimi-
nary findings suggest that a stress-relevant concentration of corticosterone infused into the 
ventral hippocampus rapidly enhances accumbal shell dopamine output (Section 2 and [29]), 

which may enable stress to enhance reward value [63] and promote goal-oriented behavior 
[60]. In amphetamine withdrawal, infusing corticosterone into the ventral hippocampus may 
reduce accumbal dopamine output [29]. Thus, corticosterone in the ventral hippocampus may 
enable stress to reduce reward value during psychostimulant withdrawal, thereby contributing  
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to anhedonia and dysphoria that can prompt relapse [13, 16]. Overall, these recent findings 
support a role for hippocampal corticosterone in mediating reward responses to stress, and 
suggest that dysregulated corticosterone signaling in the ventral hippocampus may contrib-

ute to stress-induced relapse during psychostimulant withdrawal.

Acute stress exposure has also been found to produce an immediate 3-fold increase of free 
corticosterone levels in the dorsal hippocampus [241]. GR/MR ratio is also altered in the dor-

sal hippocampus during psychostimulant withdrawal [114, 241]. In Ref. [241] an increase in 

GR/MR mRNA ratio was observed in the dorsal dentate and CA1 in response to withdrawal 
from extended access to daily cocaine self-administration, accompanied by increased GR 
mRNA in the dentate and CA3, and increased MR mRNA in the dentate. In contrast, others 
have shown that repeated amphetamine administration selectively down-regulates GR mRNA 
in the dorsal hippocampus (when sampled as a whole) [242–245]. Furthermore, in Ref. [114] 

a reduction in dorsal hippocampal GR/MR protein ratio was observed in response to repeated 
amphetamine exposure during acute (24 h) withdrawal, even though neither GR nor MR pro-

tein expression were significantly reduced [114]. The lack of change in GR protein expression 
was also observed after cocaine self-administration [246]. These differences suggest a possible 
dissociation between mRNA and protein expression, and may also suggest that psychostimu-

lant exposure has differential effects on GR/MR regulation, dependent upon the exposure 
model, duration of drug abstinence, and hippocampal sub-region assessed.

Overall, the effects of psychostimulant exposure in the dorsal hippocampus seem to alter GR/
MR protein ratio as well as GR and MR mRNA levels. The reduced GR/MR ratio in the dorsal 
hippocampus could reduce corticosterone-induced serotonin activity in that region [195], sim-

ilar to the reduction observed in the ventral hippocampus [114]. This has not yet been tested; 
however, if present, reduced corticosterone-induced serotonin activity in the dorsal hippo-

campus could impair serotonin-mediated processing of stress-related memories [186] and 

thus disrupt stress adaptation. The resultant reduced stress coping ability could contribute to 
stress-induced relapse during psychostimulant withdrawal, as has been reported in humans 
[13]. Furthermore, the dorsal hippocampus sends excitatory projections to the nucleus accum-

bens core [51], where dopamine release is associated with coordinating motor programs nec-

essary for drug-seeking [63]. However, dorsal hippocampal stimulation reduces extracellular 
dopamine in the accumbens core [247] where differential dopaminergic responses are observed 
in response to appetitive stimuli (increased dopamine) and aversive stimuli (decreased dopa-

mine), while the dopaminergic response in the shell is enhanced regardless of stimulus type 
[248, 249]. Thus, future research should further dissect the differential roles of the dorsal and 
ventral hippocampus in contributing to psychostimulant abuse and withdrawal pathology 
through interactions with the mesolimbic dopamine system and stress responsivity.

4. Psychostimulant regulation of hippocampal structural plasticity: 

drug-context and negative affect

Psychostimulants dramatically alter structural plasticity; inducing long-term changes to den-

drite and dendritic spine morphology [250], and potently altering adult neurogenesis, the 
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process by which new neurons are generated in adulthood. Adult neurogenesis enables expe-

rience to alter neuronal circuitry (structural plasticity) in the hippocampus and other regions 

[251–254]. Adult neurogenesis in the dentate gyrus sub-region of the hippocampus, an essen-

tial region for drug-reward-memory formation [152], plays a role in hippocampal-dependent 

learning and memory [253, 255, 256], as well as hippocampal regulation of stress responses 
[257, 258] and anxiety-like behaviors [259].

Learning processes increase long-term survival of new neurons [260, 261] and contextual learn-

ing and remembering (novel object recognition) depend upon neuron survival for the ability 
to rearrange circuits (structural plasticity) [262–265]. Interestingly, removing new neurons 
after contextual fear- or water maze- training degrades memory [266]; however, increasing 
neurogenesis after training promotes forgetting of hippocampal-dependent recent memory, 
but not remote- or hippocampus-independent memory [267, 268]. Thus, augmented hippocam-

pal neurogenesis can weaken existing memories and facilitate encoding of new experiences, 
whereas diminished neurogenesis can stabilize existing memories and impede new memory 
encoding. Similarly, adult neurogenesis promotes cognitive flexibility and inhibitory control, 
behaviors regulated by the ventral hippocampus, suggesting ventral hippocampal neurogen-

esis significantly contributes to these behaviors [269–272].

Importantly, dorsal-ventral differences are distinguished in hippocampal neurogenesis processes. 
Several studies indicate predominant neurogenesis in the dorsal- compared to the ventral- dentate 

gyrus [224, 273–277]. However, new neurons mature more slowly in the ventral dentate than in the 
dorsal, suggesting a prolonged period in which immature neurons could be influenced by activity 
and incorporated or removed from local circuitry [278, 279]. Therefore, a larger pool of potential 
new neurons in the dorsal dentate gyrus might contribute to rapid spatial memory formation, 
whereas slower maturation in the ventral dentate gyrus may support the regulation of affective 
states. In support of this notion, an enriched environment preferentially increases neurogenesis 
in the dorsal dentate, whereas antidepressant treatment increases neurogenesis and chronic stress 

decreases neurogenesis to a greater degree in the ventral dentate gyrus [280–284].

The specific role of dentate gyrus neurogenesis in regulating anxiety and negative affect 
remains unclear [285]. Several studies correlate reduced neurogenesis with increased anxiety-
like behaviors [259, 286–288]. For example, antidepressants that reduce anxiety states stimu-

late neurogenesis in the rodent and human hippocampus [289–292]; however, suppressing 
neurogenesis alone does not seem to be sufficient to induce anxiety-like behaviors [293–296]. 
Events that induce negative affect—such as chronic stress—also suppress adult hippocampal 
neurogenesis [297] and increasing adult neurogenesis reduces anxiety and depression-like 
behaviors in mice treated chronically with corticosterone [298], supporting a role for neuro-

genesis in mediating hippocampal responses to stress. Stress-induced suppression of cell pro-

liferation in the hippocampus may occur through GRs, which are expressed on proliferating 
cells [299]. Further, impaired neurogenesis is associated with weakened HPA axis feedback 
inhibition and increased glucocorticoid levels after acute stress [257, 258]. This suggests that 
neurogenesis may maintain hippocampal regulation of HPA activity. Thus, impaired neu-

rogenesis may intensify subsequent glucocorticoid effects on hippocampal function, in part 
through altered serotonergic neurotransmission (see Section 3). This may induce long-term 
stress sensitivity and negative affect.
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Psychostimulants directly regulate the process of adult hippocampal neurogenesis. In rats, 
chronic but not acute cocaine exposure reduces proliferation rates in the dentate gyrus, but does 
not alter newborn cell survival rates [300–302]. However, in mice, cocaine seems to increase 
proliferation [303], and its effects on neuron survival appear to depend on existing vulnerabil-
ity and drug dosage [304, 305]. Amphetamines have less of an impact on proliferation rates 
(relative to cocaine), but a greater tendency to reduce the long-term survival of newborn cells 
[224, 306, 307]. However, methamphetamine exposure reduces both proliferation and survival 
of new neurons [308, 309]. While most research has focused on the negative regulation of neu-

rogenesis by drugs of abuse, multiple positive effects on neurogenesis have also been observed, 
particularly during withdrawal. These include increased markers of immature neurons during 
withdrawal [302, 303, 310, 311] and increased survival of hippocampal progenitors [312, 313]. It 
appears that drug-seeking behaviors persist independent of recovery from initial drug-induced 
decreases in new neuron proliferation [302]. However, altered hippocampal neurogenesis 
impacts drug-taking behaviors. When hippocampal neurogenesis is impaired prior to cocaine 
self-administration training, rats take greater amounts of cocaine and display higher break-

points (vs controls), suggesting an intensification of drug reward [314]. Natural reward (sucrose 
administration) is not altered by this process [314], although transgenic mice with impaired 

neurogenesis exhibit no sucrose preference, which is an indication of anhedonia [258]. Further, 
impairing neurogenesis prior to cocaine self-administration training does not alter relapse to 

drug-seeking [314], yet impairing neurogenesis after self-administration training—or before 
CPP—increases context-induced drug-seeking behavior and impedes extinction [314, 315]. 
This suggests that impaired neurogenesis enhances potency of drug-associated environmental 
cues in a time-dependent fashion, and enhancing neurogenesis may promote forgetting of recent 
hippocampal-dependent drug-reward memory [267]. Increased neurogenesis elicited by volun-

tary wheel-running or environmental enrichment before conditioning also delays extinction of 
cocaine CPP, whereas running that occurs after conditioning accelerates cocaine CPP extinction 
[316, 317] (although see [318]). Together, these studies suggest that hippocampal neurogenesis 
may play a role in drug-reward-context memory formation and relapse to drug-seeking.

Psychostimulants may alter neurogenesis processes at least partially through their interac-

tions with the hippocampal dopamine system. Dopamine is known to selectively modulate 
neurogenesis and immature neuron activity [319], and the ventral hippocampus receives 
a higher density of dopaminergic inputs than the dorsal hippocampus [320], which may 

contribute to the dorsa-ventral differences observed in hippocampal neurogenesis processes 
(described above). Interestingly, dopamine receptor activation promotes adult hippocampal 
neurogenesis [321, 322], but dopamine can also decrease the capacity of young neurons 
to express LTP by persistently attenuating young neuron inputs [319]. Psychostimulant-
induced alterations to hippocampal dopamine output could then selectively modulate the 
activity of immature neurons and dictate their subsequent integration into hippocampal 
circuitry. In support of this suggestion, cocaine enhances LTP magnitude selectively in the 
ventral hippocampus (where dopamine innervation is highest) in a dopamine-receptor-
dependent fashion [158]. Likewise, cocaine-induced CPP stimulates context-dependent 
activation of adult-born neurons to a greater extend in the ventral dentate gyrus [323]. 
Altogether, these findings suggest that psychostimulants may exert dynamic effects on 
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hippocampal neurogenesis, promoting functional integration or reducing proliferation or 
survival, depending upon hippocampal region and age of the newly-generated cells at the 
time of drug experience (Figure 2) [324]. This preferential activation could promote for-
mation and incubation of drug-context associations. Additionally, altered neurogenesis—
perhaps through changes in immature neurons—could indirectly influence hippocampal 
networks involved in mediating anxiety states—including those induced by drug use and 
withdrawal—depending upon individual susceptibility, experience, and withdrawal state 
(Figure 2). Overall, more studies are necessary to determine the long-term impact of psy-
chostimulants and withdrawal on new neuron integration along the dorsal-ventral extent 
of the hippocampus. Specifically, it will be important to uncover the subsequent impact of 
psychostimulant-induced neurogenesis on drug memory reinstatement, and further iden-
tify the underlying mechanisms at play, to develop new therapeutic strategies.

5. Conclusions

Together, the literature reviewed indicates that the hippocampus contributes to drug-reward 
processes, drug-related memory formation, and drug-induced anxiety and dysphoria. 
Neuroadaptations following repeated drug administration lead to heightened hippocampal-
mesoaccumbal activity, thus amplifying responses to psychostimulants and associated cues. 
At the same time, a persistent dysregulation of the hippocampal component of the brain’s 
emotional system produces a bias toward negative affect-like responses (Figure 2). Moreover, 
long-term alterations of neurogenesis within the hippocampus may contribute to relapse vul-
nerability through enhanced drug sensitivity, enhanced drug memory, or anxiogenic stimuli. 
However, further study is necessary to determine how psychostimulants modulate the hip-
pocampus to heighten hippocampal-mesoaccumbal activity, and particularly how hippo-
campal neurogenesis functions to influence drug-reward and drug-related memories. Future 
studies should also explore the functional implications of the impact of drugs of abuse and 
withdrawal on the hippocampus regarding its dorsal-ventral axis. A better understanding of 
regional differences may help clarify the roles of neurogenesis in changes induced by psycho-
stimulants on different types of hippocampus-dependent behavior. Taking into consideration 
the activity of these hippocampal systems under drug naïve conditions, chronic psychostim-

ulant-induced alterations to the hippocampus produce ineffective maladaptive behavioral 
responses to stress and environmental challenges. Restoration of these abnormalities within 
the hippocampus, either in neuronal activity, neurochemical levels, or neurogenesis could 
provide an effective therapeutic option to ameliorate negative affect and relapse vulnerability 
in psychostimulant addiction.
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