Effects of Water Chemistry on Internal Corrosion of Pipelines

Hamed Mansoori

Western Midstream

AMPP – Rocky Mountain

January 18th, 2024

Corrosion products (FeCO₃)

steel substrat

Speaker

Hamed Mansoori, *Ph.D.* in Chemical and Corrosion Engineering Corrosion Engineering Supervisor, Western Midstream, The Woodlands, TX

• Started the journey with the oil industry in 2003

Operation and Engineering roles

• Joined Ohio University's Corrosion Center in 2015

• Scholarship, full-time, Ph.D. Studies/Research

• Worked for Anadarko/Oxy/Western Midstream, since 2019

- o External corrosion
- o Internal corrosion
- o Specialty Chemical

Outline

Effect of Water Chemistry on Internal Corrosion of Pipelines

- Introduction
- Literature Review
- Experimental Setup & Methodology
 - Controlled water chemistry
 - o Well-defined mass transfer

• Experimental Results & Descriptive Models

- Influence of Ca²⁺ containing solutions and CaCO₃ scale on corrosion mechanism (various ionic strengths, [Ca²⁺], pH)
- Effect of Mg²⁺ containing solutions on corrosion mechanism (various ionic strengths, [Mg²⁺], pH)
- $\circ~$ Electrolytes with simultaneous presence of Ca^{2+} and Mg^{2+}
- Conclusions

Introduction

Pipelines Are Primary Means of Hydrocarbon Transportation

Source: American Energy Mapping (AEM) 2013

Oil and Gas Pipeline Failure Due to Corrosion

Failure statistics from 2006 to 2010 in USA: 24% (liquid pipeline) and 20% (gas pipeline)

Causes of Significant Onshore Hazardous Liquid Pipeline Incidents (2006 – 2010)¹

Causes of Gas Transmission Pipeline Significant Incidents (2006 – 2010)¹

2 5mm 0 4:5

1- R. Stover, "The State of the National Pipeline Infrastructure", US Department of Transportation report, 2013

2- H. Mansoori, R. Mirzaee, A. H. Mohammadi, and F. Esmaeelzadeh, "Acid Washes, Oxygenate Scavengers Work Against Gas Gathering Failures," *Oil Gas J.*, vol. 111, no. 7, pp. 106–111, 2013.

3- H. Mansoori, R. Mirzaee, F. Esmaeelzadeh, and D. Mowla, "Altering CP Criteria Part of Unified Anti-SCC Approach," *Oil Gas J.*, vol. 111, no. 12, pp. 88–93, 2013.

Corrosion Costs

- Corrosion imposes significant cost of repair and replacement of infrastructures, operational losses, environmental damage and risk to life.
- Annual corrosion cost in the US \$500.7 billion equivalent to 3.1 % of the nation's Gross Domestic Product (GDP)¹
- Oil and gas related corrosion accounted for \$7 billion of annual corrosion costs¹
- However, the costs associated with corrosion can be reduced significantly if appropriate corrosion mitigation programs are applied.

1. G. Koch, J. Varney, N. Thompson, O. Moghissi, M. Gould, and J. Payer, "International measures of prevention, application, and economics of corrosion technologies study," NACE International IMPACT Report, 2016

Literature Review

What is Water Chemistry?

- **Concentration of dissolved ions** ۲
 - Total Dissolved Solids, TDS (conductivity, resistivity, individual ion activities)
 - □ pH ([H⁺])

 - Corrosive components like H₂S, CO₂, O₂, *etc.* Scale-forming ions such as Ca²⁺/ Mg²⁺/Fe²⁺ and CO₃²⁻, Fe²⁺ and S²⁻, Ba²⁺/ Sr²⁺ and SO₄²⁻

Ca_xFe_yCO₃, x+y=1 FeS

Ba_xSr_ySO₃, x+y=1

- **Bacteria** (SRB, APB, etc) ۲
- Suspended solids (sand, scales, paraffin, etc.)
- **Suspended liquid hydrocarbon** (very important in produced water systems)
- **Temperature**, pressure?
- Flow regime?

Why is Water Chemistry Important?

- **Understand/Control Internal Corrosion**
 - Predict corrosion rate, using corrosion models such as Ohio University, OLI
 - Choose the proper chemical to control or mitigate corrosion

Brine Chemistry

Origin of Scales in Oil Production

- Brine (formation water) is co-produced with oil and gas from reservoirs.
- Brine has dissolved ions such as sodium, chloride, calcium, magnesium, strontium, barium, etc.
- Scaling happens when solid solubility limits are exceeded.
- Most of CO₂ corrosion studies have been performed in NaCl electrolytes.

Which Scales Are Relevant for CO₂ Corrosion?

- Calcium and magnesium carbonates (CaCO₃ and MgCO₃) are dominant, strontium and barium sulfates occur less frequently.
- 2) CaCO₃ and MgCO₃ can coexist with FeCO₃, impacting layer protectiveness against corrosion. Due to isostructurality between these calcite-type metal carbonates, Ca²⁺ and Mg²⁺ cations can incorporate into the lattice of FeCO₃.

Controversy on the Influence of Ca²⁺ & Mg²⁺ on CO₂ corrosion

• General corrosion:

Tavares *et al.* and Eriksrud *et al.*^{1,2} have claimed, respectively, that presence of $Ca^{2+} \& Mg^{2+}$ can enhance the protectiveness of FeCO₃, and other researchers claimed the opposite^{3,4}.

• Pitting corrosion:

Hua *et al.* and Esmaeely *et al.*^{5,6} reported pitting corrosion attacks in presence of Ca²⁺ and CaCO₃ scale while Jiang *et al.*⁷ claimed Ca²⁺ could postpone pit initiation.

[1] L.M. Tavares, *et al.*, "Effect of Calcium Carbonate on Low Carbon Steel Corrosion Behavior in Saline CO₂ High Pressure Environments", *Appl. Surf. Sci.*, vol. 359, pp. 143–152, Dec. 2015.

[2] E. Eriksrud and T. Sontvedt, "Effect of Flow on CO₂ Corrosion Rates in Real and Synthetic Formation Waters", *Proc. Corros. Symp. CO₂ Corros. Oil Gas Ind. NACE*, vol. 1, pp. 20–38, 1984.

[3] C. Ding, et al., "Effect of Ca²⁺ on CO₂ corrosion properties of X65 pipeline steel", Int. J. Miner. Metall. Mater., vol. 16, no. 6, pp. 661–666, Dec. 2009.

[4] S.N. Esmaeely, *et al.,* "Effect of Calcium on the Formation and Protectiveness of Iron Carbonate Layer in CO₂ Corrosion", *Corrosion*, vol. 69, no. 9, pp. 912-920, May 2013.

[5] Y. Hua, *et al.*, "Protectiveness, morphology and composition of corrosion products formed on carbon steel in the presence of Cl⁻, Ca²⁺ and Mg²⁺ in high pressure CO₂ environments," *Appl. Surf. Sci.*, vol. 455, pp. 667–682, Oct. 2018.

[6] S. N. Esmaeely, *et al.*, "Effect of Incorporation of Calcium into Iron Carbonate Protective Layers in CO₂ Corrosion of Mild Steel," *Corrosion*, vol. 73, no. 3, pp. 238–246, Nov. 2016.

[7] X. Jiang, *et al.*, "Effect of Calcium Ions on Pitting Corrosion and Inhibition Performance in CO₂ Corrosion of N80 Steel," *Corros. Sci.*, vol. 48, no. 10, pp. 3091–3108, Oct. 2006.

Contributing Factors to the Discrepancies in Literature

Literature Review

- Inadequate design of experimental procedures and setups
 - Change of water chemistry over time¹
 - Undefined mass transfer conditions²
- Misleading comparison of experimental conditions using initial [Ca²⁺] & [Mg²⁺] without considering precipitation during the experiment³
- Insufficient reporting of information regarding water chemistry (e.g., pH, CaCO₃ and FeCO₃ saturation level)⁴

^[1] L.M. Tavares, *et al.*, "Effect of Calcium Carbonate on Low Carbon Steel Corrosion Behavior in Saline CO₂ High Pressure Environments", *Appl. Surf. Sci.*, vol. 359, pp. 143–152, Dec. 2015.

^[2] S.N. Esmaeely, et al., "Effect of Calcium on the Formation and Protectiveness of Iron Carbonate Layer in CO₂ Corrosion", Corrosion, vol. 69, no. 9, pp. 912-920, May 2013.

 ^[3] C. Ding, et al., "Effect of Ca²⁺ on CO₂ corrosion properties of X65 pipeline steel", Int. J. Miner. Metall. Mater., vol. 16, no. 6, pp. 661–666, Dec. 2009.
 [4] G. X. Zhao, et al., "Effect of Ca²⁺ and Mg²⁺ on CO₂ Corrosion Behavior of Tube Steel," J. Iron Steel Res. Int., vol. 12, no. 1, pp. 38–42, 2005.

Scenarios Observed in Oilfields

Motivation

- Brine is typically saturated with respect to CaCO₃/MgCO₃ for various Ca²⁺/Mg²⁺ concentrations.¹
- Precipitation of CaCO₃/MgCO₃ scale will occur from a temporarily supersaturated brine (due to change of operational conditions). After precipitation, the brine should remain saturated with respect to CaCO₃.¹

¹⁻ J. E. Oddo, M. B. Tomson, and others, "Why Scale Forms in the Oil Field and Methods to Predict It," SPE Prod. Facil., vol. 9, no. 01, pp. 47–54, 1994.

Experimental Setup & Methodology

Optimized Experimental Setup

Controlled Mass Transfer System

Impeller Rotation Speed vs. Pipe Velocity

Equivalent Mass Transfer Coefficient for a Pipe with 0.1m ID Based on Berger & Hau Correlation

- $Sh = 0.0165 Re^{0.86} Sc^{0.33}$ Berger & Hau correlation for pipes
- $Sh = 0.47 Re^{0.62} Sc^{0.33}$ Obtained correlation for current experimental setup

 $V = \left(24.48 \times N^{0.62} \times d_{pipe}^{0.14} \times d_{imp}^{0.24} \times v^{0.24}\right)^{1.162}$

Where,

N = impeller rotational speed (rpm) d_{pipe} = diameter of pipe (m) d_{imp} = diameter of impeller (m) v = kinematic viscosity (m²/s)

Experimental **Results:** Ca²⁺- containing solutions

Carbon Dioxide (CO₂) Corrosion Mechanisms

at the metal surface Electrochemical reactions happing Carbon dioxide dissolution $CO_{2(g)} \rightleftharpoons CO_{2(aq)}$ Carbon dioxide hydration $CO_{2(aq)} + H_2O_{(l)} \rightleftharpoons H_2CO_{3(aq)}$ Carbonic acid dissociation $H_2CO_{3(aq)} \rightleftharpoons H^+_{(aq)} + HCO_{3(aq)}$ Bicarbonic acid dissociation $HCO_{3(aq)} \rightleftharpoons H^+_{(aq)} + CO_{3^{2-}(aq)}$

Anodic reaction $Fe_{(s)} \rightarrow Fe^{2+}_{(aq)} + 2e^{-}$

Cathodic reactions

 $2H^{+}_{(aq)} + 2e^{-} \rightarrow H_{2(g)}$

Corrosion Product

(can be protective, lower corrosion rate)

 $\operatorname{Fe}^{2+}_{(aq)} + \operatorname{CO}_{3}^{2-}_{(aq)} \rightarrow \operatorname{FeCO}_{3(s)}$

Chemical reactions happing n the bulk solution

Chemical reaction, can happen at the metal surface and bulk solution

Experimental Design – Study of Fe_xCa_yCO₃ layers

Varying CaCO₃ saturation level (at different [Ca²⁺], and pH)

Experiment Matrix (pH 5.5, high [Ca²⁺])

Parameter	Description		
Material Specimens	UNS G10180 with Ferritic-Pearlitic Structure Flat Square Sample (A = 1.5 cm ²)		
Temperature	80°C		
pCO ₂	0.53 bar		
рН	5.5 (controlled)		
Electrolyte	Baseline	Effect of Ca ²⁺	Effect of CaCO ₃ scale
	1 wt.% NaCl +NaHCO ₃ +NaClO ₄ (Ionic Strength~0.6 M)	1 wt.% NaCl +CaCO ₃ (Ionic Strength~0.6 M)	1 wt.% NaCl +CaCO ₃ +Ca(OH) ₂ (Ionic Strength~0.6 M)
[Ca ²⁺]	0	6000 ppm	6020 (at pH 11) then 6000 ppm (at pH5.5)
S _{CaCO₃}	0	1	>> 1000 then 1
S _{FeCO3}	0 to 11		
Dissolved O ₂	<5 ppb		
Reference Electrode	Saturated Ag/AgCl		
Impeller Rotation Speed	20 rpm		
Mass Transfer Conditions	Equivalent to 0.58 m/s in a 0.1m ID pipe		
Electrochemical Techniques	LPR, OCP, EIS, Potentiodynamic sweeps		
Surface Analysis Techniques	XRD, SEM/EDS		

pH Variation over Time

Identical water chemistry for different CaCO₃ saturation levels (pH 5.5, high [Ca²⁺])

LPR Corrosion Rate Trend

Effect of CaCO₃ saturation level (pH 5.5, high [Ca²⁺])

Note: error bars represent max and min values of two different tests

EDS LineScan Analysis; 7-Day Exposure, Cross-Section

Effect of CaCO₃ saturation on surface layer characteristics (pH 5.5, high [Ca²⁺])

FeCO₂

26

Electrolyte S_{CaCO3}=0

Electrolyte S_{CaCO3}=1

Electrolyte initially S_{CaCO3}>1000 then =1

EDS Mapping Analysis; 7-Day Exposure, Cross-Section View

Precipitation of FeCO₃ adjacent to the steel (pH 5.5, high [Ca²⁺])

Surface layer thickness ~ 105 µm

Final LPR corrosion rate ~ 2.2 mm/y

Final LPR corrosion rate ~ 1.4 mm/y

Surface layer thickness ~ 48 µm

Final LPR corrosion rate ~ 0.5 mm/y

A Descriptive Model (simplified)

(Mechanism of CO₂ corrosion in CaCO₃-saturated solution)

Fe_xCa_yCO₃, x+y=1 CaCO₃ FeCO₃

Critical thickness; different water chemistry within the pores of Fe₃C

Fe₃C development

Steel-CS1018 Ferritic-Pearlitic Structure

XRD Patterns of the Top Surface After 7 Days

Effect of CaCO₃ saturation level on XRD patterns (pH 5.5, high [Ca²⁺])

Conclusions

Conclusions

Effect of Water Chemistry on Internal Corrosion of Pipelines

- Water chemistry drives the corrosion rate of pipelines (general and localized)
- Ca²⁺ is an important component of water chemistry that should not be neglected in analysis
- When analyzing the effect of Ca²⁺, always look for the system pH and saturation degree of CaCO₃
- Having high [Ca²⁺] in the brine is not scary and could be beneficial in formation of a protective FeCO₃ layer on the CS pipe
- When the bulk solution is super saturated with respect to CaCO₃, depends on how CaCO₃ precipitated on the surface, it could lead to localized corrosion and under-deposit corrosion. It is better to remove the scale using mechanical and chemical means.

Thank you for your attention!

Questions?

Backup Slides

Publications (google scholar: citation 357, h-index 11, i10-index 11)

PhD Dissertation

1. H. Mansoori, <u>Influence of Calcium and Magnesium lons and Their Carbonate Scales on CO₂ Corrosion of Mild Steel</u>, **Ohio University**, PhD Dissertation, 2020.

Journal Papers

- 1. C. Prieto, H. Mansoori, B. Brown, M. Singer, D. Young, <u>'Mechanical Integrity of Iron (II) Carbonate Layers with</u> <u>Substitutional Calcium Atoms (FexCayCO3)</u>', **Corrosion Science**, (190), 109625.
- 2. H. Mansoori, D. Young, B. Brown, S. Nesic, M. Singer, <u>'Effect of CaCO₃-Saturated Solution on CO₂ Corrosion in a Controlled Water Chemistry and Defined Mass Transfer System', **Corrosion Science**, (158), p: 108078, 2019.</u>
- 3. H. Mansoori, D. Young, B. Brown, S. Nesic, M. Singer, <u>'Effect of Fe_xCa_yCO₃ and CaCO₃ Scales on the CO₂ Corrosion of Mild Steel, **Corrosion**, 75 (12), p:1434-1449, 2019.</u>
- 4. H. Mansoori, D. Young, B. Brown, S. Nesic, M. Singer, <u>'CO₂ corrosion of Mild Steel Exposed to CaCO₃-Saturated Aqueous Solutions</u>', Poster Award Research Letter, **Corrosion**, 75 (11), p: 1281-1284, 2019.
- H. Mansoori, D. Young, B. Brown, M. Singer, <u>'Influence of Calcium and Magnesium Ions on CO₂ Corrosion of Carbon</u> <u>Steel in Oil and Gas Production Systems-A Review</u>', **Journal of Natural Gas Science and engineering**, (59), p: 287-296, 2018.

Conference Papers

- 1. H. Mansoori, B. Brown, D. Young, S. Nesic, M. Singer, <u>'Investigations on the CO₂ Corrosion of Mild Steel in the</u> <u>Presence of Magnesium and Calcium Ions</u>, **NACE2020**, Paper no. 14914, Houston, Texas.
- H. Mansoori, B. Brown, D. Young, S. Nesic, M. Singer, <u>'Effect of Calcium Ions and CaCO₃ scale on CO₂ Corrosion Mechanism of Mild Steel</u>, NACE2019, Paper no.13000, Nashville, Tennessee.

Experimental Design – Is pure CaCO₃ protective?

• CaCO₃ precipitation-electrochemically driven (temporarily supersaturated at metal/solution)

Cathodic Polarization of WE:

 prevent interference by Fe²⁺ in carbonate formation
 promote precipitation of CaCO₃

Corrosion Rate & Potential over Time

• 80°C, pCO₂ 0.53 bar, pH 5.5, CS1018, 0.58 m/s, 1 wt.% NaCl, CaCO₃-saturated solution

36

Surface layer morphology after 7 days of exposure to solution (without cathodic polarization)

• 80°C, pCO₂ 0.53 bar, pH 5.5, CS1018, 0.58 m/s, 1 wt.% NaCl, CaCO₃-saturated solution

CaCO₃ formed during cathodic polarization

Layer thickness: 17-25 μm CaCO3 Metal 1260 BEC

Cross-section view-active corrosion

Comparison: Pre-Scaled Specimen vs. Bare Specimen

• 80°C, pCO₂ 0.53 bar, pH 5.5, CS1018, 0.58 m/s, 1 wt.% NaCl, CaCO₃-Saturated Solution

