thesolidqgjournal I 55

By Laurent Martin

Suppose that a large car rental company needs to track each customer contract, which is
represented by a row in a database table. Each row includes the customer’s identifier and a
pair of dates delimiting the rental time period. A SQL request to find all of the contracts effec-
tive between two dates might end up scanning a large portion of the table because interval
intersection queries generally have no built-in support in a relational database management

system (RDBMS).

n the year 2000, a group of German research-

ers—Hans-Peter Kriegel, Marco Pdtke, and
Thomas Seidl from the Institute for Computer
Science at the University of Munich—invented
the Relational Interval Tree (RI-Tree), an extremely
ingenious structure to efficiently handle interval
queries in SQL. They wrote about it in the paper
“Managing Intervals Efficiently in Object-Relational
Databases.”

However, one aspect of the Rl-Tree is a bit
tricky: There is no simple way to handle batched
insertion (i.e., INSERT SELECT statements) be-
cause each inserted row might modify the value
of one of the tree's four parameters. This article
covers a variant of the RI-Tree, the Static Rl-Tree,
which supports batched insertion with excellent
performance.

The original RI-Tree has four associated para-
meters: offset, leftRoot, rightRoot, and minstep.
The function of these parameters is to save CPU
time by controlling the tree’s height, thereby avoid-
ing many useless iterations while traversing the
tree. Unfortunately, the insertion of an interval is
dependent on these parameters, which in turn,
might be modified by the insertion itself. This
makes writing an INSERT SELECT statement
difficult.

The SolidQ™ Journal, September 2011—www.solidg.com/sqj

The Static RI-Tree does not use any of the origi-
nal parameters. Instead, a newly inserted interval
is dependent only on row data, which makes using
an INSERT SELECT statement feasible. Conse-
guently, this tree covers the entirety of the data
space all of the time. No dynamic expansion takes
place, hence the name Static RI-Tree. Because
this new variant is static, it traverses the tree in a
different way than the original RI-Tree to avoid the
many iterations just mentioned.

The backbone of the Static RI-Tree is implemented
the same as a binary tree: with its nodes labeled as
integer numbers from 1 through 2"-1 in order (where
N is the size of the integer data type used, in bits).
The value of the root is set to 2. You can use dates
instead of integers by providing a simple mapping
between dates and integers. Figure 1 on page 56
shows a sample binary tree in which N = b.

The fork node plays a crucial role in the struc-
ture because it determines where an interval is
inserted into the Static RI-Tree. Its value is used in
the node column of the Intervals table, as shown

thesolidqgjournal I 56

cED Gr ED E» G EP G EP ED EP ED ED ED ED ED ED ED GD G GD GD GD GD P GD G G

Figure 1: A sample binary tree with nodes labeled as integers

Listing 1: The SQL implementation of the Static RI-Tree

CREATE TABLE Intervals

(

id INT NOT NULL PRIMARY KEY,

node INT NOT NULL, -- Computed as forkNode(lower, upper)

lower INT NOT NULL,
upper INT NOT NULL

)

CREATE INDEX lowerIndex ON Intervals(node, lower);
CREATE INDEX upperIndex ON Intervals(node, upper);

in Listing 1. Also shown in this code are the two
indexes built on this table, as in the original RI-Tree.

Assuming an interval [lower, upper], with lower
and upper being integers, the fork node is defined
as the topmost node w in the following relation:
lower <= w <= upper.

Listing 2: The forkNode function

FUNCTION int forkNode(int lower, int upper) {
int node = 2N-1;
for(int step = node/2; step >= 1; step /= 2)
if upper < node
node -= step;
else if node < lower
node += step;
else
break;

return node;

}

The forkNode function
iterates through the
tree to the fork node.
The fork node plays a
crucial role because

it determines where
an interval is inserted
into the tree.

As described in the original paper, the forkNode
function proceeds by iterating through the tree
from the root down to the fork node, as shown
in Listing 2.

The SolidQ™ Journal, September 2011— www.solidq.com/sgj

- er e e o e C e CEr G EN) G) G EP G) G ED G D GD GP GD GD GD G @ @ °

With this simplified implementation, there is a
problem: The number of iterations needed in a
call to forkNode depends on the tree’s height and
can waste many CPU cycles. For instance, sup-
pose we are using 32-bit signed integers that are
positive numbers ranging from 1 through 23'-1 =
2147483647, If we call forkNode with the interval
[734288, 7343171, the function starts at the root,
whose value is 230 = 1073741824, then steps
through the following nodes:

536870912, 268435456, 134217728, 67108864,
33554432, 16777216, 8388608, 4194304, 2097152,
1048576, 524288, 786432, 655360, 720896, 753664,
737280, 729088, 733184, 735232, 734208, 734720,
734464, 734336, 734272, 734304

That's 26 iterations to reach the fork node!

For the remainder of this article, let n_represent a
node of the tree with value x. Let us assume we
are searching the fork node for an interval [lower,
upper] in which n_ __is the node with the value of
lowerand n is the node with the value of upper.
Looking closely at the sample binary tree in Figure
1, notice that the fork node can be determined
from lower and upper alone. Instead of starting
from the root, we can walk up the tree from both
Mo @NA N, over until we reach their lowest common
ancestor. This will be the fork node.

To demonstrate that the lowest common an-
cestorofn_ _andn _is indeed their fork node,

lower upper

consider the following cases:

* Case 1:1fn andn __ have alowestcom-
nor

mon ancestor of n, , which is neither Niower
n thenn wiII bein nx’s left subtree and

upper’ lower

Npper Will DE N NS Tight sUbtree. As such, x

is in the interval [Iower upperl. Because the

The SolidQ™ Journal, September 2011—www.solidg.com/sqj

C ED G EN G Ch EN Eh E) E) EPD ED ED ED ED ED ED ED ED GD ED GD G GD GD GD GD G GD G GD G GD GD GD GD GD GD G GD Gb GD Gb GD GD G GD G GP G) GP GD GP GD G GP G G @ °

value of any ancestor of n_is outside this
interval, n_is the fork node.
® Case2:Ifn__ =n_ . thefork node is that
. pper’
node. It is also the lowest common ancestor.
* Case3:Ifn_ _isanancestorof Nyoper the fork
node will be n_ because it is the highest
node whose value is contained in the interval
[lower, upperl, while all of its ancestors are
outside this interval. Also, n,___is the lowest
common ancestor.
e Case4:Ifn _ isanancestorofn . thefork
. pper lower .
node will be N pper for reasons symmetric to

those of Case 3.

lower

We now need a method to compute the fork node
efficiently from lower and upper.

The sample binary tree in Figure 2 (page 58)
has its nodes labeled with their decimal and binary
values. Looking at the binary values of the integers
in the tree, we can make several observations:

¢ Observation 1: For any non-leaf node pos-
sessing an even value, the binary represen-
tation of this value will have a non-empty
sequence of trailing 0 bits, whose number
depends on the height of the node in the
tree. Let us call L the sequence of leading
bits before these trailing 0 bits. L uniquely
identifies a non-leaf node.

¢ Observation 2: Assume we have a non-leaf
node n_with aleading bit sequence of L. Inn 's
left subtree, the prefix of the value of any node
is L with its rightmost 1 bit cleared. In n 's right
subtree, the prefix of the value of any node is L.

¢ Observation 3: Assume we have a non-leaf
node n . The node n , belongs to the left
subtree of n_(assuming that the value 0 is
allowed in the tree). Because the fork node of
interval [x, yl (where x <=y) isn_oran ances-
torof n , the interval [x1, y] has the same fork
node. This allows the replacement of x with
x-1 without changing the resulting fork node.

® Observation 4: Assume we have a leaf node
n.. The last bit of z is set to 1 because it is
the value of a leaf node. In this case, z-1 will
have the exact same bit representation as z,
except for the last bit, which is set to 0.

|2

thesolidqgjournal I 58

cED Gr EP EP G P EP EP ED EP EP EP EP ED EP ED ED ED GD P GD GP GD G @D @

These observations enable us to define a meth-
od to compute the fork node directly fromn_ _and
Npper Using these observations, let us examine the
four cases previously mentioned and then incorpo-
rate the ideas into one general method.

In Case 2, when n_ _ is a non-leaf node, Ob-
servation 3 tells us that the leading sequence L
can be computed as the leftmost matching bits of
lower-1and upperwith a “1" bit appended. When
N 1S @leaf node, consider the following: Because
Observation 4 applies and lower = upper, lower-1
differs from upper on the last bit only. Therefore,
the leftmost matching bits of lower-1 and upper
with a “1" bit appended equals lower and upper,
which is also the fork node.

In Cases 1, 3, and 4, when n_ __is a non-leaf
node, Observation 3 tells us that the leading
sequence L can be computed as the leftmost
matching bits of lower-1 and upper with a “1" bit
appended. If n_ _is a leaf node, consider the fol-
lowing: Because Observation 4 applies, lower-1is
the only value differing from lower exclusively on
the last bit. Also, because lower-1 < lower, then
lower-1 # upper. Further, because lower < upper,
lower differs from upper on another bit than the
last. As a consequence, the last bit of lower is ir
relevant in the determination of the fork node, so
lower can be replaced by lower-1.

To conclude, the computation of the fork node
boils down to:

1. Finding the sequence of leftmost matching
bits between lower-1 and upper.

2. Appending a “1" bit.

3. Filling the remaining right bits with 0's.

Let us investigate a couple of examples:

e Example 1: In the tree represented in Figure
2, we are looking for the fork node of the
interval [5, 10]. This is Case 1, and the fork
node is 8. Let us replace 5 with 4, examine
the binary representations of 4 and 10, and
search for the leftmost matching bits. The
search reveals a sequence reduced to one 0
bit. The leading sequence of the fork node is
thus L = 01. This leading sequence uniquely
identifies the node labeled 8.

e Example 2: Let us find the fork node of the
interval [12, 15]. This is Case 3, and the fork
node is 12. Replace 12 with 11, examine
the binary representations of 11 and 15,
and search for the leftmost matching bits.
The search reveals the sequence 01. After
appending a “1" bit, we get the leading se-
guence L = 011, which corresponds to the
node labeled 12.

e Example 3: We are now looking for the fork
node of the interval [21, 24]. This is Case 4,
and the fork node is 24. Replace 21 with 20,
examine the binary representations of 20
and 24, and search for the leftmost match-
ing bits. The search reveals the sequence 1.
After appendinga “1" bit, we get the leading
sequence L = 11, which corresponds to the
node labeled 24.

e Example 4: Let us find the fork node of the
interval [21, 21]. This is Case 2, and the fork
node is 21. Replace 21 with 20, examine
the binary representations of 20 and 21,
and search for the leftmost matching bits.

(16
10000

r \
8
01000

——
4
00100 0l l00

——
20
10100 IllUU

6 10 14
0()0I0 00110 01010 01110

15
tuoom {uon [U()IOII[DUII [0100]

01011 lonon {mm

18 22 ‘b 30
10010 10110 IIOIO 11110
N ”
l()(JOI IUUII I010l IOIII IlOOl

lIUIl lllﬁl { 11111

Figure 2: The virtual backbone of a Static Rl-Tree

The SolidQ™ Journal, September 2011— www.solidq.com/sgj

- ar e e o e C e Ch EEh G E) G ED ED ED GD ED GD G GD G ED GD GD GD P @D @ @ °

