
thesolidqjournal
business intelligence 1

The Static RI-Tree is based on integers because
its virtual backbone is a binary tree whose

nodes and leaves are positive integers. While
it would be possible to use another data type
instead, in practice the advantage of our imple-
mentation lies in an efficient use of integer arith-
metic, including bitwise operations, to enable fast
bulk insertions and interval querying. In order to
keep using integers while managing time intervals,
what we need is to introduce a time-to-integer
mapping, which we’ll discuss in the first part of
this article, with its constraints and complexities.
Our focus will be on the DATE and DATETIME2
data types. We’ll examine mappings implemented
in T-SQL as well as in CLR user-defined functions.
Next, we’ll compare the performance of both
implementations.

The second part of this article is dedicated to
querying. It exposes the required adaptations to
the interval queries and support objects in order to
deal with DATE and DATETIME2 data types. Finally,
we’ll list the full query catalog for Static RI-Trees
of time intervals.

Part 1: Time-to-integer mappings

Time-to-integer mapping properties

To define a time-to-integer mapping, we need to
comply with the following rules:

1.	 Each time value must map to exactly one
integer.

2.	 Each integer must map to exactly one
time value.

3.	 For each pair of time values (t1, t2), such
that t1 maps to i1 and t2 maps to i2, if t1 < t2 then
i1 < i2, and conversely, if i1 < i2 then t1 < t2. This
means that the mapping must conserve the order
of values.

The implementation of such bijections depends on
the DBMS. In the remainder of this article, we shall
focus on time-to-integer mappings for Microsoft
SQL Server 2008 and above.

A Static RI-Tree containing DATE values

In Microsoft SQL Server 2008, the DATE data
type enables the user to represent dates ranging
from January 1st, 0001 through December 31st,
9999.

The SolidQ™ Journal, – www.solidq.com/sqj

By �Laurent Martin

Using the Statistic Relational
Interval Tree with time intervals
In my previous article, “A Static Relational Interval Tree” and “Advanced interval
queries with the Static Relational Interval Tree”, I explained how to manage inter-
vals and query them in an efficient way. One fundamental property of the intervals I’ve
been discussing so far is that they have integer boundaries. But what if in your situation,
what you need to manage are time intervals? In this article, I present solutions to imple-
ment Static RI-Trees containing time intervals.

www.solidq.com/sqj
http://www.solidq.com/sqj/Pages/2011-September-Issue/A-Static-Relational-Interval-Tree.aspx
http://www.solidq.com/sqj/Pages/Relational/Advanced-interval-queries-with-the-Static-Relational-Interval-Tree.aspx
http://www.solidq.com/sqj/Pages/Relational/Advanced-interval-queries-with-the-Static-Relational-Interval-Tree.aspx

thesolidqjournal
business intelligence 2

The SolidQ™ Journal – www.solidq.com/sqj

Mapping Date to INT

Before defining a mapping, note that we cannot
use 0 as the lowest mapped integer because the
Static RI-Tree implementation does not support
it: the fork node computation will report a floating
point error.

To map dates to integers, let’s decide we map
January 1st, 0001 to 1, January 2nd, 0001 to 2,
and so on. To implement this mapping, one natural
solution is to use the following expression:

Here, @d is a variable of type DATE holding
the date we wish to map. Note that the string
‘00010101’ represents the lower bound January
1st, 0001, in ISO 8601 format (yyyymmdd). A
good practice is to always specify date literals us-
ing this format, because SQL Server will always
interpret them the same way, independently of
the SET LANGUAGE and SET DATEFORMAT ses-
sion settings. An alternative syntax for this format
is yyyy-mm-dd. The DATEDIFF expression above
computes the number of days between January
1st, 0001 and @d, which is exactly what we need
for the mapping if we just add one to the result.
When @d is set to ‘99991231’, the upper bound for
the DATE data type, the expression evaluates to
3652059, which can be represented with the INT
data type. In fact, the DATEDIFF function returns
an INT value. To map an INT whose value is less
than or equal to 3652059 to a DATE, we can use
the following expression:

Here, @i is the integer to map. Note that we
cannot use:

because SQL Server would try to implicitly con-

vert the varchar value ‘00010101’ to a DATETIME,
which would result in an error since the lowest
DATETIME value is January 1st, 1753.

Deterministic expressions

Unfortunately, things are a little bit more com-
plicated for our mapping because what we need
is an expression that we’ll use as an inline formula
for a persisted computed column, and SQL Server
requires such an expression to be deterministic.
This means that the expression must always return
the same result every time it gets evaluated with
a specific set of input values and given the same
state of the database.

When parsing the expression:

DATEDIFF(d, ‘00010101’, @d) + 1

SQL Server implicitly converts the varchar string
‘00010101’ to a DATETIME, then to a DATE. This
pair of implicit conversions is considered non-de-
terministic, even though we’re using the ISO 8601
format. The expression can be made deterministic
like so:

DATEDIFF(d, CONVERT(DATE, ‘00010101’, 112),
@d) + 1

 	

 The style 112 explicitly states that the varchar
string is to be interpreted as yyyymmdd.

Similarly, the deterministic equivalent of the INT-
to-DATE mapping is:

DATEADD(d, @i-1, CONVERT(DATE, ‘00010101’,
112))

To check whether an expression is deterministic,
a simple way is to use it as the inline formula of a
computed persisted column within a table variable:

DATEDIFF(d, ‘00010101’, @d) + 1

DATEADD(d, @i-1, CAST(‘00010101’ AS DATE))

DATEADD(d, @i-1, ‘00010101’)

www.solidq.com/sqj

thesolidqjournal
business intelligence 3

The SolidQ™ Journal – www.solidq.com/sqj

DECLARE @T AS TABLE
(
 dt DATE NOT NULL,
 int_dt AS DATEDIFF(d, ‘00010101’, dt) + 1
 PERSISTED NOT NULL
);

When executed, the statement above fails
with the following message: “Msg 4936, Level 16,
State 1, Line 1. Computed column ‘int_dt’ in table
‘@T’ cannot be persisted because the column is
non-deterministic”. The following, however, should
succeed:

DECLARE @T AS TABLE
(
 dt DATE NOT NULL,
 int_dt AS DATEDIFF(d,
 CONVERT(DATE, ‘00010101’, 112), dt) + 1
 PERSISTED NOT NULL
);

The IntervalsDate table

Let’s use our mapping to create the
IntervalsDate table, which is a container of DATE
intervals structured as a Static RI-Tree. As a
reminder, here is the inline formula we used before
for INT intervals (see my previous article “A Static
Relational Interval Tree”):

upper - upper % POWER(2, FLOOR(
 LOG((lower-1) ^ upper)/LOG(2)))

This formula computes the fork node of the
interval [lower, upper]. Assuming that lower and
upper are now DATE values, let’s replace them by
their mapping to INT values and map the result
back to DATE, ensuring the complete expression

is deterministic:

DATEADD(d,
 DATEDIFF(d, CONVERT(DATE, ‘00010101’,
 112), upper)
- (DATEDIFF(d, CONVERT(DATE, ‘00010101’,
 112), upper)+1) %
 POWER(2, FLOOR(LOG(
 DATEDIFF(d, CONVERT(DATE, ‘00010101’,
 112), lower) ^
 (DATEDIFF(d, CONVERT(DATE, ‘00010101’,
 112), upper)+1)) / LOG(2))),
 CONVERT(DATE, ‘00010101’, 112))

Looks complex, doesn’t it? Wait until you see the
corresponding expression for the DATETIME2 data
type, later in the article! Meanwhile, notice how
this expression computes the fork node of the
interval [lower, upper], as a DATE.

Finally, here is the definition of the IntervalsDate
table, along with the indexes enabling efficient

thesolidqjournal
business intelligence 4

The SolidQ™ Journal – www.solidq.com/sqj

querying:

CREATE TABLE dbo.IntervalsDate
(
 id INT NOT NULL PRIMARY KEY,
 node AS DATEADD(d,
 DATEDIFF(d, CONVERT(DATE, ‘00010101’,
 112), upper)
 - (DATEDIFF(d, CONVERT(DATE, ‘00010101’,
 112), upper)+1) %
 POWER(2, FLOOR(LOG(
 DATEDIFF(d, CONVERT(DATE, ‘00010101’,
 112), lower) ^
 (DATEDIFF(d, CONVERT(DATE, ‘00010101’,
 112), upper)+1)) / LOG(2))),
 CONVERT(DATE, ‘00010101’, 112))
 PERSISTED NOT NULL,
 lower DATE NOT NULL,
 upper DATE NOT NULL
);
CREATE INDEX IX_IntervalsDate_lower ON dbo.

IntervalsDate(node, lower, upper);
CREATE INDEX IX_IntervalsDate_upper ON dbo.

IntervalsDate(node, upper, lower);

A Static RI-Tree containing DATETIME2 values

If you need more precise time intervals, in-
cluding a date and a time, you should use a Static
RI-Tree containing DATETIME or DATETIME2(n)
values, where n is the precision, a number of digits
between 0 and 7 for the fractional seconds. By de-
fault, DATETIME2 is equivalent to DATETIME2(7),
and the rightmost digit represents the multiples
of 100 nanoseconds (1 ns = 10-9 s). I’ll present
an implementation for DATETIME2. Once you get
the ideas behind the solution, you can adapt the
implementation if you need less precision, like
DATETIME2(0) or DATETIME2(3).

Mapping DATETIME2 to BIGINT

The DATETIME2 data type enables the user
to represent values ranging from January 1st,
0001 at midnight through December 31st, 9999
at 23:59:59.9999999. To map these values to

integers, we’ll decompose them into hours,
minutes, seconds and fractional seconds, and
express each component in multiples of 100
nanoseconds before summing them up:

-	 Fractional seconds are expressed in
multiples of 100 nanoseconds.

-	 Seconds are multiplied by 107.
-	 Minutes are multiplied by 60 * 107.
-	 Hours are multiplied by 3600 * 107.
-	 Add 1 to map the lower bound value to 1

instead of 0.

Thus, the resulting integer represents the initial
DATETIME2 value expressed in multiples of 100
nanoseconds, plus one. A variable @d of type
DATETIME2 gets mapped to:

DATEDIFF(hh, ‘00010101’, @d) * 36000000000
+ DATEPART(mi, @d) * 600000000
+ DATEPART(s, @d) * 10000000
+ DATEPART(ns, @d) / 100 + 1

Note that there are several problems with this
expression. If you try to use it in a query or expres-
sion, you’ll get an error for some of the values.
First, the constant 36000000000 is greater than
the maximum INT value (2147483647), so SQL
Server automatically treats it as a NUMERIC value.
Then, the constant 600000000 is smaller than the
maximum INT value, so SQL Server treats it as an
INT, but when it gets multiplied by DATEPART(mi,
@d), which is considered as an INT, the result
may well exceed the maximum INT value, so an
arithmetic overflow error might be raised. Finally,
the expression is non-deterministic.

Obviously, the integer to which the origi-
nal DATETIME2 value is mapped cannot be
an INT, but will a BIGINT suffice? The maxi-
mum DATETIME2 value is December 31st,
9999 at 23:59:59.9999999, which maps to
3,155,378,976,000,000,000. Since the maximum
BIGINT value is 9,223,372,036,854,775,807, the
answer is yes, a BIGINT is sufficient to hold the
mapped integer value of any DATETIME2 value.

Here is the mapping expression, rewritten to

thesolidqjournal
business intelligence 5

The SolidQ™ Journal – www.solidq.com/sqj

avoid the problems described above:

((CAST(DATEDIFF(hh, CONVERT(DATETIME2,
‘00010101’, 112), @d) AS BIGINT) * 60

+ DATEPART(mi, @d)) * 60
+ DATEPART(s, @d)) * 10000000
+ DATEPART(ns, @d) / 100 + 1

When computing this expression, SQL Server
does the following (please pay attention to the
parentheses):

-	 The result of the DATEDIFF function is an
INT whose maximum value is 87649415. It gets
cast to a BIGINT.

-	 The constant 60 is an INT which gets
cast to a BIGINT because the left operand of the
* operator is a BIGINT.

-	 DATEPART(mi, @d) returns an INT which
gets cast to a BIGINT since the left operand of the
first + operator is a BIGINT.

-	 The second constant 60 is an INT which
gets cast to a BIGINT because the left operand of
the second * operator is a BIGINT.

-	 DATEPART(s, @d) returns an INT which
gets cast to a BIGINT since the left operand of the
second + operator is a BIGINT.

-	 The constant 10000000 is an INT which
gets cast to a BIGINT because the left operand of
the third * operator is a BIGINT.

-	 DATEPART(ns, @d) returns an INT, the
constant 100 is an INT, and the result of the / op-
erator is an INT, which gets cast to a BIGINT since
the left operand of the third + operator is a BIGINT.

-	 The constant 1 as an INT which gets cast
to a BIGINT because the left operand of the fourth
+ operator is a BIGINT.

As you can see, the expression correctly han-
dles conversions from INT to BIGINT, avoids over-
flows and remains reasonably compact. Also, it’s
deterministic because the varchar literal ‘00010101’
is explicitly converted to a DATETIME2 with a style
of 112. (Many thanks to Itzik Ben-Gan for helping
me get this expression right!)

By the way, while searching for the best ex-

pression for the mapping, I was a bit frustrated
that the DATEDIFF and DATEADD functions only
work with INT values: DATEDIFF returns an INT
and DATEADD’s second argument is an INT. Hav-
ing similar functions working with BIGINT values
would have greatly simplified the mapping expres-
sions, because the decomposition into hours,
minutes, seconds and fractional seconds would
have been unnecessary in the first place! If you
agree, I invite you to vote for the Connect item
that Itzik has posted on the subject.

Mapping BIGINT back to DATETIME2

To map a BIGINT to a DATETIME2, let’s decom-
pose the integer into days after January 1st, 0001,
seconds after midnight and fractional seconds,
and then reassemble the components with the
DATEADD function. Assuming the variable @i is a
BIGINT value, the expression is

DATEADD(ns,
 ((@i-1) % 10000000) * 100,
 DATEADD(s,
 ((@i-1) / 10000000) % 86400,
 DATEADD(d,
 (@i-1) / cast(864000000000 AS BIGINT),
 CONVERT(DATETIME2, ‘00010101’, 112)
)))

In this expression, (@i-1) % 10000000 computes
the fractional seconds component, in multiples of
100 nanoseconds, ((@i-1) / 10000000) % 86400 ex-
tracts the seconds since midnight component and
(@i-1) / cast(864000000000 AS BIGINT) calculates
the days component.

The last step is to replace lower and upper in the
original inline formula computing the fork node by
our DATETIME2-to-BIGINT mapping expression, and
then to map the result back to a DATETIME2. On the
next page, you’ll find the final expression to compute
the fork node as a DATETIME2 for an interval [lower,
upper] where lower and upper are DATETIME2 val-
ues. Hold your breath!

http://connect.microsoft.com/SQLServer/feedback/details/783293/

thesolidqjournal
business intelligence 6

The SolidQ™ Journal – www.solidq.com/sqj

DATEADD(ns,
 ((((CAST(DATEDIFF(hh, CONVERT(DATETIME2, ‘00010101’, 112), upper) AS BIGINT) * 60
 + DATEPART(mi, upper)) * 60
 + DATEPART(s, upper)) * 10000000
 + DATEPART(ns, upper) / 100
 -
 (((CAST(DATEDIFF(hh, CONVERT(DATETIME2, ‘00010101’, 112), upper) AS BIGINT) * 60
 + DATEPART(mi, upper)) * 60
 + DATEPART(s, upper)) * 10000000
 + DATEPART(ns, upper) / 100 + 1
) % POWER(CAST(2 AS BIGINT),
 FLOOR(LOG(
 (((CAST(DATEDIFF(hh, CONVERT(DATETIME2, ‘00010101’, 112), lower) AS BIGINT) * 60
 + DATEPART(mi, lower)) * 60
 + DATEPART(s, lower)) * 10000000
 + DATEPART(ns, lower) / 100
) ^
 (((CAST(DATEDIFF(hh, CONVERT(DATETIME2, ‘00010101’, 112), upper) AS BIGINT) * 60
 + DATEPART(mi, upper)) * 60
 + DATEPART(s, upper)) * 10000000
 + DATEPART(ns, upper) / 100 + 1)) / LOG(2)))) % 10000000) * 100,
 DATEADD(s,
 ((((CAST(DATEDIFF(hh, CONVERT(DATETIME2, ‘00010101’, 112), upper) AS BIGINT) * 60
 + DATEPART(mi, upper)) * 60
 + DATEPART(s, upper)) * 10000000
 + DATEPART(ns, upper) / 100
 -
 (((CAST(DATEDIFF(hh, CONVERT(DATETIME2, ‘00010101’, 112), upper) AS BIGINT) * 60
 + DATEPART(mi, upper)) * 60
 + DATEPART(s, upper)) * 10000000
 + DATEPART(ns, upper) / 100 + 1
) % POWER(CAST(2 AS BIGINT),
 FLOOR(LOG(
 (((CAST(DATEDIFF(hh, CONVERT(DATETIME2, ‘00010101’, 112), lower) AS BIGINT)
 * 60
 + DATEPART(mi, lower)) * 60
 + DATEPART(s, lower)) * 10000000
 + DATEPART(ns, lower) / 100
) ^
 (((CAST(DATEDIFF(hh, CONVERT(DATETIME2, ‘00010101’, 112), upper) AS
 BIGINT) * 60
 + DATEPART(mi, upper)) * 60
 + DATEPART(s, upper)) * 10000000
 + DATEPART(ns, upper) / 100 + 1)) / LOG(2)))) / 10000000) % 86400,
 DATEADD(d,
 (((CAST(DATEDIFF(hh, CONVERT(DATETIME2, ‘00010101’, 112), upper) AS BIGINT)
 * 60
 + DATEPART(mi, upper)) * 60
 + DATEPART(s, upper)) * 10000000
 + DATEPART(ns, upper) / 100

thesolidqjournal
business intelligence 7

The SolidQ™ Journal – www.solidq.com/sqj

 -
 (((CAST(DATEDIFF(hh, CONVERT(DATETIME2, ‘00010101’, 112), upper) AS
 BIGINT) * 60
 + DATEPART(mi, upper)) * 60
 + DATEPART(s, upper)) * 10000000
 + DATEPART(ns, upper) / 100 + 1
) % POWER(CAST(2 AS BIGINT),
 FLOOR(LOG(
 (((CAST(DATEDIFF(hh, CONVERT(DATETIME2, ‘00010101’, 112), lower) AS
 BIGINT) * 60
 + DATEPART(mi, lower)) * 60
 + DATEPART(s, lower)) * 10000000
 + DATEPART(ns, lower) / 100
) ^
 (((CAST(DATEDIFF(hh, CONVERT(DATETIME2, ‘00010101’, 112), upper)
 AS BIGINT) * 60
 + DATEPART(mi, upper)) * 60
 + DATEPART(s, upper)) * 10000000
 + DATEPART(ns, upper) / 100 + 1)) / LOG(2)))
) / CAST(864000000000 AS BIGINT),
 CONVERT(DATETIME2, ‘00010101’, 112))))

This expression could have been greatly
simplified by using scalar user-defined functions or
subqueries. But unfortunately, scalar used-defined
functions have a negative impact on performance
and subqueries are forbidden in a computed
column’s inline formula. And until now, I haven’t
found a simpler yet well performing expression!
SQL Server 2008 and 2012 aren’t very helpful with
such expressions for computed columns. I wish
there were a way to use aliases as in CTEs.

The IntervalsDateTime2 table

Here is the IntervalsDateTime2 table along
with the indexes for efficient querying:

CREATE TABLE dbo.IntervalsDateTime2
(
 id INT NOT NULL PRIMARY KEY,
 node AS … inline forknode formula goes
 here…
 PERSISTED NOT NULL,
 lower DATETIME2 NOT NULL,
 upper DATETIME2 NOT NULL
);
CREATE INDEX IX_IntervalsDateTime2_lower ON

dbo.IntervalsDateTime2(node, lower, upper);
CREATE INDEX IX_IntervalsDateTime2_upper ON

dbo.IntervalsDateTime2(node, upper, lower);

Computing the fork node with CLR functions

If using CLR code in the database is an option
for you, you can easily implement the fork node
computation as a CLR user-defined function. The
performance could be better than with SQL code
(see next section). Here is the C# code for the
DATE and DATETIME2 versions of the fork node
function:

thesolidqjournal
business intelligence 8

The SolidQ™ Journal – www.solidq.com/sqj

using System;
using Microsoft.SqlServer.Server;

namespace DateRITree
{
 public static class RITree
 {
 [SqlFunction(IsDeterministic = true,
 DataAccess = DataAccessKind.None,
 IsPrecise = true)]
 public static DateTime ForkDateCLR(
 DateTime lower, DateTime upper)
 {
 // Convert the parameters to 32-bit
 // integers.
 Int32 lowerInt = (lower.Date –
 DateTime.MinValue).Days + 1;
 Int32 upperInt = (upper.Date –
 DateTime.MinValue).Days + 1;

 // Compute the 32-bit fork node
Int32 node = ((lowerInt - 1) ^
 upperInt) >> 1;
 node |= node >> 1;
 node |= node >> 2;
 node |= node >> 4;
 node |= node >> 8;
 node |= node >> 16;
 node = upperInt & ~node;

 // Convert the result to DateTime
 return new DateTime((node - 1) *
 864000000000L);
 }

 [SqlFunction(IsDeterministic = true,
 DataAccess = DataAccessKind.None,
 IsPrecise = true)]
 public static DateTime
 ForkDateTime2CLR(DateTime lower,
 DateTime upper)
 {
 // Convert the parameters to 64-bit
 // integers.
 Int64 lowerInt = lower.Ticks + 1L;
 Int64 upperInt = upper.Ticks + 1L;

 // Compute the 64-bit fork node
 Int64 node = ((lowerInt - 1) ^
 upperInt) >> 1;

irst, we must recollect the data that was trans

Personally, I find this C# code so much simpler and
clearer than the equivalent SQL!

Note that the Ticks property of the System.Da-
teTime structure returns the same value as our
DATETIME2-to-BIGINT mapping, minus one.

One interesting thing to try is have the intervals
table contain 2 fork node columns: one computed
with the large SQL expression and one computed
via a call to the C# function. It is then easy to check
that both columns always have the same value.

Measuring bulk insertion performance

In this section, let’s examine the fork node compu-
tation cost (the computed column in the intervals
table) at insertion time. For this, we’ll generate
random intervals into a staging table, and then
compare the time needed to perform a bulk inser-
tion of 10,000,000 rows into the target interval
table in the 3 following situations:

1.	 The node column is initialized to a default
value

2.	 The node column is computed as the
interval’s fork node with an inline formula in SQL

3.	 The node column is computed as the
interval’s fork node with a call to a CLR function
written in C#

 node |= node >> 1;
 node |= node >> 2;
 node |= node >> 4;
 node |= node >> 8;
 node |= node >> 16;
 node |= node >> 32;
 node = upperInt & ~node;

 // Convert the result to DateTime
 return new DateTime(node – 1L);
 }
 }
}

thesolidqjournal
business intelligence 9

The SolidQ™ Journal – www.solidq.com/sqj

The GetNums function

Let’s first see a handy utility function. The Get-
Nums function, written by Itzik Ben-Gan, returns
the set of integers included within a range speci-
fied by its boundaries, with an excellent perfor-
mance and without needing to read from a data-
base table. The code for GetNums is:

CREATE FUNCTION dbo.GetNums(@low AS BIGINT, @
high AS BIGINT) RETURNS TABLE

AS
RETURN
 WITH
 L0 AS (SELECT c FROM (SELECT 1 UNION ALL

SELECT 1) AS D(c)),
 L1 AS (SELECT 1 AS c FROM L0 AS A CROSS

JOIN L0 AS B),
 L2 AS (SELECT 1 AS c FROM L1 AS A CROSS

JOIN L1 AS B),
 L3 AS (SELECT 1 AS c FROM L2 AS A CROSS

JOIN L2 AS B),
 L4 AS (SELECT 1 AS c FROM L3 AS A CROSS

JOIN L3 AS B),
 L5 AS (SELECT 1 AS c FROM L4 AS A CROSS

JOIN L4 AS B),
 Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY

(SELECT NULL)) AS rownum
 FROM L5)
 SELECT TOP(@high - @low + 1) @low +
 rownum - 1 AS n
 FROM Nums
 ORDER BY rownum;

For instance, here’s how to select all integers
between (and including) 1 and 10000:

SELECT n FROM dbo.GetNums(1, 10000);

I like to call GetNums the “harp” function. If you
wonder why, take a look at the execution plan of
the preceding query.

Inserting into the IntervalsDate table

The code to create and fill the staging table with

DATE intervals is the following:

CREATE TABLE dbo.StagingDate
(
 id INT NOT NULL PRIMARY KEY,
 lower DATE NOT NULL,
 upper DATE NOT NULL
);
DECLARE @num_intervals INT = 10000000,
 @max_interval_length_days INT = 30;
DECLARE @max_lower INT =
 (SELECT DATEDIFF(d, CONVERT(DATE,
 ‘00010101’, 112), DATEADD(d,
 -@max_interval_length_days, ‘99991231’
)));

WITH T AS
(
 SELECT n, DATEADD(D,
 1 + ABS(CHECKSUM(NEWID())) % @max_lower,
 CONVERT(DATE, ‘00010101’, 112)) AS lower
 FROM dbo.GetNums(1, @num_intervals)
)
INSERT dbo.StagingDate WITH(TABLOCK)
 (id, lower, upper)
SELECT n,
 lower,
 DATEADD(d, ABS(CHECKSUM(NEWID())) %
 (@max_interval_length_days + 1),
 lower)
FROM T;

In the code above, @num_intervals is the number
of intervals to insert, @max_lower is the maxi-
mum lower bound for an interval and @max_in-
terval_length_days is the maximum length of an
interval in days.

thesolidqjournal
business intelligence 10

The SolidQ™ Journal – www.solidq.com/sqj

Now, let’s define the 3 test tables:

CREATE TABLE dbo.IntervalsDateRaw
(
 id INT NOT NULL PRIMARY KEY,
 node DATE NOT NULL DEFAULT
 CONVERT(DATE, ‘00010101’, 112),
 lower DATE NOT NULL,
 upper DATE NOT NULL
);
CREATE INDEX IX_IntervalsDateRaw_lower ON dbo.

IntervalsDateRaw(node, lower, upper);
CREATE INDEX IX_IntervalsDateRaw_upper ON dbo.

IntervalsDateRaw(node, upper, lower);
GO
CREATE TABLE dbo.IntervalsDate
(
 id INT NOT NULL PRIMARY KEY,
 node AS …inline forknode formula goes
 here…
 PERSISTED NOT NULL,
 lower DATE NOT NULL,
 upper DATE NOT NULL
);
CREATE INDEX IX_IntervalsDate_lower ON dbo.

IntervalsDate(node, lower, upper);
CREATE INDEX IX_IntervalsDate_upper ON dbo.

IntervalsDate(node, upper, lower);
GO
CREATE TABLE dbo.IntervalsDateCLR
(
 id INT NOT NULL PRIMARY KEY,
 node AS dbo.ForkDateCLR(lower, upper)
PERSISTED NOT NULL,
 lower DATE NOT NULL,
 upper DATE NOT NULL
);
CREATE INDEX IX_IntervalsDateCLR_lower ON dbo.

IntervalsDateCLR(node, lower, upper);
CREATE INDEX IX_IntervalsDateCLR_upper ON dbo.

IntervalsDateCLR(node, upper, lower);

Finally, below is the code to measure the bulk
insertion time in seconds. Execute it once for
each table, replacing IntervalsDateX by Intervals-
DateRaw, IntervalsDate then IntervalsDateCLR.

DECLARE @t0 DATETIME = CURRENT_TIMESTAMP;
INSERT dbo.IntervalsDateX(id, lower, upper)
SELECT id, lower, upper
FROM dbo.StagingDate;
SELECT DATEDIFF(s, @t0, CURRENT_TIMESTAMP);

On my desktop, the results are as follows:

Computed node column Bulk insert time (s)
Default value 216
Inline formula 231
CLR function 227

It appears that, for the DATE data type, a CLR
function does not offer any significant performance
advantage over an inline formula.

Inserting into de IntervalsDateTime2
table

The code to create and fill the staging table with
DATETIME2 intervals is the following:

CREATE TABLE dbo.StagingDateTime2
(
 id INT NOT NULL PRIMARY KEY,
 lower DATETIME2 NOT NULL,
 upper DATETIME2 NOT NULL
);

DECLARE @num_intervals INT = 10000000,
 @max_interval_length_days INT = 2;
DECLARE @max_lower INT =
 (SELECT node FROM dbo.MapDateToInt(
 DATEADD(d, -@max_interval_length_days,
 ‘99991231’)));
WITH T1 AS
(
 SELECT n, 1 + ABS(CHECKSUM(NEWID())) %
 @max_lower AS lower
 FROM dbo.GetNums(1, @num_intervals)
),
T2 AS
(
 SELECT n, lower, lower +
 ABS(CHECKSUM(NEWID())) %

thesolidqjournal
business intelligence 11

The SolidQ™ Journal – www.solidq.com/sqj

@max_interval_length_days AS upper
 FROM T1
),
T3 AS
(
 SELECT n,
DATEADD(ns, (ABS(CHECKSUM(NEWID())) %
 10000000) * 100,
 DATEADD(s, ABS(CHECKSUM(NEWID())) %
 86400,
 DATEADD(d, lower,
 CONVERT(DATETIME2, ‘00010101’, 112))
)) AS lower,
 DATEADD(ns, (ABS(CHECKSUM(NEWID())) %
 10000000) * 100,
 DATEADD(s, ABS(CHECKSUM(NEWID())) %
 86400,
 DATEADD(d, upper,
 CONVERT(DATETIME2, ‘00010101’, 112))
)) AS upper
 FROM T2
)
INSERT dbo.StagingDateTime2 WITH(TABLOCK)
 (id, lower, upper)
SELECT n, lower,
 CASE WHEN upper < lower
 -- May happen on the same day
 THEN DATEADD(S,
 ABS(CHECKSUM(NEWID()))
 % 36000, lower)
 ELSE upper
 END AS upper
FROM T3;

In the code above, @num_intervals is the number
of intervals to insert, @max_lower is the maximum
lower bound (the day part) for an interval and @
max_interval_length_days is the maximum length
of an interval in days.

Now, let’s define the 3 test tables:

CREATE TABLE dbo.IntervalsDateTime2Raw
(
 id INT NOT NULL PRIMARY KEY,
 node DATETIME2 NOT NULL
 DEFAULT CONVERT(DATETIME2, ‘00010101’,
 112),
lower DATETIME2 NOT NULL,
 upper DATETIME2 NOT NULL
);
CREATE INDEX IX_IntervalsDateTime2Raw_lower

ON dbo.IntervalsDateTime2Raw(node, lower, upper);
CREATE INDEX IX_IntervalsDateTime2Raw_upper

ON dbo.IntervalsDateTime2Raw(node, upper, lower);
GO
CREATE TABLE dbo.IntervalsDateTime2
(
 id INT NOT NULL PRIMARY KEY,
 node AS …inline forknode formula goes
 here…
 PERSISTED NOT NULL,
 lower DATETIME2 NOT NULL,
 upper DATETIME2 NOT NULL
);
CREATE INDEX IX_IntervalsDateTime2_lower ON

dbo.IntervalsDateTime2(node, lower, upper);
CREATE INDEX IX_IntervalsDateTime2_upper ON

dbo.IntervalsDateTime2(node, upper, lower);
GO
CREATE TABLE dbo.IntervalsDateTime2CLR
(
 id INT NOT NULL PRIMARY KEY,
 node AS dbo.ForkDateTime2CLR(lower, upper)
 PERSISTED NOT NULL,
lower DATETIME2 NOT NULL,
 upper DATETIME2 NOT NULL
);
CREATE INDEX IX_IntervalsDateTime2CLR_lower ON

dbo.IntervalsDateTime2CLR(node, lower,
 upper);
CREATE INDEX IX_IntervalsDateTime2CLR_upper ON

dbo.IntervalsDateTime2CLR(node, upper,
 lower);

Finally, below is the code to measure the bulk
insertion time in seconds. Execute it once for
each table, replacing IntervalsDateTime2X by In-
tervalsDateTime2Raw, IntervalsDateTime2 then
IntervalsDateTime2CLR.

thesolidqjournal
business intelligence 12

The SolidQ™ Journal – www.solidq.com/sqj

DECLARE @t0 DATETIME = CURRENT_TIMESTAMP;
INSERT dbo.IntervalsDateTime2X(id, lower,
 upper)
SELECT id, lower, upper
FROM dbo.StagingDateTime2;
SELECT DATEDIFF(s, @t0, CURRENT_TIMESTAMP);

On my desktop, the results are as follows:

Computed node column Bulk insert time (s)
Default value 216
Inline formula 231
CLR function 227

With the DATETIME2 data type, the performance

is much better with a CLR function.

Part 2: Query Static BI-Trees holding

time intervals

Let’s examine what’s involved to make the original
intersection queries and Allen queries work with
Static RI-Trees holding DATE or DATETIME2-based
intervals.

Time interval query support objects

The Static RI-Tree interval queries use a BitMasks
table and a couple of user-defined functions. These
need to be adapted to the DATE and DATETIME2
data types. In addition, we need to wrap time-to-
integer mappings into dedicated functions.

The BitMasksDate and
BitMasksDateTime2 tables

The BitMasksDate and BitMasksDateTime2 tables
are the adaptations of the BitMasks table to re-
spectively the DATE and DATETIME2 data types.

Since the maximum DATE value, ‘99991231’, maps
to the integer value 3652059, the BitMasksDate
table should be initially filled in such a way that
b3 is less than or equal to 3652059, to ensure

that ancestors returned never exceed this limit. In
practice, we need b3 <= 221, because 222 equals
4194304. Thus, the code to create and initialize
BitMasksDate is:

CREATE TABLE dbo.BitMasksDate
(
 b1 INT NOT NULL,
 b3 INT NOT NULL
);
INSERT dbo.BitMasksDate(b1, b3)
SELECT -POWER(2, n),
 POWER(2, n)
FROM dbo.GetNums(1, 21);

Note that the b2 column of the original BitMasks
table is no longer used because the Ancestors
function (explained shortly) doesn’t require it.

The Static RI-Tree for DATETIME2 internally uses
BIGINT values, so we must use a 64-bit version
of the BitMasks table. Since the maximum DATE-
TIME2 value, ‘99991231 23:59:59.9999999’, maps
to the integer value 3,155,378,976,000,000,000,
the BitMasksDateTime2 table should be initially
filled in such a way that b3 is less than or equal to
this integer, to ensure that ancestors returned nev-
er exceed the limit. In practice, we need b3 <= 261,
because 262 equals 4,611,686,018,427,387,904.
The code below creates the BitMasksDateTime2
table and populates it.

The time-to-integer and integer-to-time
mapping functions

We need to be able to easily map time values to

CREATE TABLE dbo.BitMasksDateTime2
(
 b1 BIGINT NOT NULL,
 b3 BIGINT NOT NULL
);
INSERT dbo.BitMasksDateTime2(b1, b3)
SELECT -POWER(CAST(2 AS BIGINT), n),
 POWER(CAST(2 AS BIGINT), n)
FROM dbo.GetNums(1, 61);

thesolidqjournal
business intelligence 13

The SolidQ™ Journal – www.solidq.com/sqj

integers and vice versa. To do this, let’s wrap the
mapping expressions we’ve discussed above into
functions. However, let’s use inline table-valued
functions to ensure the cost in execution time is
always minimal. The DATE-to-INT mapping function
is presented below:

CREATE FUNCTION dbo.MapDateToInt(@d
 DATE)
RETURNS TABLE
AS
RETURN
 SELECT DATEDIFF(d,
 CONVERT(DATE, ‘00010101’, 112), @d) + 1
 AS node;

The DATETIME2-to-BIGINT mapping function is:

CREATE FUNCTION dbo.MapDateTime2ToBigInt(
 @d DATETIME2)
RETURNS TABLE
AS
RETURN
 SELECT
 ((CAST(DATEDIFF(hh,
 CONVERT(DATETIME2, ‘00010101’, 112),
 @d) AS BIGINT) * 60
 + CAST(DATEPART(mi, @d) AS BIGINT)) * 60
 + CAST(DATEPART(s, @d) AS BIGINT))
 * 10000000
 + CAST(DATEPART(ns, @d) AS BIGINT)
 / 100 + 1 AS node;

And here are the integer-to-time mapping func-
tions. First, the INT-to-DATE mapping function:

CREATE FUNCTION dbo.MapIntToDate(@i INT)
RETURNS TABLE
AS
RETURN
 SELECT DATEADD(d, @i - 1,
 CONVERT(DATE, ‘00010101’, 112)) as node;

And second, the BIGINT-to-DATETIME2 mapping
function:

CREATE FUNCTION dbo.MapBigIntToDateTime2(@i
 BIGINT)
RETURNS TABLE
AS
RETURN
 SELECT DATEADD(ns,
 ((@i – 1) % 10000000) * 100,
 DATEADD(s,
 ((@i – 1) / 10000000) % 86400,
 DATEADD(d,
 (@i – 1) / cast(864000000000
 AS BIGINT),
 CONVERT(DATETIME2, ‘00010101’, 112)
))) AS node;

The Fork function

Next, we need time versions of the Fork function,
to compute the fork node of a time interval. As
a reminder, the original implementation for INT
values is:

CREATE FUNCTION dbo.Fork(@lower INT,
 @upper INT)
 RETURNS INT
AS
BEGIN
 RETURN @upper - @upper %
 POWER(2, FLOOR(LOG((@lower - 1) ^
 @upper) / LOG(2)));
END

To derive the DATE and DATETIME2 versions,
we need to map the arguments to integers, feed
these integers into the fork expression and map
the result back to a DATE or DATETIME2. Here is
the DATE version of the Fork function:

CREATE FUNCTION dbo.ForkDate(@lower DATE,
 @upper DATE)
 RETURNS DATE
AS
BEGIN

thesolidqjournal
business intelligence 14

The SolidQ™ Journal – www.solidq.com/sqj

 DECLARE @lowerInt INT, @upperInt INT,
 @forkInt INT, @fork DATE;

 SELECT @lowerInt = node FROM
 dbo.MapDateToInt(@lower);
 SELECT @upperInt = node FROM
 dbo.MapDateToInt(@upper);
 SET @forkInt = @upperInt - @upperInt %
 POWER(2, FLOOR(LOG((@lowerInt - 1) ^
 @upperInt) / LOG(2)));
 SELECT @fork = node FROM
 dbo.MapIntToDate(@forkInt);

 RETURN @fork;
END

And here is the DATETIME2 version of the Fork
function:

CREATE FUNCTION dbo.ForkDateTime2(@lower
 DATETIME2, @upper DATETIME2)
 RETURNS DATETIME2
AS
BEGIN
 DECLARE @lowerInt BIGINT,
 @upperInt BIGINT,
 @forkInt BIGINT,
 @fork DATETIME2;

 SELECT @lowerInt = node FROM
 dbo.MapDateTime2ToBigInt(@lower);
 SELECT @upperInt = node FROM
 dbo.MapDateTime2ToBigInt(@upper);
 SET @forkInt = @upperInt - @upperInt %
 POWER(CAST(2 AS BIGINT),
 FLOOR(LOG((@lowerInt - 1) ^
 @upperInt) / LOG(2)));
SELECT @fork = node FROM
 dbo.MapBigIntToDateTime2(@forkInt);

 RETURN @fork;
END

The Ancestors function

While I was researching solutions to efficiently im-
plement time-based Static RI-Trees, Itzik Ben-Gan
came up with a beautiful alternative to my Left-
Nodes and RightNodes functions: the Ancestors
function, which computes the set of ancestors of
a node in the RI-Tree. I love this function because
it’s simpler, less abstract and much clearer than
LeftNodes and RightNodes. In addition, it performs
equally well. The integer form of Ancestors is as
follows:

CREATE FUNCTION dbo.Ancestors(@node AS INT)
RETURNS TABLE

AS
RETURN
 SELECT @node & b1 | b3 as node
 FROM dbo.BitMasks
 WHERE b3 > @node & -@node;

The magical expression @node & -@node com-
putes the rightmost set bit in the binary form of
@node’s value. To achieve the same results as
LeftNodes, you simply need to query the Ances-
tors function and restrict the output to values
strictly less than @node. Conversely, just restrict
the output to values strictly greater than @nodes
to obtain the same results as RightNodes.

The DATE and DATETIME2 versions of the func-
tion are obtained by mapping the argument to an
integer, then feeding this integer into the ancestors
expression and mapping the result back to a DATE
or DATETIME2. The DATE version of the Ancestors
function is:

CREATE FUNCTION dbo.AncestorsDate(@d DATE)
RETURNS TABLE
AS
RETURN
 SELECT D.node
 FROM dbo.BitMasksDate AS BM WITH(NOLOCK)
 CROSS JOIN dbo.MapDateToInt(@d) AS I
 CROSS APPLY dbo.MapIntToDate(
 I.node & BM.b1 | BM.b3) AS D
 WHERE BM.b3 > I.node & -I.node;

thesolidqjournal
business intelligence 15

The SolidQ™ Journal – www.solidq.com/sqj

The DATETIME2 version of the Ancestors func-
tion is:

CREATE FUNCTION dbo.AncestorsDateTime2(@d
DATETIME2)

RETURNS TABLE
AS
RETURN
 SELECT D.node
 FROM dbo.BitMasksDateTime2 AS BM
 WITH(NOLOCK)
 CROSS JOIN dbo.MapDateTime2ToBigInt(@d)
 AS I
 CROSS APPLY dbo.MapBigIntToDateTime2(
 I.node & BM.b1 | BM.b3) AS D
 WHERE BM.b3 > I.node & -I.node;

Putting it all together: the interval query cat-
alog

All interval queries can be written simply with the
Fork and Ancestors functions. No need to keep
the TopLeft, TopRight, InnerLeft, InnerRight, Left-
Nodes, RightNodes, BottomLeft and BottomRight
functions!

The table below lists the complete interval query
catalog for DATE-based Static RI-Trees.
Notes:

- The queries are written for DATE intervals. They
can be transposed to DATETIME2 intervals by
replacing ForkDate by ForkDateTime2, Intervals-
Date by IntervalsDateTime2, AncestorsDate by
AnctestorsDateTime2, DATE by DATETIME2 and
DATE constants by DATETIME2 constants.
- To get the best query plans by sniffing the cur-
rent values of local variables, you can append the
OPTION (RECOMPILE) query hint.
- The @min and @max variables are used to im-
plement the range optimization (see my previous
article “Advanced interval queries with the Static
Relational Interval Tree”).
- The Intersects relationship is not part of the 13
interval relationships defined by Allen. Its query is
equivalent to the union of all Allen queries, except
those corresponding to Before and After. Its se-

mantics are: all intervals intersecting the interval
[@lower, @upper].

thesolidqjournal
business intelligence 16

The SolidQ™ Journal – www.solidq.com/sqj

Relationship Query

Intersects DECLARE @lower DATE = ‘20130410’,
 @upper DATE = ‘20130425’,
 @min DATE,
 @max DATE;
SELECT @min = MIN(node), @max = MAX(node) FROM dbo.IntervalsDate;

SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN dbo.AncestorsDate(@lower) ln
 ON i.node = ln.node
 AND i.upper >= @lower
WHERE ln.node < @lower
 AND ln.node >= @min
UNION ALL
SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN dbo.AncestorsDate(@upper) rn
 ON i.node = rn.node
 AND i.lower <= @upper
WHERE rn.node > @upper
 AND rn.node <= @max
UNION ALL
SELECT id, lower, upper
FROM dbo.IntervalsDate
WHERE node BETWEEN @lower AND @upper;

Before DECLARE @lower DATE = ‘00010410’,
 @min DATE;
SELECT @min = MIN(node) FROM dbo.IntervalsDate;

SELECT id, lower, upper
FROM dbo.IntervalsDate
WHERE node < @lower
 AND upper < @lower
 AND node >= @min;

Meets DECLARE @lower DATE = ‘20130410’,
 @min DATE;
SELECT @min = MIN(node) FROM dbo.IntervalsDate;

SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN (
 SELECT node
 FROM dbo.AncestorsDate(@lower)
 WHERE node < @lower
 AND node >= @min
 UNION ALL
 SELECT @lower
) q
 ON i.node = q.node
 AND i.upper = @lower;

thesolidqjournal
business intelligence 17

The SolidQ™ Journal – www.solidq.com/sqj

Relationship Query

Overlaps DECLARE @lower DATE = ‘20130410’,
 @upper DATE = ‘20130421’,
 @min DATE = (SELECT MIN(node) FROM
 dbo.IntervalsDate);
DECLARE @fork DATE = dbo.ForkDate(@lower, @upper);

SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN dbo.AncestorsDate(@lower) q
 ON i.node = q.node
WHERE i.upper > @lower
 AND i.upper < @upper
 AND q.node < @lower
 AND q.node >= @min
UNION ALL
SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN (
 SELECT node
 FROM dbo.AncestorsDate(@lower)
 WHERE node > @lower
 AND node < @fork
 UNION ALL
 (
 SELECT @lower
 UNION
 SELECT @fork
)
) q
 ON i.node = q.node
WHERE i.lower < @lower
 AND i.upper < @upper

FinishedBy DECLARE @lower DATE = ‘20130410’,
 @upper DATE = ‘20130421’,
 @min DATE = (SELECT MIN(node) FROM
 dbo.IntervalsDate);
DECLARE @fork DATE = dbo.ForkDate(@lower, @upper);

SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN (
 SELECT node
 FROM dbo.AncestorsDate(@fork)
 WHERE node >= @min
 AND node < @fork
 UNION ALL
 SELECT @fork
) q
 ON i.node = q.node
WHERE i.upper = @upper
 AND i.lower < @lower;

thesolidqjournal
business intelligence 18

The SolidQ™ Journal – www.solidq.com/sqj

Starts DECLARE @lower DATE = ‘20130410’,
 @upper DATE = ‘20130421’;
DECLARE @fork DATE = dbo.ForkDate(@lower, @upper);

SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN (
 SELECT node
 FROM dbo.AncestorsDate(@lower)
 WHERE node > @lower
 AND node < @fork
 UNION ALL
 (
 SELECT @fork
 UNION
 SELECT @lower
)
) q
 ON i.node = q.node
WHERE i.lower = @lower
 AND i.upper < @upper;

Contains DECLARE @lower DATE = ‘20130410’,
 @upper DATE = ‘20130421’,
 @min DATE = (SELECT MIN(node) FROM
 dbo.IntervalsDate),
 @max DATE = (SELECT MAX(node) FROM
 dbo.IntervalsDate);
DECLARE @fork DATE = dbo.ForkDate(@lower, @upper);

SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN (
 SELECT node
 FROM dbo.AncestorsDate(@fork)
 WHERE node > @fork
 AND node <= @max
 UNION ALL
 SELECT @fork
) q
 ON i.node = q.node
WHERE i.lower < @lower
 AND i.upper > @upper
UNION ALL
SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN dbo.AncestorsDate(@fork) q
 ON i.node = q.node
WHERE i.upper > @upper
 AND q.node < @fork
 AND q.node >= @min;

thesolidqjournal
business intelligence 19

The SolidQ™ Journal – www.solidq.com/sqj

Equals DECLARE @lower DATE = ‘20130410’,
 @upper DATE = ‘20130421’;
DECLARE @fork DATE = dbo.ForkDate(@lower, @upper);

SELECT id, lower, upper
FROM dbo.IntervalsDate i
WHERE i.node = @fork
 AND i.lower = @lower
 AND i.upper = @upper;

During DECLARE @lower DATE = ‘20130410’,
 @upper DATE = ‘20130421’,
 @min DATE = (SELECT MIN(node) FROM
 dbo.IntervalsDate),
 @max DATE = (SELECT MAX(node) FROM
 dbo.IntervalsDate);
DECLARE @fork DATE = dbo.ForkDate(@lower, @upper);

SELECT id, lower, upper
FROM dbo.IntervalsDate i
WHERE i.node > @lower
 AND i.node >= @min
 AND i.node <= @fork
 AND i.lower > @lower
 AND i.upper < @upper
UNION ALL
SELECT id, lower, upper
FROM dbo.IntervalsDate i
WHERE i.node > @fork
 AND i.node < @upper
 AND i.node <= @max
 AND i.upper < @upper;

StartedBy DECLARE @lower DATE = ‘20130410’,
 @upper DATE = ‘20130421’,
 @max DATE = (SELECT MAX(node) FROM
 dbo.IntervalsDate);
DECLARE @fork DATE = dbo.ForkDate(@lower, @upper);

SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN (
 SELECT node
 FROM dbo.AncestorsDate(@fork)
 WHERE node > @fork
 AND node <= @max
 UNION ALL
 SELECT @fork
) q
 ON i.node = q.node
WHERE i.lower = @lower
 AND i.upper > @upper;

thesolidqjournal
business intelligence 20

The SolidQ™ Journal – www.solidq.com/sqj

Finishes DECLARE @lower DATE = ‘20130410’,
 @upper DATE = ‘20130421’;
DECLARE @fork DATE = dbo.ForkDate(@lower, @upper);

SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN (
 SELECT node
 FROM dbo.AncestorsDate(@upper)
 WHERE node < @upper
 AND node > @fork
 UNION ALL
 (
 SELECT @upper
 UNION
 SELECT @fork
)
) q
 ON i.node = q.node
WHERE i.upper = @upper
 AND i.lower > @lower;

OverlappedBy DECLARE @lower DATE = ‘20130410’,
 @upper DATE = ‘20130421’,
 @max DATE = (SELECT MAX(node) FROM dbo.IntervalsDate);
DECLARE @fork DATE = dbo.ForkDate(@lower, @upper);

SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN (
 SELECT node
 FROM dbo.AncestorsDate(@upper)
 WHERE node > @upper
 AND node <= @max
) q
 ON i.node = q.node
WHERE i.lower > @lower
 AND i.lower < @upper
UNION ALL
SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN (
 SELECT node
 FROM dbo.AncestorsDate(@upper)
 WHERE node < @upper
 AND node > @fork
 UNION ALL
 (
 SELECT @upper
 UNION
 SELECT @fork
)
) q
 ON i.node = q.node
WHERE i.upper > @upper
 AND i.lower > @lower
 AND i.lower < @upper;

thesolidqjournal
business intelligence 21

The SolidQ™ Journal – www.solidq.com/sqj

MetBy DECLARE @lower DATE = ‘20130410’,
 @upper DATE = ‘20130421’,
 @max DATE = (SELECT MAX(node) FROM dbo.IntervalsDate);

SELECT id, lower, upper
FROM dbo.IntervalsDate i
JOIN (
 SELECT node
 FROM dbo.AncestorsDate(@upper)
 WHERE node > @upper
 AND node <= @max
 UNION ALL
 SELECT @upper
) q
 ON i.node = q.node
WHERE i.lower = @upper;

Alter DECLARE @lower DATE = ‘20130410’,
 @upper DATE = ‘20130421’,
 @max DATE = (SELECT MAX(node) FROM dbo.IntervalsDate);

SELECT id, lower, upper
FROM dbo.IntervalsDate
WHERE node > @upper
 AND lower > @upper
 AND node <= @max;

Conclusion - Microsoft could make a
difference
 In this article, I exposed techniques to implement
Static RI-Trees containing time intervals. The heart
of the implementation consists of time-to-integer
mappings, which enable seamless integration of
time values within the interval queries.

However, the table definition is complex, especially
for DATETIME2, and the insertion overhead is far
from negligible. The interval queries themselves
can be a bit complex, too. In March 2013, Itzik
Ben-Gan posted a Connect item suggesting that
Microsoft add Static RI-Tree features to the SQL
Server database engine, to hide the complexity and
reduce the performance penalty to a minimum, like
only native C++ code can do. If you find the idea
useful, you’re welcome to vote for it.

About the Author

Laurent Martin. (Laurent.martin741@yahoo.fr) s a
software architect working in Paris, France, for StatPro
(www.statpro.com), a leading portfolio analysis and asset
valuation provider. Laurent has been working in the soft-
ware industry for over 20 years, specializing in Microsoft
technologies.

http://connect.microsoft.com/SQLServer/feedback/details/780746/add-sql-server-engine-support-for-interval-queries-intersection-overlap-and-other-allen-s-interval-algebra-relations
mailto:laurent.martin741%40yahoo.fr?subject=
http://www.statpro.com

