
16

10000

8

01000

4

00100

2

00010

1

00001

3

00011

6

00110

5

00101

7

00111

12

01100

10

01010

9

01001

11

01011

14

01110

13

01101

15

01111

24

11000

20

10100

18

10010

17

10001

19

10011

22

10110

21

10101

23

10111

28

11100

26

11010

25

11001

27

11011

30

11110

29

11101

31

11111

Advanced interval queries with the
Static Relational Interval Tree

In my previous article “A Static Relational Interval Tree”, I described a new

powerful structure, the Static Relational Interval Tree (or Static RI-Tree),

efficiently handling interval intersection queries in SQL. The power of Static

RI-Trees resides in their ability to efficiently partition a set of intervals so that

queries can focus on just a subset of the intervals. In this article, I present

other kinds of queries that are also nicely handled by a Static RI-Tree.

emember the large car rental company

that I mentioned in the introduction to the

previous article? What if, instead of

requesting the contracts effective between two

dates, we wish to find those which started and

ended between the two dates? Or those that

started before a first date and ended after a

second date? The Static Relational Interval

Tree, with just a few additional tweaks, can

handle these other interval relationships nicely.

Refining the intersection query
Let’s begin with two improvements to the

intersection query from the previous article. As

a reminder, a sample binary tree for 5-bit

positive integers is presented in Figure 1

below. This binary tree is also the virtual

backbone of a Static RI-Tree.

Filtering out useless values from the

BitMasks table
Cast your mind back to the queries used to fill

the leftNodes and rightNodes tables (shown in

Listing 1), and to the BitMasks table, a sample

of which is shown in Table 1 for 5-bit integers.

Filling leftNodes and rightNodes is a

preliminary step in the execution of an

intersection query. If you examine these

queries, you may notice that they return some

unnecessary values. Fortunately, these extra

values don’t change the result of an

intersection query. They do, however, cause

additional I/O.

Listing 1: SQL code to populate the leftNodes and
rightNodes tables

-- Filling up the leftNodes table

SELECT :x & b1 FROM BitMasks

WHERE :x & b2 <> 0;

-- Filling up the rightNodes table

SELECT (:x & b1) | b3 FROM BitMasks

WHERE :x & b3 = 0;

Figure 1: The virtual backbone of a Static RI-Tree. Node values are shown both in decimal and binary representations.

R

http://www.solidq.com/sqj/pages/home.aspx?mentor=laurent+martin

b1 b2 b3

11110 00001 00010

11100 00010 00100

11000 00100 01000

10000 01000 10000

Table 1: Sample BitMasks table for 5-bit integers

The query filling the leftNodes table may return

the useless value 0. For instance, suppose the

bound variable x has the binary value 00110,

which is 6 in decimal. The query to fill the

leftNodes table, because of its WHERE clause

“:x & b2 <> 0”, only retains the b1 values

11100 and 11000. For the b1 value 11100, the

query selects 00110 & 11100 = 00100, which

is a valid value for leftNodes. For the b1 value

11000, the query selects 00110 & 11000 =

00000, or 0 in decimal, which is useless for

leftNodes.

The query filling the rightNodes table may

return values from x’s right subtree, which are

useless. For instance, say variable x has the

binary value 01100, which is 12 in decimal.

The query to fill the rightNodes table, because

of its WHERE clause “:x & b3 = 0”, only retains

the (b1, b3) pairs (11110, 00010) and (10000,

10000). For these pairs, the select expression

“(:x & b1) | b3” yields (01100 & 11110) | 00010

= 01110 and (01100 & 10000) | 10000 =

10000 respectively. The former, 01110 (14

decimal), is part of x’s right subtree, as you

can see in Figure 1 above, so it’s useless. In

fact, all values of x to be collected into

rightNodes should be found in the following

way:

1. Looking at x’s binary value, find the

rightmost 0 bit having at least one 1 bit

to its right.

2. If none is found, exit.

3. Set that rightmost 0 bit.

4. Clear all 1 bits to its right.

5. Retain the new value obtained and set

x to this value.

6. Go to step 1.

Let’s apply the algorithm above to our

example, with x having the value 01100 (12

decimal). Step 1 tells us to find the rightmost 0

bit having at least one 1 bit to its right. Only the

leftmost 0 bit of 01100 qualifies. Following

steps 3 and 4, the resulting value is 10000.

Applying step 1 again to 10000 yields no

qualifying 0 bit, so we exit the algorithm. Thus,

the only value produced for rightNodes is

10000, or 16 decimal.

The original queries to fill the leftNodes and

rightNodes tables can easily be fixed to

exclude all spurious values; you can find the

corrected queries in Listing 2 below.

Listing 2: Corrected SQL code to populate the leftNodes
and rightNodes tables without spurious values

-- Filling up the leftNodes table

SELECT :x & b1 FROM BitMasks

WHERE :x & b2 <> 0 AND :x & b1 <> 0;

-- Filling up the rightNodes table

SELECT (:x & b1) | b3 FROM BitMasks

WHERE :x & b3 = 0 AND :x & b1 <> :x;

Filtering out nodes outside the actual

value range
Another interesting optimization, which we’ll

refer to as the range optimization, can further

reduce the I/O of intersection queries when the

actual values of the Interval table’s node

column don’t spread over the full range of

possible values for the integer data type, i.e.,

the minimum and/or maximum values are far

beyond the integer type’s minimum and

maximum values. In order to implement this

optimization, when computing node values to

fill the leftNodes and rightNodes tables, we

should only consider values within the

minimum and maximum node values range.

Fortunately, thanks to the lowerIndex and

upperIndex indexes, computing the minimum

and maximum value of the node column is

very cheap and costs only 2 B-tree lookups.

Each value filtered out with this idea saves one

B-tree lookup. Listing 3 shows the final

optimized queries to fill the leftNodes and

rightNodes tables. Of course, if the range of

actual values in use starts at, or close to, the

minimum value, you can omit the minimum

value test and save 1 B-tree lookup.

Listing 3: Optimized SQL code to populate the leftNodes
and rightNodes tables without spurious or out-of-range
values

-- Filling up the leftNodes table

SELECT :x & b1 FROM BitMasks

WHERE :x & b2 <> 0 AND :x & b1 <> 0

 AND :x & b1 >=

 (SELECT MIN(node) FROM Intervals);

-- Filling up the rightNodes table

SELECT (:x & b1) | b3 FROM BitMasks

WHERE :x & b3 = 0 AND :x & b1 <> :x

 AND (:x & b1) | b3 <=

 (SELECT MAX(node) FROM Intervals);

Introducing other kinds of

interval queries
Up to now, we’ve been focusing on

intersection queries only. Other kinds of

interval queries can also be useful, and the

Static RI-Tree can handle them pretty well,

even if it is not always as efficient as an

intersection query. Let’s examine these other

kinds of queries.

A paper entitled “Object-Relational Indexing for

General Interval Relationships”, published in

2001 by Hans-Peter Kriegel, Marco Pötke and

Thomas Seidl, from the University of Munich,

in Germany, studies how the RI-Tree can be

extended to handle the 13 general interval

relationships defined by Allen (Allen J.F.:

“Maintaining Knowledge about Temporal

Intervals”. Communications of the ACM

26(11): 832-843, 1983). The paper refines the

partitioning of RI-Tree nodes in the

neighborhood of the lower and upper bounds

of the query interval: instead of merely relying

on the leftNodes and rightNodes tables, it

defines 12 classes of nodes, combined into 13

sets to support the 13 queries implementing

Allen’s interval relationships. The classes of

nodes are named topLeft, bottomLeft,

innerLeft, topRight, bottomRight,

innerRight, lower, fork, upper, allLeft,

allInner and allRight.

Computing the new node

classes
Among the node classes listed above, some

need to be computed, while others will not.

The allLeft, allInner and allRight classes don’t

need to be computed, because they can be

represented by simple predicates. In addition,

their computation could be too costly because

of the potentially large number of nodes they

could contain.

The lower, upper and fork classes don’t need

to be computed because they are singleton

classes: each of them contains exactly one

node.

Since bottomLeft is always used with topLeft

and bottomRight with topRight, we don’t need

to compute bottomLeft nor bottomRight. Since

bottomLeft and topLeft together form leftNodes

and bottomRight and topRight together form

rightNodes, we need to compute leftNodes

and rightNodes instead, but we already know

how to do it.

Consequently, we only need to compute the 6

classes topLeft, leftNodes, innerLeft,

innerRight, topRight and rightNodes. Note that

all of these classes never contain more nodes

than the height of the RI-Tree.

Kriegel, Pötke and Seidl’s paper uses integer

arithmetic, applied in an iterative fashion, to

compute these node classes. However, as

explained in my previous article, while

database engines are extremely efficient with

set-based queries, they often perform poorly

performance with language-based iterative

and conditional logic. I therefore found it useful

to turn this iterative logic into set-based

queries. Later in this article, we’ll examine the

benefit of this approach in specific tests

developed with Microsoft SQL Server 2008

R2.

topLeft
As the nodes in topLeft are all left ancestors of

the fork node, topLeft can be easily computed

by applying the leftNodes query to fork:

SELECT fork & b1

FROM BitMasks

WHERE fork & b2 <> 0

 AND fork & b1 <> 0;

http://www.dbs.ifi.lmu.de/Publikationen/Papers/SSTD01-Allen.pdf
http://www.dbs.ifi.lmu.de/Publikationen/Papers/SSTD01-Allen.pdf

topRight
As the nodes in topRight are all right ancestors

of the fork node, topRight can be computed by

applying the rightNodes query to fork:

SELECT (fork & b1) | b3

FROM BitMasks

WHERE fork & b3 = 0

 AND fork & b1 <> fork;

bottomLeft and bottomRight
Just to satisfy our curiosity, bottomLeft can be

computed by adding a predicate to the

leftNodes query, excluding nodes from topLeft:

SELECT lower & b1

FROM BitMasks

WHERE lower & b2 <> 0

 AND lower & b1 <> 0

 -- Excluding nodes from topLeft:

 AND (lower & b1) | fork <> fork;

Similarly, bottomRight can be computed by

adding a simple predicate to the rightNodes

query, which excludes nodes from topRight:

SELECT (upper & b1) | b3

FROM BitMasks

WHERE upper & b3 = 0

 AND upper & b1 <> upper

 -- Excluding nodes from topRight:

 AND ((upper & b1) | b3) & fork = fork;

innerLeft
To compute innerLeft, we can apply the query

to fill rightNodes to lower and set fork as an

upper bound:

SELECT (lower & b1) | b3

FROM BitMasks

WHERE lower & b3 = 0

 AND lower & b1 <> lower

 -- Excluding nodes to the right of

 -- the fork node:

 AND (lower & b1) | b3 < fork;

innerRight
To compute innerRight, we can apply the

query to fill leftNodes to upper and set fork as

a lower bound:

SELECT upper & b1

FROM BitMasks

WHERE upper & b2 <> 0

 AND upper & b1 <> 0

 -- Excluding nodes to the left of

 -- the fork node:

 AND upper & b1 > fork;

Writing the queries for Allen’s

13 interval relationships
Kriegel, Pötke and Seidl’s paper summarized

the SQL queries for Allen’s 13 interval

relationships. These queries use the pre-

computed node classes. In this section, let’s

examine how to adapt these queries to use our

set-based computation of the node classes.

We’ll refer to those rewritten queries as the

Static RI-Tree queries for interval

relationships, or Static RI-Tree queries for

short.

The range optimization can be applied to all

Static RI-Tree queries, using pre-computed

node classes. Note that, in the following

queries, we’ll leave it out in the interest of

clarity. However, this optimization should be

considered in production queries, because it

can reduce I/O.

In the following, lower and upper are the

integers representing the bounds of the

interval, and the interval table is defined as:

CREATE TABLE Intervals

(

 id INT NOT NULL PRIMARY KEY,

 -- Computed as the fork node of

 -- the interval [lower, upper]:

 node INT NOT NULL,

 lower INT NOT NULL,

 upper INT NOT NULL

);

Before
The original query is:

SELECT id FROM Intervals

WHERE node < :lower

 AND upper < :lower

This query does not make use of the node

classes, so there’s nothing to rewrite; we’ll

therefore use the query as it is.

Meets
The original query is:

SELECT id

FROM Intervals i

JOIN :(topLeft U bottomLeft U lower) q

 ON i.node = q.node

 AND i.upper = :lower

Let’s replace the joined table by a table

expression using our precomputed node class

queries. Since topLeft and bottomLeft together

form leftNodes, the query is:

SELECT id

FROM Intervals i

JOIN (SELECT :lower & b1 AS node

 FROM BitMasks

 WHERE :lower & b2 <> 0

 AND :lower & b1 <> 0

 UNION ALL

 SELECT :lower) q

 ON i.node = q.node

 AND i.upper = :lower

Overlaps
The original query is:

SELECT id

FROM Intervals i

JOIN :(topLeft U bottomLeft) q

 ON i.node = q.node

WHERE i.upper > :lower

 AND i.upper < :upper

UNION ALL

SELECT id

FROM Intervals i

JOIN :(innerLeft U lower U fork) q

 ON i.node = q.node

WHERE i.lower < :lower

 AND i.upper > :lower

 AND i.upper < :upper

Let’s replace the joined table by a table

expression, using our precomputed node class

queries. Notice that topLeft and bottomLeft

together form leftNodes. The query is:

SELECT id

FROM Intervals i

JOIN (SELECT :lower & b1 AS node

 FROM BitMasks

 WHERE :lower & b2 <> 0

 AND :lower & b1 <> 0) q

 ON i.node = q.node

WHERE i.upper > :lower

 AND i.upper < :upper

UNION ALL

SELECT id

FROM Intervals i

JOIN (SELECT (:lower & b1) | b3 AS node

 FROM BitMasks

 WHERE :lower & b3 = 0

 AND :lower & b1 <> :lower

 AND (:lower & b1) | b3 < :fork

 UNION ALL

 (SELECT :lower UNION SELECT :fork)

) q

 ON i.node = q.node

WHERE i.lower < :lower

 AND i.upper > :lower

 AND i.upper < :upper

FinishedBy
The original query is:

SELECT id

FROM Intervals i

JOIN :(topLeft U fork) q

 ON i.node = q.node

WHERE i.upper = :upper

 AND i.lower < :lower

Let’s replace the joined table by a table

expression using our precomputed node class

queries. The query is:

SELECT id

FROM Intervals i

JOIN (SELECT :fork & b1 AS node

 FROM BitMasks

 WHERE :fork & b2 <> 0

 AND :fork & b1 <> 0

 UNION ALL

 SELECT :fork) q

 ON i.node = q.node

WHERE i.upper = :upper

 AND i.lower < :lower

Starts
The original query is:

SELECT id

FROM Intervals i

JOIN :(innerLeft U lower U fork) q

 ON i.node = q.node

WHERE i.lower = :lower

 AND i.upper < :upper

Let’s replace the joined table by a table

expression using our precomputed node class

queries. The query is:

SELECT id

FROM Intervals i

JOIN (SELECT (:lower & b1) | b3 AS node

 FROM BitMasks

 WHERE :lower & b3 = 0

 AND :lower & b1 <> :lower

 AND (:lower & b1) | b3 < :fork

 UNION ALL

 (SELECT :lower

 UNION

 SELECT :fork)

) q

 ON i.node = q.node

WHERE i.lower = :lower

 AND i.upper < :upper

Contains
The original query is:

SELECT id

FROM Intervals i

JOIN :(topRight U fork) q

 ON i.node = q.node

WHERE i.lower < :lower

 AND i.upper > :upper

UNION ALL

SELECT id

FROM Intervals i

JOIN topLeft q

 ON i.node = q.node

WHERE i.upper > :upper

Let’s replace the joined table by a table

expression using our precomputed node class

queries. The query is:

SELECT id

FROM Intervals i

JOIN (SELECT (:fork & b1) | b3 AS node

 FROM BitMasks

 WHERE :fork & b3 = 0

 AND :fork & b1 <> :fork

 UNION ALL

 SELECT :fork) q

 ON i.node = q.node

WHERE i.lower < :lower

 AND i.upper > :upper

UNION ALL

SELECT id

FROM Intervals i

JOIN (SELECT :fork & b1 AS node

 FROM BitMasks

 WHERE :fork & b2 <> 0

 AND :fork & b1 <> 0

) q

 ON i.node = q.node

WHERE i.upper > :upper

Equals
The original query is:

SELECT id

FROM Intervals i

WHERE i.node = :fork

 AND i.lower = :lower

 AND i.upper = :upper

This query does not make use of the node

classes, so there’s nothing to rewrite; we’ll

therefore use the query as it is.

During
The original query is:

SELECT id

FROM Intervals i

WHERE i.node > :lower

 AND i.node <= :fork

 AND i.lower > :lower

 AND i.upper < :upper

UNION ALL

SELECT id

FROM Intervals i

WHERE i.node > :fork

 AND i.node < :upper

 AND i.upper < :upper

This query does not make use of the node

classes, so there’s nothing to rewrite; we’ll

therefore use the query as it is.

StartedBy
The original query is:

SELECT id

FROM Intervals i

JOIN :(topRight U fork) q

 ON i.node = q.node

WHERE i.lower = :lower

 AND i.upper > :upper

Let’s replace the joined table by a table

expression using our precomputed node class

queries. The query is:

SELECT id

FROM Intervals i

JOIN (SELECT (:fork & b1) | b3 AS node

 FROM BitMasks

 WHERE :fork & b3 = 0

 AND :fork & b1 <> :fork

 UNION ALL

 SELECT :fork

) q

 ON i.node = q.node

WHERE i.lower = :lower

 AND i.upper > :upper

Finishes
The original query is:

SELECT id

FROM Intervals i

JOIN :(innerRight U upper U fork) q

 ON i.node = q.node

WHERE i.upper = :upper

 AND i.lower > :lower

Let’s replace the joined table by a table

expression using our precomputed node class

queries. The query is:

SELECT id

FROM Intervals i

JOIN (SELECT :upper & b1 AS node

 FROM BitMasks

 WHERE :upper & b2 <> 0

 AND :upper & b1 <> 0

 AND :upper & b1 > :fork

 UNION ALL

 (SELECT :upper

 UNION

 SELECT :fork

)

) q

 ON i.node = q.node

WHERE i.upper = :upper

 AND i.lower > :lower

OverlappedBy
The original query is:

SELECT id

FROM Intervals i

JOIN :(topRight U bottomRight) q

 ON i.node = q.node

WHERE i.lower > :lower

 AND i.lower < :upper

UNION ALL

SELECT id

FROM Intervals i

JOIN :(innerRight U upper U fork) q

 ON i.node = q.node

WHERE i.upper > :upper

 AND i.lower > :lower

 AND i.lower < :upper

Let’s replace the joined table by a table

expression using our precomputed node class

queries. Note that topRight and bottomRight

together form rightNodes. The query is:

SELECT id

FROM Intervals i

JOIN (SELECT (:upper & b1) | b3 AS node

 FROM BitMasks

 WHERE :upper & b3 = 0

 AND :upper & b1 <> :upper

) q

 ON i.node = q.node

WHERE i.lower > :lower

 AND i.lower < :upper

UNION ALL

SELECT id

FROM Intervals i

JOIN (SELECT :upper & b1 AS node

 FROM BitMasks

 WHERE :upper & b2 <> 0

 AND :upper & b1 <> 0

 AND :upper & b1 > :fork

 UNION ALL

 (SELECT :upper

 UNION

 SELECT :fork

)

) q

 ON i.node = q.node

WHERE i.upper > :upper

 AND i.lower > :lower

 AND i.lower < :upper

MetBy
The original query is:

SELECT id

FROM Intervals i

JOIN :(topRight U bottomRight U upper) q

 ON i.node = q.node

WHERE i.lower = :upper

Let’s replace the joined table by a table

expression using our precomputed node class

queries. Since topRight and bottomRight

together form rightNodes, the query is:

SELECT id

FROM Intervals i

JOIN (SELECT (:upper & b1) | b3 AS node

 FROM BitMasks

 WHERE :upper & b3 = 0

 AND :upper & b1 <> :upper

 UNION ALL

 SELECT :upper

) q

 ON i.node = q.node

WHERE i.lower = :upper

After
The original query is:

SELECT id

FROM Intervals

WHERE node > :upper

 AND lower > :upper

This query does not make use of the node

classes, so there’s nothing to rewrite; we’ll

therefore use the query as it is.

About query performance
The performance of the Static RI-Tree queries,

although generally very good, is not excellent

for all query types.

Some queries exhibit excellent performance,

similar to that of the intersection query,

because they only scan useful portions of

lowerIndex or upperIndex (the indexes we had

created for the intersection query). Kriegel,

Pötke and Seidl call this behavior blocked

index scan and they call the opposite behavior,

where useless portions of the index are being

traversed, non-blocked index scan.

Other queries can achieve blocked index

scans, provided lowerIndex and upperIndex

are turned into the richer indexes

upperLowerIndex and lowerUpperIndex, as

described in Kriegel, Pötke and Seidl’s paper.

Other queries expose non-blocked index

scans, whatever index you create.

Let’s create the richer indexes

upperLowerIndex and lowerUpperIndex, as

shown in listing 4, in order to optimize as many

of the Static RI-Tree queries as we can.

Listing 4: Creating the richer indexes upperLowerIndex
and lowerUpperIndex

CREATE INDEX upperLowerIndex

ON Intervals(node, upper, lower);

CREATE INDEX lowerUpperIndex

ON Intervals(node, lower, upper);

The well-optimized queries are: meets,

finishedBy, starts, equals, startedBy, finishes

and metBy. Among these, some don’t need

the rich indexes: meets only needs upperIndex

and metBy only needs lowerIndex. But it’s

unlikely that your application only uses the

meets and metBy relationship, so you’re better

off sticking with the rich indexes.

The other queries only partly benefit from the

indexes, with non-blocked index scans.

However, this partial use, combined with node

class selectivity, should generally provide good

performance.

In the next section, we discuss the

implementation of the Static RI-Tree queries

for Microsoft SQL Server 2005 and above. The

significant performance gains obtained with

our set-based approach versus the iterative

approach are illustrated by a performance

comparison test script.

Note that the number of iterations in the

original RI-Tree can be reduced by the

mechanism of dynamic expansion, but we’re

really moving away from the iterative approach

because we don’t want to manage the RI-

Tree’s four parameters - offset, leftRoot,

rightRoot and minstep - for the reasons

explained in my previous article, and we don’t

want an iterative approach with loops.

Fortunately, the range optimization presented

above is a good alternative to dynamic

expansion.

Writing the Static RI-Tree

queries for Microsoft SQL

Server
In this section, let’s write the Static RI-Tree

queries for Microsoft SQL Server.

We’ll assume that the actual intervals do not

cover the full range of values. Therefore, we’ll

use the full range optimization.

Note that, once created and filled, the

BitMasks table is always accessed in a read-

only fashion, so we can safely use a NOLOCK

table hint.

Creating the sample Intervals table
The Intervals table can be created, along with

its indexes, as shown in Listing 5. It can be

filled with sample data as was demonstrated in

my previous article.

Listing 5: Creating the Intervals table

CREATE TABLE dbo.Intervals

(

 id INT NOT NULL PRIMARY KEY,

 node AS upper - upper % POWER(2, FLOOR(

 LOG((lower-1) ^ upper)/LOG(2)))

 PERSISTED NOT NULL,

 lower INT NOT NULL,

 upper INT NOT NULL

);

CREATE UNIQUE INDEX lowerUpperIndex

ON dbo.Intervals(node, lower, upper, id);

CREATE UNIQUE INDEX upperLowerIndex

ON dbo.Intervals(node, upper, lower, id);

Creating the BitMasks table
To create and populate the BitMasks table,

you can reuse the code from the previous

article.

Creating functions for the node

classes
Let’s create functions to wrap the node

classes. This will promote code reuse and

simplify the final queries. The best choice for

these functions is to implement them as inline

table-valued, because SQL Server inlines their

code upon execution, and thus we avoid the

cost of invoking a function.

topLeft

The topLeft node class can be implemented by

the following function:

CREATE FUNCTION dbo.TopLeft(@fork INT)

RETURNS TABLE

AS

RETURN

 SELECT @fork & b1 AS node

 FROM dbo.BitMasks WITH (NOLOCK)

 WHERE @fork & b2 <> 0

 AND @fork & b1 <> 0;

topRight

The topRight node class can be implemented

by the following function:

CREATE FUNCTION dbo.TopRight(@fork INT)

RETURNS TABLE

AS

RETURN

 SELECT (@fork & b1) | b3 AS node

 FROM dbo.BitMasks WITH (NOLOCK)

 WHERE @fork & b3 = 0

 AND @fork & b1 <> @fork;

innerLeft

The innerLeft node class can be implemented

by the following function:

CREATE FUNCTION dbo.InnerLeft(@lower INT,

 @fork INT)

RETURNS TABLE

AS

RETURN

 SELECT (@lower & b1) | b3 AS node

 FROM dbo.BitMasks WITH (NOLOCK)

 WHERE @lower & b3 = 0

 AND @lower & b1 <> @lower

 -- Excluding nodes to the right of the

 -- fork node:

 AND (@lower & b1) | b3 < @fork;

innerRight

The innerRight node class can be

implemented by the following function:

CREATE FUNCTION dbo.InnerRight(@upper INT,

 @fork INT)

RETURNS TABLE

AS

RETURN

 SELECT @upper & b1 AS node

 FROM dbo.BitMasks WITH (NOLOCK)

 WHERE @upper & b2 <> 0

 AND @upper & b1 <> 0

 -- Excluding nodes to the left of the

 -- fork node:

 AND @upper & b1 > @fork;

leftNodes

The leftNodes node class represents the union

of the topLeft and bottomLeft node classes.

It can be implemented by the following

function:

CREATE FUNCTION dbo.LeftNodes(@lower INT)

RETURNS TABLE

AS

RETURN

 SELECT @lower & b1 AS node

 FROM dbo.BitMasks WITH (NOLOCK)

 WHERE @lower & b2 <> 0

 AND @lower & b1 <> 0;

rightNodes

The rightNodes node class represents the

union of the topRight and bottomRight node

classes.

It can be implemented by the following

function:

CREATE FUNCTION dbo.RightNodes(@upper INT)

RETURNS TABLE

AS

RETURN

 SELECT (@upper & b1) | b3 AS node

 FROM dbo.BitMasks WITH (NOLOCK)

 WHERE @upper & b3 = 0

 AND @upper & b1 <> @upper;

fork

The fork node class can be implemented by

the following function:

CREATE FUNCTION dbo.Fork(@lower INT,

 @upper INT)

 RETURNS INT

AS

BEGIN

 RETURN @upper - @upper %

 POWER(2, FLOOR(LOG((@lower - 1) ^

 @upper) / LOG(2)));

END

Notice that this is a scalar function and not a

table-valued function, as are the other

functions.

As I explained in my previous article, the Fork

function should not be called from the

definition of the computed node column in the

Intervals table, because this would significantly

impact performance. In this particular situation,

we prefer an inline formula. However, it’s

perfectly OK to invoke the function once during

the execution of one of the Static RI-Tree

queries.

Writing the Static RI-Tree queries
In this section, we’ll use the node class

functions to write the Static RI-Tree queries.

Notes:

- In the following queries, you can add a

MAXDOP query hint to help save

some precious CPU cycles when a

parallel plan is unnecessary. Just

append “OPTION (MAXDOP 1)” to the

query.

- Full range optimizations are used

when appropriate, via the @min and

@max variables.

- The intersection query, although not

strictly part of Allen’s 13 interval

relationships, is one of the most

useful.

Relationship Query

Intersection DECLARE @lower INT = 826216,

 @upper INT = 826254,

 @min INT,

 @max INT;

SELECT @min = MIN(node), @max = MAX(node) FROM dbo.Intervals;

SELECT id

FROM dbo.Intervals i

JOIN dbo.LeftNodes(@lower) ln

 ON i.node = ln.node

 AND i.upper >= @lower

WHERE ln.node >= @min

UNION ALL

SELECT id

FROM dbo.Intervals i

JOIN dbo.RightNodes(@upper) rn

 ON i.node = rn.node

 AND i.lower <= @upper

WHERE rn.node <= @max

UNION ALL

SELECT id

FROM dbo.Intervals

WHERE node BETWEEN @lower AND @upper;

Before DECLARE @lower INT = 826217,

 @min INT = (SELECT MIN(node) FROM dbo.Intervals);

SELECT id

FROM dbo.Intervals

WHERE node < @lower

 AND upper < @lower

 AND node >= @min;

Meets DECLARE @lower INT = 826217,

 @upper INT = 826253,

 @min INT = (SELECT MIN(node) FROM dbo.Intervals);

SELECT *

FROM dbo.Intervals i

JOIN (

 SELECT node

 FROM dbo.LeftNodes(@lower)

 WHERE node >= @min

 UNION ALL

 SELECT @lower

) q

 ON i.node = q.node

 AND i.upper = @lower;

Relationship Query

Overlaps DECLARE @lower INT = 826217,

 @upper INT = 826253,

 @min INT = (SELECT MIN(node) FROM dbo.Intervals);

DECLARE @fork INT = dbo.Fork(@lower, @upper);

SELECT id

FROM dbo.Intervals i

JOIN dbo.LeftNodes(@lower) q

 ON i.node = q.node

WHERE i.upper > @lower

 AND i.upper < @upper

 AND q.node >= @min

UNION ALL

SELECT id

FROM dbo.Intervals i

JOIN (

 SELECT node

 FROM dbo.InnerLeft(@lower, @fork)

 UNION ALL

 (

 SELECT @lower

 UNION

 SELECT @fork

)

) q

 ON i.node = q.node

WHERE i.lower < @lower

 AND i.upper > @lower

 AND i.upper < @upper;

FinishedBy DECLARE @lower INT = 826240,

 @upper INT = 826253,

 @min INT = (SELECT MIN(node) FROM dbo.Intervals);

DECLARE @fork INT = dbo.Fork(@lower, @upper);

SELECT id

FROM dbo.Intervals i

JOIN (

 SELECT node

 FROM dbo.TopLeft(@fork)

 WHERE node >= @min

 UNION ALL

 SELECT @fork

) q

 ON i.node = q.node

WHERE i.upper = @upper

 AND i.lower < @lower;

Starts DECLARE @lower INT = 826240,

 @upper INT = 826253;

DECLARE @fork INT = dbo.Fork(@lower, @upper);

SELECT id

FROM dbo.Intervals i

JOIN (

 SELECT node

 FROM dbo.InnerLeft(@lower, @fork)

 UNION ALL

 (

 SELECT @fork

 UNION

 SELECT @lower

)

) q

 ON i.node = q.node

WHERE i.lower = @lower

 AND i.upper < @upper;

Relationship Query

Contains DECLARE @lower INT = 826240,

 @upper INT = 826253,

 @min INT,

 @max INT;

DECLARE @fork INT = dbo.Fork(@lower, @upper);

SELECT @min = MIN(node), @max = MAX(node) FROM dbo.Intervals;

SELECT id

FROM dbo.Intervals i

JOIN (

 SELECT node

 FROM dbo.TopRight(@fork)

 WHERE node <= @max

 UNION ALL

 SELECT @fork

) q

 ON i.node = q.node

WHERE i.lower < @lower

 AND i.upper > @upper

UNION ALL

SELECT id

FROM dbo.Intervals i

JOIN dbo.TopLeft(@fork) q

 ON i.node = q.node

WHERE i.upper > @upper

 AND q.node >= @min;

Equals DECLARE @lower INT = 826240,

 @upper INT = 826253;

DECLARE @fork INT = dbo.Fork(@lower, @upper);

SELECT id

FROM dbo.Intervals i

WHERE i.node = @fork

 AND i.lower = @lower

 AND i.upper = @upper;

During DECLARE @lower INT = 826240,

 @upper INT = 826253,

 @min INT,

 @max INT;

DECLARE @fork INT = dbo.Fork(@lower, @upper);

SELECT @min = MIN(node), @max = MAX(node) FROM dbo.Intervals;

SELECT id

FROM dbo.Intervals i

WHERE i.node > @lower

 AND i.node >= @min

 AND i.node <= @fork

 AND i.lower > @lower

 AND i.upper < @upper

UNION ALL

SELECT id

FROM dbo.Intervals i

WHERE i.node > @fork

 AND i.node <= @max

 AND i.node < @upper

 AND i.upper < @upper;

Relationship Query

StartedBy DECLARE @lower INT = 826240,

 @upper INT = 826253,

 @max INT = (SELECT MAX(node) FROM dbo.Intervals);

DECLARE @fork INT = dbo.Fork(@lower, @upper);

SELECT id

FROM dbo.Intervals i

JOIN (

 SELECT node

 FROM dbo.TopRight(@fork)

 WHERE node <= @max

 UNION ALL

 SELECT @fork

) q

 ON i.node = q.node

WHERE i.lower = @lower

 AND i.upper > @upper;

Finishes DECLARE @lower INT = 826240,

 @upper INT = 826253;

DECLARE @fork INT = dbo.Fork(@lower, @upper);

SELECT id

FROM dbo.Intervals i

JOIN (

 SELECT node

 FROM dbo.InnerRight(@upper, @fork)

 UNION ALL

 (

 SELECT @upper

 UNION

 SELECT @fork

)

) q

 ON i.node = q.node

WHERE i.upper = @upper

 AND i.lower > @lower;

OverlappedBy DECLARE @lower INT = 826240,

 @upper INT = 826253,

 @max INT = (SELECT MAX(node) FROM dbo.Intervals);

DECLARE @fork INT = dbo.Fork(@lower, @upper);

SELECT id

FROM dbo.Intervals i

JOIN (

 SELECT node

 FROM dbo.RightNodes(@upper)

 WHERE node <= @max

) q

 ON i.node = q.node

WHERE i.lower > @lower

 AND i.lower < @upper

UNION ALL

SELECT id

FROM dbo.Intervals i

JOIN (

 SELECT node

 FROM dbo.InnerRight(@upper, @fork)

 UNION ALL

 (

 SELECT @upper

 UNION

 SELECT @fork

)

) q

 ON i.node = q.node

WHERE i.upper > @upper

 AND i.lower > @lower

 AND i.lower < @upper;

Relationship Query

MetBy DECLARE @lower INT = 826240,

 @upper INT = 826253,

 @max INT = (SELECT MAX(node) FROM dbo.Intervals);

SELECT id

FROM dbo.Intervals i

JOIN (

 SELECT node

 FROM dbo.RightNodes(@upper)

 WHERE node <= @max

 UNION ALL

 SELECT @upper

) q

 ON i.node = q.node

WHERE i.lower = @upper;

After DECLARE @lower INT = 826240,

 @upper INT = 826253,

 @max INT = (SELECT MAX(node) FROM dbo.Intervals);

SELECT id

FROM dbo.Intervals

WHERE node > @upper

 AND lower > @upper

 AND node <= @max;

Performance comparison test
In order to compare the performance of

queries written with iterative node class logic

with those written with set-based node class

logic, let’s write iterative versions of the node

class functions.

topLeft

The topLeft node class can be implemented by

the following function:

CREATE FUNCTION dbo.TopLeftIterative(@lower

 INT, @upper INT)

 RETURNS @topleft TABLE(node INT NOT NULL

 PRIMARY KEY)

AS

BEGIN

 -- root = 2 ^ 30:

 DECLARE @n INT = 1073741824;

 DECLARE @step INT = @n/2;

 -- Descend from the root node to the

 -- fork node

 WHILE @step >= 1

 BEGIN

 IF @n < @lower

 BEGIN

 INSERT @topleft(node) VALUES(@n);

 SET @n += @step;

 END

 ELSE IF @upper < @n

 SET @n -= @step;

 ELSE

 BREAK; -- fork node

 SET @step /= 2;

 END

 RETURN;

END

topRight

The topRight node class can be implemented

by the following function:

CREATE FUNCTION dbo.TopRightIterative(

 @lower INT, @upper INT)

 RETURNS @topright TABLE(node INT NOT NULL

 PRIMARY KEY)

AS

BEGIN

 -- root = 2 ^ 30:

 DECLARE @n INT = 1073741824;

 DECLARE @step INT = @n/2;

 -- Descend from the root node to the

 -- fork node

 WHILE @step >= 1

 BEGIN

 IF @upper < @n

 BEGIN

 INSERT @topright(node) VALUES(@n);

 SET @n -= @step;

 END

 ELSE IF @n < @lower

 SET @n += @step;

 ELSE

 BREAK; -- fork node

 SET @step /= 2;

 END

 RETURN;

END

innerLeft

The innerLeft node class can be implemented

by the following function:

CREATE FUNCTION dbo.InnerLeftIterative(

 @lower INT, @upper INT)

 RETURNS @innerleft TABLE(node INT

 NOT NULL PRIMARY KEY)

AS

BEGIN

 -- root = 2 ^ 30:

 DECLARE @n INT = 1073741824;

 DECLARE @step INT = @n/2;

 DECLARE @fork INT;

 -- Descend from the root node to the

 -- fork node

 WHILE @step >= 1

 BEGIN

 IF @upper < @n

 SET @n -= @step;

 ELSE IF @n < @lower

 SET @n += @step;

 ELSE

 BEGIN

 SET @fork = @n;

 BREAK; -- fork node

 END

 SET @step /= 2;

 END

 -- Descend from the fork node to lower

 IF @lower < @fork

 BEGIN

 SET @n = @fork - @step;

 DECLARE @lstep INT = @step / 2;

 WHILE @lstep >= 1

 BEGIN

 IF @n > @lower

 BEGIN

 INSERT @innerleft(node) VALUES(@n);

 SET @n -= @lstep;

 END

 ELSE IF @n < @lower

 SET @n += @lstep;

 ELSE

 BREAK; -- lower node

 SET @lstep /= 2;

 END

 END

 RETURN;

END

innerRight

The innerRight node class can be

implemented by the following function:

CREATE FUNCTION dbo.InnerRightIterative(

 @lower INT, @upper INT)

 RETURNS @innerright TABLE(node INT

 NOT NULL PRIMARY KEY)

AS

BEGIN

 -- root = 2 ^ 30:

 DECLARE @n INT = 1073741824;

 DECLARE @step INT = @n/2;

 DECLARE @fork INT;

 -- Descend from the root node to the

 -- fork node

 WHILE @step >= 1

 BEGIN

 IF @upper < @n

 SET @n -= @step;

 ELSE IF @n < @lower
 SET @n += @step;

 ELSE

 BEGIN

 SET @fork = @n;

 BREAK; -- fork node

 END

 SET @step /= 2;

 END

 -- Descend from the fork node to upper

 IF @upper > @fork

 BEGIN

 SET @n = @fork + @step;

 DECLARE @rstep INT = @step / 2;

 WHILE @rstep >= 1

 BEGIN

 IF @n < @upper

 BEGIN

 INSERT @innerright(node)VALUES(@n);

 SET @n += @rstep;

 END

 ELSE IF @n > @upper

 SET @n -= @rstep;

 ELSE

 BREAK; -- upper node

 SET @rstep /= 2;

 END

 END

 RETURN;

END

leftNodes

The leftNodes node class represents the union

of the topLeft and bottomLeft node classes.

It can be implemented by the following

function:

CREATE FUNCTION

dbo.LeftNodesIterative(@lower INT,

 @upper INT)

 RETURNS @leftnodes TABLE(node INT

 NOT NULL PRIMARY KEY)

AS

BEGIN

 -- root = 2 ^ 30:

 DECLARE @n INT = 1073741824;

 DECLARE @step INT = @n/2;

 DECLARE @fork INT;

 -- Descend from the root node to the

 -- fork node:

 WHILE @step >= 1

 BEGIN

 IF @n < @lower

 BEGIN

 INSERT @leftnodes(node) VALUES(@n);

 SET @n += @step;

 END

 ELSE IF @upper < @n

 SET @n -= @step;

 ELSE

 BEGIN

 SET @fork = @n;

 BREAK; -- fork node

 END

 SET @step /= 2;

 END

 -- Descend from the fork node to lower

 IF @lower < @fork

 BEGIN

 SET @n = @fork - @step;

 DECLARE @lstep INT = @step / 2;

 WHILE @lstep >= 1

 BEGIN

 IF @n < @lower

 BEGIN

 INSERT @leftnodes(node) VALUES(@n);

 SET @n += @lstep;

 END

 ELSE IF @n > @lower

 SET @n -= @lstep;

 ELSE

 BREAK; -- lower node

 SET @lstep /= 2;

 END

 END

 RETURN;

END

rightNodes

The rightNodes node class represents the

union of the topRight and bottomRight node

classes.

It can be implemented by the following

function:

CREATE FUNCTION

dbo.RightNodesIterative(@lower INT,

 @upper INT)

 RETURNS @rightnodes TABLE(node INT

 NOT NULL PRIMARY KEY)

AS

BEGIN

 -- root = 2 ^ 30:

 DECLARE @n INT = 1073741824;

 DECLARE @step INT = @n/2;

 DECLARE @fork INT;

 -- Descend from the root node to the

 -- fork node:

 WHILE @step >= 1

 BEGIN

 IF @n < @lower

 SET @n += @step;

 ELSE IF @upper < @n

 BEGIN

 INSERT @rightnodes(node) VALUES(@n);

 SET @n -= @step;

 END

 ELSE

 BEGIN

 SET @fork = @n;

 BREAK; -- fork node

 END

 SET @step /= 2;

 END

 -- Descend from the fork node to upper

 IF @fork < @upper

 BEGIN

 SET @n = @fork + @step;

 DECLARE @rstep INT = @step / 2;

 WHILE @rstep >= 1

 BEGIN
 IF @n < @upper

 SET @n += @rstep;

 ELSE IF @upper < @n

 BEGIN

 INSERT @rightnodes(node)VALUES(@n);

 SET @n -= @rstep;

 END

 ELSE

 BREAK; -- upper node

 SET @rstep /= 2;

 END

 END

 RETURN;

END

fork

The fork node class can be implemented by

the following function:

CREATE FUNCTION dbo.ForkIterative(@lower

 INT, @upper INT)

 RETURNS INT

AS

BEGIN

 -- root = 2 ^ 30:

 DECLARE @n INT = 1073741824;

 DECLARE @step INT = @n/2;

 -- Descend from the root node to the

 -- fork node:

 WHILE @step >= 1

 BEGIN

 IF @upper < @n

 SET @n -= @step;

 ELSE IF @n < @lower

 SET @n += @step;

 ELSE

 BREAK; -- fork node reached

 SET @step /= 2;

 END

 RETURN @n;

END

Test results

The test script executes each Static RI-Tree

query involving the node class functions in

both the iterative and set-based versions. To

magnify the measures, it runs each query

1,000 times in a loop. Also, instead of

returning the results, it just counts the rows, in

order to avoid overloading the query editor

window with result sets.

Below is an excerpt of the script involving the

StartedBy query:

-- Iteration-based StartedBy

DECLARE @lower INT = 826240,

 @upper INT = 826253;

DECLARE @max INT = (SELECT MAX(node)

 FROM dbo.Intervals);

DECLARE @i INT = 1000, @cnt INT;

WHILE @i > 0

BEGIN

 SELECT @cnt = COUNT(*)

 FROM

 (

 SELECT id

 FROM dbo.Intervals i

 JOIN (SELECT node

 FROM dbo.TopRightIterative

 (@lower, @upper)

 UNION ALL

 SELECT dbo.ForkIterative

 (@lower, @upper)

) q

 ON i.node = q.node

 WHERE i.lower = @lower

 AND i.upper > @upper

 -- Range optimization:

 AND q.node <= @max

) T;

 SET @i -=1;

END

GO

-- Set-based StartedBy

DECLARE @lower INT = 826240,

 @upper INT = 826253;

DECLARE @max INT = (SELECT MAX(node)

 FROM dbo.Intervals);

DECLARE @fork INT = dbo.Fork(@lower,

 @upper);

DECLARE @i INT = 1000, @cnt INT;

WHILE @i > 0

BEGIN

 SELECT @cnt = COUNT(*)

 FROM

 (SELECT id

 FROM dbo.Intervals i

 JOIN (SELECT node

 FROM dbo.TopRight(@fork)

 UNION ALL

 SELECT @fork

) q

 ON i.node = q.node

 WHERE i.lower = @lower

 AND i.upper > @upper

 -- Range optimization:

 AND q.node <= @max

) T;

 SET @i -=1;

END

GO

Note that for some queries, I had to add a

MAXDOP 1 query option, in order to prevent

SQL Server from using a parallel query plan

when it turned out to be more costly in CPU

time.

I ran this test script on my laptop, which is

equipped with an Intel® Core™ 2 Duo P7450 /

2.13 GHz processor and 4GB of RAM. The

SQL Server version is 2008 R2 SP1 Developer

Edition 64-bit, running on Windows 7 Family

Edition Premium SP1 64-bit. The results are

shown in Table 2. As you can see, using the

set-based approach is significantly more

efficient.

Table 2: Results of the performance comparison test
script between iterative and set-based interval queries

About the Author

Laurent Martin (laurent.martin741@yahoo.fr)

is a software architect working in Paris,

France, for StatPro (www.statpro.com), a

leading portfolio analysis and asset valuation

provider. Laurent has been working in the

software industry for over 20 years,

specializing in Microsoft technologies.

Query Type Cpu Elapsed
Logical
Reads

Meets
Iterative 390 387 57000

Set 62 76 37000

Overlaps
Iterative 593 816 79000

Set 187 188 63000

FinishedBy
Iterative 546 542 46000

Set 266 263 32000

Starts
Iterative 171 169 6000

Set 47 45 6000

Contains
Iterative 733 768 92003

Set 172 167 53003

StartedBy
Iterative 499 503 53003

Set 62 65 21003

Finishes
Iterative 250 244 19000

Set 62 59 15000

OverlappedBy
Iterative 718 746 89003

Set 156 165 54003

MetBy
Iterative 530 556 73003

Set 110 99 33003

