Microsoft SQL Server 2012
T-SOQL
Fundamentals

ltzik Ben-Gan
@ solido

Microsoft: SQL Server-2012 [
T-SQL Fundamentals

Gain a solid understanding of T-SQL—and write

About the Author
Itzik Ben-Gan, Microsoft MVP for SQL Server

better queries since 1999, is cofounder of SolidQ, where he
teaches and consults internationally on T-SQL
querying, programming, and query tuning.

Master the fundamentals of Transact-SQL—and develop your own
code for querying and modifying data in Microsoft SQL S'erver 2012. He's a frequent contributor to SOL Server Pro
Led by a SQL Server expert, you'll learn the concepts behind and MSDN Magazine, and speaks at industry

T-SQL querying and programming, and then apply your knowledge events such as Microsoft TechEd, DevTeach,
with exercises in each chapter. Once you understand the logic behind PASS, and SQL Server Connections.

T-SQL, you'll quickly learn how to write effective code—whether
you're a programmer or database administrator.

Discover how to:
* Work with programming practices unique to T-SQL
* Create database tables and define data integrity

e Query multiple tables using joins and subqueries

» Simplify code and improve maintainability with table expressions

= Implement insert, update, delete, and merge data modification DEVELCEER ROADMAD

strategies Start Here!
* Tackle advanced techniques such as window functions, pivoting, - Beginner-level instruction
and grouping sets + Easy to follow explanations and examples

« Exercises to build your first projects

= Control data consistency using isolation levels, and mitigate
deadlocks and blocking

* Take T-SQL to the next level with programmable objects

Step by Step Visual C# 2010
« For experienced developers learning a i
new topic %

» Focus on fundamental techniques and tools
= Hands-on tutorial with practice files plus

eBook
Get code samples on the web
Ready to download at
http://go.microsoft.com/FWLink/?Linkid=248717 Developer Reference
R . « Professional developers; intermediate to
For system requirements, see the Introduction. Sdvanced

——— Expértly covers essential topics and
hniques

» Features extensive, adaptable code examples

Focused Topics

« For programmers who develop
complex or advanced solutions

mic;osoh'com/msp[ess . Speﬂa[lzﬁ‘d tOpiCS} narrow focus; dEQP
Coverage

» Features extensive, adaptable code examples

ISBN: 978-0-7356-58141

90000 US.A. $49.99
Canada $52.99
[Recommended)
olN7807351658141 Databases/Microsoft SQL Server msm.

Microsoft

Microsoft' SQL Server:
2012 T-SQL Fundamentals

Itzik Ben-Gan

Copyright © 2012 by Itzik Ben-Gan
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-735-65814-1
Fifth Printing: March 2015
Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http.//www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http.//www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the author, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Kristen Borg

Editorial Production and lllustration: Online Training Solutions, Inc.
Technical Reviewer: Gianluca Hotz and Herbert Albert

Copyeditor: Kathy Krause

Indexer: Allegro Technical Indexing

Cover Design: Twist Creative * Seattle

Cover Composition: Karen Montgomery

To Dato

To live in hearts we leave behind,
Is not to die.

—THomAs CAMPBELL

This page intentionally left blank

Contents at a Glance

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER 7
CHAPTER 8
CHAPTER 9
CHAPTER 10
APPENDIX A

Foreword
Introduction

Background to T-SQL Querying and Programming
Single-Table Queries

Joins

Subqueries

Table Expressions

Set Operators

Beyond the Fundamentals of Querying
Data Modification

Transactions and Concurrency
Programmable Objects

Getting Started

Index

About the Author

Xix

XXI

27

99
129
157
191
211
247
297
339
375

397

413

This page intentionally left blank

Contents

Chapter 1

Chapter 2

Foreword. Xix
INtroduction XXI
Background to T-SQL Querying and Programming 1
Theoretical Background. i 1
SO oo 2
Set Theory . oo 3
Predicate LOgiC. 4
The Relational Model 4
The Data Life Cycle. ... 9
SQL Server Architecture. 12
The ABC Flavors of SQL Server 12
SQL ServerInstances. ... 14
Databases 15
Schemasand Objects 18
Creating Tables and Defining Data Integrity 19
Creating Tables. ... 19
Defining Data Integrity. ..., 21
CoNCIUSION . oo 25
Single-Table Queries 27
Elements of the SELECT Statementcooviieieeaaaa ... 27
The FROM Clause. e 29
The WHERE Clause. 31
The GROUPBY Clause. i 32

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

vii

The HAVING Clause. 36

The SELECT Clauseo oot 36
The ORDERBY Clauseoovi e 42
The TOP and OFFSET-FETCH Filters, 44
A Quick Look at Window Functions 48
Predicates and Operatorso.uuiiiiniiiiiii .. 50
CASE EXPreSSIONS . . v vt e e e e e e et e e e e e e e 53
NULL Marks . ..o e 55
All-at-Once Operationso e 59
Working with CharacterData.......... ..., 61
Data Types. ..o o 61
Collation. . ..o 62
Operatorsand Functions 64
The LIKE Predicate 71
Working with Date and TimeData ..., 73
Date and Time Data Typesttt 73
Literals ... 74
Working with Date and Time Separately....................... 78
Filtering Date Rangesouiuiii i 79
Date and Time Functions, 80
Querying Metadata ... 88
Catalog VIeWsS 88
Information Schema Views., 89
System Stored Procedures and Functions...................... 89
CONCIUSION .« .ot 91
EXEICISES oottt 91
L 91
2 92
P 92
A 92
PP 93
B 93
7/ 94
B 94

viii Contents

L 95

2 95
PP 96
e 96
5P 97

B o 97

7/ P 98

B 98
Chapter 3 Joins 929
CroSS JOINS .« .ottt 99
ANSISQL-92 SyntaX. . ..ot 100
ANSISQL-89 Syntax.oiiiii i 101

Self Cross JOoINS . ..ot 101
Producing Tables of Numbers............................... 102

INNEI JOINS . . 103
ANSISQL-92 SyntaX. ... oove e 103
ANSISQL-89 Syntax. ...t 105
InnerJoin Safety. ... 105

More Join Examples 106
Composite JOINS . ..o 106
NoN-EqQUI JOINSo 107
Multi-Join QUEries 109
OULer JOINS . . 110
Fundamentals of OuterJoins.............. 110
Beyond the Fundamentals of Outer Joins 113
CoNCIUSION .« .ttt 120
EXEICISES o oottt 120
1oL 120

1-2 (Optional, Advanced) ... 121

2 122
P 123
e 123

Contents ix

6 (Optional, Advanced). ... 124

7 (Optional, Advanced)t 125
SOIULIONS . . oot 125
Lo 125

L2 126

2 126
P 127
e 127

D 127

B 128
7 128
Chapter 4 Subqueries 129
Self-Contained Subqueries 129
Self-Contained Scalar Subquery Examples 130
Self-Contained Multivalued Subquery Examples............... 132
Correlated Subqueries 136
The EXISTS Predicate. 138
Beyond the Fundamentals of Subqueries. 140
Returning Previous or Next Values........................... 140

Using Running Aggregates.c.ouieiiiniiiieeeannn. 141
Dealing with Misbehaving Subqueries........................ 142
CONCIUSION .ot 147
EXEICISES o oottt 147
L 147

2 (Optional, Advanced)........ ...t 148
P 149

A 149
P 150

B 150

7 (Optional, Advanced)........ ...t 151

8 (Optional, Advanced)t 151

X Contents

L 152

2 152
P 153

A 153
5 153

B 154
7 154

B 155
Chapter 5 Table Expressions 157
Derived Tables. 157
Assigning Column Aliases.t 159
UsSiNg Argumentst e 161
NEStING. . oo 161
Multiple References. ... 162
Common Table EXPressionsouuuiuiieteniiiiineaan. 163
Assigning Column Aliases in CTES. ..., 164
Using Arguments in CTES 165
Defining Multiple CTESt 165
Multiple References in CTES.ciiieiiiiiiiean 166
Recursive CTES . ..o 166
VWS . 169
Views and the ORDERBY Clause. ..., 170

View OptioNns.o oot 172
Inline Table-Valued Functions. i i, 176
The APPLY Operator. 178
CONCIUSION .« .o oot 181
EXOICISES « oo 182
Lo 182

Lo 182

2 183

2o 183

3 (Optional, Advanced) 184

Contents Xi

4-2 (Optional, Advanced) 185

S 186

Do 186
SOIUtIONS. . oo 187
Lo 187

Lo 187

2 187

2o 188
P 188

e 189

o 189

Lt 190
L 190
Chapter 6 Set Operators 191
The UNION Operator.t 192
The UNION ALL Multiset Operator. ..., 192

The UNION Distinct Set Operator. iiin.. 193

The INTERSECT OpPerator.vvu et 194
The INTERSECT Distinct Set Operatorcooviiinn... 195

The INTERSECT ALL Multiset Operator 195

The EXCEPT OpPerator.ttt ettt e e et et 198
The EXCEPT Distinct Set Operator 198

The EXCEPT ALL Multiset Operatorcovviiinn.. 199
Precedence.o 200
Circumventing Unsupported Logical Phases........................ 202
CONCIUSION L oo 204
EXErCiSes . oo 204
Lo 204

2 204
P 206

A 206

5 (Optional, Advanced) 206

xii Contents

L 208

2 209
P 209

A 209
5 210
Chapter 7 Beyond the Fundamentals of Querying 211
Window FUNCtions 211
Ranking Window Functions...............ot 214
Offset Window Functions. 217
Aggregate Window Functions., 220
Pivoting Data. 222
Pivoting with Standard SQL o i 224
Pivoting with the Native T-SQL P/VOT Operator 225
Unpivoting Data 228
Unpivoting with Standard SQL 229
Unpivoting with the Native T-SQL UNPIVOT Operator.......... 231
Grouping Sets . ..o 232
The GROUPING SETS Subclauset 234

The CUBE Subclause ... 234

The ROLLUP Subclause 235

The GROUPING and GROUPING_ID Functions 236
CONCIUSION .« oo 239
EXErCiSes . .o 239
L 239

2 240
P 240
e 241

D 242

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents xiii

L 243

2 243

B 243

A 245
e 246
Chapter 8 Data Modification 247
Inserting Dataooi 247
The INSERT VALUES Statement 247

The INSERT SELECT Statement.ooiiiiiiii 249

The INSERT EXEC Statement, 250

The SELECT INTO Statement 251

The BULK INSERT Statement, 252

The Identity Property and the Sequence Object............... 252
Deleting Data.o 261
The DELETE Statementttt 262

The TRUNCATE Statement 263
DELETEBased 0nalJoincoiuiiiiiiiiiiiiiiieann.. 263
Updating Data.ooi 264
The UPDATE Statement. 265
UPDATEBasedonalJoin................ 267
Assignment UPDATE e 269
Merging Data.oou 270
Modifying Data Through Table Expressions 274
Modifications with TOP and OFFSET-FETCH 277
The OUTPUT ClauSe . .. oo o vttt et e e 280
INSERT with OUTPUT. 280
DELETE with OUTPUT . ..o 282
UPDATE with OUTPUT. 283
MERGE with OUTPUT.o e 284
Composable DML. . ..o 285
CONCIUSION « oo 287

xiv Contents

L 287
P 288

Lo 288
P 288

2 288
A 289

o 289
5 291

B o 291
SOIULIONS . 291
P 291

Lo 291

s 292

2 293
P 293
e 294
5 294
Chapter 9 Transactions and Concurrency 297
TraNSaCtioNSottt 297
Locks and Blocking. 300
LOCKS. .o 300
Troubleshooting Blocking. i, 303
[solation Levels 309
The READ UNCOMMITTED Isolation Level.................... 310

The READ COMMITTED lsolation Level....................... 311

The REPEATABLE READ lsolation Level. 313

The SERIALIZABLE Isolation Level 314
Isolation Levels Based on Row Versioning..................... 316
Summary of Isolation Levels. L 323
Deadlocks. 323
CoNCIUSION .« .ot 326

Contents xv

1oL 326

Lo 326

e PP 327

LA 327

LoD 328

Lob 328
2o 328

2o 329

2o 330

2= 331

2o 332

2B 334

Bl 336

B 336

B3 336

B 336

B 336

BB 337

BT 337
Chapter 10 Programmable Objects 339
Variables 339
Batches 341
ABatch Asa Unitof Parsing. ..., 342
Batches and Variables 343
Statements That Cannot Be Combined in the Same Batch. 343

A Batch As a Unit of Resolution. 344

The GO N OPLION ... 344

Flow Elementso 345
The IF... ELSEFlow Element 345

The WHILE Flow Element i 346

An Example of Using IFand WHILE. 348
CUMSOTS ettt et e e e e e e e e e e 348

xvi Contents

Temporary Tables 353

Local Temporary Tables i i 353
Global Temporary Tables i 355

Table Variables 356

Table TYPes ..ot 357
Dynamic SQL . ..ot 359
The EXEC Commandouin e 359

The sp_executesql Stored Procedure. 360
Using PIVOT with Dynamic SQL ... 361
ROULINES . .o 362
User-Defined Functions i 362
Stored Procedures 364
TGOS ottt 366

Error Handling.o 370
CONCIUSION .« oo 374
Appendix A Getting Started 375
Getting Started with SQL Database. 375
Installing an On-Premises Implementation of SQL Server 376
1.0btain SQLServer. 376

2. Createa User Account........... ..o .. 376

3. Install Prerequisites 377

4. Install the Database Engine, Documentation, and Tools 377
Downloading Source Code and Installing the Sample Database. 385
Working with SQL Server Management Studio...................... 387
Working with SQL Server Books Online.................., 393
Index 397
About the Author 413

Contents xvii

This page intentionally left blank

Foreword

‘'m very happy that Itzik has managed to find the time and energy to produce a book

about T-SQL fundamentals. For many years, Itzik has been using his great Microsoft
SQL Server teaching, mentoring, and consulting experience to write books on advanced
programming subjects, leaving a significant gap not only for the novice and less ex-
perienced users but also for the many experts working with SQL Server in roles where
T-SQL programming is not a high priority.

When it comes to T-SQL, Itzik is one of the most knowledgeable people in the world.
In fact, we (members of the SQL Server development team), turn to Itzik for expert ad-
vice on most of the new language extensions we plan to implement. His feedback and
consultations have become an important part of our SQL Server development process.

It is never an easy task for a person who is a subject matter expert to write an intro-
ductory book; however, Itzik has the advantage of having taught both introductory and
advanced programming classes for many years. Such experience is a great asset when
differentiating the fundamental T-SQL information from the more advanced topics. But
in this book, Itzik is not simply avoiding anything considered advanced; he is not afraid
to take on inherently complex subjects such as set theory, predicate logic, and the rela-
tional model, introducing them in simple terms, and providing just enough information
for readers to understand their importance to the SQL language. The result is a book
that rewards readers with an understanding of not only what and how T-SQL works, but
also why.

In programming manuals and books, there is no better way to convey the subject
under discussion than with a good example. This book includes many examples—and
you can download them all from Itzik's website, http.//tsql.solidg.com. T-SQL is a dialect
of the official ISO and ANSI standards for the SQL language, but it has numerous exten-
sions that can improve the expressiveness and brevity of your T-SQL code. Many of
Itzik's examples show the T-SQL dialect solution and the equivalent ANSI SQL solution
to the same exercise side by side. This is a great advantage for readers who are familiar
with the ANSI version of SQL but who are new to T-SQL, as well as for programmers
who need to write SQL code that can be deployed easily across several different data-
base platforms.

Xix

XX

Foreword

Itzik's deep connection to the SQL Server team shows in his explanation of the Ap-
pliance, Box, Cloud (ABC) flavors of SQL Server in Chapter 1, “Background to T-SQL
Querying and Programming.” So far, | have seen the term "ABC” used only internally
within the Microsoft SQL Server team, but I'm sure it is only a matter of time until the
term spreads around. Itzik developed and tested the examples in the book against both
the “B" (box) and "C" (cloud) flavors of SQL Server. And the Appendix points out where
you can get started with the cloud version of SQL Server, known as Windows Azure
SQL Database. Therefore, you can use this book as a starting point for your own cloud
experiences. The Azure website shows how to start your free subscription to the Azure
services, so you can then execute the examples in the book.

The cloud extension of SQL Server is an extremely important point that you should
not miss. | consider it to be so important that I'm doing something here that never should
be done in a Foreword—advertising another book (sorry, Itzik, I have to do this!). My
own interest and belief in cloud computing skyrocketed after reading Nicholas G. Carr's
The Big Switch (W.W. Norton and Company, 2009), and | want to share that experience. It
is a great book that compares the advancement of cloud computing to electrification in
the early 1900s. My certainty in the future of cloud computing was further cemented by
watching James Hamilton's "Cloud Computing Economies of Scale” presentation at the
MIX10 conference (the recording is available at http://channel9.msdn.com/events/MIX/
MIX10/EX0I).

Itzik mentions one more cloud-related change that you should be aware of. We
were used to multi-year gaps between SQL Server releases, but that pattern is chang-
ing significantly with the cloud; you should instead be prepared for several smaller
cloud releases (called Service Updates) deployed in the Microsoft Data Centers around
the world every year. Therefore, Itzik wisely documents the discrepancies between SQL
Server and Windows Azure SQL Database T-SQL on his http.//tsql.solidg.com website
rather than in the book, so he can easily keep the information up to date.

Enjoy the book—and even more—enjoy the new insights into T-SQL that this book
will bring to you.

Lubor Kollar, SQL Server development team, Microsoft

http://channel9.msdn.com/events/MIX/MIX10/EX01
http://channel9.msdn.com/events/MIX/MIX10/EX01

Introduction

his book walks you through your first steps in T-SQL (also known as Transact-SQL),

which is the Microsoft SQL Server dialect of the ISO and ANSI standards for SQL.
You'll learn the theory behind T-SQL querying and programming and how to develop
T-SQL code to query and modify data, and you'll get an overview of programmable
objects.

Although this book is intended for beginners, it is not merely a set of procedures
for readers to follow. It goes beyond the syntactical elements of T-SQL and explains the
logic behind the language and its elements.

Occasionally, the book covers subjects that may be considered advanced for readers
who are new to T-SQL; therefore, those sections are optional reading. If you already feel
comfortable with the material discussed in the book up to that point, you might want
to tackle the more advanced subjects; otherwise, feel free to skip those sections and re-
turn to them after you've gained more experience. The text will indicate when a section
may be considered more advanced and is provided as optional reading.

Many aspects of SQL are unique to the language and are very different from other
programming languages. This book helps you adopt the right state of mind and gain a
true understanding of the language elements. You learn how to think in terms of sets
and follow good SQL programming practices.

The book is not version-specific; it does, however, cover language elements that
were introduced in recent versions of SQL Server, including SQL Server 2012. When |
discuss language elements that were introduced recently, | specify the version in which
they were added.

Besides being available in an on-premises flavor, SQL Server is also available as a
cloud-based service called Windows Azure SQL Database (formerly called SQL Azure).
The code samples in this book were tested against both on-premises SQL Server and
SQL Database. The book’s companion website (http.//tsql.solidg.com) provides infor-
mation about compatibility issues between the flavors—for example, features that are
available in SQL Server 2012 but not yet in SQL Database.

To complement the learning experience, the book provides exercises that enable you
to practice what you've learned. The book occasionally provides optional exercises that
are more advanced. Those exercises are intended for readers who feel very comfortable
with the material and want to challenge themselves with more difficult problems. The
optional exercises for advanced readers are labeled as such.

xxi

xxii

Who Should Read This Book

This book is intended for T-SQL developers, DBAs, Bl practitioners, report writers, ana-
lysts, architects, and SQL Server power users who just started working with SQL Server
and need to write queries and develop code using Transact-SQL.

Assumptions

To get the most out of this book, you should have working experience with Windows
and with applications based on Windows. You should also be familiar with basic con-
cepts concerning relational database management systems.

Who Should Not Read This Book

Not every book is aimed at every possible audience. This book covers fundamentals.

It is mainly aimed at T-SQL practitioners with little or no experience. With that said,
several readers of the previous edition of this book have mentioned that—even though
they already had years of experience—they still found the book useful for filling gaps in
their knowledge.

Organization of This Book

This book starts with both a theoretical background to T-SQL querying and program-
ming in Chapter 1, laying the foundations for the rest of the book, and also coverage
of creating tables and defining data integrity. The book moves on to various aspects of
querying and modifying data in Chapters 2 through 8, then to a discussion of concur-
rency and transactions in Chapter 9, and finally provides an overview of programmable
objects in Chapter 10. The following section lists the chapter titles along with a short
description:

m Chapter 1, "Background to T-SQL Querying and Programming,” provides a
theoretical background of SQL, set theory, and predicate logic; examines the
relational model and more; describes SQL Server's architecture; and explains
how to create tables and define data integrity.

m Chapter 2, “Single-Table Queries,” covers various aspects of querying a single
table by using the SELECT statement.

Introduction

Chapter 3, “Joins,” covers querying multiple tables by using joins, including cross
joins, inner joins, and outer joins.

m Chapter 4, "Subqueries,” covers queries within queries, otherwise known as
subqueries.

m Chapter 5, “Table Expressions,” covers derived tables, common table expressions
(CTEs), views, inline table-valued functions, and the APPLY operator.

m Chapter 6, "Set Operators,” covers the set operators UNION, INTERSECT, and
EXCEPT.

m Chapter 7, "Beyond the Fundamentals of Querying,” covers window functions,
pivoting, unpivoting, and working with grouping sets.

m Chapter 8, "Data Modification,” covers inserting, updating, deleting, and merg-
ing data.

m Chapter 9, "Transactions and Concurrency,” covers concurrency of user connec-
tions that work with the same data simultaneously; it covers concepts including
transactions, locks, blocking, isolation levels, and deadlocks.

m Chapter 10, “Programmable Objects,” provides an overview of the T-SQL pro-
gramming capabilities in SQL Server.

m The book also provides an appendix, “Getting Started,” to help you set up your
environment, download the book’s source code, install the TSQL2012 sample
database, start writing code against SQL Server, and learn how to get help by
working with SQL Server Books Online.

System Requirements

The Appendix, "Getting Started,” explains which editions of SQL Server 2012 you can
use to work with the code samples included with this book. Each edition of SQL Server
might have different hardware and software requirements, and those requirements are
well documented in SQL Server Books Online under “Hardware and Software Require-
ments for Installing SQL Server 2012." The Appendix also explains how to work with SQL
Server Books Online.

If you're connecting to SQL Database, hardware and server software are handled by
Microsoft, so those requirements are irrelevant in this case.

Introduction xxiii

Code Samples

This book features a companion website that makes available to you all the code used
in the book, the errata, and additional resources.

http://tsql.solidg.com

Refer to the Appendix, “Getting Started,” for details about the source code.

Acknowledgments

Many people contributed to making this book a reality, whether directly or indirectly,
and deserve thanks and recognition.

To Lilach, for giving reason to everything | do, and for not complaining about the
endless hours | spend on SQL.

To my parents Mila and Gabi and to my siblings Mickey and Ina, thanks for the con-
stant support. Thanks for accepting the fact that I'm away, which is now harder than
ever. Mom, we're all counting on you to be well and are encouraged by your strength
and determination. Dad, thanks for being so supportive.

To members of the Microsoft SQL Server development team; Lubor Kollar, Tobias
Ternstrom, Umachandar Jayachandran (UC), and I'm sure many others. Thanks for the
great effort, and thanks for all the time you spent meeting me and responding to my
email messages, addressing my questions and requests for clarification. | think that
SQL Server 2012 and SQL Database show great investment in T-SQL, and | hope this
will continue.

To the editorial team at O'Reilly Media and Microsoft Press; to Ken Jones, thanks
for all the Itzik hours you spent, and thanks for initiating the project. To Russell Jones,
thanks for your efforts in taking over the project and running it from the O'Reilly side.
Also thanks to Kristen Borg, Kathy Krause, and all others who worked on the book.

To Herbert Albert and Gianluca Hotz, thanks for your work as the technical editors of
the book. Your edits were excellent and I'm sure they improved the book'’s quality and
accuracy.

To SolidQ, my company for the last decade: it's gratifying to be part of such a great
company that evolved to what it is today. The members of this company are much more
than colleagues to me; they are partners, friends, and family. Thanks to Fernando G.
Guerrero, Douglas McDowell, Herbert Albert, Dejan Sarka, Gianluca Hotz, Jeanne Reeves,

XXiv Introduction

Glenn McCoin, Fritz Lechnitz, Eric Van Soldt, Joelle Budd, Jan Taylor, Marilyn Temple-
ton, Berry Walker, Alberto Martin, Lorena Jimenez, Ron Talmage, Andy Kelly, Rushabh
Mehta, Eladio Rincén, Erik Veerman, Jay Hackney, Richard Waymire, Carl Rabeler, Chris
Randall, Johan Ahlén, Raoul lllyés, Peter Larsson, Peter Myers, Paul Turley, and so many
others.

To members of the SQL Server Pro editorial team, Megan Keller, Lavon Peters, Mi-
chele Crockett, Mike Otey, and I'm sure many others; I've been writing for the magazine
for more than a decade and am grateful for the opportunity to share my knowledge
with the magazine's readers.

To SQL Server MVPs Alejandro Mesa, Erland Sommarskog, Aaron Bertrand, Tibor
Karaszi, Paul White, and many others, and to the MVP lead, Simon Tien; this is a great
program that I'm grateful and proud to be part of. The level of expertise of this group is
amazing and I'm always excited when we all get to meet, both to share ideas and just to
catch up at a personal level over beer. | believe that, in great part, Microsoft’s inspira-
tion to add new T-SQL capabilities in SQL Server is thanks to the efforts of SQL Server
MVPs, and more generally the SQL Server community. It is great to see this synergy
yielding such a meaningful and important outcome.

To Q2, Q3, and Q4, thanQ.

Finally, to my students: teaching SQL is what drives me. It's my passion. Thanks for
allowing me to fulfill my calling, and for all the great questions that make me seek more
knowledge.

Errata & Book Support

We've made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http.//www.microsoftpressstore.com/title/ 9780735658141

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

Introduction

XXV

mailto:mspinput@microsoft.com
http://www.microsoftpressstore.com/title/ 9780735658141

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress.

XXVi Introduction

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

Subqueries

QL supports writing queries within queries, or nesting queries. The outermost query is a query

whose result set is returned to the caller and is known as the outer query. The inner query is a
query whose result is used by the outer query and is known as a subquery. The inner query acts in
place of an expression that is based on constants or variables and is evaluated at run time. Unlike the
results of expressions that use constants, the result of a subquery can change, because of changes in
the queried tables. When you use subqueries, you avoid the need for separate steps in your solutions
that store intermediate query results in variables.

A subquery can be either self-contained or correlated. A self-contained subquery has no depen-
dency on the outer query that it belongs to, whereas a correlated subquery does. A subquery can
be single-valued, multivalued, or table-valued. That is, a subquery can return a single value (a scalar
value), multiple values, or a whole table result.

This chapter focuses on subqueries that return a single value (scalar subqueries) and subqueries
that return multiple values (multivalued subqueries). I'll cover subqueries that return whole tables
(table subqueries) later in the book in Chapter 5, “Table Expressions.”

Both self-contained and correlated subqueries can return a scalar or multiple values. I'll first
describe self-contained subqueries and demonstrate both scalar and multivalued examples, and ex-
plicitly identify those as scalar or multivalued subqueries. Then I'll describe correlated subqueries, but
I won't explicitly identify them as scalar or multivalued, assuming that you will already understand the
difference.

Again, exercises at the end of the chapter can help you practice what you've learned.

Self-Contained Subqueries

Every subquery has an outer query that it belongs to. Self-contained subqueries are subqueries that
are independent of the outer query that they belong to. Self-contained subqueries are very conve-
nient to debug, because you can always highlight the subquery code, run it, and ensure that it does
what it's supposed to do. Logically, it's as if the subquery code is evaluated only once before the outer
query is evaluated, and then the outer query uses the result of the subquery. The following sections
take a look at some concrete examples of self-contained subqueries.

129

130

Self-Contained Scalar Subquery Examples

A scalar subquery is a subquery that returns a single value—regardless of whether it is self-contained.
Such a subquery can appear anywhere in the outer query where a single-valued expression can ap-
pear (such as WHERE or SELECT).

For example, suppose that you need to query the Orders table in the TSQL2012 database and
return information about the order that has the maximum order ID in the table. You could accomplish
the task by using a variable. The code could retrieve the maximum order ID from the Orders table
and store the result in a variable. Then the code could query the Orders table and filter the order
where the order ID is equal to the value stored in the variable. The following code demonstrates this
technique.

USE TSQL2012;

DECLARE @maxid AS INT = (SELECT MAX(orderid)
FROM Sales.Orders);

SELECT orderid, orderdate, empid, custid
FROM Sales.Orders
WHERE orderid = @maxid;

This query returns the following output.

orderid orderdate empid custid

11077 2008-05-06 00:00:00.000 1 65

You can substitute the technique that uses a variable with an embedded subquery. You achieve
this by substituting the reference to the variable with a scalar self-contained subquery that returns the
maximum order ID. This way, your solution has a single query instead of the two-step process.

SELECT orderid, orderdate, empid, custid

FROM Sales.Orders

WHERE orderid = (SELECT MAX(O.orderid)
FROM Sales.Orders AS 0);

For a scalar subquery to be valid, it must return no more than one value. If a scalar subquery can
return more than one value, it might fail at run time. The following query happens to run without
failure.

SELECT orderid
FROM Sales.Orders
WHERE empid =
(SELECT E.empid
FROM HR.Employees AS E
WHERE E.lastname LIKE N'B%');

The purpose of this query is to return the order IDs of orders placed by any employee whose last
name starts with the letter B. The subquery returns employee IDs of all employees whose last names
start with the letter B, and the outer query returns order IDs of orders where the employee ID is
equal to the result of the subquery. Because an equality operator expects single-valued expressions

Microsoft SQL Server 2012 T-SQL Fundamentals

from both sides, the subquery is considered scalar. Because the subquery can potentially return
more than one value, the choices of using an equality operator and a scalar subquery here are
wrong. If the subquery returns more than one value, the query fails.

This query happens to run without failure because currently the Employees table contains only one
employee whose last name starts with B (Sven Buck with employee ID 5). This query returns the fol-
lowing output, shown here in abbreviated form.

orderid

(42 row(s) affected)

Of course, if the subquery returns more than one value, the query fails. For example, try running
the query with employees whose last names start with D.

SELECT orderid
FROM Sales.Orders
WHERE empid =
(SELECT E.empid
FROM HR.Employees AS E
WHERE E.lastname LIKE N'D%');

Apparently, two employees have a last name starting with D (Sara Davis and Zoya Dolgopyatova).
Therefore, the query fails at run time with the following error.

Msg 512, Level 16, State 1, Line 1
Subquery returned more than 1 value. This is not permitted when the subquery follows =, !=, <,
<=, >, >= or when the subquery 1is used as an expression.

If a scalar subquery returns no value, it returns a NULL. Recall that a comparison with a NULL
yields UNKNOWN and that query filters do not return a row for which the filter expression evaluates
to UNKNOWN. For example, the Employees table currently has no employees whose last names start
with A; therefore, the following query returns an empty set.

SELECT orderid
FROM Sales.Orders
WHERE empid =
(SELECT E.empid
FROM HR.Employees AS E
WHERE E.Tlastname LIKE N'A%');

Subqueries 131

132

Self-Contained Multivalued Subquery Examples

A multivalued subquery is a subquery that returns multiple values as a single column, regardless of
whether the subquery is self-contained. Some predicates, such as the IN predicate, operate on a mul-
tivalued subquery.

Note There are other predicates that operate on a multivalued subquery; those are SOME,
ANY, and ALL. They are very rarely used and therefore not covered in this book.

The form of the IN predicate is:
<scalar_expression> IN (<multivalued subquery>)

The predicate evaluates to TRUE if scalar_expression is equal to any of the values returned by the
subquery. Recall the last request discussed in the previous section—returning order IDs of orders that
were handled by employees with a last name starting with a certain letter. Because more than one
employee can have a last name starting with the same letter, this request should be handled with the
IN predicate and a multivalued subquery, and not with an equality operator and a scalar subquery.
For example, the following query returns order IDs of orders placed by employees with a last name
starting with D.

SELECT orderid
FROM Sales.Orders
WHERE empid IN
(SELECT E.empid
FROM HR.Employees AS E
WHERE E.Tastname LIKE N'D%');

Because it uses the IN predicate, this query is valid with any number of values returned—none,
one, or more. This query returns the following output, shown here in abbreviated form.

orderid

(166 row(s) affected)

Microsoft SQL Server 2012 T-SQL Fundamentals

You might wonder why you wouldn’t implement this task by using a join instead of subqueries,
like this.

SELECT O.orderid
FROM HR.Employees AS E
JOIN Sales.Orders AS O
ON E.empid = O.empid
WHERE E.lastname LIKE N'D%';

Similarly, you are likely to stumble into many other querying problems that you can solve with
either subqueries or joins. In my experience, there’s no reliable rule of thumb that says that a sub-
query is better than a join. In some cases, the database engine interprets both types of queries the
same way. Sometimes joins perform better than subqueries, and sometimes the opposite is true. My
approach is to first write the solution query for the specified task in an intuitive form, and if perfor-
mance is not satisfactory, one of my tuning approaches is to try query revisions. Such query revisions
might include using joins instead of subqueries or using subqueries instead of joins.

As another example of using multivalued subqueries, suppose that you need to write a query that
returns orders placed by customers from the United States. You can write a query against the Orders
table that returns orders where the customer ID is in the set of customer IDs of customers from the
United States. You can implement the last part in a self-contained, multivalued subquery. Here's the
complete solution query.

SELECT custid, orderid, orderdate, empid
FROM Sales.Orders
WHERE custid IN

(SELECT C.custid

FROM Sales.Customers AS C

WHERE C.country = N'USA');

This query returns the following output, shown here in abbreviated form.

custid orderid orderdate empid
65 10262 2006-07-22 00:00:00.000 8
89 10269 2006-07-31 00:00:00.000 5
75 10271 2006-08-01 00:00:00.000 6
65 10272 2006-08-02 00:00:00.000 6
65 10294 2006-08-30 00:00:00.000 4
32 11040 2008-04-22 00:00:00.000 4
32 11061 2008-04-30 00:00:00.000 4
71 11064 2008-05-01 00:00:00.000 1
89 11066 2008-05-01 00:00:00.000 7
65 11077 2008-05-06 00:00:00.000 1

(122 row(s) affected)

Subqueries 133

134

As with any other predicate, you can negate the IN predicate with the NOT logical operator. For
example, the following query returns customers who did not place any orders.

SELECT custid, companyname
FROM Sales.Customers
WHERE custid NOT IN
(SELECT O.custid
FROM Sales.Orders AS 0);

Note that best practice is to qualify the subquery to exclude NULL marks. Here, to keep the ex-
ample simple, | didn't exclude NULL marks, but later in the chapter, in the “NULL Trouble"” section, |
explain this recommendation.

The self-contained, multivalued subquery returns all customer IDs that appear in the Orders table.
Naturally, only IDs of customers who did place orders appear in the Orders table. The outer query
returns customers from the Customers table where the customer ID is not in the set of values returned
by the subquery—in other words, customers who did not place orders. This query returns the follow-
ing output.

custid companyname
22 Customer DTDMN
57 Customer WVAXS

You might wonder whether specifying a DISTINCT clause in the subquery can help performance,
because the same customer ID can occur more than once in the Orders table. The database engine
is smart enough to consider removing duplicates without you asking it to do so explicitly, so this isn't
something you need to worry about.

The last example in this section demonstrates the use of multiple self-contained subqueries in the
same query—both single-valued and multivalued. Before | describe the task at hand, run the follow-
ing code to create a table called dbo.Orders in the TSQL2012 database (for test purposes), and popu-
late it with order IDs from the Sales.Orders table that have even-numbered order IDs.

USE TSQL2012;
IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;
CREATE TABLE dbo.Orders(orderid INT NOT NULL CONSTRAINT PK_Orders PRIMARY KEY);

INSERT INTO dbo.Orders(orderid)
SELECT orderid
FROM Sales.Orders
WHERE orderid % 2 = 0;

Microsoft SQL Server 2012 T-SQL Fundamentals

| describe the INSERT statement in more detail in Chapter 8, “Data Modification,” so don't worry if
you're not familiar with it yet.

The task at hand is to return all individual order IDs that are missing between the minimum and
maximum in the table. It can be quite complicated to solve this problem with a query without any
helper tables. You might find the Nums table introduced in Chapter 3, “Joins,” very useful here. Re-
member that the Nums table contains a sequence of integers, starting with 1, with no gaps. To return
all missing order IDs from the Orders table, query the Nums table and filter only numbers that are
between the minimum and maximum in the dbo.Orders table and that do not appear in the set of
order IDs in the Orders table. You can use scalar self-contained subqueries to return the minimum and
maximum order IDs and a multivalued self-contained subquery to return the set of all existing order
IDs. Here's the complete solution query.

SELECT n
FROM dbo.Nums
WHERE n BETWEEN (SELECT MIN(O.orderid) FROM dbo.Orders AS 0)
AND (SELECT MAX(O.orderid) FROM dbo.Orders AS 0)
AND n NOT IN (SELECT O.orderid FROM dbo.Orders AS 0);

Because the code that populated the dbo.Orders table filtered only even-numbered order IDs, this
query returns all odd-numbered values between the minimum and maximum order IDs in the Orders
table. The output of this query is shown here in abbreviated form.

(414 row(s) affected)
When you're done, run the following code for cleanup.

DROP TABLE dbo.Orders;

Subqueries 135

Correlated Subqueries

136

Correlated subqueries are subqueries that refer to attributes from the table that appears in the outer
query. This means that the subquery is dependent on the outer query and cannot be invoked inde-
pendently. Logically, it's as if the subquery is evaluated separately for each outer row. For example,
the query in Listing 4-1 returns orders with the maximum order ID for each customer.

LISTING 4-1 Correlated Subquery

USE TSQL2012;

SELECT custid, orderid, orderdate, empid
FROM Sales.Orders AS 01
WHERE orderid =

(SELECT MAX(02.orderid)

FROM Sales.Orders AS 02

WHERE 02.custid = Ol.custid);

The outer query is against an instance of the Orders table called OI; it filters orders where the
order ID is equal to the value returned by the subquery. The subquery filters orders from a second
instance of the Orders table called O2, where the inner customer ID is equal to the outer customer
ID, and returns the maximum order ID from the filtered orders. In simpler terms, for each row in O1,
the subquery is in charge of returning the maximum order ID for the current customer. If the order ID
in OI and the order ID returned by the subquery match, the order ID in OI is the maximum for the
current customer, in which case the row from O1I is returned by the query. This query returns the fol-
lowing output, shown here in abbreviated form.

custid orderid orderdate empid
91 11044 2008-04-23 00:00:00.000 4
90 11005 2008-04-07 00:00:00.000 2
89 11066 2008-05-01 00:00:00.000 7
88 10935 2008-03-09 00:00:00.000 4
87 11025 2008-04-15 00:00:00.000 6
5 10924 2008-03-04 00:00:00.000 3
4 11016 2008-04-10 00:00:00.000 9
3 10856 2008-01-28 00:00:00.000 3
2 10926 2008-03-04 00:00:00.000 4
1 11011 2008-04-09 00:00:00.000 3

(89 row(s) affected)

Correlated subqueries are usually much harder to figure out than self-contained subqueries. To
better understand the concept of correlated subqueries, | find it useful to focus attention on a single
row in the outer table and understand the logical processing that takes place for that row. For ex-
ample, focus your attention on the order in the Orders table with order ID 10248.

Microsoft SQL Server 2012 T-SQL Fundamentals

custid orderid orderdate empid

85 10248 2006-07-04 00:00:00.000 5

With respect to this outer row, when the subquery is evaluated, the correlation or reference to
OlI.custid means 85. After substituting the correlation with 85, you get the following.

SELECT MAX(02.orderid)
FROM Sales.Orders AS 02
WHERE 02.custid = 85;

This query returns the order ID 10739. The outer row’s order ID—10248—is compared with the
inner one—10739—and because there's no match in this case, the outer row is filtered out. The sub-
query returns the same value for all rows in OI with the same customer ID, and only in one case is
there a match—when the outer row’s order ID is the maximum for the current customer. Thinking in
such terms will make it easier for you to grasp the concept of correlated subqueries.

The fact that correlated subqueries are dependent on the outer query makes them harder to de-
bug than self-contained subqueries. You can't just highlight the subquery portion and run it. For ex-
ample, if you try to highlight and run the subquery portion in Listing 4-1, you get the following error.

Msg 4104, Level 16, State 1, Line 1
The multi-part identifier “Ol.custid” could not be bound.

This error indicates that the identifier OI.custid cannot be bound to an object in the query, be-
cause O1 is not defined in the query. It is only defined in the context of the outer query. To debug
correlated subqueries you need to substitute the correlation with a constant, and after ensuring that
the code is correct, substitute the constant with the correlation.

As another example of a correlated subquery, suppose that you need to query the Sales.OrderValues
view and return for each order the percentage that the current order value is of the total values of all
of the customer’s orders. In Chapter 7, “Beyond the Fundamentals of Querying,” | provide a solution
to this problem that uses window functions; here I'll explain how to solve the problem by using sub-
queries. It's always a good idea to try to come up with several solutions to each problem, because the
different solutions will usually vary in complexity and performance.

You can write an outer query against an instance of the OrderValues view called OI; in the SELECT
list, divide the current value by the result of a correlated subquery that returns the total value from
a second instance of OrderValues called O2 for the current customer. Here's the complete solution

query.

SELECT orderid, custid, val,
CAST(100. * val / (SELECT SUM(02.val)
FROM Sales.OrderValues AS 02
WHERE 02.custid = 0l.custid)
AS NUMERIC(5,2)) AS pct
FROM Sales.OrderValues AS 01
ORDER BY custid, orderid;

Subqueries 137

138

The CAST function is used to convert the datatype of the expression to NUMERIC with a precision
of 5 (the total number of digits) and a scale of 2 (the number of digits after the decimal point).

This query returns the following output.

orderid custid val pct

10643 1 814.50 19.06
10692 1 878.00 20.55
10702 1 330.00 7.72
10835 1 845.80 19.79
10952 1 471.20 11.03
11011 1 933.50 21.85
10308 2 88.80 6.33
10625 2 479.75 34.20
10759 2 320.00 22.81
10926 2 514.40 36.67

(830 row(s) affected)

The EXISTS Predicate

T-SQL supports a predicate called EXISTS that accepts a subquery as input and returns TRUE if the
subquery returns any rows and FALSE otherwise. For example, the following query returns customers
from Spain who placed orders.

SELECT custid, companyname
FROM Sales.Customers AS C
WHERE country = N'Spain'
AND EXISTS
(SELECT * FROM Sales.Orders AS O
WHERE O.custid = C.custid);

The outer query against the Customers table filters only customers from Spain for whom the EXISTS
predicate returns TRUE. The EXISTS predicate returns TRUE if the current customer has related orders
in the Orders table.

One of the benefits of using the EXISTS predicate is that it allows you to intuitively phrase English-
like queries. For example, this query can be read just as you would say it in ordinary English: select the
customer ID and company name attributes from the Customers table, where the country is equal to
Spain, and at least one order exists in the Orders table with the same customer ID as the customer’s
customer ID.

Microsoft SQL Server 2012 T-SQL Fundamentals

This query returns the following output.

custid companyname

8 Customer QUHWH
29 Customer MDLWA
30 Customer KSLQF
69 Customer SIUIH

As with other predicates, you can negate the EXISTS predicate with the NOT logical operator. For
example, the following query returns customers from Spain who did not place orders.

SELECT custid, companyname
FROM Sales.Customers AS C
WHERE country = N'Spain'
AND NOT EXISTS
(SELECT * FROM Sales.Orders AS O
WHERE O.custid = C.custid);

This query returns the following output.

custid companyname

22 Customer DTDMN

Even though this book’s focus is on logical query processing and not performance, | thought you
might be interested to know that the EXISTS predicate lends itself to good optimization. That is, the
Microsoft SQL Server engine knows that it is enough to determine whether the subquery returns at
least one row or none, and it doesn't need to process all qualifying rows. You can think of this capa-
bility as a kind of short-circuit evaluation.

Unlike most other cases, in this case it's logically not a bad practice to use an asterisk (*) in the
SELECT list of the subquery in the context of the EXISTS predicate. The EXISTS predicate only cares
about the existence of matching rows regardless of the attributes specified in the SELECT list, as if the
whole SELECT clause were superfluous. The SQL Server database engine knows this, and in terms of
optimization, ignores the subquery’s SELECT list. So in terms of optimization, specifying the column
wildcard * in this case has no negative impact when compared to alternatives such as specifying a con-
stant. However, some minor extra cost might be involved in the resolution process of expanding the
wildcard against metadata info. But this extra resolution cost is so minor that you will probably barely
notice it. My opinion on this matter is that queries should be natural and intuitive, unless there’s a very
compelling reason to sacrifice this aspect of the code. | find the form EXISTS(SELECT * FROM ...) much
more intuitive than EXISTS(SELECT 1 FROM ...). Saving the minor extra cost associated with the resolu-
tion of * is something that is not worth the cost of sacrificing the readability of the code.

Finally, another aspect of the EXISTS predicate that is interesting to note is that unlike most predi-
cates in T-SQL, EXISTS uses two-valued logic and not three-valued logic. If you think about it, there’s
no situation where it is unknown whether a query returns rows.

Subqueries 139

Beyond the Fundamentals of Subqueries

140

This section covers aspects of subqueries that you might consider to be beyond the fundamentals.
| provide it as optional reading in case you feel very comfortable with the material covered so far in
this chapter.

Returning Previous or Next Values

Suppose that you need to query the Orders table in the TSQL2012 database and return, for each
order, information about the current order and also the previous order ID. The concept of “previ-
ous” implies logical ordering, but because you know that the rows in a table have no order, you need
to come up with a logical equivalent to the concept of “previous” that can be phrased with a T-SQL
expression. One example of such a logical equivalent is “the maximum value that is smaller than the
current value.” This phrase can be expressed in T-SQL with a correlated subquery like this.

SELECT orderid, orderdate, empid, custid,
(SELECT MAX(02.orderid)
FROM Sales.Orders AS 02
WHERE 02.orderid < Ol.orderid) AS prevorderid
FROM Sales.Orders AS 01;

This query produces the following output, shown here in abbreviated form.

orderid orderdate empid custid prevorderid
10248 2006-07-04 00:00:00.000 5 85 NULL
10249 2006-07-05 00:00:00.000 6 79 10248
10250 2006-07-08 00:00:00.000 4 34 10249
10251 2006-07-08 00:00:00.000 3 84 10250
10252 2006-07-09 00:00:00.000 4 76 10251
11073 2008-05-05 00:00:00.000 2 58 11072
11074 2008-05-06 00:00:00.000 7 73 11073
11075 2008-05-06 00:00:00.000 8 68 11074
11076 2008-05-06 00:00:00.000 4 9 11075
11077 2008-05-06 00:00:00.000 1 65 11076

(830 row(s) affected)

Notice that because there’s no order before the first, the subquery returned a NULL for the first
order.

Similarly, you can phrase the concept of “next” as “the minimum value that is greater than the cur-
rent value.” Here's the T-SQL query that returns for each order the next order ID.

SELECT orderid, orderdate, empid, custid,
(SELECT MIN(O2.orderid)
FROM Sales.Orders AS 02
WHERE 02.orderid > Ol.orderid) AS nextorderid
FROM Sales.Orders AS 01;

Microsoft SQL Server 2012 T-SQL Fundamentals

This query produces the following output, shown here in abbreviated form.

orderid orderdate empid custid nextorderid
10248 2006-07-04 00:00:00.000 5 85 10249
10249 2006-07-05 00:00:00.000 6 79 10250
10250 2006-07-08 00:00:00.000 4 34 10251
10251 2006-07-08 00:00:00.000 3 84 10252
10252 2006-07-09 00:00:00.000 4 76 10253
11073 2008-05-05 00:00:00.000 2 58 11074
11074 2008-05-06 00:00:00.000 7 73 11075
11075 2008-05-06 00:00:00.000 8 68 11076
11076 2008-05-06 00:00:00.000 4 9 11077
11077 2008-05-06 00:00:00.000 1 65 NULL

(830 row(s) affected)

Notice that because there’s no order after the last, the subquery returned a NULL for the last
order.

Note that SQL Server 2012 introduces new window functions called LAG and LEAD that allow the
return of an element from a “previous” or "next” row based on specified ordering. | will cover these
and other window functions in Chapter 7.

Using Running Aggregates

Running aggregates are aggregates that accumulate values over time. In this section, | use the
Sales.OrderTotalsByYear view to demonstrate the technique for calculating running aggregates.
The view shows total order quantities by year. Query the view to examine its contents.

SELECT orderyear, qty
FROM Sales.OrderTotalsByYear;

You get the following output.

orderyear qty

2007 25489
2008 16247
2006 9581

Suppose you need to return for each year the order year, quantity, and running total quantity over
the years. That is, for each year, return the sum of the quantity up to that year. So for the earliest year
recorded in the view (2006), the running total is equal to that year's quantity. For the second year
(2007), the running total is the sum of the first year plus the second year, and so on.

You can complete this task by querying one instance of the view (call it OI) to return for each year
the order year and quantity, and then by using a correlated subquery against a second instance of
the view (call it O2) to calculate the running-total quantity. The subquery should filter all years in 02

Subqueries 141

142

that are smaller than or equal to the current year in O1, and sum the quantities from O2. Here's the
solution query.

SELECT orderyear, qty,

(SELECT SUM(02.qty)

FROM Sales.OrderTotalsByYear AS 02

WHERE 02.orderyear <= Ol.orderyear) AS runqty
FROM Sales.OrderTotalsByYear AS 01
ORDER BY orderyear;

This query returns the following output.

orderyear qty rungty
2006 9581 9581
2007 25489 35070
2008 16247 51317

Note that SQL Server 2012 enhances the capabilities of window aggregate functions, allowing new,
highly efficient solutions for running totals needs. As mentioned, | will discuss window functions in
Chapter 7.

Dealing with Misbehaving Subqueries

This section introduces cases in which subqueries might behave counter to your expectations, and
provides best practices that you can follow to avoid logical bugs in your code that are associated with
those cases.

NULL Trouble

Remember that T-SQL uses three-valued logic. In this section, | will demonstrate problems that can
evolve with subqueries when NULL marks are involved and you do not take into consideration the
three-valued logic.

Consider the following apparently intuitive query that is supposed to return customers who did
not place orders.

SELECT custid, companyname
FROM Sales.Customers
WHERE custid NOT IN(SELECT O.custid
FROM Sales.Orders AS 0);

With the current sample data in the Orders table in the TSQL2012 database, the query seems to
work the way you expect it to; and indeed, it returns two rows for the two customers who did not
place orders.

custid companyname
22 Customer DTDMN
57 Customer WVAXS

Microsoft SQL Server 2012 T-SQL Fundamentals

Next, run the following code to insert a new order to the Orders table with a NULL customer ID.

INSERT INTO Sales.Orders
(custid, empid, orderdate, requireddate, shippeddate, shipperid,
freight, shipname, shipaddress, shipcity, shipregion,
shippostalcode, shipcountry)
VALUES(NULL, 1, '20090212', '20090212',
'20090212', 1, 123.00, N'abc', N'abc', N'abc',
N'abc', N'abc', N'abc');

Run the query that is supposed to return customers who did not place orders again.

SELECT custid, companyname
FROM Sales.Customers
WHERE custid NOT IN(SELECT O.custid
FROM Sales.Orders AS 0);

This time, the query returns an empty set. Keeping in mind what you've read in the section about
NULL marks in Chapter 2, “Single-Table Queries,” try to explain why the query returns an empty set.
Also try to think of ways to get customers 22 and 57 in the output, and in general, to figure out best
practices you can follow to avoid such problems, assuming that there is a problem here.

Obviously, the culprit in this story is the NULL customer ID that was added to the Orders table and
is now returned among the known customer IDs by the subquery.

Let's start with the part that behaves the way you expect it to. The IN predicate returns TRUE for
a customer who placed orders (for example, customer 85), because such a customer is returned by
the subquery. The NOT operator is used to negate the IN predicate; hence, the NOT TRUE becomes
FALSE, and the customer is not returned by the outer query. This means that when a customer ID
appears in the Orders table, you can tell for sure that the customer placed orders, and therefore you
don't want to see it in the output. However, when you have a NULL customer ID in the Orders table,
you can't tell for sure whether a certain customer ID does not appear in Orders, as explained shortly.

The IN predicate returns UNKNOWN (the truth value UNKNOWN like the truth values TRUE and
FALSE) for a customer such as 22 that does not appear in the set of known customer IDs in Orders.
The IN predicate returns UNKNOWN for such a customer, because comparing it with all known
customer IDs yields FALSE, and comparing it with the NULL in the set yields UNKNOWN. FALSE OR
UNKNOWN yields UNKNOWN. As a more tangible example, consider the expression 22 NOT IN (1, 2,
NULL). This expression can be rephrased as NOT 22 IN (1, 2, NULL). You can expand the last expres-
sionto NOT (22 =1 OR 22 = 2 OR 22 = NULL). Evaluate each individual expression in the parenthe-
ses to its truth value and you get NOT (FALSE OR FALSE OR UNKNOWN), which translates to NOT
UNKNOWN, which evaluates to UNKNOWN.

The logical meaning of UNKNOWN here before you apply the NOT operator is that it can't be
determined whether the customer ID appears in the set, because the NULL could represent that
customer ID as well as anything else. The tricky part is that negating the UNKNOWN with the NOT
operator still yields UNKNOWN, and UNKNOWN in a query filter is filtered out. This means that in
a case where it is unknown whether a customer ID appears in a set, it is also unknown whether it
doesn’t appear in the set.

Subqueries 143

144

In short, when you use the NOT IN predicate against a subquery that returns at least one NULL, the
outer query always returns an empty set. Values from the outer table that are known to appear in
the set are not returned because the outer query is supposed to return values that do not appear in the
set. Values that do not appear in the set of known values are not returned because you can never tell
for sure that the value is not in the set that includes the NULL.

So, what practices can you follow to avoid such trouble?

First, when a column is not supposed to allow NULL marks, it is important to define it as NOT
NULL. Enforcing data integrity is much more important than many people realize.

Second, in all queries that you write, you should consider all three possible truth values of three-
valued logic (TRUE, FALSE, and UNKNOWN). Think explicitly about whether the query might proc-
ess NULL marks, and if so, whether the default treatment of NULL marks is suitable for your needs.
When it isn't, you need to intervene. For example, in the example we've been working with, the outer
query returns an empty set because of the comparison with NULL. If you want to check whether a
customer ID appears in the set of known values and ignore the NULL marks, you should exclude the
NULL marks—either explicitly or implicitly. One way to explicitly exclude the NULL marks is to add the
predicate O.custid IS NOT NULL to the subquery, like this.

SELECT custid, companyname

FROM Sales.Customers

WHERE custid NOT IN(SELECT O.custid
FROM Sales.Orders AS O
WHERE O.custid IS NOT NULL);

You can also exclude the NULL marks implicitly by using the NOT EXISTS predicate instead of NOT
IN, like this.

SELECT custid, companyname
FROM Sales.Customers AS C
WHERE NOT EXISTS

(SELECT *

FROM Sales.Orders AS O

WHERE O.custid = C.custid);

Recall that unlike IN, EXISTS uses two-valued predicate logic. EXISTS always returns TRUE or FALSE
and never UNKNOWN. When the subquery stumbles into a NULL in O.custid, the expression evalu-
ates to UNKNOWN and the row is filtered out. As far as the EXISTS predicate is concerned, the NULL
cases are eliminated naturally, as though they weren't there. So EXISTS ends up handling only known
customer IDs. Therefore, it's safer to use NOT EXISTS than NOT IN.

When you're done experimenting, run the following code for cleanup.

DELETE FROM Sales.Orders WHERE custid IS NULL;

Microsoft SQL Server 2012 T-SQL Fundamentals

Substitution Errors in Subquery Column Names

Logical bugs in your code can sometimes be very elusive. In this section, | describe an elusive bug that
has to do with an innocent substitution error in a subquery column name. After explaining the bug, |
provide best practices that can help you avoid such bugs in the future.

The examples in this section query a table called MyShippers in the Sales schema. Run the follow-
ing code to create and populate this table.

IF OBJECT_ID('Sales.MyShippers', 'U') IS NOT NULL
DROP TABLE Sales.MyShippers;

CREATE TABLE Sales.MyShippers
(

shipper_id INT NOT NULL,

companyname NVARCHAR(40) NOT NULL,

phone NVARCHAR(24) NOT NULL,

CONSTRAINT PK_MyShippers PRIMARY KEY(shipper_id)
s

INSERT INTO Sales.MyShippers(shipper_id, companyname, phone)
VALUES(1, N'Shipper GVSUA', N'(503) 555-0137"),
(2, N'Shipper ETYNR', N'(425) 555-0136'),
(3, N'Shipper ZHISN', N'(415) 555-0138');

Consider the following query, which is supposed to return shippers who shipped orders to cus-
tomer 43.

SELECT shipper_id, companyname
FROM Sales.MyShippers
WHERE shipper_id IN

(SELECT shipper_id

FROM Sales.Orders

WHERE custid = 43);

This query produces the following output.

shipper_id companyname

Shipper GVSUA
2 Shipper ETYNR
3 Shipper ZHISN

Apparently, only shippers 2 and 3 shipped orders to customer 43, but for some reason, this query
returned all shippers from the MyShippers table. Examine the query carefully and also the schemas of
the tables involved, and see if you can explain why.

It turns out that the column name in the Orders table holding the shipper ID is not called shipper _id;
it is called shipperid (no underscore). The column in the MyShippers table is called shipper_id with an
underscore. The resolution of nonprefixed column names works in the context of a subquery from
the current/inner scope outward. In our example, SQL Server first looks for the column shipper_id in
the Orders table. Such a column is not found there, so SQL Server looks for it in the outer table in the
query, MyShippers. Because one is found, it is the one used.

Subqueries 145

146

You can see that what was supposed to be a self-contained subquery unintentionally became a
correlated subquery. As long as the Orders table has at least one row, all rows from the MyShippers
table find a match when comparing the outer shipper ID with a query that returns the very same
outer shipper ID for each row from the Orders table.

Some might argue that this behavior is a design flaw in standard SQL. However, it's not that the
designers of this behavior in the ANSI SQL committee thought that it would be difficult to detect the
“error;” rather, it's an intentional behavior designed to allow you to refer to column names from the
outer table without needing to prefix them with the table name, as long as those column names are
unambiguous (that is, as long as they appear only in one of the tables).

This problem is more common in environments that do not use consistent attribute names across
tables. Sometimes the names are only slightly different, as in this case—shipperid in one table and
shipper_id in another. That's enough for the bug to manifest itself.

You can follow a couple of best practices to avoid such problems—one to implement in the long
run, and one that you can implement in the short run.

In the long run, your organization should as a policy not underestimate the importance of using
consistent attribute names across tables. In the short run, of course, you don’t want to start changing
existing column names, which could break application code.

In the short run, you can adopt a very simple practice—prefix column names in subqueries with the
source table alias. This way, the resolution process only looks for the column in the specified table, and
if no such column is there, you get a resolution error. For example, try running the following code.

SELECT shipper_id, companyname
FROM Sales.MyShippers
WHERE shipper_id IN
(SELECT O.shipper_id
FROM Sales.Orders AS O
WHERE O.custid = 43);

You get the following resolution error.

Msg 207, Level 16, State 1, Line 4
Invalid column name 'shipper_id'.

After getting this error, you of course can identify the problem and correct the query.

SELECT shipper_id, companyname
FROM Sales.MyShippers
WHERE shipper_id IN
(SELECT O.shipperid
FROM Sales.Orders AS O
WHERE O.custid = 43);

Microsoft SQL Server 2012 T-SQL Fundamentals

This time, the query returns the expected result.
shipper_id companyname

2 Shipper ETYNR
3 Shipper ZHISN

When you're done, run the following code for cleanup.

IF OBJECT_ID('Sales.MyShippers', 'U') IS NOT NULL
DROP TABLE Sales.MyShippers;

Conclusion

This chapter covered subqueries. It discussed self-contained subqueries, which are independent of
their outer queries, and correlated subqueries, which are dependent on their outer queries. Regard-
ing the results of subqueries, | discussed scalar and multivalued subqueries. | also provided a more
advanced section as optional reading, in which | covered returning previous and next values, using
running aggregates, and dealing with misbehaving subqueries. Remember to always think about the
three-valued logic and the importance of prefixing column names in subqueries with the source table
alias.

The next chapter focuses on table subqueries, also known as table expressions.

Exercises

This section provides exercises to help you familiarize yourself with the subjects discussed in this
chapter. The sample database TSQL2012 is used in all exercises in this chapter.

1

Write a query that returns all orders placed on the last day of activity that can be found in the
Orders table.

m Tables involved: Sales.Orders

m Desired output:

orderid orderdate custid empid
11077 2008-05-06 00:00:00.000 65 1
11076 2008-05-06 00:00:00.000 9 4
11075 2008-05-06 00:00:00.000 68 8
11074 2008-05-06 00:00:00.000 73 7

Subqueries 147

2 (Optional, Advanced)

Write a query that returns all orders placed by the customer(s) who placed the highest number of
orders. Note that more than one customer might have the same number of orders.

m Tables involved: Sales.Orders

m Desired output (abbreviated):

custid orderid orderdate empid
71 10324 2006-10-08 00:00:00.000 9
71 10393 2006-12-25 00:00:00.000 1
71 10398 2006-12-30 00:00:00.000 2
71 10440 2007-02-10 00:00:00.000 4
71 10452 2007-02-20 00:00:00.000 8
71 10510 2007-04-18 00:00:00.000 6
71 10555 2007-06-02 00:00:00.000 6
71 10603 2007-07-18 00:00:00.000 8
71 10607 2007-07-22 00:00:00.000 5
71 10612 2007-07-28 00:00:00.000 1
71 10627 2007-08-11 00:00:00.000 8
71 10657 2007-09-04 00:00:00.000 2
71 10678 2007-09-23 00:00:00.000 7
71 10700 2007-10-10 00:00:00.000 3
71 10711 2007-10-21 00:00:00.000 5
71 10713 2007-10-22 00:00:00.000 1
71 10714 2007-10-22 00:00:00.000 5
71 10722 2007-10-29 00:00:00.000 8
71 10748 2007-11-20 00:00:00.000 3
71 10757 2007-11-27 00:00:00.000 6
71 10815 2008-01-05 00:00:00.000 2
71 10847 2008-01-22 00:00:00.000 4
71 10882 2008-02-11 00:00:00.000 4
71 10894 2008-02-18 00:00:00.000 1
71 10941 2008-03-11 00:00:00.000 7
71 10983 2008-03-27 00:00:00.000 2
71 10984 2008-03-30 00:00:00.000 1
71 11002 2008-04-06 00:00:00.000 4
71 11030 2008-04-17 00:00:00.000 7
71 11031 2008-04-17 00:00:00.000 6
71 11064 2008-05-01 00:00:00.000 1

(31 row(s) affected)

148 Microsoft SQL Server 2012 T-SQL Fundamentals

3

Write a query that returns employees who did not place orders on or after May 1, 2008.

4

Write a query that returns countries where there are customers but not employees.

Tables involved: HR.Employees and Sales.Orders

Desired output:

empid FirstName
3 Judy
5 Sven
6 Paul
9 Zoya

Tables involved: Sales.Customers and HR.Employees

Desired output:

country
Argentina
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Italy
Mexico
Norway
Poland
Portugal
Spain
Sweden
Switzerland
Venezuela

(19 row(s) affected)

Tastname

Buck
Suurs
Dolgopyatova

Subqueries

149

5

Write a query that returns for each customer all orders placed on the customer’s last day of activity.
m Tables involved: Sales.Orders

m Desired output:

custid orderid orderdate empid
1 11011 2008-04-09 00:00:00.000 3
2 10926 2008-03-04 00:00:00.000 4
3 10856 2008-01-28 00:00:00.000 3
4 11016 2008-04-10 00:00:00.000 9
5 10924 2008-03-04 00:00:00.000 3
87 11025 2008-04-15 00:00:00.000 6
88 10935 2008-03-09 00:00:00.000 4
89 11066 2008-05-01 00:00:00.000 7
90 11005 2008-04-07 00:00:00.000 2
91 11044 2008-04-23 00:00:00.000 4

(90 row(s) affected)

6

Write a query that returns customers who placed orders in 2007 but not in 2008.
m Tables involved: Sales.Customers and Sales.Orders

m Desired output:

custid companyname

21 Customer KIDPX
23 Customer WVFAF
33 Customer FVXPQ
36 Customer LVISO
43 Customer UISOJ]
51 Customer PVDZC
85 Customer ENQZT

(7 row(s) affected)

150 Microsoft SQL Server 2012 T-SQL Fundamentals

7 (Optional, Advanced)

Write a query that returns customers who ordered product 12.

Tables involved: Sales.Customers, Sales.Orders, and Sales.OrderDetails

Desired output:

custid companyname

48 Customer DVFMB
39 Customer GLLAG
71 Customer LCOUJ
65 Customer NYUHS
44 Customer OXFRU
51 Customer PVDZC
86 Customer SNXOJ
20 Customer THHDP
90 Customer XBBVR
46 Customer XPNIK
31 Customer YJCBX
87 Customer ZHYOS

(12 row(s) affected)

8 (Optional, Advanced)

Write a query that calculates a running-total quantity for each customer and month.

Tables involved: Sales.CustOrders

Desired output:

2007-08-01 00:
2007-10-01 00:
2008-01-01 00:
2008-03-01 00:
2008-04-01 00:
2006-09-01 00:
2007-08-01 00:
2007-11-01 00:
2008-03-01 00:
2006-11-01 00:
2007-04-01 00:
2007-05-01 00:
2007-06-01 00:
2007-09-01 00:
2008-01-01 00:

WWWwWwwWwWNNRNNRRRR R

(636 row(s) affected)

102
40

runqty

134
217
319
359

Subqueries

151

Solutions

152

This section provides solutions to the exercises in the preceding section.

1

You can write a self-contained subquery that returns the maximum order date from the Orders table.
You can refer to the subquery in the WHERE clause of the outer query to return all orders that were
placed on the last day of activity. Here’s the solution query.

USE TSQL2012;

SELECT orderid, orderdate, custid, empid
FROM Sales.Orders
WHERE orderdate =
(SELECT MAX(O.orderdate) FROM Sales.Orders AS 0);

2

This problem is best solved in multiple steps. First, you can write a query that returns the customer or
customers who placed the highest number of orders. You can achieve this by grouping the orders by
customer, ordering the customers by COUNT(*) descending, and using the TOP(1) WITH TIES option
to return the IDs of the customers who placed the highest number of orders. If you don’t remember
how to use the TOP option, refer to Chapter 2. Here's the query that solves the first step.

SELECT TOP (1) WITH TIES O.custid
FROM Sales.Orders AS O

GROUP BY 0O.custid

ORDER BY COUNT(*) DESC;

This query returns the value 71, which is the customer ID of the customer who placed the highest
number of orders, 31. With the sample data stored in the Orders table, only one customer placed the
maximum number of orders. But the query uses the WITH TIES option to return all IDs of customers
who placed the maximum number of orders, in case there are more than one.

The next step is to write a query against the Orders table returning all orders where the customer
ID is in the set of customer IDs returned by the solution query for the first step.

SELECT custid, orderid, orderdate, empid
FROM Sales.Orders
WHERE custid IN
(SELECT TOP (1) WITH TIES O.custid
FROM Sales.Orders AS O
GROUP BY 0O.custid
ORDER BY COUNT(*) DESC);

Microsoft SQL Server 2012 T-SQL Fundamentals

3

You can write a self-contained subquery against the Orders table that filters orders placed on or after
May 1, 2008 and returns only the employee IDs from those orders. Write an outer query against the
Employees table returning employees whose IDs do not appear in the set of employee IDs returned by
the subquery. Here's the complete solution query.

SELECT empid, FirstName, Tlastname
FROM HR.Employees
WHERE empid NOT IN

(SELECT 0O.empid

FROM Sales.Orders AS O

WHERE O.orderdate >= '20080501');

4

You can write a self-contained subquery against the Employees table returning the country attribute
from each employee row. Write an outer query against the Customers table that filters only customer
rows where the country does not appear in the set of countries returned by the subquery. In the SELECT
list of the outer query, specify DISTINCT country to return only distinct occurrences of countries, be-
cause the same country can have more than one customer. Here's the complete solution query.

SELECT DISTINCT country
FROM Sales.Customers
WHERE country NOT IN
(SELECT E.country FROM HR.Employees AS E);

5

This exercise is similar to Exercise 1, except that in that exercise, you were asked to return orders placed
on the last day of activity in general; in this exercise, you were asked to return orders placed on the
last day of activity for the customer. The solutions for both exercises are similar, but here you need to
correlate the subquery to match the inner customer ID with the outer customer ID, like this.

SELECT custid, orderid, orderdate, empid
FROM Sales.Orders AS 01
WHERE orderdate =
(SELECT MAX(02.orderdate)
FROM Sales.Orders AS 02
WHERE 02.custid = Ol.custid)
ORDER BY custid;

You're not comparing the outer row’s order date with the general maximum order date, but
instead with the maximum order date for the current customer.

Subqueries 153

154

6

You can solve this problem by querying the Customers table and using EXISTS and NOT EXISTS predi-
cates with correlated subqueries to ensure that the customer placed orders in 2007 but not in 2008.
The EXISTS predicate returns TRUE only if at least one row exists in the Orders table with the same
customer ID as in the outer row, within the date range representing the year 2007. The NOT EXISTS
predicate returns TRUE only if no row exists in the Orders table with the same customer ID as in the
outer row, within the date range representing the year 2008. Here's the complete solution query.

SELECT custid, companyname
FROM Sales.Customers AS C
WHERE EXISTS
(SELECT =*
FROM Sales.Orders AS O
WHERE O.custid = C.custid
AND O.orderdate >= '20070101'
AND O.orderdate < '20080101')
AND NOT EXISTS
(SELECT *
FROM Sales.Orders AS O
WHERE O.custid = C.custid
AND O.orderdate >= '20080101'
AND O.orderdate < '20090101');

7

You can solve this exercise by nesting EXISTS predicates with correlated subqueries. You write the
outermost query against the Customers table. In the WHERE clause of the outer query, you can use
the EXISTS predicate with a correlated subquery against the Orders table to filter only the current
customer’s orders. In the filter of the subquery against the Orders table, you can use a nested EXISTS
predicate with a subquery against the OrderDetails table that filters only order details with product
ID 12. This way, only customers who placed orders that contain product 12 in their order details are
returned. Here's the complete solution query.

SELECT custid, companyname
FROM Sales.Customers AS C
WHERE EXISTS
(SELECT =*
FROM Sales.Orders AS O
WHERE O.custid = C.custid
AND EXISTS
(SELECT *
FROM Sales.OrderDetails AS OD
WHERE OD.orderid = O.orderid
AND OD.ProductID = 12));

Microsoft SQL Server 2012 T-SQL Fundamentals

8

When | need to solve querying problems, | often find it useful to rephrase the original request in a
more technical way so that it will be more convenient to translate the request to a T-SQL query. To
solve the current exercise, you can first try to express the request “return a running total quantity for
each customer and month” differently—in a more technical manner. For each customer, return the
customer ID, month, the sum of the quantity for that month, and the sum of all months less than or
equal to the current month. The rephrased request can be translated to the following T-SQL query
quite literally.

SELECT custid, ordermonth, qty,
(SELECT SUM(02.qty)
FROM Sales.CustOrders AS 02
WHERE 02.custid = Ol.custid
AND 02.ordermonth <= Ol.ordermonth) AS runqty
FROM Sales.CustOrders AS 01
ORDER BY custid, ordermonth;

Subqueries 155

This page intentionally left blank

Index

accounts
SymbOIS creating user accounts on SQL Server, 376
INF (first normal form), 7 Windows Azure platform account, 376
2NF (second normal form), 8 AFTER INSERT trigger, 367
* (asterisk) after trigger, 367
performance, 41 aggregates
SELECT lists of subqueries, 139 aggregation phase and pivoting data, 224
\ (backslash), named instances, 14 functions
[<Character>-<Character>] wildcard, 72 NULL, 35
[Character List or Range>] wildcard, 73 running aggregates, 141, 350
, (comma), 37, 265 window functions, 220
{} curly brackets, set theory, 3 aliases
" (double quotes), 64 column aliases, 159
@@identity function, 254 columns, 38, 42
[<List of Characters>] wildcard, 72 expressions and attributes, 37
@params, 360 external column aliasing
() parentheses views, 169
column aliases in CTEs, 164 ALL
derived tables, 157 set operators, 192
functions, 80 UNION ALL operator, 196
precedence, 52 all-at-once operations
% (percent) wildcard, 71 about, 59
+ (plus sign) operator, 64 UPDATE, 266
; (semicolon) Alt button, 392
MERGE, 272 ALTER DATABASE, 64
statements, 21, 29 alternate keys, 7
' (single quotes), 64 ALTER SEQUENCE, 258
.sql script files, 385 ALTER TABLE
@stmt, 360 identity property, 255
_ (underscore) wildcard, 72 LOCK_ESCALATION, 302
A-Mark, 6
Analysis Services, BISM, 11
A anchor members, defined, 167
ABC flavors, 12 AND operator, 51, 274

ANSI (American National Standards Institute), SQL, 2
ANSI SQL-89 syntax

cross joins, 101

inner joins, 105

access, views using permissions, 169

397

ANSI SQL-92 syntax

398

ANSI SQL-92 syntax
cross joins, 100
inner joins, 103
appliance flavor, 12
APPLY operator, 178-181, 306
arguments
CTEs, 165
derived tables, 161
arithmetic operators, 51
arrays, INF, 8
AS, inline aliasing, 160
assignment SELECT, 340
assignment UPDATE, 269
asterisk (*)
performance, 41
SELECT lists of subqueries, 139
atomicity, attributes, 7
attributes
atomicity, 7
blocking_session_id attribute, 308
expressions, 36
filtering in outer joins, 115
foreign key constraints, 23
nullability, 20
set theory, 4
autonumbering, assignment UPDATE, 269

backslash (\), named instances, 14
bag, 3
batches, 341-345

GO, 344

statements that cannot be combined in the

same batch, 343
as a unit of parsing, 342
as a unit of resolution, 344
variables, 343
BEGIN, 346
BEGIN TRAN, 297
BETWEEN, 50

BISM (Business Intelligence Semantic Model), 11

blockers, terminating, 308
blocking. See locks and blocking
blocking_session_id attribute, 308
boundaries, transactions, 297

box flavor, 13

BULK INSERT, 252

Business Intelligence Semantic Model (BISM), 11

Index

C

caching, sequence objects, 257
candidate keys
3NF, 8
about, 7
Cantor, George, set theory, 3
Cartesian products
cross joins, 99
inner joins, 103
CASE expressions
about, 53
pivoting data, 225
CAST function, 81, 138
catalog views, 88
CATCH blocks, 371
character data, 61-73
collation, 62
data types, 61
LIKE predicate, 71
operators and functions, 64-71
character data types, 51
CHARINDEX function, 67
check constraints, 24
CHECK, @@identity and SCOPE_IDENTITY, 255
CHECK OPTION option, 174
CHOOSE function, 55
clauses, defined, 29
close world assumption (CWA), 5
cloud flavor, 13
COALESCE function, 66
Codd, Edgar F, relational model, 4
coding style, 21
collation
character data, 62
property, 16
COLUMNPROPERTY function, 90
columns
aliases
assigning, 159
CTEs, 164
query example, 38
referencing within a SELECT clause, 42
asterisk in column names, 41
attributes in set theory, 4
external column aliasing, 169
identity property, 255
INSERT VALUES, 248
ordinal position
in SQL, 41
in T-SQL, 43

prefixes, 101
substitution errors in subquery column
names, 145
table expressions, 158
comma (,), 37, 265
COMMIT TRAN, 297
comparison operators, 51
compatibility, lock modes, 300
composite constraints, 22
composite joins, 106
compostable DML, 285
compression, 62
concatenating
strings, 64, 362
user input, 359
CONCAT function, 64
concurrency, 297-338
deadlocks, 323-325
exercises, 326-338
isolation levels, 309-323
READ COMMITTED isolation level, 311
READ COMMITTED SNAPSHOT isolation
level, 321
READ UNCOMMITTED isolation level, 310
REPEATABLE READ isolation level, 313
row versioning, 316-322
SERIALIZABLE isolation level, 314
SNAPSHOT isolation level, 317-319
summary of isolation levels, 323
locks and blocking, 300-309
locks, 300
troubleshooting blocking, 303-309
transactions, 297-300
conflict detection, SNAPSHOT isolation level, 319
consistency, defined, 298
constraints
about, 6
check constraints, 24
data integrity, 22
default constraints, 24
foreign key constraints, 23
primary keys, 22
contained databases, 17
CONTINUE, 347
CONVERT function, 77, 81
correlated subqueries
about, 136-139
defined, 129
tables, 179

DATALENGTH function

COUNT, outer joins, 118
CREATE SEQUENCE, 257
CREATE TABLE
about, 20
identity property, 255
ordinal position of columns, 41
CROSS APPLY, 178
cross joins, 99-103
ANSI SQL-89 syntax, 101
ANSI SQL-92 syntax, 100
self cross joins, 101
tables of numbers, 102
CTEs (common table expressions), 163
arguments, 165
column aliases, 164
multiple references, 166
recursive CTEs, 166-168
CUBE subclause, grouping sets, 234
curly brackets {}, set theory, 3
current date and time functions, 80
CURRENT_TIMESTAMP function, 80

cursors
about, 348-352
defined, 43

CWA (close world assumption), 5

D

data. See character data
DATABASEPROPERTYEX function, 90
databases
collation, 63
engines, installing, 377-384
installing the sample database, 385
SQL Server, 15-18
triggers, 368
data compression, 62
Data Control Language (DCL), defined, 2
Data Definition Language (DDL)
defined, 2
triggers, 368
data integrity, 22-25
check constraints, 24
default constraints, 24
foreign key constraints, 23
primary key constraints, 22
DATALENGTH function, 67

Index

399

data life cycle

data life cycle, 9-12 DATEDIFF function, 84, 126
BISM, 11 DATENAME function, 86
DM, 12 DATEPART function, 85
Dw, 10 DATETIMEOFFSET, SWITCHOFFSET function, 83
OLTP, 10 DAY function, 85
Data Manipulation Language. See DML DBCC CHECKIDENT, 256
data mart, defined, 10 DB_NAME function, 305
data mining (DM), 12 DCL (Data Control Language), defined, 2
Data Mining Extensions (DMX), defined, 12 DDL (Data Definition Language)
data modification, 247-296 defined, 2
deleting data, 261-264 triggers, 368
DELETE, 262 DEADLOCK_PRIORITY, 323
DELETE based on joins, 263 deadlocks, concurrency, 323-325
TRUNCATE, 263 declarative data integrity, 22
exercises and solutions, 287-296 DECLARE, 339, 356
inserting data, 247-261 defaults
BULK INSERT, 252 constraints, 24
identity property and sequence object, 252- default instance, 14
261 isolation levels, 301, 310, 321
INSERT EXEC, 250 lock timeout value, 309
INSERT SELECT, 249 delete. See also TRUNCATE
INSERT VALUES, 247 DELETE, 261-264
SELECT INTO, 251 about, 262
merging data, 270-274 based on joins, 263
OUTPUT, 280-287 with DML triggers, 367
compostable DML, 285 when enabling snapshot-based isolation
DELETE, 282 levels, 316
INSERT, 280 OUTPUT, 282
MERGE, 284 delimiting identifier names, 30
UPDATE, 283 derived tables, 157-163
table expressions, 274-277 arguments, 161
TOP and OFFSET-FETCH, 277-279 column aliases, 159
updating data, 264-270 multiple references, 162
assignment UPDATE, 269 nesting, 161
UPDATE, 265 dimension tables, snowflake dimension, 11
UPDATE based on joins, 267 DISTINCT
data staging area (DSA), ETL process, 11 duplicate rows, 40
data types ORDER BY, 44
character data, 61 ROW_NUMBER function, 217
date and time data, 73 subqueries, 134
precedence, 52, 74 using, 128
scalar expressions, 51 distinct, defined in set theory, 3
set operators, 191 distinct set operators
data warehouse (DW), 10 EXCEPT distinct set operator, 198
DATEADD function, 83 INTERSECT distinct set operator, 195
date and time data, 73-87 UNION distinct set operator, 193
data types, 73 DM (data mining), 12
functions, 80-87 DML (Data Manipulation Language)
literals, 74-78 compostable DML, 285
sequences, 113 triggers, 367

400 Index

DMV (dynamic management view), locks, 304
DMX (Data Mining Extensions), defined, 12
documentation

installing, 377-384

SQL Server Books Online, 393-396
double quotes ("), 64
downloading

source code, 385

SQL Server, 376
DROP, 263
DSA (data staging area), ETL process, 11
duplicates

INTERSECT distinct set operator, 195

rows, 39

UNION distinct set operator, 193
durability, defined, 298
DW (data warehouse), 10
dynamic management view (DMV), locks, 304
dynamic SQL, 359-362

EXEC, 359

PIVOT, 361

sp_executesql, 360

elements, order in set theory, 3
ELSE, CASE expressions, 53
embedded subqueries, 130
ENCRYPTION option, 172
END, 346
Entity Relationship Modeling (ERM), normalization, 7
EOMONTH function, 87
equi joins, 107
ERM (Entity Relationship Modeling), normalization, 7
error handling
programmable objects, 370-374
stored procedures, 364
ERROR_LINE function, 371
ERROR_MESSAGE function, 371
ERROR_NUMBER function, 371
ERROR_PROCEDURE function, 371
ERROR_SEVERITY function, 371
ERROR_STATE function, 371
ESCAPE character, 73
ETL process, 11
EVENTDATA function, 368
EXCEPT operator, 198-200
EXCEPT ALL multiset operator, 199
EXCEPT distinct set operator, 198

foreign key constraints

exclusive lock mode
about, 300
lock compatibility, 301
EXEC, 359
exercises and solutions
beyond the fundamentals of querying, 239-246
concurrency, 326-338
data modification, 287-296
joins, 120-128
set operators, 204-210
single-table queries, 91-98
subqueries, 147-156
table expressions, 182-190
EXISTS
correlated subqueries, 138
INTERSECT distinct set operator, 195
using, 154
expressions. See also table expressions
attributes, 36
CASE expressions, 53
table expressions, 274-277
vector expressions, 268
extensions, SQL, 3
external column aliasing, views, 169
external forms
column aliases in CTEs, 164
column aliases in general, 160

F

FALSE, 55, 345
FETCH, OFFSET-FETCH, 47
file extensions, databases, 18
filegroups, 18
filters
attributes in outer joins, 115
data using predicates, 4
date ranges, 79
OFFSET-FETCH filter, 47
TOP filter, 44-47
first normal form (1NF), 7
FIRST_VALUE function, 218
flavors, ABC flavors, 12
flow elements, 345-348
IF ... ELSE, 345
WHILE, 346
foreign key columns, NULL, 24
foreign key constraints
about, 23
TRUNCATE, 263

Index

401

FORMAT function

402

FORMAT function, 71

forms
external forms, 160

column aliases in CTEs, 164

inline aliasing form, 160

four-valued predicate logic, 6

framing
aggregate functions, 221
window functions, 213

FROM
about, 29
cross joins, 100
DELETE, 262
DELETE based on joins, 264
derived tables, 162
multi-join queries, 116
multiple references in CTEs, 166
table UDFs, 362

FROMPARTS function, 87

FULL, outer joins, 110

functions
@@identity function, 254
aggregate functions, 35
CAST function, 138
CHARINDEX function, 67
CHOOSE function, 55
COALESCE function, 66
COLUMNPROPERTY function, 90
CONCAT function, 64
CONVERT function, 77
CURRENT_TIMESTAMP function, 80
DATABASEPROPERTYEX function, 90
DATALENGTH function, 67
date and time functions, 80-87
DB_NAME function, 305
ERROR_LINE function, 371
ERROR_MESSAGE function, 371
ERROR_NUMBER function, 371
ERROR_PROCEDURE function, 371
ERROR_SEVERITY function, 371
ERROR_STATE function, 371
EVENTDATA function, 368
FIRST_VALUE function, 218
FORMAT function, 71
GETDATE function, 80

GROUPING and GROUPING_ID functions, 236-

238
IDENT_CURRENT function, 254
IIF function, 55
ISNULL function, 55

Index

G

LAG function, 217, 243
LAST_VALUE function, 218
LEAD function, 217, 243
LEFT and RIGHT functions, 66
LEN function, 67
LOWER function, 70
LTRIM function, 70
NEWID function, 363
NEXT VALUE FOR function, 258, 281
NTILE function, 215
OBJECT_DEFINITION function, 173
OBJECT_NAME function, 305
OBJECTPROPERTY function, 90
ORDER BY and window functions, 196
PATINDEX function, 68
RAND function, 363
ranking functions, 215
REPLACE function, 68
REPLICATE function, 69
ROW_NUMBER function, 48, 196, 215, 276
RTRIM function, 70
SCHEMA_NAME function, 88
SCOPE_IDENTITY function, 254, 280
STUFF function, 70
SUBSTRING function, 66
SYSDATETIME function, 25, 80
SYSDATETIMEOFFSET function, 80
sys.dm_exec_sql_text function, 306
system stored procedures and functions, 89
SYSUTCDATETIME function, 80
TRY_CAST function, 81
TRY_CONVERT function, 81
TRY_PARSE function, 81
UDFs, 362
UPPER function, 70
window functions

about, 48

aggregates, 220, 352

offset window functions, 217-219

ORDER BY, 196

ranking, 214-217

GETDATE function, 80
getting started, 375-396

downloading source code, 385
installing the sample database, 385
Microsoft SQL Server Books Online, 393-396

SQL Server, 376-384
creating user accounts, 376
installing prerequisites, 377
installing the database engine, documenta-
tion and tools, 377-384
obtaining SQL Server, 376
SQL Server Management Studio, 387-393
Windows Azure SQL Database, 375
GETUTCDATE function, 80
global temporary tables, 355
GO, 342,344
granularity, data warehouses, 11
GROUP BY
about, 32-35
pivoting, 226
grouping phase, pivoting data, 224
grouping sets, 232-238
CUBE subclause, 234
GROUPING and GROUPING_ID functions, 236-
238
GROUPING SETS subclause, 234
ROLLUP subclause, 235

H

HAVING, 36

heaps, Windows Azure SQL Database, 251
hints, table hints and isolation levels, 310
HOLDLOCK, 310

IDENT_CURRENT function, 254
identifiers, delimiting names of, 30
IDENTITY_INSERT, 255
identity property, 252-261
IF ... ELSE, 345
IF statement, 20
IIF function, 55
I-Mark, 6
IMPLICIT_TRANSACTIONS, 297
IN
self-contained multivalued subqueries, 132
static queries, 361
subqueries, 143
increments, sequence objects, 257
information schema views, 89
inline aliasing form, 160

isolation levels

inline TVFs
about, 176
views, 169
inner joins, 103-106
ANSI SQL-89 syntax, 105
ANSI SQL-92 syntax, 103
inner join safety, 105
input parameters, inline table-valued functions, 176
INSERT
DML triggers, 367
OUTPUT, 280
inserting data, 247-261
BULK INSERT, 252
identity property and sequence object, 252-261
INSERT EXEC, 250
INSERT SELECT, 249
INSERT VALUES, 247
SELECT INTO, 251
installing
sample database, 385
SQL Server, 376-396
instances
default instances, 14
named instances, 14
SQL Server, 14
instead of trigger, 367
integers, sequences of, 102
integrity, referential integrity, 23
International Organization for Standardization (1SO),
SQL, 2
INTERSECT operator, 194-197
INTERSECT ALL multiset operator, 195-197
INTERSECT distinct set operator, 195
ISDATE function, 86
ISNULL function, 55
ISO (International Organization for Standardization),
sQL, 2
isolation, defined, 298
isolation levels, 309-323
READ COMMITTED isolation level, 311
READ COMMITTED SNAPSHOT isolation
level, 321
READ UNCOMMITTED isolation level, 310
REPEATABLE READ isolation level, 313
row versioning, 316-322
SERIALIZABLE isolation level, 314
SNAPSHOT isolation level, 317-319
summary of isolation levels, 323

Index

403

joins

J

joins, 99-128
composite joins, 106
cross joins, 99-103
ANSI SQL-89 syntax, 101
ANSI SQL-92 syntax, 100
self cross joins, 101
tables of numbers, 102
exercises and solutions, 120-128
inner joins, 103-106
ANSI SQL-89 syntax, 105
ANSI SQL-92 syntax, 103
inner join safety, 105
multi-join queries, 109
non-equi joins, 107
outer joins, 110-119
about, 110-113
COUNT, 118
filtering attributes, 115
missing values, 113
multi-join queries, 116
versus subqueries, 133

keys
alternate keys, 7
candidate keys, 7, 8
constraints, 3
foreign key constraints, 23
primary key constraints, 22
surrogate keys, 252

L

LAG function, 217, 243
language independence, 2
languages, date and time formats, 75
LAST_VALUE function, 218
LATERAL, 178
Idf file extension, 18
LEAD function, 217, 243
LEFT function, 66
LEFT keyword, outer joins, 110
LEN function, 67
LIKE predicate

about, 71

character strings and specified patterns, 50

404 Index

literals
data types, 61
date and time data, 74-78
local temporary tables, 353
lock compatibility
about, 301
requested modes, 302
LOCK_ESCALATION, 302
locks and blocking, 300-309
locks, 300
troubleshooting blocking, 303-309
LOCK_TIMEOUT
about, 308
default value, 309
Log Data File, 18
logical operators, 51
logical phases, circumventing unsupported logical
phases, 202
logical query processing
about, 27
defined, 99
logic, predicate logic, 4
logon
SQL Server authenticated logon, 17
Windows authenticated logon, 17
lost updates, 314
LOWER function, 70
LTRIM function, 70

M

master databases, 16
Master Data File, 18
MAX, 62
maximum values, 257
.mdf file extension, 18
MERGE
about, 270-274
OUTPUT, 284
metadata, 88-90
catalog views, 88
information schema views, 89
system stored procedures and functions, 89
Microsoft .NET
routines, 362
SQL Server prerequisites, 377
Microsoft SQL Azure. See Windows Azure SQL
Database

Microsoft SQL Server. See SQL Server
Microsoft SSMS
about, 393-396
loading SQL Server Books Online, 395
minimum values, 257
mirrored pairs, non-equi joins, 108
missing values
about, 6
outer joins, 113
model databases, 16
modes, locks, 300
MOLAP, 11
MONTH function, 85
msdb databases, 16
multi-join queries
about, 109
outer joins, 116
multiset operators
EXCEPT ALL multiset operator, 199
INTERSECT ALL multiset operator, 195-197
UNION ALL multiset operator, 192
multiset tables, 3
multivalued subqueries, examples, 132

N

named instances, 14
names
column names, 145
table columns in table expressions, 158
temporary tables, 353
namespaces, schemas, 19
natural joins, defined, 107
.ndf file extension, 18
nesting
derived tables, 161
queries, 129
.NET
routines, 362
SQL Server prerequisites, 377
NEWID function, 363
NEXT VALUE FOR function, 258, 281
next values, returning, 140
N (National), 51
NOCOUNT, 262
NOLOCK, 310
non-equi joins, 107
normalization, 7-9

OLTP (online transactional processing)

NOT EXISTS
EXCEPT distinct set operator, 199
using, 154

NOT IN, 144

Not Master Data File, 18

NOT operator, 51

NTILE function, 215

NULL
aggregate functions, 35
concatenation, 65
foreign key columns, 24
@@identity and SCOPE_IDENTITY, 255
IF ... ELSE, 345
INSERT SELECT, 249
INSERT VALUES, 248
INTERSECT distinct set operator, 195
misbehaving subqueries, 142
multi-join queries, 116
outer joins, 110, 115
single-table queries, 55-59
subqueries, 134, 140
support for, 6
unpivoting, 231

nullability, 20

numbers, cross joins, tables of numbers, 102

(0

obfuscated text, 172
OBJECT_DEFINITION function, 173
OBJECT_NAME function, 305
OBJECTPROPERTY function, 90
objects. See also programmable objects
object names and schemas, 19
SCHEMABINDING option, 174
schema-qualifying names of, 29
sequence object, 252-261
set theory, 3
SQL Server, 18
OFFSET clause, 172
OFFSET-FETCH
about, 47
circumventing unsupported logical phases, 203
data modification, 277-279
using, 158, 171
offsets
DATETIMEOFFSET, 74
window functions, 217-219
OLTP (online transactional processing), 10

Index

405

ON

406

ON
ANSI SQL-89 syntax, 105
ANSI SQL-92 syntax, 103
multi-join queries, 116
outer joins, 112
online transactional processing (OLTP), 10
on-premises SQL Server, 13
operations, all-at-once operations, 59
operators
APPLY operator, 178-181, 306
arithmetic operators, 51
comparison operators, 51
CROSS APPLY operator, 179
logical operators, 51
OUTER APPLY operator, 179
plus sign (+) operator, 64
precedence rules, 52
SELECT, 50-53
optimistic concurrency, 301
optimization. See performance
order
rows in tables, 4
set elements, 3
SQL processing of query clauses, 28
table expressions, 158
ORDER BY
about, 42
circumventing unsupported logical phases, 202
cursors, 348
OFFSET-FETCH, 48, 277
set operators, 191
table expressions, 158
TOP, 44, 277
using, 49
views, 170
window functions, 196, 213
ordering
window ordering and aggregate functions, 221
windows functions, 212
OR operator, 51
OUTER APPLY, 178
outer joins, 110-119
about, 110-113
COUNT, 118
filtering attributes, 115
missing values, 113
multi-join queries, 116
outer queries, defined, 129

Index

OUTPUT, 280-287
compostable DML, 285
DELETE, 282
INSERT, 280
MERGE, 284
UPDATE, 266, 283
using, 365

OVER
aggregate windows functions, 220
sequence objects, 259
window functions, 48, 211

P

Parallel Data Warehouse (PDW), appliances, 12
parameters, input parameters and inline table-
valued functions, 176
parentheses ()
column aliases in CTEs, 164
derived tables, 157
functions, 80
precedence, 52
parsing
batches as unit of parsing, 342
PARSE function, 81
PARTITION BY, window functions, 48, 213
PATINDEX function, 68
PDW (Parallel Data Warehouse), appliances, 12
PERCENT, TOP, 45
percent (%) wildcard, 71
performance
aggregates and window functions, 352
ANSI SQL-89 syntax versus ANSI SQL-92
syntax, 101
asterisk (*)
in column names, 41
in SELECT lists of subqueries, 139
blocking issues, 303
DISTINCT in subqueries, 134
dynamic SQL, 359
multiple references in CTEs, 166
row versioning and isolation levels, 316
sp_executesql, 360
stored procedures, 365
table expressions, 160
UPDATE based on joins, 268
WHERE, 32
window functions, 213

permissions
schema level, 19
views, 169
pessimistic concurrency
defined, 301
isolation levels, 309
phantom reads, 314
phases
circumventing unsupported logical phases, 202
defined, 29
physical query processing, 99
PIVOT, 361
pivoting data, 222-228
native T-SQL PIVOT operator, 225
standard SQL, 224
plus sign (+) operator, 64
PowerPivot, BISM, 11
precedence
data types
defined, 74
using, 52
operator precedence rules, 52
set operators, 200
predicates
about, 5
LIKE predicate, 71
logic
about, 4
two-, three- and four- value logic, 6
SELECT, 50-53
prefixes, columns, 101
previous values, returning, 140
PRIMARY filegroup, 18
primary key constraints, 22
PRINT, 343
procedural data integrity, 22
procedures
stored procedures, 364
system stored procedures and functions, 89
programmable objects, 339-374
batches, 341-345
batches as a unit of resolution, 344
batches as unit of parsing, 342
GO, 344
statements that cannot be combined in the
same batch, 343
variables, 343
cursors, 348-352
dynamic SQL, 359-362

READCOMMITTEDLOCK

EXEC, 359
PIVOT, 361
sp_executesql, 360
error handling, 370-374
flow elements, 345-348
IF ... ELSE, 345
WHILE, 346
routines, 362-370
stored procedures, 364
triggers, 366-370
UDFs, 362
temporary tables, 353-358
global temporary tables, 355
local temporary tables, 353
table types, 357
table variables, 356
variables, 339
properties
collation property, 16
defining sets, 4
identity property, 252-261
propositions, 5

Q

queries. See also single-table queries; subqueries
logical query processing, 99
multi-join queries, 109
multi-join queries using outer joins, 116
physical query processing, 99
set operators, 191
query expressions. See table expressions
QUOTED_IDENTIFIER, 64

R

RAND function, 363
ranges, dates, 79
ranking

functions, 215

window functions, 214-217
RDBMSs (relational database management systems),

defined, 1

READ COMMITTED

about, 301

isolation level, 311

using, 303
READCOMMITTEDLOCK, 303

Index

407

READ COMMITTED SNAPSHOT

READ COMMITTED SNAPSHOT FIRST_VALUE and LAST_VALUE functions, 219
about, 301 INTERSECT distinct set operator, 195
isolation level, 321 phantoms, 314
using, 325 tuples in set theory, 4

READ UNCOMMITTED isolation level, 310 UNION ALL multiset operator, 192

recursive CTEs, 166-168 versioning, 316-322

references RTRIM function, 70
CTEs, 166 running aggregates, subqueries, 141

derived tables, 162
referenced tables, 23
referencing relations, 7 S
referential integrity, 23

regular data types, 61

relational database management systems (RDBMSs),

defined, 1

relational model, 4-9
constraints, 6
Edgar F. Codd, 4
missing values, 6
normalization, 7-9
propositions, predicates and relations, 5

sample database, installing, 385
scalar expressions, data types, 51
scalar self-contained subqueries, 135
scalar subqueries, examples, 130
scalar UDFs, 362

scalar variables, 339
SCHEMABINDING option, 174
SCHEMA_NAME function, 88
schema-qualifying object names, 29
schemas

| SQL' 39 snowflake schema, 11
relations SQL Server, 18
about, 5

star schema, 10
SCOPE_IDENTITY function, 254, 280
searching
CASE expressions, 53
SQL Server Books Online, 393
second normal form (2NF), 8
security, stored procedures, 364
SELECT, 27-50, 36—-42. See also single-table queries
column aliases, 159

referencing relations, 7
variables versus relations, 5
REPEATABLE READ isolation level, 313
REPLACE function, 68
REPLICATE function, 69
resolution, batches as a unit of resolution, 344
resource databases, 16
resource types, lockable, 302
RETURN, 363

: , DML, 3
returning prgwous or next values, 140 FROM, 29

RIGHT function, 66 GROUP BY, 32-35
ROLLBACK TRAN, 297, 366 HAVING, 36

rolled backs, temporary tz?bles, 356 OFFSET-FETCH filter, 47
ROLLUP subclause, grouping sets, 235 ORDER BY, 42

routines, 362-370
stored procedures, 364
triggers, 366-370
DDL triggers, 368
DML triggers, 367

SELECT clause, 36-42

TOP filter, 44-47

WHERE, 31

window functions, 48
SELECT INTO, 251

ROV\tJIID\IFLjMaleZRf i SELECT * views, 170
- unction self-contained subqueries, 129-135
about, 215)
ina. 48. 196, 276 defined, 129
rowsusmg, ! ! multivalued subquery examples, 132-135

scalar subquery examples, 129
constructors, 268

duplicate rows, 39

408 Index

self cross joins, 101
self pairs, non-equi joins, 108
semicolon (;)
MERGE, 272
statements, 21, 29
SEQUEL (Structured English QUEry Language), 2
sequences
assignment UPDATE, 269
dates, 113
integers, 102
sequence object, 252-261
SERIALIZABLE isolation level, 314
servers. See SQL Server
SET
UPDATE based on joins, 268
using, 339
SET DEFAULT statement, 24
set diagram, 192
SET NOCOUNT ON, 365
SET NULL statement, 24
set operators, 191-210
circumventing unsupported logical phases, 202
EXCEPT operator, 198
EXCEPT ALL multiset operator, 199
EXCEPT distinct set operator, 198
exercises and solutions, 204-210
INTERSECT operator, 194-197
INTERSECT ALL multiset operator, 195-197
INTERSECT distinct set operator, 195
precedence, 200
UNION operator, 192-194
UNION ALL multiset operator, 192
UNION distinct set operator, 193
set theory, 3
shared lock mode
about, 300
lock compatibility, 301
SharePoint Designer. See Microsoft SharePoint
Designer
SharePoint Workspace. See Microsoft SharePoint
Workspace
short circuits, 60
side effects, UDFs, 363
simple CASE expressions, 53
single quotes ('), 64
single-table queries, 27-98
all-at-once operations, 59
CASE expressions, 53
character data, 61-73
collation, 62

SQL Server

data types, 61
LIKE predicate, 71
operators and functions, 64-71
date and time data, 73-87
data types, 73
filtering date ranges, 79
functions, 80-87
literals, 74-78
working with date and time separately, 78
exercises and solutions, 91-98
metadata, 88-90
catalog views, 88
information schema views, 89
system stored procedures and functions, 89
NULL, 55-59
predicates and operators, 50-53
SELECT, 27-50
FROM, 29
GROUP BY, 32-35
HAVING, 36
OFFSET-FETCH filter, 47
ORDER BY, 42
SELECT clause, 36-42
TOP filter, 44-47
WHERE, 31
window functions, 48
skipping, OFFSET-FETCH, 47
SMALLDATETIME, 73
SNAPSHOQOT isolation level, 317-319
snowflake schema, 11
source code, downloading, 385
sp_executesql, 360
sp_helptext, 173
SPID (unique server process ID), 304
spreading phase, pivoting data, 224
sp_sequence_get_range, 260
SQL Azure. See Windows Azure SQL Database
SQL Database. See Windows Azure SQL Database
SQL injection and concatenating user input, 359
SQL Server, 12-19, 376-384
ABC flavors, 12
authenticated logon, 17
creating user accounts, 376
databases, 15, 15-18
installing prerequisites, 377
installing the database engine, documentation
and tools, 377-384
instances of, 14
obtaining SQL Server, 376
schemas and objects, 18

Index

409

SQL Server Books Online

SQL Server Books Online, 393-396 surrogate keys, 252
SQL Server Management Studio. See SSMS SWITCHOFFSET function, 83
SQL (Structured Query Language) SYSDATETIME function, 25, 80
ANSI SQL-89 syntax SYSDATETIMEOFFSET function, 80
cross joins, 101 sys.dm_exec_connections, 306
inner joins, 105 sys.dm_exec_sessions, 307
ANSI SQL-92 syntax sys.dm_exec_sql_text function, 306
cross joins, 100 sys.dm_tran_locks view, 306
inner joins, 103 System R, 2
background, 2 system stored procedures and functions, 89
dynamic SQL, 359-362 SYSUTCDATETIME function, 80
EXEC, 359
PIVOT, 361
sp_executesql, 360 T

language independence, 2
logical order of processing query clauses, 28
pivoting data, 224
relational model, 39
unpivoting data, 229-231
SSMS (SQL Server Management Studio)
about, 387-393
loading SQL Server Books Online, 395
star schema, defined, 10
starting values, 257
statements
semicolon (;), 21
SQL categories, 2
statements that cannot be combined in the
same batch, 343
stored procedures, 364
strings, concatenating, 64, 362
Structured Query Language. See SQL
STUFF function, 70
style, coding, 21
subqueries, 129-156
correlated subqueries, 136-139
exercises and solutions, 147-156
limitations of, 212
misbehaving subqueries, 142-147

table expressions, 157-190
APPLY operator, 178-181
CTEs, 163

arguments, 165
column aliases, 164
multiple CTEs, 165
multiple references, 166
recursive CTEs, 166-168
data modification, 274-277
derived tables, 157-163
arguments, 161
column aliases, 159
multiple references, 162
nesting, 161
exercises and solutions, 182-190
inline TVFs, 176
views, 169-176
options, 172-176
ORDER BY clause, 170
tables. See also derived tables; single-table queries;
temporary tables
columns and prefixes, 101
creating, 20
defined, 5
hints and isolation levels, 310

NULL, 142 -
o . numbers and cross joins, 102
substitution errors in subquery column L .
operators and multi-join queries, 109
names, 145

order within, 43
referencing and referenced tables, 23
SELECT INTO, 251
temporary tables, 353-358
global temporary tables, 355
local temporary tables, 353
table types, 357
table variables, 356
TRUNCATE, 263

returning previous or next values, 140
running aggregates, 141
self-contained subqueries, 129-135
multivalued subquery examples, 132-135
scalar subquery examples, 130
subsets, defining using predicates, 4
substitution errors, subquery column names, 145
SUBSTRING function, 66

410 Index

Table-Valued Functions (TVFs), inline TVFs, 176
tempdb
databases, 16
isolation levels based on row versioning, 316
local temporary tables, 353
temporary tables, 353-358
global temporary tables, 355
local temporary tables, 353
table types, 357
table variables, 356
tenants. See also multitenancy
terminating, blockers, 308
text, obfuscated text, 172
three-valued predicate logic, 6
THROW, 372
ties and tiebreakers, 46
time. See date and time data
TODATETIMEOFFSET function, 83
tools, installing, 377-384
TOP
about, 44-47
circumventing unsupported logical phases, 203
data modification, 277-279
using, 171
transactions, 297-300. See also concurrency
online transactional processing, 10
roll backs and temporary tables, 356
versus batches, 341
triggers, 366-370
DDL triggers, 368
DML triggers, 367
troubleshooting
blocking, 303-309
table expressions, 275
TRUE, 55
TRUNCATE
about, 263
DDL, 3
TRY blocks, 371
TRY_CAST function, 81
TRY...CATCH, 370
TRY_CONVERT function, 81
TRY_PARSE function, 81
tuples, set theory, 4
TVFs (Table-Valued Functions), inline TVFs, 176
two-valued predicate logic, 6
types. See also data types
relations, 6

variables

U

UDFs (user-defined functions), 362
underscore (_) wildcard, 72
Unicode
data type, 51, 61
number of bytes, 67
sp_executesql, 360
UNION ALL
INSERT SELECT, 249
unpivoting, 233
UNION operator, 192-194
UNION ALL multiset operator, 192
UNION distinct set operator, 193
UNIQUE, 59
unique constraints, defined, 22
unique server process ID (SPID), 304
UNKNOWN
ELSE, 345
negating, 143
NULL, 55, 112
unpivoting data, 228-232
native T-SQL UNPIVOT operator, 231
standard SQL, 229-231
UPDATE, 264-270
about, 265
assignment UPDATE, 269
DML triggers, 367
isolation levels based on row versioning, 316
lost updates, 314
OUTPUT, 283
UPDATE based on joins, 267
UPPER function, 70
user accounts, creating on SQL Server, 376
user-defined functions (UDFs), 362
user input, concatenating, 359
USE statement, 20

Vv

VALUES
INSERT VALUES, 248
UNION ALL operators, 208

values, missing values, 6

VAR, 61

variables
batches, 343
programmable objects, 339
relation variables versus relations, 5
table variables, 356

Index

411

vector expressions

vector expressions, 268
Venn diagram, 192
VertiPaq, 11
views, 169-176
catalog views, 88
information schema views, 89
options, 172-176
CHECK OPTION, 174
ENCRYPTION, 172
SCHEMABINDING, 174
ORDER BY clause, 170
sys.dm_tran_locks view, 306
Visual Studio. See Microsoft Visual Studio

W

WHEN MATCHED, 273
WHEN MATCHED AND, 274
WHEN NOT MATCHED, 273
WHEN NOT MATCHED BY SOURCE, 273
WHERE
about, 31
DELETE, 262, 263
outer joins, 112,115
UPDATE based on joins, 267
WHILE, 346
whole, set theory, 3
wildcards, LIKE predicate, 71

412 Index

window functions, 211-222
about, 48
aggregates, 220, 352
offset window functions, 217-219
ORDER BY, 196
ranking, 214-217
Windows authenticated logon, 17
Windows Azure platform account, 376
Windows Azure SQL Database
about, 13
collation, 63
databases, 20
database triggers, 368
default isolation levels, 301, 310
engine, 13
getting started, 375
global temporary variables, 355
heaps, 251
logical layer, 17
READ COMMITTED, 303
system database master, 16
Windows Live ID, 376
WITH NOCHECK option, 24
WITH statement, CTEs, 163
WITH TIES, 152

Y

YEAR function, 85

About the Author

ITZIK BEN-GAN is a mentor with and co-founder of SolidQ. A SQL Server
Microsoft MVP since 1999, Itzik has taught numerous training events around
the world focused on T-SQL querying, query tuning, and programming. Itzik
is the author of several books about T-SQL. He has written many articles for
SQL Server Pro as well as articles and white papers for MSDN and The SolidQ
Journal. Itzik's speaking engagements include Tech-Ed, SQL PASS, SQL Server
Connections, presentations to various SQL Server user groups, and SolidQ events. Itzik
is a subject-matter expert within SolidQ for its T-SQL related activities. He authored
SolidQ’s Advanced T-SQL and T-SQL Fundamentals courses and delivers them regularly
worldwide.

	Foreword
	Introduction
	Subqueries
	Self-Contained Subqueries
	Self-Contained Scalar Subquery Examples
	Self-Contained Multivalued Subquery Examples

	Correlated Subqueries
	The EXISTS Predicate

	Beyond the Fundamentals of Subqueries
	Returning Previous or Next Values
	Using Running Aggregates
	Dealing with Misbehaving Subqueries

	Conclusion
	Exercises
	1
	2 (Optional, Advanced)
	3
	4
	5
	6
	7 (Optional, Advanced)
	8 (Optional, Advanced)

	Solutions
	1
	2
	3
	4
	5
	6
	7
	8

	Index
	About the Author

