

● ● ● ● ● ● ● ● ● ● ●

How to access
your CD files

Microsoft Press

The print edition of this book includes a CD. To access the
CD files, go to http://aka.ms/666054/files, and look for the
Downloads tab.

Note: Use a desktop web browser, as files may not be
accessible from all ereader devices.

Questions? Please contact: mspinput@microsoft.com

Exam 70-461: Querying Microsoft SQL Server 2012
OBJECTIVE CHAPTER LESSON

1. CREATE DATABASE OBJECTS
1.1 Create and alter tables using T-SQL syntax (simple statements). 8 1
1.2 Create and alter views (simple statements). 9

15
1
1

1.3 Design views. 9 1
1.4 Create and modify constraints (simple statements). 8 2
1.5 Create and alter DML triggers. 13 2
2. WORK WITH DATA
2.1 Query data by using SELECT statements. 1

2
3
4
5
6
8
9
12

1
2
All lessons
All lessons
3
Lessons 2 and 3
2
2
3

2.2 Implement sub-queries. 4
5
17

2
2
1

2.3 Implement data types. 2
3

2
1

2.4 Implement aggregate queries. 5 Lessons 1 and 3
2.5 Query and manage XML data. 7 All lessons
3. MODIFY DATA
3.1 Create and alter stored procedures (simple statements). 13 All lessons
3.2 Modify data by using INSERT, UPDATE, and DELETE statements. 10

11
All lessons
3

3.3 Combine datasets. 2
4
11

2
3
2

3.4 Work with functions. 2
3
6
13

2
1
3
3

4. TROUBLESHOOT & OPTIMIZE
4.1 Optimize queries. 12

14
15
17

Both lessons
All lessons
All lessons
All lessons

4.2 Manage transactions. 12 1
4.3 Evaluate the use of row-based operations vs. set-based operations. 16 1
4.4 Implement error handling. 12

16
2
1

Exam Objectives The exam objectives listed here are current as of this book’s publication date. Exam objectives are
subject to change at any time without prior notice and at Microsoft’s sole discretion. Please visit the Microsoft Learning
website for the most current listing of exam objectives: http://www.microsoft.com/learning/en/us/exam.aspx?ID=
70-461&locale=en-us.

http://www.microsoft.com/learning/en/us/exam.aspx%3FID%3D70-461%26locale%3Den-us
http://www.microsoft.com/learning/en/us/exam.aspx%3FID%3D70-461%26locale%3Den-us

Querying Microsoft®
SQL Server® 2012
Exam 70-461
Training Kit

Itzik Ben-Gan
Dejan Sarka
Ron Talmage

Copyright © 2012 by SolidQuality Global SL.

All rights reserved. No part of the contents of this book may be reproduced
or transmitted in any form or by any means without the written permission of
the publisher.

ISBN: 978-0-7356-6605-4

Ninth Printing: March 2015

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors
worldwide. If you need support related to this book, email Microsoft Press
Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/
en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respec-
tive owners.

The example companies, organizations, products, domain names, email ad-
dresses, logos, people, places, and events depicted herein are fi ctitious. No
association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information con-
tained in this book is provided without any express, statutory, or implied
warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be
caused either directly or indirectly by this book.

Acquisitions & Developmental Editor: Ken Jones
Production Editor: Melanie Yarbrough
Editorial Production: Online Training Solutions, Inc.
Technical Reviewer: Herbert Albert
Indexer: WordCo Indexing Services
Cover Design: Twist Creative • Seattle
Cover Composition: Zyg Group, LLC

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents at a Glance

Introduction xxv

ChapTER 1 Foundations of Querying 1

ChapTER 2 Getting Started with the SELECT Statement 29

ChapTER 3 Filtering and Sorting Data 61

ChapTER 4 Combining Sets 101

ChapTER 5 Grouping and Windowing 149

ChapTER 6 Querying Full-Text Data 191

ChapTER 7 Querying and Managing XML Data 221

ChapTER 8 Creating Tables and Enforcing Data Integrity 265

ChapTER 9 Designing and Creating Views, Inline Functions,
and Synonyms 299

ChapTER 10 Inserting, Updating, and Deleting Data 329

ChapTER 11 Other Data Modification Aspects 369

ChapTER 12 Implementing Transactions, Error handling, and
Dynamic SQL 411

ChapTER 13 Designing and Implementing T-SQL Routines 469

ChapTER 14 Using Tools to analyze Query performance 517

ChapTER 15 Implementing Indexes and Statistics 549

ChapTER 16 Understanding Cursors, Sets, and Temporary Tables 599

ChapTER 17 Understanding Further Optimization aspects 631

Index 677

vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction xxv

Chapter 1 Foundations of Querying 1
Before You Begin . 1

Lesson 1: Understanding the Foundations of T-SQL. 2

Evolution of T-SQL 2

Using T-SQL in a Relational Way 5

Using Correct Terminology 10

Lesson Summary 13

Lesson Review 13

Lesson 2: Understanding Logical Query Processing 14

T-SQL As a Declarative English-Like Language 14

Logical Query Processing Phases 15

Lesson Summary 23

Lesson Review 23

Case Scenarios . 24

Case Scenario 1: Importance of Theory 24

Case Scenario 2: Interviewing for a Code Reviewer Position 24

Suggested Practices . 25

Visit T-SQL Public Newsgroups and Review Code 25

Describe Logical Query Processing 25

Answers . 26

Lesson 1 26

Lesson 2 27

viii Contents

Case Scenario 1 28

Case Scenario 2 28

Chapter 2 Getting Started with the SELECT Statement 29
Before You Begin . 29

Lesson 1: Using the FROM and SELECT Clauses . 30

The FROM Clause 30

The SELECT Clause 31

Delimiting Identifiers 34

Lesson Summary 36

Lesson Review 36

Lesson 2: Working with Data Types and
Built-in Functions . 37

Choosing the Appropriate Data Type 37

Choosing a Data Type for Keys 41

Date and Time Functions 44

Character Functions 46

CASE Expression and Related Functions 49

Lesson Summary 55

Lesson Review 55

Case Scenarios . 56

Case Scenario 1: Reviewing the Use of Types 56

Case Scenario 2: Reviewing the Use of Functions 57

Suggested Practices . 57

Analyze the Data Types in the Sample Database 57

Analyze Code Samples in Books Online for SQL Server 2012 57

Answers . 58

Lesson 1 58

Lesson 2 58

Case Scenario 1 59

Case Scenario 2 60

ixContents

Chapter 3 Filtering and Sorting Data 61
Before You Begin . 61

Lesson 1: Filtering Data with Predicates . 62

Predicates, Three-Valued Logic, and Search Arguments 62

Combining Predicates 66

Filtering Character Data 68

Filtering Date and Time Data 70

Lesson Summary 73

Lesson Review 74

Lesson 2: Sorting Data . 74

Understanding When Order Is Guaranteed 75

Using the ORDER BY Clause to Sort Data 76

Lesson Summary 83

Lesson Review 83

Lesson 3: Filtering Data with TOP and OFFSET-FETCH 84

Filtering Data with TOP 84

Filtering Data with OFFSET-FETCH 88

Lesson Summary 93

Lesson Review 94

Case Scenarios . 95

Case Scenario 1: Filtering and Sorting Performance
Recommendations 95

Case Scenario 2: Tutoring a Junior Developer 95

Suggested Practices . 96

Identify Logical Query Processing Phases and Compare Filters 96

Understand Determinism 96

Answers . 97

Lesson 1 97

Lesson 2 98

Lesson 3 98

Case Scenario 1 99

Case Scenario 2 100

x Contents

Chapter 4 Combining Sets 101
Before You Begin . 101

Lesson 1: Using Joins . 102

Cross Joins 102

Inner Joins 105

Outer Joins 108

Multi-Join Queries 112

Lesson Summary 116

Lesson Review 117

Lesson 2: Using Subqueries, Table Expressions, and the APPLY
Operator . 117

Subqueries 118

Table Expressions 121

APPLY 128

Lesson Summary 135

Lesson Review 136

Lesson 3: Using Set Operators . 136

UNION and UNION ALL 137

INTERSECT 139

EXCEPT 140

Lesson Summary 142

Lesson Review 142

Case Scenarios . 143

Case Scenario 1: Code Review 143

Case Scenario 2: Explaining Set Operators 144

Suggested Practices . 144

Combine Sets 144

Answers . 145

Lesson 1 145

Lesson 2 145

Lesson 3 146

Case Scenario 1 147

Case Scenario 2 147

xiContents

Chapter 5 Grouping and Windowing 149
Before You Begin . 149

Lesson 1: Writing Grouped Queries . 150

Working with a Single Grouping Set 150

Working with Multiple Grouping Sets 155

Lesson Summary 161

Lesson Review 162

Lesson 2: Pivoting and Unpivoting Data . 163

Pivoting Data 163

Unpivoting Data 166

Lesson Summary 171

Lesson Review 171

Lesson 3: Using Window Functions . 172

Window Aggregate Functions 172

Window Ranking Functions 176

Window Offset Functions 178

Lesson Summary 183

Lesson Review 183

Case Scenarios . 184

Case Scenario 1: Improving Data Analysis Operations 184

Case Scenario 2: Interviewing for a Developer Position 185

Suggested Practices . 185

Logical Query Processing 185

Answers . 186

Lesson 1 186

Lesson 2 187

Lesson 3 187

Case Scenario 1 188

Case Scenario 2 188

xii Contents

Chapter 6 Querying Full-Text Data 191
Before You Begin . 191

Lesson 1: Creating Full-Text Catalogs and Indexes 192

Full-Text Search Components 192

Creating and Managing Full-Text Catalogs and Indexes 194

Lesson Summary 201

Lesson Review 201

Lesson 2: Using the CONTAINS and FREETEXT Predicates 202

The CONTAINS Predicate 202

The FREETEXT Predicate 204

Lesson Summary 208

Lesson Review 208

Lesson 3: Using the Full-Text and Semantic Search
Table-Valued Functions . 209

Using the Full-Text Search Functions 209

Using the Semantic Search Functions 210

Lesson Summary 214

Lesson Review 214

Case Scenarios . 215

Case Scenario 1: Enhancing the Searches 215

Case Scenario 2: Using the Semantic Search 215

Suggested Practices . 215

Check the FTS Dynamic Management Views and
Backup and Restore of a Full-Text Catalog and Indexes 215

Answers . 217

Lesson 1 217

Lesson 2 217

Lesson 3 218

Case Scenario 1 219

Case Scenario 2 219

xiiiContents

Chapter 7 Querying and Managing XML Data 221
Before You Begin . 221

Lesson 1: Returning Results As XML with FOR XML 222

Introduction to XML 222

Producing XML from Relational Data 226

Shredding XML to Tables 230

Lesson Summary 234

Lesson Review 234

Lesson 2: Querying XML Data with XQuery . 235

XQuery Basics 236

Navigation 240

FLWOR Expressions 243

Lesson Summary 248

Lesson Review 248

Lesson 3: Using the XML Data Type . 249

When to Use the XML Data Type 250

XML Data Type Methods 250

Using the XML Data Type for Dynamic Schema 252

Lesson Summary 259

Lesson Review 259

Case Scenarios . 260

Case Scenario 1: Reports from XML Data 260

Case Scenario 2: Dynamic Schema 261

Suggested Practices . 261

Query XML Data 261

Answers . 262

Lesson 1 262

Lesson 2 262

Lesson 3 263

Case Scenario 1 264

Case Scenario 2 264

xiv Contents

Chapter 8 Creating Tables and Enforcing Data Integrity 265
Before You Begin . 265

Lesson 1: Creating and Altering Tables . 265

Introduction 266

Creating a Table 267

Altering a Table 276

Choosing Table Indexes 276

Lesson Summary 280

Lesson Review 280

Lesson 2: Enforcing Data Integrity . 281

Using Constraints 281

Primary Key Constraints 282

Unique Constraints 283

Foreign Key Constraints 285

Check Constraints 286

Default Constraints 288

Lesson Summary 292

Lesson Review 292

Case Scenarios . 293

Case Scenario 1: Working with Table Constraints 293

Case Scenario 2: Working with Unique and Default Constraints 293

Suggested Practices . 294

Create Tables and Enforce Data Integrity 294

Answers . 295

Lesson 1 295

Lesson 2 295

Case Scenario 1 296

Case Scenario 2 297

xvContents

Chapter 9 Designing and Creating Views, Inline Functions,
and Synonyms 299

Before You Begin . 299

Lesson 1: Designing and Implementing Views and Inline Functions 300

Introduction 300

Views 300

Inline Functions 307

Lesson Summary 313

Lesson Review 314

Lesson 2: Using Synonyms . 315

Creating a Synonym 315

Comparing Synonyms with Other Database Objects 318

Lesson Summary 322

Lesson Review 322

Case Scenarios . 323

Case Scenario 1: Comparing Views, Inline Functions,
and Synonyms 323

Case Scenario 2: Converting Synonyms to Other Objects 323

Suggested Practices . 324

Design and Create Views, Inline Functions, and Synonyms 324

Answers . 325

Lesson 1 325

Lesson 2 326

Case Scenario 1 326

Case Scenario 2 327

xvi Contents

Chapter 10 Inserting, Updating, and Deleting Data 329
Before You Begin . 329

Lesson 1: Inserting Data . 330

Sample Data 330

INSERT VALUES 331

INSERT SELECT 333

INSERT EXEC 334

SELECT INTO 335

Lesson Summary 340

Lesson Review 340

Lesson 2: Updating Data . 341

Sample Data 341

UPDATE Statement 342

UPDATE Based on Join 344

Nondeterministic UPDATE 346

UPDATE and Table Expressions 348

UPDATE Based on a Variable 350

UPDATE All-at-Once 351

Lesson Summary 354

Lesson Review 355

Lesson 3: Deleting Data . 356

Sample Data 356

DELETE Statement 357

TRUNCATE Statement 358

DELETE Based on a Join 359

DELETE Using Table Expressions 360

Lesson Summary 362

Lesson Review 363

Case Scenarios . 363

Case Scenario 1: Using Modifications That Support
Optimized Logging 364

Case Scenario 2: Improving a Process That Updates Data 364

Suggested Practices .364

DELETE vs. TRUNCATE 364

xviiContents

Answers . 366

Lesson 1 366

Lesson 2 367

Lesson 3 367

Case Scenario 1 368

Case Scenario 2 368

Chapter 11 Other Data Modification Aspects 369
Before You Begin . 369

Lesson 1: Using the Sequence Object and IDENTITY Column Property . 370

Using the IDENTITY Column Property 370

Using the Sequence Object 374

Lesson Summary 381

Lesson Review 381

Lesson 2: Merging Data . 382

Using the MERGE Statement 383

Lesson Summary 392

Lesson Review 393

Lesson 3: Using the OUTPUT Option . 394

Working with the OUTPUT Clause 394

INSERT with OUTPUT 395

DELETE with OUTPUT 396

UPDATE with OUTPUT 397

MERGE with OUTPUT 397

Composable DML 399

Lesson Summary 403

Lesson Review 404

Case Scenarios . 405

Case Scenario 1: Providing an Improved Solution for
Generating Keys 405

Case Scenario 2: Improving Modifications 405

Suggested Practices .406

Compare Old and New Features 406

xviii Contents

Answers . 407

Lesson 1 407

Lesson 2 408

Lesson 3 408

Case Scenario 1 409

Case Scenario 2 409

Chapter 12 Implementing Transactions, Error Handling,
and Dynamic SQL 411

Before You Begin . 411

Lesson 1: Managing Transactions and Concurrency 412

Understanding Transactions 412

Types of Transactions 415

Basic Locking 422

Transaction Isolation Levels 426

Lesson Summary 434

Lesson Review 434

Lesson 2: Implementing Error Handling . 435

Detecting and Raising Errors 435

Handling Errors After Detection 440

Lesson Summary 449

Lesson Review 450

Lesson 3: Using Dynamic SQL . 450

Dynamic SQL Overview 451

SQL Injection 456

Using sp_executesql 457

Lesson Summary 462

Lesson Review 462

Case Scenarios . 463

Case Scenario 1: Implementing Error Handling 463

Case Scenario 2: Implementing Transactions 463

Suggested Practices .464

Implement Error Handling 464

xixContents

Answers . 465

Lesson 1 465

Lesson 2 466

Lesson 3 467

Case Scenario 1 468

Case Scenario 2 468

Chapter 13 Designing and Implementing T-SQL Routines 469
Before You Begin . 469

Lesson 1: Designing and Implementing Stored Procedures 470

Understanding Stored Procedures 470

Executing Stored Procedures 475

Branching Logic 477

Developing Stored Procedures 481

Lesson Summary 489

Lesson Review 490

Lesson 2: Implementing Triggers . 490

DML Triggers 491

AFTER Triggers 492

INSTEAD OF Triggers 495

DML Trigger Functions 496

Lesson Summary 499

Lesson Review 500

Lesson 3: Implementing User-Defined Functions . 501

Understanding User-Defined Functions 501

Scalar UDFs 502

Table-Valued UDFs 503

Limitations on UDFs 505

UDF Options 506

UDF Performance Considerations 506

Lesson Summary 509

Lesson Review 510

xx Contents

Case Scenarios . 511

Case Scenario 1: Implementing Stored Procedures and UDFs 511

Case Scenario 2: Implementing Triggers 511

Suggested Practices . 512

Use Stored Procedures, Triggers, and UDFs 512

Answers . 513

Lesson 1 513

Lesson 2 514

Lesson 3 514

Case Scenario 1 515

Case Scenario 2 516

Chapter 14 Using Tools to Analyze Query Performance 517
Before You Begin . 517

Lesson 1: Getting Started with Query Optimization 518

Query Optimization Problems and the Query Optimizer 518

SQL Server Extended Events, SQL Trace, and SQL Server Profiler 523

Lesson Summary 528

Lesson Review 528

Lesson 2: Using SET Session Options and
Analyzing Query Plans . 529

SET Session Options 529

Execution Plans 532

Lesson Summary 538

Lesson Review 538

Lesson 3: Using Dynamic Management Objects . 539

Introduction to Dynamic Management Objects 539

The Most Important DMOs for Query Tuning 540

Lesson Summary 544

Lesson Review 544

Case Scenarios .544

Case Scenario 1: Analysis of Queries 545

Case Scenario 2: Constant Monitoring 545

xxiContents

Suggested Practices . 545

Learn More About Extended Events, Execution Plans,
and Dynamic Management Objects 545

Answers .546

Lesson 1 546

Lesson 2 546

Lesson 3 547

Case Scenario 1 548

Case Scenario 2 548

Chapter 15 Implementing Indexes and Statistics 549
Before You Begin . 550

Lesson 1: Implementing Indexes . 550

Heaps and Balanced Trees 550

Implementing Nonclustered Indexes 564

Implementing Indexed Views 568

Lesson Summary 573

Lesson Review 573

Lesson 2: Using Search Arguments . 573

Supporting Queries with Indexes 574

Search Arguments 578

Lesson Summary 584

Lesson Review 584

Lesson 3: Understanding Statistics . 585

Auto-Created Statistics 585

Manually Maintaining Statistics 589

Lesson Summary 592

Lesson Review 592

Case Scenarios . 593

Case Scenario 1: Table Scans 593

Case Scenario 2: Slow Updates 594

Suggested Practices . 594

Learn More About Indexes and How Statistics Influence
Query Execution 594

xxii Contents

Answers . 595

Lesson 1 595

Lesson 2 595

Lesson 3 596

Case Scenario 1 597

Case Scenario 2 597

Chapter 16 Understanding Cursors, Sets, and Temporary Tables 599
Before You Begin . 599

Lesson 1: Evaluating the Use of Cursor/Iterative Solutions vs.
Set-Based Solutions .600

The Meaning of “Set-Based” 600

Iterations for Operations That Must Be Done Per Row 601

Cursor vs. Set-Based Solutions for Data Manipulation Tasks 604

Lesson Summary 610

Lesson Review 610

Lesson 2: Using Temporary Tables vs. Table Variables 611

Scope 612

DDL and Indexes 613

Physical Representation in tempdb 616

Transactions 617

Statistics 618

Lesson Summary 623

Lesson Review 624

Case Scenarios . 624

Case Scenario 1: Performance Improvement
Recommendations for Cursors and Temporary Objects 625

Case Scenario 2: Identifying Inaccuracies in Answers 625

Suggested Practices . 626

Identify Differences 626

xxiiiContents

Answers . 627

Lesson 1 627

Lesson 2 628

Case Scenario 1 628

Case Scenario 2 629

Chapter 17 Understanding Further Optimization Aspects 631
Before You Begin . 632

Lesson 1: Understanding Plan Iterators . 632

Access Methods 632

Join Algorithms 638

Other Plan Iterators 641

Lesson Summary 647

Lesson Review 647

Lesson 2: Using Parameterized Queries and Batch Operations 647

Parameterized Queries 648

Batch Processing 653

Lesson Summary 660

Lesson Review 660

Lesson 3: Using Optimizer Hints and Plan Guides . 661

Optimizer Hints 661

Plan Guides 666

Lesson Summary 670

Lesson Review 670

Case Scenarios . 671

Case Scenario 1: Query Optimization 671

Case Scenario 2: Table Hint 671

Suggested Practices . 672

Analyze Execution Plans and Force Plans 672

xxiv Contents

Answers . 673

Lesson 1 673

Lesson 2 674

Lesson 3 674

Case Scenario 1 675

Case Scenario 2 675

Index 677

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

xxv

Introduction

This Training Kit is designed for information technology (IT) professionals who need to
query data in Microsoft SQL Server 2012 and who also plan to take Exam 70-461, “Query-

ing Microsoft SQL Server 2012.” It is assumed that before you begin using this Training Kit,
you have a foundation-level understanding of using Transact-SQL (T-SQL) to query data in
SQL Server 2012 and have some experience using the product. Although this book helps pre-
pare you for the 70-461 exam, you should consider it as one part of your exam preparation
plan. Meaningful, real-world experience with SQL Server 2012 is required to pass this exam.

The material covered in this Training Kit and on Exam 70-461 relates to the technolo-
gies in SQL Server 2012. The topics in this Training Kit cover what you need to know for the
exam as described on the Skills Measured tab for the exam, which is available at http:
//www.microsoft.com/learning/en/us/exam.aspx?ID=70-461&locale=en-us#tab2.

By using this Training Kit, you will learn how to do the following:

■■ Create database objects

■■ Work with data

■■ Modify data

■■ Troubleshoot and optimize T-SQL code

Refer to the objective mapping page in the front of this book to see where in the book
each exam objective is covered.

System Requirements

The following are the minimum system requirements your computer needs to meet to com-
plete the practice exercises in this book and to run the companion CD.

SQL Server Software and Data Requirements
You can find the minimum SQL Server software and data requirements here:

■■ SQL Server 2012 You need access to a SQL Server 2012 instance with a logon that
has permissions to create new databases—preferably one that is a member of the sys-
admin role. For the purposes of this Training Kit, you can use almost any edition of on-
premises SQL Server (Standard, Enterprise, Business Intelligence, or Developer), both
32-bit and 64-bit editions. If you don't have access to an existing SQL Server instance,
you can install a trial copy that you can use for 180 days. You can download a trial copy
from http://www.microsoft.com/sqlserver/en/us/get-sql-server/try-it.aspx.

xxvi Introduction

 ■ SQL Server 2012 Setup Feature Selection In the Feature Selection dialog box of
the SQL Server 2012 setup program, choose at minimum the following components:

 ■ Database Engine Services

 ■ Full-Text And Semantic Extractions For Search

 ■ Documentation Components

 ■ Management Tools—Basic (required)

 ■ Management Tools—Complete (recommended)

 ■ TSQL2012 sample database and source code Most exercises in this Training Kit
use a sample database called TSQL2012. The companion content for the Training
Kit includes a compressed fi le called TK70461-YYYYMMDD.zip (where YYYYMMDD
refl ects the date of the last revision) that contains the book’s source code, exercises,
and a script fi le called TSQL2012.sql that you use to create the sample database.
You can download the compressed fi le from the website at http://go.microsoft.com/
FWLink/?Linkid=263548 and from the authors’ website at http://tsql.solidq.com/books/
tk70461/.

Hardware and Operating System Requirements
You can fi nd the minimum hardware and operating system requirements for installing and
running SQL Server 2012 at http://msdn.microsoft.com/en-us/library/ms143506(v=sql.110).aspx.

Using the Companion CD

A companion CD is included with this Training Kit. The companion CD contains the following:

 ■ Practice tests You can reinforce your understanding of the topics covered in this
Training Kit by using electronic practice tests that you customize to meet your needs.
You can practice for the 70-461 certifi cation exam by using tests created from a pool
of 200 practice exam questions, which give you many practice exams to help you
prepare for the certifi cation exam. These questions are not from the exam; they are for
practice and preparation.

 ■ An eBook An electronic version (eBook) of this book is included for when you do not
want to carry the printed book with you.

http://go.microsoft.com/FWLink/?Linkid=263548
http://go.microsoft.com/FWLink/?Linkid=263548
http://tsql.solidq.com/books/tk70461/
http://tsql.solidq.com/books/tk70461/
http://msdn.microsoft.com/en-us/library/ms143506(v=sql.110).aspx

xxviiIntroduction

how to Install the practice Tests
To install the practice test software from the companion CD to your hard disk, perform the
following steps:

1. Insert the companion CD into your CD drive and accept the license agreement. A CD
menu appears.

NOTE IF THE CD MENU DOES NOT APPEAR

If the CD menu or the license agreement does not appear, AutoRun might be disabled
on your computer. Refer to the Readme.txt file on the CD for alternate installation
instructions.

2. Click Practice Tests and follow the instructions on the screen.

how to Use the practice Tests
To start the practice test software, follow these steps:

1. Click Start, All Programs, and then select Microsoft Press Training Kit Exam Prep.

A window appears that shows all the Microsoft Press Training Kit exam prep suites
installed on your computer.

2. Double-click the practice test you want to use.

When you start a practice test, you choose whether to take the test in Certification Mode,
Study Mode, or Custom Mode:

■■ Certification Mode Closely resembles the experience of taking a certification exam.
The test has a set number of questions. It is timed, and you cannot pause and restart
the timer.

■■ Study Mode Creates an untimed test during which you can review the correct an-
swers and the explanations after you answer each question.

■■ Custom Mode Gives you full control over the test options so that you can customize
them as you like.

xxviii Introduction

In all modes, the user interface when you are taking the test is basically the same but with
different options enabled or disabled, depending on the mode.

When you review your answer to an individual practice test question, a “References” sec-
tion is provided that lists where in the Training Kit you can find the information that relates to
that question and provides links to other sources of information. After you click Test Results
to score your entire practice test, you can click the Learning Plan tab to see a list of references
for every objective.

how to Uninstall the practice Tests
To uninstall the practice test software for a Training Kit, use the Program And Features option
in Windows Control Panel.

Acknowledgments

A book is put together by many more people than the authors whose names are listed on
the cover page. We’d like to express our gratitude to the following people for all the work
they have done in getting this book into your hands: Herbert Albert (technical editor), Lilach
Ben-Gan (project manager), Ken Jones (acquisitions and developmental editor), Melanie
Yarbrough (production editor), Jaime Odell (copyeditor), Marlene Lambert (PTQ project man-
ager), Jeanne Craver (graphics), Jean Trenary (desktop publisher), Kathy Krause (proofreader),
and Kerin Forsyth (PTQ copyeditor).

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site:

If you find an error that is not already listed, you can report it to us through the same
page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

http://www.microsoftpressstore.com/title/9780735666054.

http://www.microsoftpressstore.com/title/9780735666054

xxixIntroduction

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in ad-
vance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

xxx Introduction

Preparing for the Exam

M icrosoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience

and product knowledge. While there is no substitution for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. We recommend
that you round out your exam preparation plan by using a combination of available study
materials and courses. For example, you might use the Training Kit and another study guide
for your “at home” preparation, and take a Microsoft Official Curriculum course for the class-
room experience. Choose the combination that you think works best for you.

NOTE PASSING THE EXAM

Take a minute (well, one minute and two seconds) to look at the “Passing a Microsoft
Exam” video at http://www.youtube.com/watch?v=Jp5qg2NhgZ0&feature=youtu.be. It’s
true. Really!

 1

C H A P T E R 1

Foundations of Querying

Exam objectives in this chapter:
■■ Work with Data

■■ Query data by using SELECT statements.

Transact-SQL (T-SQL) is the main language used to manage
and manipulate data in Microsoft SQL Server. This chapter

lays the foundations for querying data by using T-SQL. The
chapter describes the roots of this language, terminology, and
the mindset you need to adopt when writing T-SQL code. It
then moves on to describe one of the most important con-
cepts you need to know about the language—logical query
processing.

Although this chapter doesn’t directly target specific exam
objectives other than discussing the design of the SELECT
statement, which is the main T-SQL statement used to query data, the rest of the chapters in
this Training Kit do. However, the information in this chapter is critical in order to correctly
understand the rest of the book.

Lessons in this chapter:
■■ Lesson 1: Understanding the Foundations of T-SQL

■■ Lesson 2: Understanding Logical Query Processing

Before You Begin

To complete the lessons in this chapter, you must have:

■■ An understanding of basic database concepts.

■■ Experience working with SQL Server Management Studio (SSMS).

■■ Some experience writing T-SQL code.

■■ Access to a SQL Server 2012 instance with the sample database TSQL2012 installed.
(Please see the book’s introduction for details on how to create the sample database.)

i m p o r t a n t

Have you read
page xxx?
It contains valuable
information regarding
the skills you need to
pass the exam.

 2 CHAPTER 1 Foundations of Querying

Lesson 1: Understanding the Foundations of T-SQL

Many aspects of computing, like programming languages, evolve based on intuition and the
current trend. Without strong foundations, their lifespan can be very short, and if they do
survive, often the changes are very rapid due to changes in trends. T-SQL is different, mainly
because it has strong foundations—mathematics. You don’t need to be a mathematician to
write good SQL (though it certainly doesn’t hurt), but as long as you understand what those
foundations are, and some of their key principles, you will better understand the language
you are dealing with. Without those foundations, you can still write T-SQL code—even code
that runs successfully—but it will be like eating soup with a fork!

After this lesson, you will be able to:
■■ Describe the foundations that T-SQL is based on.

■■ Describe the importance of using T-SQL in a relational way.

■■ Use correct terminology when describing T-SQL–related elements.

Estimated lesson time: 40 minutes

Evolution of T-SQL
As mentioned, unlike many other aspects of computing, T-SQL is based on strong mathemati-
cal foundations. Understanding some of the key principals from those foundations can help
you better understand the language you are dealing with. Then you will think in T-SQL terms
when coding in T-SQL, as opposed to coding with T-SQL while thinking in procedural terms.

Figure 1-1 illustrates the evolution of T-SQL from its core mathematical foundations.

T-SQL

SQL

Relational Model

Set Theory Predicate Logic

FIGURE 1-1 Evolution of T-SQL.

 Lesson 1: Understanding the Foundations of T-SQL CHAPTER 1 3

T-SQL is the main language used to manage and manipulate data in Microsoft’s main re-
lational database management system (RDBMS), SQL Server—whether on premises or in the
cloud (Microsoft Windows Azure SQL Database). SQL Server also supports other languages,
like Microsoft Visual C# and Microsoft Visual Basic, but T-SQL is usually the preferred lan-
guage for data management and manipulation.

T-SQL is a dialect of standard SQL. SQL is a standard of both the International Organization
for Standards (ISO) and the American National Standards Institute (ANSI). The two standards
for SQL are basically the same. The SQL standard keeps evolving with time. Following is a list
of the major revisions of the standard so far:

■■ SQL-86

■■ SQL-89

■■ SQL-92

■■ SQL:1999

■■ SQL:2003

■■ SQL:2006

■■ SQL:2008

■■ SQL:2011

All leading database vendors, including Microsoft, implement a dialect of SQL as the main
language to manage and manipulate data in their database platforms. Therefore, the core
language elements look the same. However, each vendor decides which features to imple-
ment and which not to. Also, the standard sometimes leaves some aspects as an implementa-
tion choice. Each vendor also usually implements extensions to the standard in cases where
the vendor feels that an important feature isn’t covered by the standard.

Writing in a standard way is considered a best practice. When you do so, your code is
more portable. Your knowledge is more portable, too, because it is easy for you to start
working with new platforms. When the dialect you’re working with supports both a standard
and a nonstandard way to do something, you should always prefer the standard form as your
default choice. You should consider a nonstandard option only when it has some important
benefit to you that is not covered by the standard alternative.

As an example of when to choose the standard form, T-SQL supports two “not equal to”
operators: <> and !=. The former is standard and the latter is not. This case should be a no-
brainer: go for the standard one!

As an example of when the choice of standard or nonstandard depends on the circum-
stances, consider the following: T-SQL supports multiple functions that convert a source value
to a target type. Among them are the CAST and CONVERT functions. The former is standard
and the latter isn’t. The nonstandard CONVERT function has a style argument that CAST
doesn’t support. Because CAST is standard, you should consider it your default choice for
conversions. You should consider using CONVERT only when you need to rely on the style
argument.

 4 CHAPTER 1 Foundations of Querying

Yet another example of choosing the standard form is in the termination of T-SQL state-
ments. According to standard SQL, you should terminate your statements with a semicolon.
T-SQL currently doesn’t make this a requirement for all statements, only in cases where there
would otherwise be ambiguity of code elements, such as in the WITH clause of a common
table expression (CTE). You should still follow the standard and terminate all of your state-
ments even where it is currently not required.

Standard SQL is based on the relational model, which is a mathematical model for data
management and manipulation. The relational model was initially created and proposed by
Edgar F. Codd in 1969. Since then, it has been explained and developed by Chris Date, Hugh
Darwen, and others.

A common misconception is that the name “relational” has to do with relationships
between tables (that is, foreign keys). Actually, the true source for the model’s name is the
mathematical concept relation.

A relation in the relational model is what SQL calls a table. The two are not synonymous.
You could say that a table is an attempt by SQL to represent a relation (in addition to a rela-
tion variable, but that’s not necessary to get into here). Some might say that it is not a very
successful attempt. Even though SQL is based on the relational model, it deviates from it in a
number of ways. But it’s important to note that as you understand the model’s principles, you
can use SQL—or more precisely, the dialect you are using—in a relational way. More on this,
including a further reading recommendation, is in the next section, “Using T-SQL in a Rela-
tional Way.”

Getting back to a relation, which is what SQL attempts to represent with a table: a relation
has a heading and a body. The heading is a set of attributes (what SQL attempts to represent
with columns), each of a given type. An attribute is identified by name and type name. The
body is a set of tuples (what SQL attempts to represent with rows). Each tuple’s heading is the
heading of the relation. Each value of each tuple’s attribute is of its respective type.

Some of the most important principals to understand about T-SQL stem from the rela-
tional model’s core foundations—set theory and predicate logic.

Remember that the heading of a relation is a set of attributes, and the body a set of tuples.
So what is a set? According to the creator of mathematical set theory, Georg Cantor, a set is
described as follows:

By a “set” we mean any collection M into a whole of definite, distinct objects
m (which are called the “elements” of M) of our perception or of our thought.

—GeorGe Cantor, in “GeorG Cantor” by Joseph W. Dauben
(prinCeton university press, 1990)

There are a number of very important principles in this definition that, if understood,
should have direct implications on your T-SQL coding practices. For one, notice the term
whole. A set should be considered as a whole. This means that you do not interact with the
individual elements of the set, rather with the set as a whole.

Key
Terms

Key
Terms

Key
Terms

 Lesson 1: Understanding the Foundations of T-SQL CHAPTER 1 5

Notice the term distinct—a set has no duplicates. Codd once remarked on the no dupli-
cates aspect: ”If something is true, then saying it twice won't make it any truer.“ For example,
the set {a, b, c} is considered equal to the set {a, a, b, c, c, c}.

Another critical aspect of a set doesn’t explicitly appear in the aforementioned definition
by Cantor, but rather is implied—there’s no relevance to the order of elements in a set. In
contrast, a sequence (which is an ordered set), for example, does have an order to its ele-
ments. Combining the no duplicates and no relevance to order aspects means that the set
{a, b, c} is equal to the set {b, a, c, c, a, c}.

The other branch of mathematics that the relational model is based on is called predicate
logic. A predicate is an expression that when attributed to some object, makes a proposition
either true or false. For example, “salary greater than $50,000” is a predicate. You can evalu-
ate this predicate for a specific employee, in which case you have a proposition. For example,
suppose that for a particular employee, the salary is $60,000. When you evaluate the proposi-
tion for that employee, you get a true proposition. In other words, a predicate is a parameter-
ized proposition.

The relational model uses predicates as one of its core elements. You can enforce data
integrity by using predicates. You can filter data by using predicates. You can even use predi-
cates to define the data model itself. You first identify propositions that need to be stored
in the database. Here’s an example proposition: an order with order ID 10248 was placed on
February 12, 2012 by the customer with ID 7, and handled by the employee with ID 3. You
then create predicates from the propositions by removing the data and keeping the heading.
Remember, the heading is a set of attributes, each identified by name and type name. In this
example, you have orderid INT, orderdate DATE, custid INT, and empid INT.

Quick Check
1. What are the mathematical branches that the relational model is based on?

2. What is the difference between T-SQL and SQL?

Quick Check Answer
1. Set theory and predicate logic.

2. SQL is standard; T-SQL is the dialect of and extension to SQL that Microsoft
implements in its RDBMS—SQL Server.

Using T-SQL in a Relational Way
As mentioned in the previous section, T-SQL is based on SQL, which in turn is based on the
relational model. However, there are a number of ways in which SQL—and therefore, T-SQL—
deviates from the relational model. But the language gives you enough tools so that if you
understand the relational model, you can use the language in a relational manner, and thus
write more-correct code.

Key
Terms

 6 CHAPTER 1 Foundations of Querying

MORE INFO SQL AND RELATIONAL THEORY

For detailed information about the differences between SQL and the relational model and
how to use SQL in a relational way, see SQL and Relational Theory, Second Edition by C. J.
Date (O’Reilly Media, 2011). It’s an excellent book that all database practitioners should
read.

Remember that a relation has a heading and a body. The heading is a set of attributes and
the body is a set of tuples. Remember from the definition of a set that a set is supposed to be
considered as a whole. What this translates to in T-SQL is that you’re supposed to write que-
ries that interact with the tables as a whole. You should try to avoid using iterative constructs
like cursors and loops that iterate through the rows one at a time. You should also try to avoid
thinking in iterative terms because this kind of thinking is what leads to iterative solutions.

For people with a procedural programming background, the natural way to interact with
data (in a file, record set, or data reader) is with iterations. So using cursors and other iterative
constructs in T-SQL is, in a way, an extension to what they already know. However, the correct
way from the relational model’s perspective is not to interact with the rows one at a time;
rather, use relational operations and return a relational result. This, in T-SQL, translates to
writing queries.

Remember also that a set has no duplicates. T-SQL doesn’t always enforce this rule. For ex-
ample, you can create a table without a key. In such a case, you are allowed to have duplicate
rows in the table. To follow relational theory, you need to enforce uniqueness in your tables—
for example, by using a primary key or a unique constraint.

Even when the table doesn’t allow duplicate rows, a query against the table can still return
duplicate rows in its result. You'll find further discussion about duplicates in subsequent chap-
ters, but here is an example for illustration purposes. Consider the following query.

USE TSQL2012;

SELECT country
FROM HR.Employees;

The query is issued against the TSQL2012 sample database. It returns the country attribute
of the employees stored in the HR.Employees table. According to the relational model, a
relational operation against a relation is supposed to return a relation. In this case, this should
translate to returning the set of countries where there are employees, with an emphasis on
set, as in no duplicates. However, T-SQL doesn’t attempt to remove duplicates by default.

 Lesson 1: Understanding the Foundations of T-SQL CHAPTER 1 7

Here’s the output of this query.

Country

USA
USA
USA
USA
UK
UK
UK
USA
UK

In fact, T-SQL is based more on multiset theory than on set theory. A multiset (also known
as a bag or a superset) in many respects is similar to a set, but can have duplicates. As men-
tioned, the T-SQL language does give you enough tools so that if you want to follow rela-
tional theory, you can do so. For example, the language provides you with a DISTINCT clause
to remove duplicates. Here’s the revised query.

SELECT DISTINCT country
FROM HR.Employees;

Here’s the revised query’s output.

Country

UK
USA

Another fundamental aspect of a set is that there’s no relevance to the order of the ele-
ments. For this reason, rows in a table have no particular order, conceptually. So when you
issue a query against a table and don’t indicate explicitly that you want to return the rows in
particular presentation order, the result is supposed to be relational. Therefore, you shouldn’t
assume any specific order to the rows in the result, never mind what you know about the
physical representation of the data, for example, when the data is indexed.

As an example, consider the following query.

SELECT empid, lastname
FROM HR.Employees;

Key
Terms

 8 CHAPTER 1 Foundations of Querying

When this query was run on one system, it returned the following output, which looks like
it is sorted by the column lastname.

empid lastname
------ -------------
5 Buck
8 Cameron
1 Davis
9 Dolgopyatova
2 Funk
7 King
3 Lew
4 Peled
6 Suurs

Even if the rows were returned in a different order, the result would have still been con-
sidered correct. SQL Server can choose between different physical access methods to process
the query, knowing that it doesn’t need to guarantee the order in the result. For example, SQL
Server could decide to parallelize the query or scan the data in file order (as opposed to index
order).

If you do need to guarantee a specific presentation order to the rows in the result, you
need to add an ORDER BY clause to the query, as follows.

SELECT empid, lastname
FROM HR.Employees
ORDER BY empid;

This time, the result isn’t relational—it’s what standard SQL calls a cursor. The order of the
rows in the output is guaranteed based on the empid attribute. Here’s the output of this query.

empid lastname
------ -------------
1 Davis
2 Funk
3 Lew
4 Peled
5 Buck
6 Suurs
7 King
8 Cameron
9 Dolgopyatova

The heading of a relation is a set of attributes that are supposed to be identified by name
and type name. There’s no order to the attributes. Conversely, T-SQL does keep track of
ordinal positions of columns based on their order of appearance in the table definition. When
you issue a query with SELECT *, you are guaranteed to get the columns in the result based on
definition order. Also, T-SQL allows referring to ordinal positions of columns from the result in
the ORDER BY clause, as follows.

SELECT empid, lastname
FROM HR.Employees
ORDER BY 1;

Key
Terms

 Lesson 1: Understanding the Foundations of T-SQL CHAPTER 1 9

Beyond the fact that this practice is not relational, think about the potential for error if at
some point you change the SELECT list and forget to change the ORDER BY list accordingly.
Therefore, the recommendation is to always indicate the names of the attributes that you
need to order by.

T-SQL has another deviation from the relational model in that it allows defining result
columns based on an expression without assigning a name to the target column. For example,
the following query is valid in T-SQL.

SELECT empid, firstname + ' ' + lastname
FROM HR.Employees;

This query generates the following output.

empid
------ ------------------
1 Sara Davis
2 Don Funk
3 Judy Lew
4 Yael Peled
5 Sven Buck
6 Paul Suurs
7 Russell King
8 Maria Cameron
9 Zoya Dolgopyatova

But according to the relational model, all attributes must have names. In order for the
query to be relational, you need to assign an alias to the target attribute. You can do so by
using the AS clause, as follows.

SELECT empid, firstname + ' ' + lastname AS fullname
FROM HR.Employees;

Also, T-SQL allows a query to return multiple result columns with the same name. For
example, consider a join between two tables, T1 and T2, both with a column called keycol.
T-SQL allows a SELECT list that looks like the following.

SELECT T1.keycol, T2.keycol ...

For the result to be relational, all attributes must have unique names, so you would need
to use different aliases for the result attributes, as in the following.

SELECT T1.keycol AS key1, T2.keycol AS key2 ...

As for predicates, following the law of excluded middle in mathematical logic, a predicate
can evaluate to true or false. In other words, predicates are supposed to use two-valued logic.
However, Codd wanted to reflect the possibility for values to be missing in his model. He
referred to two kinds of missing values: missing but applicable and missing but inapplicable.
Take a mobilephone attribute of an employee as an example. A missing but applicable value
would be if an employee has a mobile phone but did not want to provide this information, for
example, for privacy reasons. A missing but inapplicable value would be when the employee
simply doesn’t have a mobile phone. According to Codd, a language based on his model

Key
Terms

 10 CHAPTER 1 Foundations of Querying

should provide two different marks for the two cases. T-SQL—again, based on standard
SQL—implements only one general purpose mark called NULL for any kind of missing value.
This leads to three-valued predicate logic. Namely, when a predicate compares two values,
for example, mobilephone = '(425) 555-0136', if both are present, the result evaluates to
either true or false. But if one of them is NULL, the result evaluates to a third logical value—
unknown.

Note that some believe that a valid relational model should follow two-valued logic, and
strongly object to the concept of NULLs in SQL. But as mentioned, the creator of the rela-
tional model believed in the idea of supporting missing values, and predicates that extend
beyond two-valued logic. What’s important from a perspective of coding with T-SQL is to
realize that if the database you are querying supports NULLs, their treatment is far from be-
ing trivial. That is, you need to carefully understand what happens when NULLs are involved
in the data you’re manipulating with various query constructs, like filtering, sorting, grouping,
joining, or intersecting. Hence, with every piece of code you write with T-SQL, you want to ask
yourself whether NULLs are possible in the data you’re interacting with. If the answer is yes,
you want to make sure that you understand the treatment of NULLs in your query, and ensure
that your tests address treatment of NULLs specifically.

Quick Check
1. Name two aspects in which T-SQL deviates from the relational model.

2. Explain how you can address the two items in question 1 and use T-SQL in a
relational way.

Quick Check Answer
1. A relation has a body with a distinct set of tuples. A table doesn’t have to have

a key. T-SQL allows referring to ordinal positions of columns in the ORDER BY
clause.

2. Define a key in every table. Refer to attribute names—not their ordinal
positions—in the ORDER BY clause.

Using Correct Terminology
Your use of terminology reflects on your knowledge. Therefore, you should make an effort to
understand and use correct terminology. When discussing T-SQL–related topics, people often
use incorrect terms. And if that’s not enough, even when you do realize what the correct
terms are, you also need to understand the differences between the terms in T-SQL and those
in the relational model.

As an example of incorrect terms in T-SQL, people often use the terms “field” and “record”
to refer to what T-SQL calls “column” and “row,” respectively. Fields and records are physical.
Fields are what you have in user interfaces in client applications, and records are what you
have in files and cursors. Tables are logical, and they have logical rows and columns.

 Lesson 1: Understanding the Foundations of T-SQL CHAPTER 1 11

Another example of an incorrect term is referring to “NULL values.” A NULL is a mark for a
missing value—not a value itself. Hence, the correct usage of the term is either “NULL mark”
or just “NULL.”

Besides using correct T-SQL terminology, it’s also important to understand the differences
between T-SQL terms and their relational counterparts. Remember from the previous section
that T-SQL attempts to represent a relation with a table, a tuple with a row, and an attribute
with a column; but the T-SQL concepts and their relational counterparts differ in a number
of ways. As long as you are conscious of those differences, you can, and should, strive to use
T-SQL in a relational way.

Quick Check
1. Why are the terms “field” and “record” incorrect when referring to column and

row?

2. Why is the term “NULL value” incorrect?

Quick Check Answer
1. Because “field” and “record” describe physical things, whereas columns and

rows are logical elements of a table.

2. Because NULL isn’t a value; rather, it’s a mark for a missing value.

PRACTICE Using T-SQL in a Relational Way

In this practice, you exercise your knowledge of using T-SQL in a relational way.

If you encounter a problem completing an exercise, you can install the completed projects
from the companion content for this chapter and lesson.

EXERCISE 1 Identify Nonrelational Elements in a Query

In this exercise, you are given a query. Your task is to identify the nonrelational elements in
the query.

1. Open SQL Server management Studio (SSMS) and connect to the sample database
TSQL2012. (See the book’s introduction for instructions on how to create the sample
database and how to work with SSMS.)

2. Type the following query in the query window and execute it.

SELECT custid, YEAR(orderdate)
FROM Sales.Orders
ORDER BY 1, 2;

 12 CHAPTER 1 Foundations of Querying

You get the following output shown here in abbreviated form.

custid
----------- -----------
1 2007
1 2007
1 2007
1 2008
1 2008
1 2008
2 2006
2 2007
2 2007
2 2008
...

3. Review the code and its output. The query is supposed to return for each customer
and order year the customer ID (custid) and order year (YEAR(orderdate)). Note that
there’s no presentation ordering requirement from the query. Can you identify what
the nonrelational aspects of the query are?

Answer: The query doesn’t alias the expression YEAR(orderdate), so there’s no name for
the result attribute. The query can return duplicates. The query forces certain presen-
tation ordering to the result and uses ordinal positions in the ORDER BY clause.

EXERCISE 2 Make the Nonrelational Query Relational

In this exercise, you work with the query provided in Exercise 1 as your starting point. After
you identify the nonrelational elements in the query, you need to apply the appropriate revi-
sions to make it relational.

■■ In step 3 of Exercise 1, you identified the nonrelational elements in the last query. Ap-
ply revisions to the query to make it relational.

A number of revisions are required to make the query relational.

■■ Define an attribute name by assigning an alias to the expression YEAR(orderdate).

■■ Add a DISTINCT clause to remove duplicates.

■■ Also, remove the ORDER BY clause to return a relational result.

■■ Even if there was a presentation ordering requirement (not in this case), you should
not use ordinal positions; instead, use attribute names. Your code should look like
the following.

SELECT DISTINCT custid, YEAR(orderdate) AS orderyear
FROM Sales.Orders;

 Lesson 1: Understanding the Foundations of T-SQL CHAPTER 1 13

Lesson Summary
■■ T-SQL is based on strong mathematical foundations. It is based on standard SQL,

which in turn is based on the relational model, which in turn is based on set theory and
predicate logic.

■■ It is important to understand the relational model and apply its principals when writing
T-SQL code.

■■ When describing concepts in T-SQL, you should use correct terminology because it
reflects on your knowledge.

Lesson Review
Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the “Answers” section at the end of this chapter.

1. Why is it important to use standard SQL code when possible and know what is stan-
dard and what isn’t? (Choose all that apply.)

A. It is not important to code using standard SQL.

B. Standard SQL code is more portable between platforms.

C. Standard SQL code is more efficient.

D. Knowing what standard SQL code is makes your knowledge more portable.

2. Which of the following is not a violation of the relational model?

A. Using ordinal positions for columns

B. Returning duplicate rows

C. Not defining a key in a table

D. Ensuring that all attributes in the result of a query have names

3. What is the relationship between SQL and T-SQL?

A. T-SQL is the standard language and SQL is the dialect in Microsoft SQL Server.

B. SQL is the standard language and T-SQL is the dialect in Microsoft SQL Server.

C. Both SQL and T-SQL are standard languages.

D. Both SQL and T-SQL are dialects in Microsoft SQL Server.

 14 CHAPTER 1 Foundations of Querying

Lesson 2: Understanding Logical Query Processing

T-SQL has both logical and physical sides to it. The logical side is the conceptual interpreta-
tion of the query that explains what the correct result of the query is. The physical side is the
processing of the query by the database engine. Physical processing must produce the result
defined by logical query processing. To achieve this goal, the database engine can apply op-
timization. Optimization can rearrange steps from logical query processing or remove steps
altogether—but only as long as the result remains the one defined by logical query process-
ing. The focus of this lesson is logical query processing—the conceptual interpretation of the
query that defines the correct result.

After this lesson, you will be able to:
■■ Understand the reasoning for the design of T-SQL.

■■ Describe the main logical query processing phases.

■■ Explain the reasons for some of the restrictions in T-SQL.

Estimated lesson time: 40 minutes

T-SQL as a Declarative English-Like Language
T-SQL, being based on standard SQL, is a declarative English-like language. In this language,
declarative means you define what you want, as opposed to imperative languages that define
also how to achieve what you want. Standard SQL describes the logical interpretation of the
declarative request (the “what” part), but it’s the database engine’s responsibility to figure out
how to physically process the request (the “how” part).

For this reason, it is important not to draw any performance-related conclusions from
what you learn about logical query processing. That’s because logical query processing only
defines the correctness of the query. When addressing performance aspects of the query, you
need to understand how optimization works. As mentioned, optimization can be quite differ-
ent from logical query processing because it’s allowed to change things as long as the result
achieved is the one defined by logical query processing.

It’s interesting to note that the standard language SQL wasn’t originally called so; rather,
it was called SEQUEL; an acronym for “structured English query language.” But then due to a
trademark dispute with an airline company, the language was renamed to SQL, for “structured
query language.” Still, the point is that you provide your instructions in an English-like man-
ner. For example, consider the instruction, “Bring me a soda from the refrigerator.” Observe
that in the instruction in English, the object comes before the location. Consider the following
request in T-SQL.

SELECT shipperid, phone, companyname
FROM Sales.Shippers;

Key
Terms

 Lesson 2: Understanding Logical Query Processing CHAPTER 1 15

Observe the similarity of the query’s keyed-in order to English. The query first indicates the
SELECT list with the attributes you want to return and then the FROM clause with the table
you want to query.

Now try to think of the order in which the request needs to be logically interpreted. For
example, how would you define the instructions to a robot instead of a human? The original
English instruction to get a soda from the refrigerator would probably need to be revised to
something like, “Go to the refrigerator; open the door; get a soda; bring it to me.”

Similarly, the logical processing of a query must first know which table is being queried
before it can know which attributes can be returned from that table. Therefore, contrary to
the keyed-in order of the previous query, the logical query processing has to be as follows.

FROM Sales.Shippers
SELECT shipperid, phone, companyname

This is a basic example with just two query clauses. Of course, things can get more com-
plex. If you understand the concept of logical query processing well, you will be able to ex-
plain many things about the way the language behaves—things that are very hard to explain
otherwise.

Logical Query processing phases
This section covers logical query processing and the phases involved. Don’t worry if some of
the concepts discussed here aren’t clear yet. Subsequent chapters in this Training Kit provide
more detail, and after you go over those, this topic should make more sense. To make sure
you really understand these concepts, make a first pass over the topic now and then revisit it
later after going over Chapters 2 through 5.

The main statement used to retrieve data in T-SQL is the SELECT statement. Following are
the main query clauses specified in the order that you are supposed to type them (known as
“keyed-in order”):

1. SELECT

2. FROM

3. WHERE

4. GROUP BY

5. HAVING

6. ORDER BY

But as mentioned, the logical query processing order, which is the conceptual interpreta-
tion order, is different. It starts with the FROM clause. Here is the logical query processing
order of the six main query clauses:

1. FROM

2. WHERE

 16 CHAPTER 1 Foundations of Querying

3. GROUP BY

4. HAVING

5. SELECT

6. ORDER BY

Each phase operates on one or more tables as inputs and returns a virtual table as output.
The output table of one phase is considered the input to the next phase. This is in accord with
operations on relations that yield a relation. Note that if an ORDER BY is specified, the result
isn’t relational. This fact has implications that are discussed later in this Training Kit, in Chapter 3,
“Filtering and Sorting Data,” and Chapter 4, “Combining Sets.”

Consider the following query as an example.

SELECT country, YEAR(hiredate) AS yearhired, COUNT(*) AS numemployees
FROM HR.Employees
WHERE hiredate >= '20030101'
GROUP BY country, YEAR(hiredate)
HAVING COUNT(*) > 1
ORDER BY country , yearhired DESC;

This query is issued against the HR.Employees table. It filters only employees that were
hired in or after the year 2003. It groups the remaining employees by country and the hire
year. It keeps only groups with more than one employee. For each qualifying group, the
query returns the hire year and count of employees, sorted by country and hire year, in de-
scending order.

The following sections provide a brief description of what happens in each phase accord-
ing to logical query processing.

1. Evaluate the FROM Clause
In the first phase, the FROM clause is evaluated. That’s where you indicate the tables you want
to query and table operators like joins if applicable. If you need to query just one table, you
indicate the table name as the input table in this clause. Then, the output of this phase is a
table result with all rows from the input table. That’s the case in the following query: the input
is the HR.Employees table (nine rows), and the output is a table result with all nine rows (only
a subset of the attributes are shown).

empid hiredate country
------ ----------- --------
1 2002-05-01 USA
2 2002-08-14 USA
3 2002-04-01 USA
4 2003-05-03 USA
5 2003-10-17 UK
6 2003-10-17 UK
7 2004-01-02 UK
8 2004-03-05 USA
9 2004-11-15 UK

 Lesson 2: Understanding Logical Query Processing CHAPTER 1 17

2. Filter Rows Based on the WhERE Clause
The second phase filters rows based on the predicate in the WHERE clause. Only rows for
which the predicate evaluates to true are returned.

EXAM TIP

Rows for which the predicate evaluates to false, or evaluates to an unknown state, are not
returned.

In this query, the WHERE filtering phase filters only rows for employees hired on or after
January 1, 2003. Six rows are returned from this phase and are provided as input to the next
one. Here’s the result of this phase.

empid hiredate country
------ ----------- --------
4 2003-05-03 USA
5 2003-10-17 UK
6 2003-10-17 UK
7 2004-01-02 UK
8 2004-03-05 USA
9 2004-11-15 UK

A typical mistake made by people who don’t understand logical query processing is at-
tempting to refer in the WHERE clause to a column alias defined in the SELECT clause. This
isn’t allowed because the WHERE clause is evaluated before the SELECT clause. As an example,
consider the following query.

SELECT country, YEAR(hiredate) AS yearhired
FROM HR.Employees
WHERE yearhired >= 2003;

This query fails with the following error.

Msg 207, Level 16, State 1, Line 3
Invalid column name 'yearhired'.

If you understand that the WHERE clause is evaluated before the SELECT clause, you real-
ize that this attempt is wrong because at this phase, the attribute yearhired doesn’t yet exist.
You can indicate the expression YEAR(hiredate) >= 2003 in the WHERE clause. Better yet, for
optimization reasons that are discussed in Chapter 3 and Chapter 15, “Implementing Indexes
and Statistics,” use the form hiredate >= '20030101' as done in the original query.

3. Group Rows Based on the GROUp BY Clause
This phase defines a group for each distinct combination of values in the grouped elements
from the input table. It then associates each input row to its respective group. The query
you’ve been working with groups the rows by country and YEAR(hiredate). Within the six rows
in the input table, this step identifies four groups. Here are the groups and the detail rows that
are associated with them (redundant information removed for purposes of illustration).

 18 CHAPTER 1 Foundations of Querying

group group detail detail detail
country YEAR(hiredate) empid country hiredate
-------- -------------- ------ ------- ----------
UK 2003 5 UK 2003-10-17
 6 UK 2003-10-17
UK 2004 7 UK 2004-01-02
 9 UK 2004-11-15
USA 2003 4 USA 2003-05-03
USA 2004 8 USA 2004-03-05

As you can see, the group UK, 2003 has two associated detail rows with employees 5 and
6; the group for UK, 2004 also has two associated detail rows with employees 7 and 9; the
group for USA, 2003 has one associated detail row with employee 4; the group for USA, 2004
also has one associated detail row with employee 8.

The final result of this query has one row representing each group (unless filtered out).
Therefore, expressions in all phases that take place after the current grouping phase are
somewhat limited. All expressions processed in subsequent phases must guarantee a single
value per group. If you refer to an element from the GROUP BY list (for example, country),
you already have such a guarantee, so such a reference is allowed. However, if you want to
refer to an element that is not part of your GROUP BY list (for example, empid), it must be
contained within an aggregate function like MAX or SUM. That’s because multiple values are
possible in the element within a single group, and the only way to guarantee that just one will
be returned is to aggregate the values. For more details on grouped queries, see Chapter 5,
“Grouping and Windowing.”

4. Filter Rows Based on the haVING Clause
This phase is also responsible for filtering data based on a predicate, but it is evaluated after
the data has been grouped; hence, it is evaluated per group and filters groups as a whole. As
is usual in T-SQL, the filtering predicate can evaluate to true, false, or unknown. Only groups
for which the predicate evaluates to true are returned from this phase. In this case, the HAVING
clause uses the predicate COUNT(*) > 1, meaning filter only country and hire year groups that
have more than one employee. If you look at the number of rows that were associated with
each group in the previous step, you will notice that only the groups UK, 2003 and UK, 2004
qualify. Hence, the result of this phase has the following remaining groups, shown here with
their associated detail rows.

group group detail detail detail
country YEAR(hiredate) empid country hiredate
-------- -------------- ------ ------- ----------
UK 2003 5 UK 2003-10-17
 6 UK 2003-10-17
UK 2004 7 UK 2004-01-02
 9 UK 2004-11-15

 Lesson 2: Understanding Logical Query Processing CHAPTER 1 19

Quick Check
■ What is the difference between the WHERE and HAVING clauses?

Quick Check Answer
■ The WHERE clause is evaluated before rows are grouped, and therefore is evaluat-

ed per row. The HAVING clause is evaluated after rows are grouped, and therefore
is evaluated per group.

5. Process the SELECT Clause
The fi fth phase is the one responsible for processing the SELECT clause. What’s interesting
about it is the point in logical query processing where it gets evaluated—almost last. That’s
interesting considering the fact that the SELECT clause appears fi rst in the query.

This phase includes two main steps. The fi rst step is evaluating the expressions in the SELECT
list and producing the result attributes. This includes assigning attributes with names if they
are derived from expressions. Remember that if a query is a grouped query, each group is
represented by a single row in the result. In the query, two groups remain after the process-
ing of the HAVING fi lter. Therefore, this step generates two rows. In this case, the SELECT list
returns for each country and hire year group a row with the following attributes: country,
YEAR(hiredate) aliased as yearhired, and COUNT(*) aliased as numemployees.

The second step in this phase is applicable if you indicate the DISTINCT clause, in which
case this step removes duplicates. Remember that T-SQL is based on multiset theory more
than it is on set theory, and therefore, if duplicates are possible in the result, it’s your respon-
sibility to remove those with the DISTINCT clause. In this query’s case, this step is inapplicable.
Here’s the result of this phase in the query.

country yearhired numemployees
-------- ---------- ------------
UK 2003 2
UK 2004 2

If you need a reminder of what the query looks like, here it is again.

SELECT country, YEAR(hiredate) AS yearhired, COUNT(*) AS numemployees
FROM HR.Employees
WHERE hiredate >= '20030101'
GROUP BY country, YEAR(hiredate)
HAVING COUNT(*) > 1
ORDER BY country , yearhired DESC;

The fi fth phase returns a relational result. Therefore, the order of the rows isn’t guaran-
teed. In this query’s case, there is an ORDER BY clause that guarantees the order in the result,
but this will be discussed when the next phase is described. What’s important to note is that
the outcome of the phase that processes the SELECT clause is still relational.

 20 CHAPTER 1 Foundations of Querying

Also, remember that this phase assigns column aliases, like yearhired and numemployees.
This means that newly created column aliases are not visible to clauses processed in previous
phases, like FROM, WHERE, GROUP BY, and HAVING.

Note that an alias created by the SELECT phase isn’t even visible to other expressions that
appear in the same SELECT list. For example, the following query isn’t valid.

SELECT empid, country, YEAR(hiredate) AS yearhired, yearhired - 1 AS prevyear
FROM HR.Employees;

This query generates the following error.

Msg 207, Level 16, State 1, Line 1
Invalid column name 'yearhired'.

The reason that this isn’t allowed is that, conceptually, T-SQL evaluates all expressions that
appear in the same logical query processing phase in an all-at-once manner. Note the use of
the word conceptually. SQL Server won’t necessarily physically process all expressions at the
same point in time, but it has to produce a result as if it did. This behavior is different than
many other programming languages where expressions usually get evaluated in a left-to-
right order, making a result produced in one expression visible to the one that appears to its
right. But T-SQL is different.

Quick Check
1. Why are you not allowed to refer to a column alias defined by the SELECT

clause in the WHERE clause?

2. Why are you not allowed to refer to a column alias defined by the SELECT
clause in the same SELECT clause?

Quick Check Answer
1. Because the WHERE clause is logically evaluated in a phase earlier to the one

that evaluates the SELECT clause.

2. Because all expressions that appear in the same logical query processing phase
are evaluated conceptually at the same point in time.

6. handle presentation Ordering
The sixth phase is applicable if the query has an ORDER BY clause. This phase is responsible
for returning the result in a specific presentation order according to the expressions that
appear in the ORDER BY list. The query indicates that the result rows should be ordered first
by country (in ascending order by default), and then by yearhired, descending, yielding the
following output.

country yearhired numemployees
-------- ---------- ------------
UK 2004 2
UK 2003 2

 Lesson 2: Understanding Logical Query Processing CHAPTER 1 21

Notice that the ORDER BY clause is the first and only clause that is allowed to refer to col-
umn aliases defined in the SELECT clause. That’s because the ORDER BY clause is the only one
to be evaluated after the SELECT clause.

Unlike in previous phases where the result was relational, the output of this phase isn’t
relational because it has a guaranteed order. The result of this phase is what standard SQL
calls a cursor. Note that the use of the term cursor here is conceptual. T-SQL also supports an
object called a cursor that is defined based on a result of a query, and that allows fetching
rows one at a time in a specified order.

You might care about returning the result of a query in a specific order for presentation
purposes or if the caller needs to consume the result in that manner through some cursor
mechanism that fetches the rows one at a time. But remember that such processing isn’t
relational. If you need to process the query result in a relational manner—for example, define
a table expression like a view based on the query (details later in Chapter 4)—the result will
need to be relational. Also, sorting data can add cost to the query processing. If you don’t
care about the order in which the result rows are returned, you can avoid this unnecessary
cost by not adding an ORDER BY clause.

A query may specify the TOP or OFFSET-FETCH filtering options. If it does, the same
ORDER BY clause that is normally used to define presentation ordering also defines which
rows to filter for these options. It’s important to note that such a filter is processed after the
SELECT phase evaluates all expressions and removes duplicates (in case a DISTINCT clause was
specified). You might even consider the TOP and OFFSET-FETCH filters as being processed in
their own phase number 7. The query doesn’t indicate such a filter, and therefore, this phase is
inapplicable in this case.

PRACTICE Logical Query Processing

In this practice, you exercise your knowledge of logical query processing.

If you encounter a problem completing an exercise, you can install the completed projects
from the companion content for this chapter and lesson.

EXERCISE 1 Fix a problem with Grouping

In this exercise, you are presented with a grouped query that fails when you try to execute it.
You are provided with instructions on how to fix the query.

1. Open SSMS and connect to the sample database TSQL2012.

2. Type the following query in the query window and execute it.

SELECT custid, orderid
FROM Sales.Orders
GROUP BY custid;

 22 CHAPTER 1 Foundations of Querying

The query was supposed to return for each customer the customer ID and the maxi-
mum order ID for that customer, but instead it fails. Try to figure out why the query
failed and what needs to be revised so that it would return the desired result.

3. The query failed because orderid neither appears in the GROUP BY list nor within an
aggregate function. There are multiple possible orderid values per customer. To fix the
query, you need to apply an aggregate function to the orderid attribute. The task is to
return the maximum orderid value per customer. Therefore, the aggregate function
should be MAX. Your query should look like the following.

SELECT custid, MAX(orderid) AS maxorderid
FROM Sales.Orders
GROUP BY custid;

EXERCISE 2 Fix a problem with aliasing

In this exercise, you are presented with another grouped query that fails, this time because of
an aliasing problem. As in the first exercise, you are provided with instructions on how to fix
the query.

1. Clear the query window, type the following query, and execute it.

SELECT shipperid, SUM(freight) AS totalfreight
FROM Sales.Orders
WHERE freight > 20000.00
GROUP BY shipperid;

The query was supposed to return only shippers for whom the total freight value is
greater than 20,000, but instead it returns an empty set. Try to identify the problem in
the query.

2. Remember that the WHERE filtering clause is evaluated per row—not per group. The
query filters individual orders with a freight value greater than 20,000, and there are
none. To correct the query, you need to apply the filter per each shipper group—not
per each order. You need to filter the total of all freight values per shipper. This can be
achieved by using the HAVING filter. You try to fix the problem by using the following
query.

SELECT shipperid, SUM(freight) AS totalfreight
FROM Sales.Orders
GROUP BY shipperid
HAVING totalfreight > 20000.00;

But this query also fails. Try to identify why it fails and what needs to be revised to
achieve the desired result.

 Lesson 2: Understanding Logical Query Processing CHAPTER 1 23

3. The problem now is that the query attempts to refer in the HAVING clause to the alias
totalfreight, which is defined in the SELECT clause. The HAVING clause is evaluated
before the SELECT clause, and therefore, the column alias isn’t visible to it. To fix the
problem, you need to refer to the expression SUM(freight) in the HAVING clause, as
follows.

SELECT shipperid, SUM(freight) AS totalfreight
FROM Sales.Orders
GROUP BY shipperid
HAVING SUM(freight) > 20000.00;

Lesson Summary
■■ T-SQL was designed as a declarative language where the instructions are provided in

an English-like manner. Therefore, the keyed-in order of the query clauses starts with
the SELECT clause.

■■ Logical query processing is the conceptual interpretation of the query that defines the
correct result, and unlike the keyed-in order of the query clauses, it starts by evaluating
the FROM clause.

■■ Understanding logical query processing is crucial for correct understanding of T-SQL.

Lesson Review
Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the “Answers” section at the end of this chapter.

1. Which of the following correctly represents the logical query processing order of the
various query clauses?

A. SELECT > FROM > WHERE > GROUP BY > HAVING > ORDER BY

B. FROM > WHERE > GROUP BY > HAVING > SELECT > ORDER BY

C. FROM > WHERE > GROUP BY > HAVING > ORDER BY > SELECT

D. SELECT > ORDER BY > FROM > WHERE > GROUP BY > HAVING

2. Which of the following is invalid? (Choose all that apply.)

A. Referring to an attribute that you group by in the WHERE clause

B. Referring to an expression in the GROUP BY clause; for example, GROUP BY
YEAR(orderdate)

C. In a grouped query, referring in the SELECT list to an attribute that is not part of
the GROUP BY list and not within an aggregate function

D. Referring to an alias defined in the SELECT clause in the HAVING clause

 24 CHAPTER 1 Foundations of Querying

3. What is true about the result of a query without an ORDER BY clause?

A. It is relational as long as other relational requirements are met.

B. It cannot have duplicates.

C. The order of the rows in the output is guaranteed to be the same as the insertion
order.

D. The order of the rows in the output is guaranteed to be the same as that of the
clustered index.

Case Scenarios

In the following case scenarios, you apply what you’ve learned about T-SQL querying. You can
find the answers to these questions in the “Answers” section at the end of this chapter.

Case Scenario 1: Importance of Theory
You and a colleague on your team get into a discussion about the importance of understand-
ing the theoretical foundations of T-SQL. Your colleague argues that there’s no point in un-
derstanding the foundations, and that it’s enough to just learn the technical aspects of T-SQL
to be a good developer and to write correct code. Answer the following questions posed to
you by your colleague:

1. Can you give an example for an element from set theory that can improve your under-
standing of T-SQL?

2. Can you explain why understanding the relational model is important for people who
write T-SQL code?

Case Scenario 2: Interviewing for a Code Reviewer position
You are interviewed for a position as a code reviewer to help improve code quality. The or-
ganization’s application has queries written by untrained people. The queries have numerous
problems, including logical bugs. Your interviewer poses a number of questions and asks for
a concise answer of a few sentences to each question. Answer the following questions ad-
dressed to you by your interviewer:

1. Is it important to use standard code when possible, and why?

2. We have many queries that use ordinal positions in the ORDER BY clause. Is that a bad
practice, and if so why?

3. If a query doesn’t have an ORDER BY clause, what is the order in which the records are
returned?

4. Would you recommend putting a DISTINCT clause in every query?

 Suggested Practices CHAPTER 1 25

Suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

Visit T-SQL public Newsgroups and Review Code
To practice your knowledge of using T-SQL in a relational way, you should review code
samples written by others.

■■ Practice 1 List as many examples as you can for aspects of T-SQL coding that are not
relational.

■■ Practice 2 After creating the list in Practice 1, visit the Microsoft public forum for
T-SQL at http://social.msdn.microsoft.com/Forums/en/transactsql/threads. Review code
samples in the T-SQL threads. Try to identify cases where nonrelational elements are
used; if you find such cases, identify what needs to be revised to make them relational.

Describe Logical Query processing
To better understand logical query processing, we recommend that you complete the follow-
ing tasks:

■■ Practice 1 Create a document with a numbered list of the phases involved with logi-
cal query processing in the correct order. Provide a brief paragraph summarizing what
happens in each step.

■■ Practice 2 Create a graphical flow diagram representing the flow of the logical query
processing phases by using a tool such as Microsoft Visio, Microsoft PowerPoint, or
Microsoft Word.

 26 CHAPTER 1 Foundations of Querying

Answers

This section contains the answers to the lesson review questions and solutions to the case
scenarios in this chapter.

Lesson 1
1. Correct Answers: B and D

A. Incorrect: It is important to use standard code.

B. Correct: Use of standard code makes it easier to port code between platforms
because fewer revisions are required.

C. Incorrect: There’s no assurance that standard code will be more efficient.

D. Correct: When using standard code, you can adapt to a new environment more
easily because standard code elements look similar in the different platforms.

2. Correct Answer: D

A. Incorrect: A relation has a header with a set of attributes, and tuples of the rela-
tion have the same heading. A set has no order, so ordinal positions do not have
meaning and constitute a violation of the relational model. You should refer to
attributes by their name.

B. Incorrect: A query is supposed to return a relation. A relation has a body with a
set of tuples. A set has no duplicates. Returning duplicate rows is a violation of the
relational model.

C. Incorrect: Not defining a key in the table allows duplicate rows in the table, and
like the answer to B, that’s a violation of the relational model.

D. Correct: Because attributes are supposed to be identified by name, ensuring that
all attributes have names is relational, and hence not a violation of the relational
model.

3. Correct Answer: B

A. Incorrect: T-SQL isn’t standard and SQL isn’t a dialect in Microsoft SQL Server.

B. Correct: SQL is standard and T-SQL is a dialect in Microsoft SQL Server.

C. Incorrect: T-SQL isn’t standard.

D. Incorrect: SQL isn’t a dialect in Microsoft SQL Server.

 Answers CHAPTER 1 27

Lesson 2
1. Correct Answer: B

A. Incorrect: Logical query processing doesn’t start with the SELECT clause.

B. Correct: Logical query processing starts with the FROM clause, and then moves on
to WHERE, GROUP BY, HAVING, SELECT, and ORDER BY.

C. Incorrect: The ORDER BY clause isn’t evaluated before the SELECT clause.

D. Incorrect: Logical query processing doesn’t start with the SELECT clause.

2. Correct Answer: C and D

A. Incorrect: T-SQL allows you to refer to an attribute that you group by in the
WHERE clause.

B. Incorrect: T-SQL allows grouping by an expression.

C. Correct: If the query is a grouped query, in phases processed after the GROUP BY
phase, each attribute that you refer to must appear either in the GROUP BY list or
within an aggregate function.

D. Correct: Because the HAVING clause is evaluated before the SELECT clause, refer-
ring to an alias defined in the SELECT clause within the HAVING clause is invalid.

3. Correct Answer: A

A. Correct: A query with an ORDER BY clause doesn’t return a relational result. For
the result to be relational, the query must satisfy a number of requirements, in-
cluding the following : the query must not have an ORDER BY clause, all attributes
must have names, all attribute names must be unique, and duplicates must not
appear in the result.

B. Incorrect: A query without a DISTINCT clause in the SELECT clause can return
duplicates.

C. Incorrect: A query without an ORDER BY clause does not guarantee the order of
rows in the output.

D. Incorrect: A query without an ORDER BY clause does not guarantee the order of
rows in the output.

 28 CHAPTER 1 Foundations of Querying

Case Scenario 1
1. One of the most typical mistakes that T-SQL developers make is to assume that a query

without an ORDER BY clause always returns the data in a certain order—for example,
clustered index order. But if you understand that in set theory, a set has no particular
order to its elements, you know that you shouldn’t make such assumptions. The only
way in SQL to guarantee that the rows will be returned in a certain order is to add an
ORDER BY clause. That’s just one of many examples for aspects of T-SQL that can be
better understood if you understand the foundations of the language.

2. Even though T-SQL is based on the relational model, it deviates from it in a number of
ways. But it gives you enough tools that if you understand the relational model, you
can write in a relational way. Following the relational model helps you write code more
correctly. Here are some examples :

■■ You shouldn’t rely on order of columns or rows.

■■ You should always name result columns.

■■ You should eliminate duplicates if they are possible in the result of your query.

Case Scenario 2
1. It is important to use standard SQL code. This way, both the code and people’s knowl-

edge is more portable. Especially in cases where there are both standard and nonstan-
dard forms for a language element, it’s recommended to use the standard form.

2. Using ordinal positions in the ORDER BY clause is a bad practice. From a relational per-
spective, you are supposed to refer to attributes by name, and not by ordinal position.
Also, what if the SELECT list is revised in the future and the developer forgets to revise
the ORDER BY list accordingly?

3. When the query doesn’t have an ORDER BY clause, there are no assurances for any
particular order in the result. The order should be considered arbitrary. You also notice
that the interviewer used the incorrect term record instead of row. You might want to
mention something about this, because the interviewer may have done so on purpose
to test you.

4. From a pure relational perspective, this actually could be valid, and perhaps even
recommended. But from a practical perspective, there is the chance that SQL Server
will try to remove duplicates even when there are none, and this will incur extra cost.
Therefore, it is recommended that you add the DISTINCT clause only when duplicates
are possible in the result and you’re not supposed to return the duplicates.

 221

C H A P T E R 7

Querying and Managing
XML Data
Exam objectives in this chapter:

■■ Work with Data
■■ Query and manage XML data.

Microsoft SQL Server 2012 includes extensive support for XML. This support includes
creating XML from relational data with a query and shredding XML into relational

tabular format. Additionally, SQL Server has a native XML data type. You can store XML
data, constrain it with XML schemas, index it with specialized XML indexes, and manipulate
it using XML data type methods. All of the T-SQL XML data type methods accept an XQuery
string as a parameter. XQuery (short for XML Query Language) is the standard language
used to query and manipulate XML data.

In this chapter, you learn how to use all of the XML features mentioned. In addition, you
get a couple of ideas about why you would use XML in a relational database.

IMPORTANT USE OF THE TERM XML IN THIS CHAPTER

XML is used in this chapter to refer to both the open standard and T-SQL data type.

Lessons in this chapter:
■■ Lesson 1: Returning Results As XML with FOR XML
■■ Lesson 2: Querying XML Data with XQuery
■■ Lesson 3: Using the XML Data Type

Before You Begin

To complete the lessons in this chapter, you must have:

■■ An understanding of relational database concepts.
■■ Experience working with SQL Server Management Studio (SSMS).
■■ Some experience writing T-SQL code.
■■ Access to a SQL Server 2012 instance with the sample database TSQL2012 installed.

 222 CHAPTER 7 Querying and Managing XML Data

Lesson 1: Returning Results As XML with FOR XML

XML is a widely used standard for data exchange, calling web services methods, configura-
tion files, and more. This lesson starts with a short introduction to XML. After that, you learn
how you can create XML as the result of a query by using different flavors of the FOR XML
clause. The lesson finishes with information on shredding XML to relational tables by using
the OPENXML rowset function.

After this lesson, you will be able to:
■■ Describe XML documents.

■■ Convert relational data to XML.

■■ Shred XML to tables.

Estimated lesson time: 40 minutes

Introduction to XML
This lesson introduces XML through samples. The following is an example of an XML docu-
ment, created with a FOR XML clause of the SELECT statement.

<CustomersOrders>
 <Customer custid="1" companyname="Customer NRZBB">
 <Order orderid="10692" orderdate="2007-10-03T00:00:00" />
 <Order orderid="10702" orderdate="2007-10-13T00:00:00" />
 <Order orderid="10952" orderdate="2008-03-16T00:00:00" />
 </Customer>
 <Customer custid="2" companyname="Customer MLTDN">
 <Order orderid="10308" orderdate="2006-09-18T00:00:00" />
 <Order orderid="10926" orderdate="2008-03-04T00:00:00" />
 </Customer>
</CustomersOrders>

NOTE COMPANION CODE

The query that produces the XML output from the previous example and other queries for
other examples are provided in the companion code files.

As you can see, XML uses tags to name parts of an XML document. These parts are called
elements. Every begin tag, such as <Customer>, must have a corresponding end tag, in this
case </Customer>. If an element has no nested elements, the notation can be abbreviated
to a single tag that denotes the beginning and end of an element, such as <Order … />.
Elements can be nested. Tags cannot be interleaved; the end tag of a parent element must
be after the end tag of the last nested element. If every begin tag has a corresponding end
tag, and if tags are nested properly, the XML document is well-formed.

Key
Terms

 Lesson 1: Returning Results As XML with FOR XML CHAPTER 7 223

XML documents are ordered. This does not mean they are ordered by any specific element
value; it means that the position of elements matters. For example, the element with orderid
equal to 10702 in the preceding example is the second Order element under the first Cus-
tomer element.

XML is case-sensitive Unicode text. You should never forget that XML is case sensitive. In
addition, some characters in XML, such as <, which introduces a tag, are processed as markup
and have special meanings. If you want to include these characters in the values of your XML
document, they must be escaped by using an ampersand (&), followed by a special code, fol-
lowed by a semicolon (;), as shown in Table 7-1.

TABLE 7-1 Characters with special values in XML documents

Character Replacement text

& (ampersand) &

" (quotation mark) "

< (less than) <

> (greater than) >

' (apostrophe) '

Alternatively, you can use the special XML CDATA section, written as <![CDATA[...]]>. You
can replace the three dots with any character string that does not include the string literal
"]]>"; this will prevent special characters in the string from being parsed as XML markup.

Processing instructions, which are information for applications that process XML, are writ-
ten similarly to elements, between less than (<) and greater than (>) characters, and they start
and end with a question mark (?), like <?PItarget data?>. The engine that processes XML—for
example, the SQL Server Database Engine — receives those instructions.

In addition to elements and processing instructions, XML can include comments in the
format <!-- This is a comment -->.

Finally, XML can have a prolog at the beginning of the document, denoting the XML ver-
sion and encoding of the document, such as <?xml version="1.0" encoding="ISO-8859-15"?>.

In addition to XML documents, you can also have XML fragments. The only differ-
ence between a document and a fragment is that a document has a single root node,
like <CustomersOrders> in the preceding example. If you delete this node, you get the
following XML fragment.

 <Customer custid="1" companyname="Customer NRZBB">
 <Order orderid="10692" orderdate="2007-10-03T00:00:00" />
 <Order orderid="10702" orderdate="2007-10-13T00:00:00" />
 <Order orderid="10952" orderdate="2008-03-16T00:00:00" />
 </Customer>

 224 CHAPTER 7 Querying and Managing XML Data

 <Customer custid="2" companyname="Customer MLTDN">
 <Order orderid="10308" orderdate="2006-09-18T00:00:00" />
 <Order orderid="10926" orderdate="2008-03-04T00:00:00" />
 </Customer>

If you delete the second customer, you get an XML document because it will have a single
root node again.

As you can see from the examples so far, elements can have attributes. Attributes have
their own names, and their values are enclosed in quotation marks. This is attribute-centric
presentation. However, you can write XML differently; every attribute can be a nested ele-
ment of the original element. This is element-centric presentation.

Finally, element names do not have to be unique, because they can be referred to by their
position; however, to distinguish between elements from different business areas, different
departments, or different companies, you can add namespaces. You declare namespaces
used in the root element of an XML document. You can also use an alias for every single
namespace. Then you prefix element names with a namespace alias. The following code is an
example of element-centric XML that uses a namespace; the data is the same as in the first
example of this lesson.

<CustomersOrders xmlns:co="TK461-CustomersOrders">
 <co:Customer>
 <co:custid>1</co:custid>
 <co:companyname>Customer NRZBB</co:companyname>
 <co:Order>
 <co:orderid>10692</co:orderid>
 <co:orderdate>2007-10-03T00:00:00</co:orderdate>
 </co:Order>
 <co:Order>
 <co:orderid>10702</co:orderid>
 <co:orderdate>2007-10-13T00:00:00</co:orderdate>
 </co:Order>
 <co:Order>
 <co:orderid>10952</co:orderid>
 <co:orderdate>2008-03-16T00:00:00</co:orderdate>
 </co:Order>
 </co:Customer>
 <co:Customer>
 <co:custid>2</co:custid>
 <co:companyname>Customer MLTDN</co:companyname>
 <co:Order>
 <co:orderid>10308</co:orderid>
 <co:orderdate>2006-09-18T00:00:00</co:orderdate>
 </co:Order>
 <co:Order>
 <co:orderid>10926</co:orderid>
 <co:orderdate>2008-03-04T00:00:00</co:orderdate>
 </co:Order>
 </co:Customer>
</CustomersOrders>

XML is very flexible. As you’ve seen so far, there are very few rules for creating a well-
formed XML document. In an XML document, the actual data is mixed with metadata, such as

Key
Terms

Key
Terms

 Lesson 1: Returning Results As XML with FOR XML CHAPTER 7 225

element and attribute names. Because XML is text, it is very convenient for exchanging data
between different systems and even between different platforms. However, when exchang-
ing data, it becomes important to have metadata fi xed. If you had to import a document with
customers’ orders, as in the preceding examples, every couple of minutes, you’d defi nitely
want to automate the import process. Imagine how hard you’d have to work if the meta-
data changed with every new import. For example, imagine that the Customer element gets
renamed to Client, and the Order element gets renamed to Purchase. Or imagine that the
orderdate attribute (or element) suddenly changes its data type from timestamp to integer.
You’d quickly conclude that you should have more fi xed schema for the XML documents you
are importing.

Many different standards have evolved to describe the metadata of XML documents.
Currently, the most widely used metadata description is with XML Schema Description (XSD)
documents. XSD documents are XML documents that describe the metadata of other XML
documents. The schema of an XSD document is predefi ned. With the XSD standard, you can
specify element names, data types, and number of occurrences of an element, constraints,
and more. The following example shows an XSD schema describing the element-centric ver-
sion of customers and their orders.

<xsd:schema targetNamespace="TK461-CustomersOrders" xmlns:schema="TK461-CustomersOrders"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sqltypes="http://schemas.microsoft.com/sqlserver/2004/sqltypes"
 elementFormDefault="qualified">
 <xsd:import namespace=http://schemas.microsoft.com/sqlserver/2004/sqltypes
 schemaLocation="http://schemas.microsoft.com/sqlserver/2004/sqltypes/sqltypes.xsd"
/>
 <xsd:element name="Customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="custid" type="sqltypes:int" />
 <xsd:element name="companyname">
 <xsd:simpleType>
 <xsd:restriction base="sqltypes:nvarchar" sqltypes:localeId="1033"
 sqltypes:sqlCompareOptions="IgnoreCase IgnoreKanaType IgnoreWidth"
 sqltypes:sqlSortId="52">
 <xsd:maxLength value="40" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element ref="schema:Order" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Order">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="orderid" type="sqltypes:int" />
 <xsd:element name="orderdate" type="sqltypes:datetime" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

 226 CHAPTER 7 Querying and Managing XML Data

When you check whether an XML document complies with a schema, you validate the
document. A document with a predefined schema is said to be a typed XML document.

producing XML from Relational Data
With the T-SQL SELECT statement, you can create all XML shown in this lesson. This section
explains how you can convert a query result set to XML by using the FOR XML clause of the
SELECT T-SQL statement. You learn about the most useful options and directives of this clause;
for a detailed description of the complete syntax, see the Books Online for SQL Server 2012
article “FOR XML (SQL Server)” at http://msdn.microsoft.com/en-us/library/ms178107.aspx.

FOR XML RaW
The first option for creating XML from a query result is the RAW option. The XML created is
quite close to the relational (tabular) presentation of the data. In RAW mode, every row from
returned rowsets converts to a single element named row, and columns translate to the at-
tributes of this element. Here is an example of an XML document created with the FOR XML
RAW option.

<row custid="1" companyname="Customer NRZBB" orderid="10692"
 orderdate="2007-10-03T00:00:00" />
<row custid="1" companyname="Customer NRZBB" orderid="10702"
 orderdate="2007-10-13T00:00:00" />
<row custid="1" companyname="Customer NRZBB" orderid="10952"
 orderdate="2008-03-16T00:00:00" />
<row custid="2" companyname="Customer MLTDN" orderid="10308"
 orderdate="2006-09-18T00:00:00" />
<row custid="2" companyname="Customer MLTDN" orderid="10926"
 orderdate="2008-03-04T00:00:00" />

You can enhance the RAW mode by renaming the row element, adding a root element,
including namespaces, and making the XML returned element-centric. The following is an
example of enhanced XML created with the FOR XML RAW option.

<CustomersOrders>
 <Order custid="1" companyname="Customer NRZBB" orderid="10692"
 orderdate="2007-10-03T00:00:00" />
 <Order custid="1" companyname="Customer NRZBB" orderid="10702"
 orderdate="2007-10-13T00:00:00" />
 <Order custid="1" companyname="Customer NRZBB" orderid="10952"
 orderdate="2008-03-16T00:00:00" />
 <Order custid="2" companyname="Customer MLTDN" orderid="10308"
 orderdate="2006-09-18T00:00:00" />
 <Order custid="2" companyname="Customer MLTDN" orderid="10926"
 orderdate="2008-03-04T00:00:00" />
</CustomersOrders>

 Lesson 1: Returning Results As XML with FOR XML CHAPTER 7 227

As you can see, this is a document instead of a fragment. It looks more like “real” XML;
however, it does not include any additional level of nesting. The customer with custid equal to
1 is repeated three times, once for each order; it would be nicer if it appeared once only and
included orders as nested elements. You can produce XML that is easier to read with the FOR
XML AUTO option, described in the following section.

FOR XML AUTO
The FOR XML AUTO option gives you nice XML documents with nested elements, and it is not
complicated to use. In AUTO and RAW modes, you can use the keyword ELEMENTS to pro-
duce element-centric XML. The WITH NAMESPACES clause, preceding the SELECT part of the
query, defi nes namespaces and aliases in the returned XML. So far, you have seen XML results
only. In the practice for this lesson, you create queries that produce similar results. However,
in order to give you a better presentation of how SELECT with the FOR XML clause looks, here
is an example.

WITH XMLNAMESPACES('TK461-CustomersOrders' AS co)
SELECT [co:Customer].custid AS [co:custid],
 [co:Customer].companyname AS [co:companyname],
 [co:Order].orderid AS [co:orderid],
 [co:Order].orderdate AS [co:orderdate]
FROM Sales.Customers AS [co:Customer]
 INNER JOIN Sales.Orders AS [co:Order]
 ON [co:Customer].custid = [co:Order].custid
WHERE [co:Customer].custid <= 2
 AND [co:Order].orderid %2 = 0
ORDER BY [co:Customer].custid, [co:Order].orderid
FOR XML AUTO, ELEMENTS, ROOT('CustomersOrders');

The T-SQL table and column aliases in the query are used to produce element names, pre-
fi xed with a namespace. A colon is used in XML to separate the namespace from the element
name. The WHERE clause of the query limits the output to two customers, with only even
orders for each customer retrieved. The output is a quite nice element-centric XML document.

<CustomersOrders xmlns:co="TK461-CustomersOrders">
 <co:Customer>
 <co:custid>1</co:custid>
 <co:companyname>Customer NRZBB</co:companyname>
 <co:Order>
 <co:orderid>10692</co:orderid>
 <co:orderdate>2007-10-03T00:00:00</co:orderdate>
 </co:Order>
 <co:Order>
 <co:orderid>10702</co:orderid>
 <co:orderdate>2007-10-13T00:00:00</co:orderdate>
 </co:Order>
 <co:Order>
 <co:orderid>10952</co:orderid>
 <co:orderdate>2008-03-16T00:00:00</co:orderdate>
 </co:Order>
 </co:Customer>
 <co:Customer>

 228 CHAPTER 7 Querying and Managing XML Data

 <co:Customer>
 <co:custid>2</co:custid>
 <co:companyname>Customer MLTDN</co:companyname>
 <co:Order>
 <co:orderid>10308</co:orderid>
 <co:orderdate>2006-09-18T00:00:00</co:orderdate>
 </co:Order>
 <co:Order>
 <co:orderid>10926</co:orderid>
 <co:orderdate>2008-03-04T00:00:00</co:orderdate>
 </co:Order>
 </co:Customer>
</CustomersOrders>

Note that a proper ORDER BY clause is very important. With T-SQL SELECT, you are actu-
ally formatting the returned XML. Without the ORDER BY clause, the order of rows returned
is unpredictable, and you can get a weird XML document with an element repeated multiple
times with just part of nested elements every time.

EXAM TIP

The FOR XML clause comes after the ORDER BY clause in a query.

It is not only the ORDER BY clause that is important; the order of columns in the SELECT
clause also influences the XML returned. SQL Server uses column order to determine the
nesting of elements. The order of the columns should follow one-to-many relationships. A
customer can have many orders; therefore, you should have customer columns before order
columns in your query.

You might be vexed by the fact that you have to take care of column order; in a relation,
the order of columns and rows is not important. Nevertheless, you have to realize that the
result of your query is not a relation; it is text in XML format, and parts of your query are used
for formatting the text.

In RAW and AUTO mode, you can also return the XSD schema of the document you are
creating. This schema is included inside the XML that is returned, before the actual XML data;
therefore, it is called inline schema. You return XSD with the XMLSCHEMA directive. This di-
rective accepts a parameter that defines a target namespace. If you need schema only, with-
out data, simply include a WHERE condition in your query with a predicate that no row can
satisfy. The following query returns the schema of the XML generated in the previous query.

SELECT [Customer].custid AS [custid],
 [Customer].companyname AS [companyname],
 [Order].orderid AS [orderid],
 [Order].orderdate AS [orderdate]
FROM Sales.Customers AS [Customer]
 INNER JOIN Sales.Orders AS [Order]
 ON [Customer].custid = [Order].custid
WHERE 1 = 2
FOR XML AUTO, ELEMENTS,
 XMLSCHEMA('TK461-CustomersOrders');

Key
Terms

 Lesson 1: Returning Results As XML with FOR XML CHAPTER 7 229

Here is the output, the XSD document.

<xsd:schema targetNamespace="TK461-CustomersOrders" xmlns:schema="TK461-CustomersOrders"
 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:sqltypes=http://schemas.microsoft.com/sqlserver/2004/sqltypes
 elementFormDefault="qualified">
 <xsd:import namespace=http://schemas.microsoft.com/sqlserver/2004/sqltypes
 schemaLocation=http://schemas.microsoft.com/sqlserver/2004/sqltypes/sqltypes.xsd
 />
 <xsd:element name="Customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="custid" type="sqltypes:int" />
 <xsd:element name="companyname">
 <xsd:simpleType>
 <xsd:restriction base="sqltypes:nvarchar" sqltypes:localeId="1033"
 sqltypes:sqlCompareOptions="IgnoreCase IgnoreKanaType IgnoreWidth"
 sqltypes:sqlSortId="52">
 <xsd:maxLength value="40" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element ref="schema:Order" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Order">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="orderid" type="sqltypes:int" />
 <xsd:element name="orderdate" type="sqltypes:datetime" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

FOR XML paTh
With the last two flavors of the FOR XML clause —the EXPLICIT and PATH options—you can
manually define the XML returned. With these two options, you have total control of the
XML document returned. The EXPLICIT mode is included for backward compatibility only;
it uses proprietary T-SQL syntax for formatting XML. The PATH mode uses standard XML
XPath expressions to define the elements and attributes of the XML you are creating. This
section focuses on the PATH mode; if you want to learn more about the EXPLICIT mode,
see the Books Online for SQL Server 2012 article “Use EXPLICIT Mode with FOR XML” at
http://msdn.microsoft.com/en-us/library/ms189068.aspx.

In PATH mode, column names and aliases serve as XPath expressions. XPath expressions
define the path to the element in the XML generated. Path is expressed in a hierarchical way;
levels are delimited with the slash (/) character. By default, every column becomes an ele-
ment; if you want to generate attribute-centric XML, prefix the alias name with the “at” (@)
character.

 230 CHAPTER 7 Querying and Managing XML Data

Here is an example of a simple XPATH query.

SELECT Customer.custid AS [@custid],
 Customer.companyname AS [companyname]
FROM Sales.Customers AS Customer
WHERE Customer.custid <= 2
ORDER BY Customer.custid
FOR XML PATH ('Customer'), ROOT('Customers');

The query returns the following output.

<Customers>
 <Customer custid="1">
 <companyname>Customer NRZBB</companyname>
 </Customer>
 <Customer custid="2">
 <companyname>Customer MLTDN</companyname>
 </Customer>
</Customers>

If you want to create XML with nested elements for child tables, you have to use subque-
ries in the SELECT part of the query in the PATH mode. Subqueries have to return a scalar
value in a SELECT clause. However, you know that a parent row can have multiple child rows;
a customer can have multiple orders. You return a scalar value by returning XML from the
subquery. Then the result is returned as a single scalar XML value. You format nested XML
from the subquery with the FOR XML clause, like you format XML in an outer query. Addi-
tionally, you have to use the TYPE directive of the FOR XML clause to produce a value of the
XML data type, and not XML as text, which cannot be consumed by the outer query.

You create XML with nested elements by using the FOR XML PATH clause in the practice
for this lesson.

Quick Check
■■ How can you get an XSD schema together with an XML document from your

SELECT statement?

Quick Check Answer
■■ You should use the XMLSCHEMA directive in the FOR XML clause.

Shredding XML to Tables
You just learned how to create XML from relational data. Of course, you can also do the op-
posite process: convert XML to tables. Converting XML to relational tables is known as shred-
ding XML. You can do this by using the nodes method of the XML data type; you learn about
this method in Lesson 3, “Using the XML Data Type.” Starting with SQL Server 2000, you can
do the shredding also with the OPENXML rowset function.

Key
Terms

 Lesson 1: Returning Results As XML with FOR XML CHAPTER 7 231

The OPENXML function provides a rowset over in-memory XML documents by using
Document Object Model (DOM) presentation. Before parsing the DOM, you need to prepare
it. To prepare the DOM presentation of XML, you need to call the system stored procedure
sys.sp_xml_preparedocument. After you shred the document, you must remove the DOM
presentation by using the system procedure sys.sp_xml_removedocument.

The OPENXML function uses the following parameters:

■■ An XML DOM document handle, returned by sp_xml_preparedocument

■■ An XPath expression to find the nodes you want to map to rows of a rowset returned

■■ A description of the rowset returned

■■ Mapping between XML nodes and rowset columns

The document handle is an integer. This is the simplest parameter. The XPath expression is
specified as rowpattern, which defines how XML nodes translate to rows. The path to a node
is used as a pattern; nodes below the selected node define rows of the returned rowset.

You can map XML elements or attributes to rows and columns by using the WITH clause
of the OPENXML function. In this clause, you can specify an existing table, which is used as a
template for the rowset returned, or you can define a table with syntax similar to that in the
CREATE TABLE T-SQL statement.

The OPENXML function accepts an optional third parameter, called flags, which allows you
to specify the mapping used between the XML data and the relational rowset. A value of 1
means attribute-centric mapping, 2 means element-centric, and 3 means both. However, flag
value 3 is undocumented, and it is a best practice not to use it. Flag value 8 can be combined
with values 1 and 2 with a bitwise logical OR operator to get both attribute and element-cen-
tric mapping. The XML used for the following OPENXML examples uses attributes and ele-
ments; for example, custid is the attribute and companyname is the element. The intention of
this slightly overcomplicated XML is to show you the difference between attribute-centric and
element-centric mappings. The following code shreds the same XML three times to show you
the difference between different mappings by using the following values for the flags param-
eter: 1, 2, and 11 (8+1+2); all three queries use the same rowset description in the WITH clause.

DECLARE @DocHandle AS INT;
DECLARE @XmlDocument AS NVARCHAR(1000);
SET @XmlDocument = N'
<CustomersOrders>
 <Customer custid="1">
 <companyname>Customer NRZBB</companyname>
 <Order orderid="10692">
 <orderdate>2007-10-03T00:00:00</orderdate>
 </Order>
 <Order orderid="10702">
 <orderdate>2007-10-13T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2008-03-16T00:00:00</orderdate>
 </Order>
 </Customer>

 232 CHAPTER 7 Querying and Managing XML Data

 <Customer custid="2">
 <companyname>Customer MLTDN</companyname>
 <Order orderid="10308">
 <orderdate>2006-09-18T00:00:00</orderdate>
 </Order>
 <Order orderid="10926">
 <orderdate>2008-03-04T00:00:00</orderdate>
 </Order>
 </Customer>
</CustomersOrders>';
-- Create an internal representation
EXEC sys.sp_xml_preparedocument @DocHandle OUTPUT, @XmlDocument;
-- Attribute-centric mapping
SELECT *
FROM OPENXML (@DocHandle, '/CustomersOrders/Customer',1)
 WITH (custid INT,
 companyname NVARCHAR(40));
-- Element-centric mapping
SELECT *
FROM OPENXML (@DocHandle, '/CustomersOrders/Customer',2)
 WITH (custid INT,
 companyname NVARCHAR(40));
-- Attribute- and element-centric mapping
-- Combining flag 8 with flags 1 and 2
SELECT *
FROM OPENXML (@DocHandle, '/CustomersOrders/Customer',11)
 WITH (custid INT,
 companyname NVARCHAR(40));
-- Remove the DOM
EXEC sys.sp_xml_removedocument @DocHandle;
GO

Results of the preceding three queries are as follows.

custid companyname
----------- --
1 NULL
2 NULL
custid companyname
----------- --
NULL Customer NRZBB
NULL Customer MLTDN
custid companyname
----------- --
1 Customer NRZBB
2 Customer MLTDN

As you can see, you get attributes with attribute-centric mapping, elements with element-
centric mapping, and both if you combine the two mappings. The nodes method of the XML
data type is more efficient for shredding an XML document only once and is therefore the
preferred way of shredding XML documents in such a case. However, if you need to shred
the same document multiple times, like shown in the three-query example for the OPENXML
function, then preparing the DOM presentation once, using OPENXML multiple times, and
removing the DOM presentation might be faster.

 Lesson 1: Returning Results As XML with FOR XML CHAPTER 7 233

PRACTICE Using the FOR XML Clause

In this practice, you create XML from relational data. You return XML data as a document and
as a fragment.

If you encounter a problem completing an exercise, you can install the completed projects
from the companion content for this chapter and lesson.

EXERCISE 1 Return an XML Document

In this exercise, you return XML formatted as a document from relational data.

1. Start SSMS and connect to your SQL Server instance.

2. Open a new query window by clicking the New Query button.

3. Change the current database context to the TSQL2012 database.

4. Return customers with their orders as XML in RAW mode. Return the custid and
companyname columns from the Sales.Customers table, and orderid and orderdate
columns from the Sales.Orders table. You can use the following query.

SELECT Customer.custid, Customer.companyname,
 [Order].orderid, [Order].orderdate
FROM Sales.Customers AS Customer
 INNER JOIN Sales.Orders AS [Order]
 ON Customer.custid = [Order].custid
ORDER BY Customer.custid, [Order].orderid
FOR XML RAW;

5. Observe the results.

6. Improve the XML created with the previous query by changing from RAW to AUTO
mode. Make the result element-centric by using TK461-CustomersOrders as the
namespace and CustomersOrders as the root element. You can use the following code.

WITH XMLNAMESPACES('TK461-CustomersOrders' AS co)
SELECT [co:Customer].custid AS [co:custid],
 [co:Customer].companyname AS [co:companyname],
 [co:Order].orderid AS [co:orderid],
 [co:Order].orderdate AS [co:orderdate]
FROM Sales.Customers AS [co:Customer]
 INNER JOIN Sales.Orders AS [co:Order]
 ON [co:Customer].custid = [co:Order].custid
ORDER BY [co:Customer].custid, [co:Order].orderid
FOR XML AUTO, ELEMENTS, ROOT('CustomersOrders');

7. Observe the results.

 234 CHAPTER 7 Querying and Managing XML Data

EXERCISE 2 Return an XML Fragment

In this exercise, you return XML formatted as a fragment from relational data.

1. Return the third XML as a fragment, not as a document. Return the top element Cus-
tomer with custid and companyname attributes. Return the Order nested element with
orderid and orderdate attributes. Use the FOR XML PATH clause for explicit formatting
of XML. You can use the following code.

SELECT Customer.custid AS [@custid],
 Customer.companyname AS [@companyname],
 (SELECT [Order].orderid AS [@orderid],
 [Order].orderdate AS [@orderdate]
 FROM Sales.Orders AS [Order]
 WHERE Customer.custid = [Order].custid
 AND [Order].orderid %2 = 0
 ORDER BY [Order].orderid
 FOR XML PATH('Order'), TYPE)
FROM Sales.Customers AS Customer
WHERE Customer.custid <= 2
ORDER BY Customer.custid
FOR XML PATH('Customer');

2. Observe the results.

Lesson Summary
■■ You can use the FOR XML clause of the SELECT T-SQL statement to produce XML.

■■ Use the OPENXML function to shred XML to tables.

Lesson Review
Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the “Answers” section at the end of this chapter.

1. Which FOR XML options are valid? (Choose all that apply.)

A. FOR XML AUTO

B. FOR XML MANUAL

C. FOR XML DOCUMENT

D. FOR XML PATH

2. Which directive of the FOR XML clause should you use to produce element-centric XML?

A. ATTRIBUTES

B. ROOT

C. ELEMENTS

D. XMLSCHEMA

 Lesson 2: Querying XML Data with XQuery CHAPTER 7 235

3. Which FOR XML options can you use to manually format the XML returned? (Choose
all that apply.)

A. FOR XML AUTO

B. FOR XML EXPLICIT

C. FOR XML RAW

D. FOR XML PATH

Lesson 2: Querying XML Data with XQuery

XQuery is a standard language for browsing XML instances and returning XML. It is much
richer than XPath expressions, an older standard, which you can use for simple navigation
only. With XQuery, you can navigate as with XPath; however, you can also loop over nodes,
shape the returned XML instance, and much more.

For a query language, you need a query-processing engine. The SQL Server database
engine processes XQuery inside T-SQL statements through XML data type methods. Not all
XQuery features are supported in SQL Server. For example, XQuery user-defined functions
are not supported in SQL Server because you already have T-SQL and CLR functions available.
Additionally, T-SQL supports nonstandard extensions to XQuery, called XML DML, that you
can use to modify elements and attributes in XML data. Because an XML data type is a large
object, it could be a huge performance bottleneck if the only way to modify an XML value
were to replace the entire value.

This lesson introduces XQuery for data retrieval purposes only; you learn more about the
XML data type in Lesson 3. In this lesson, you use variables of the XML data type and the
query method of the XML data type only. The query method accepts an XQuery string as its
parameter, and it returns the XML you shape in XQuery.

The implementation of XQuery in SQL Server follows the World Wide Web Consortium
(W3C) standard, and it is supplemented with extensions to support data modifications. You
can find more about W3C on the web at http://www.w3.org/, and news and additional re-
sources about XQuery at http://www.w3.org/XML/Query/.

After this lesson, you will be able to:
■■ Use XPath expressions to navigate through nodes of an XML instance.

■■ Use XQuery predicates.

■■ Use XQuery FLWOR expressions.

Estimated lesson time: 60 minutes

Key
Terms

 236 CHAPTER 7 Querying and Managing XML Data

XQuery Basics
XQuery is, like XML, case sensitive. Therefore, if you want to check the examples manually,
you have to write the queries exactly as they are written in this chapter. For example, if you
write Data() instead of data(), you will get an error stating that there is no Data() function.

XQuery returns sequences. Sequences can include atomic values or complex values (XML
nodes). Any node, such as an element, attribute, text, processing instruction, comment, or
document, can be included in the sequence. Of course, you can format the sequences to get
well-formed XML. The following code shows different sequences returned from a simple XML
instance by three XML queries.

DECLARE @x AS XML;
SET @x=N'
<root>
 <a>1<c>3</c><d>4</d>
 2
</root>';
SELECT
 @x.query('*') AS Complete_Sequence,
 @x.query('data(*)') AS Complete_Data,
 @x.query('data(root/a/c)') AS Element_c_Data;

Here are the sequences returned.

Complete_Sequence Complete_Data Element_c_Data
--- ------------- --------------
<root><a>1<c>3</c><d>4</d>2</root> 1342 3

The first XQuery expression uses the simplest possible path expression, which selects
every thing from the XML instance; the second uses the data() function to extract all atomic
data values from the complete document; the third uses the data() function to extract atomic
data from the element c only.

Every identifier in XQuery is a qualified name, or a QName. A QName consists of a local
name and, optionally, a namespace prefix. In the preceding example, root, a, b, c, and d are
QNames; however, they are without namespace prefixes. The following standard namespaces
are predefined in SQL Server:

■■ xs The namespace for an XML schema (the uniform resource identifier, or URI, is
http://www.w3.org/2001/XMLSchema)

■■ xsi The XML schema instance namespace, used to associate XML schemas with in-
stance documents (http://www.w3.org/2001/XMLSchema-instance)

■■ xdt The namespace for XPath and XQuery data types (http://www.w3.org/2004/07
/xpath-datatypes)

■■ fn The functions namespace (http://www.w3.org/2004/07/xpath-functions)

■■ sqltypes The namespace that provides mapping for SQL Server data types
(http://schemas.microsoft.com/sqlserver/2004/sqltypes)

■■ xml The default XML namespace (http://www.w3.org/XML/1998/namespace)

 Lesson 2: Querying XML Data with XQuery CHAPTER 7 237

You can use these namespaces in your queries without defining them again. You define
your own data types in the prolog, which belongs at the beginning of your XQuery. You
separate the prolog from the query body with a semicolon. In addition, in T-SQL, you can
declare namespaces used in XQuery expressions in advance in the WITH clause of the T-SQL
SELECT command. If your XML uses a single namespace, you can also declare it as the default
namespace for all elements in the XQuery prolog.

You can also include comments in your XQuery expressions. The syntax for a comment is
text between parentheses and colons: (: this is a comment :). Do not mix this with comment
nodes in your XML document; this is the comment of your XQuery and has no influence on
the XML returned. The following code shows all three methods of namespace declaration and
uses XQuery comments. It extracts orders for the first customer from an XML instance.

DECLARE @x AS XML;
SET @x='
<CustomersOrders xmlns:co="TK461-CustomersOrders">
 <co:Customer co:custid="1" co:companyname="Customer NRZBB">
 <co:Order co:orderid="10692" co:orderdate="2007-10-03T00:00:00" />
 <co:Order co:orderid="10702" co:orderdate="2007-10-13T00:00:00" />
 <co:Order co:orderid="10952" co:orderdate="2008-03-16T00:00:00" />
 </co:Customer>
 <co:Customer co:custid="2" co:companyname="Customer MLTDN">
 <co:Order co:orderid="10308" co:orderdate="2006-09-18T00:00:00" />
 <co:Order co:orderid="10926" co:orderdate="2008-03-04T00:00:00" />
 </co:Customer>
</CustomersOrders>';
-- Namespace in prolog of XQuery
SELECT @x.query('
(: explicit namespace :)
declare namespace co="TK461-CustomersOrders";
//co:Customer[1]/*') AS [Explicit namespace];
-- Default namespace for all elements in prolog of XQuery
SELECT @x.query('
(: default namespace :)
declare default element namespace "TK461-CustomersOrders";
//Customer[1]/*') AS [Default element namespace];
-- Namespace defined in WITH clause of T-SQL SELECT
WITH XMLNAMESPACES('TK461-CustomersOrders' AS co)
SELECT @x.query('
(: namespace declared in T-SQL :)
//co:Customer[1]/*') AS [Namespace in WITH clause];

Here is the abbreviated output.

Explicit namespace
--
<co:Order xmlns:co="TK461-CustomersOrders" co:orderid="10692" co:orderd

Default element namespace
--
<Order xmlns="TK461-CustomersOrders" xmlns:p1="TK461-Customers

Namespace in WITH clause
--
<co:Order xmlns:co="TK461-CustomersOrders" co:orderid="10692" co:orderd

 238 CHAPTER 7 Querying and Managing XML Data

NOTE THE DEFAULT NAMESPACE

If you use a default element namespace, the namespace is not included for the elements in
the resulting XML; it is included for the attributes. Therefore, only the first and third que-
ries are completely equivalent. In addition, when you use the default element namespace,
you can’t define your own namespace abbreviation. You should prefer an explicit
namespace definition to using the default element namespace.

The queries used a relative path to find the Customer element. Before looking at all the
different ways of navigation in XQuery, you should first read through the most important
XQuery data types and functions, described in the following two sections.

XQuery Data Types
XQuery uses about 50 predefined data types. Additionally, in the SQL Server implementation
you also have the sqltypes namespace, which defines SQL Server types. You already know
about SQL Server types. Do not worry too much about XQuery types; you’ll never use most of
them. This section lists only the most important ones, without going into details about them.

XQuery data types are divided into node types and atomic types. The node types include
attribute, comment, element, namespace, text, processing-instruction, and document-
node. The most important atomic types you might use in queries are xs:boolean, xs:string,
xs:QName, xs:date, xs:time, xs:datetime, xs:float, xs:double, xs:decimal, and xs:integer.

You should just do a quick review of this much-shortened list. The important thing to
understand is that XQuery has its own type system, that it has all of the commonly used types
you would expect, and that you can use specific functions on specific types only. Therefore, it
is time to introduce a couple of important XQuery functions.

XQuery Functions
Just as there are many data types, there are dozens of functions in XQuery as well. They are
organized into multiple categories. The data() function, used earlier in the chapter, is a data
accessor function. Some of the most useful XQuery functions supported by SQL Server are:

■■ Numeric functions ceiling(), floor(), and round()

■■ String functions concat(), contains(), substring(), string-length(), lower-case(), and
upper-case()

■■ Boolean and Boolean constructor functions not(), true(), and false()

■■ Nodes functions local-name() and namespace-uri()

■■ Aggregate functions count(), min(), max(), avg(), and sum()

■■ Data accessor functions data() and string()

■■ SQL Server extension functions sql:column() and sql:variable()

 Lesson 2: Querying XML Data with XQuery CHAPTER 7 239

You can easily conclude what a function does and what data types it supports from the
function and category names. For a complete list of functions with detailed descriptions, see
the Books Online for SQL Server 2012 article “XQuery Functions against the xml Data Type” at
http://msdn.microsoft.com/en-us/library/ms189254.aspx.

The following query uses the aggregate functions count() and max() to retrieve informa-
tion about orders for each customer in an XML document.

DECLARE @x AS XML;
SET @x='
<CustomersOrders>
 <Customer custid="1" companyname="Customer NRZBB">
 <Order orderid="10692" orderdate="2007-10-03T00:00:00" />
 <Order orderid="10702" orderdate="2007-10-13T00:00:00" />
 <Order orderid="10952" orderdate="2008-03-16T00:00:00" />
 </Customer>
 <Customer custid="2" companyname="Customer MLTDN">
 <Order orderid="10308" orderdate="2006-09-18T00:00:00" />
 <Order orderid="10926" orderdate="2008-03-04T00:00:00" />
 </Customer>
</CustomersOrders>';
SELECT @x.query('
for $i in //Customer
return
 <OrdersInfo>
 { $i/@companyname }
 <NumberOfOrders>
 { count($i/Order) }
 </NumberOfOrders>
 <LastOrder>
 { max($i/Order/@orderid) }
 </LastOrder>
 </OrdersInfo>
');

As you can see, this XQuery is more complicated than previous examples. The query uses
iterations, known as XQuery FLWOR expressions, and formats the XML returned in the return
part of the query. The FLWOR expressions are discussed later in this lesson. For now, treat this
query as an example of how you can use aggregate functions in XQuery. The result of this
query is as follows.

<OrdersInfo companyname="Customer NRZBB">
 <NumberOfOrders>3</NumberOfOrders>
 <LastOrder>10952</LastOrder>
</OrdersInfo>
<OrdersInfo companyname="Customer MLTDN">
 <NumberOfOrders>2</NumberOfOrders>
 <LastOrder>10926</LastOrder>
</OrdersInfo>

 240 CHAPTER 7 Querying and Managing XML Data

Navigation
You have plenty of ways to navigate through an XML document with XQuery. Actually, there
is not enough space in this book to fully describe all possibilities of XQuery navigation; you
have to realize this is far from a complete treatment of the topic. The basic approach is to
use XPath expressions. With XQuery, you can specify a path absolutely or relatively from the
current node. XQuery takes care of the current position in the document; this means that you
can refer to a path relatively, starting from the current node, to which you navigated through
a previous path expression. Every path consists of a sequence of steps, listed from left to
right. A complete path might take the following form.

Node-name/child::element-name[@attribute-name=value]

Steps are separated with slashes; therefore, the path example described here has two
steps. In the second step you can see in detail from which parts a step can be constructed. A
step may consist of three parts:

■■ Axis Specifies the direction of travel. In the example, the axis is child::, which specifies
child nodes of the node from the previous step.

■■ Node test Specifies the criterion for selecting nodes. In the example, element-name
is the node test; it selects only nodes named element-name.

■■ Predicate Further narrows down the search. In the example, there is one predicate:
[@attribute-name=value], which selects only nodes that have an attribute named
attribute-name with value value, such as [@orderid=10952].

Note that in the predicate example, there is a reference to the attribute:: axis; the at sign
(@) is an abbreviation for the axis attribute::. This looks a bit confusing; it might help if you
think of navigation in an XML document in four directions: up (in the hierarchy), down (in the
hierarchy), here (in current node), and right (in the current context level, to find attributes).
Table 7-2 describes the axes supported in SQL Server.

TABLE 7-2 Axes supported in SQL Server

Axis Abbrevation Description

child:: Returns children of the current context node. This is the
default axis; you can omit it. Direction is down.

descendant:: Retrieves all descendants of the context node. Direction
is down.

self:: Retrieves the context node. Direction is here.

descendant-or-self:: // Retrieves the context node and all its descendants.
Direction is here and then down.

attribute:: @ Retrieves the specified attribute of the context node.
Direction is right.

parent:: .. Retrieves the parent of the context node. Direction is up.

 Lesson 2: Querying XML Data with XQuery CHAPTER 7 241

A node test follows the axis you specify. A node test can be as simple as a name test.
Specifying a name means that you want nodes with that name. You can also use wildcards.
An asterisk (*) means that you want any principal node, with any name. A principal node is the
default node kind for an axis. The principal node is an attribute if the axis is attribute::, and it
is an element for all other axes. You can also narrow down wildcard searches. If you want all
principal nodes in the namespace prefix, use prefix:*. If you want all principal nodes named
local-name, no matter which namespace they belong to, use *:local-name.

You can also perform node kind tests, which help you query nodes that are not principal
nodes. You can use the following node type tests:

■■ comment() Allows you to select comment nodes.

■■ node() True for any kind of node. Do not mix this with the asterisk (*) wildcard; *
means any principal node, whereas node() means any node at all.

■■ processing-instruction() Allows you to retrieve a processing instruction node.

■■ text() Allows you to retrieve text nodes, or nodes without tags.

EXAM TIP

Navigation through XML can be quite tricky; make sure you understand the complete path.

predicates
Basic predicates include numeric and Boolean predicates. Numeric predicates simply select
nodes by position. You include them in brackets. For example, /x/y[1] means the first y child
element of each x element. You can also use parentheses to apply a numeric predicate to the
entire result of a path. For example, (/x/y)[1] means the first element out of all nodes selected
by x/y.

Boolean predicates select all nodes for which the predicate evaluates to true. XQuery sup-
ports logical and and or operators. However, you might be surprised by how comparison op-
erators work. They work on both atomic values and sequences. For sequences, if one atomic
value in a sequence leads to a true exit of the expression, the whole expression is evaluated to
true. Look at the following example.

DECLARE @x AS XML = N'';
SELECT @x.query('(1, 2, 3) = (2, 4)'); -- true
SELECT @x.query('(5, 6) < (2, 4)'); -- false
SELECT @x.query('(1, 2, 3) = 1'); -- true
SELECT @x.query('(1, 2, 3) != 1'); -- true

The first expression evaluates to true because the number 2 is in both sequences. The
second evaluates to false because none of the atomic values from the first sequence is less
than any of the values from the second sequence. The third expression is true because there is
an atomic value in the sequence on the left that is equal to the atomic value on the right. The
fourth expression is true because there is an atomic value in the sequence on the left that is
not equal to the atomic value on the right. Interesting result, right? Sequence (1, 2, 3) is both

Key
Terms

 242 CHAPTER 7 Querying and Managing XML Data

equal and not equal to atomic value 1. If this confuses you, use the value comparison opera-
tors. (The familiar symbolic operators in the preceding example are called general comparison
operators in XQuery.) Value comparison operators do not work on sequences, they work on
singletons. The following example shows usage of value comparison operators.

DECLARE @x AS XML = N'';
SELECT @x.query('(5) lt (2)'); -- false
SELECT @x.query('(1) eq 1'); -- true
SELECT @x.query('(1) ne 1'); -- false
GO
DECLARE @x AS XML = N'';
SELECT @x.query('(2, 2) eq (2, 2)'); -- error
GO

Note that the last query, which is in a separate batch, produces an error because it is try-
ing to use a value comparison operator on sequences. Table 7-3 lists the general comparison
operators and their value comparison operator counterparts.

TABLE 7-3 General and value comparison operators

General Value Description

 = eq equal

!= ne not equal

< lt less than

<= le less than or equal to

> gt greater than

>= ge greater than or equal to

XQuery also supports conditional if..then..else expressions with the following syntax.

if (<expression1>)
then
 <expression2>
else
 <expression3>

Note that the if..then..else expression is not used to change the program flow of the
XQuery query. It is more like a function that evaluates a logical expression parameter and
returns one expression or another depending on the value of the logical expression. It is more
like the T-SQL CASE expression than the T-SQL IF statement.

 Lesson 2: Querying XML Data with XQuery CHAPTER 7 243

The following code shows usage of a conditional expression.

DECLARE @x AS XML = N'
<Employee empid="2">
 <FirstName>fname</FirstName>
 <LastName>lname</LastName>
</Employee>
';
DECLARE @v AS NVARCHAR(20) = N'FirstName';
SELECT @x.query('
 if (sql:variable("@v")="FirstName") then
 /Employee/FirstName
 else
 /Employee/LastName
') AS FirstOrLastName;
GO

In this case, the result would be the first name of the employee with ID equal to 2. If
you change the value of the variable @v, the result of the query would be the employee’s
last name.

FLWOR Expressions
The real power of XQuery lies in its so-called FLWOR expressions. FLWOR is the acronym for
for, let, where, order by, and return. A FLWOR expression is actually a for each loop. You can
use it to iterate through a sequence returned by an XPath expression. Although you typi-
cally iterate through a sequence of nodes, you can use FLWOR expressions to iterate through
any sequence. You can limit the nodes to be processed with a predicate, sort the nodes, and
format the returned XML. The parts of a FLWOR statement are:

■■ For With a for clause, you bind iterator variables to input sequences. Input sequences
are either sequences of nodes or sequences of atomic values. You create atomic value
sequences by using literals or functions.

■■ Let With the optional let clause, you assign a value to a variable for a specific itera-
tion. The expression used for an assignment can return a sequence of nodes or a
sequence of atomic values.

■■ Where With the optional where clause, you filter the iteration.

■■ Order by Using the order by clause, you can control the order in which the elements
of the input sequence are processed. You control the order based on atomic values.

■■ Return The return clause is evaluated once per iteration, and the results are returned
to the client in the iteration order. With this clause, you format the resulting XML.

 244 CHAPTER 7 Querying and Managing XML Data

Here is an example of usage of all FLWOR clauses.

DECLARE @x AS XML;
SET @x = N'
<CustomersOrders>
 <Customer custid="1">
 <!-- Comment 111 -->
 <companyname>Customer NRZBB</companyname>
 <Order orderid="10692">
 <orderdate>2007-10-03T00:00:00</orderdate>
 </Order>
 <Order orderid="10702">
 <orderdate>2007-10-13T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2008-03-16T00:00:00</orderdate>
 </Order>
 </Customer>
 <Customer custid="2">
 <!-- Comment 222 -->
 <companyname>Customer MLTDN</companyname>
 <Order orderid="10308">
 <orderdate>2006-09-18T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2008-03-04T00:00:00</orderdate>
 </Order>
 </Customer>
</CustomersOrders>';
SELECT @x.query('for $i in CustomersOrders/Customer/Order
 let $j := $i/orderdate
 where $i/@orderid < 10900
 order by ($j)[1]
 return
 <Order-orderid-element>
 <orderid>{data($i/@orderid)}</orderid>
 {$j}
 </Order-orderid-element>')
 AS [Filtered, sorted and reformatted orders with let clause];

The query iterates, as you can see from the for clause, through all Order nodes using an
iterator variable and returns those nodes. The name of the iterator variable must start with a
dollar sign ($) in XQuery. The where clause limits the Order nodes processed to those with an
orderid attribute smaller than 10900.

The expression passed to the order by clause must return values of a type compatible with
the gt XQuery operator. As you’ll recall, the gt operator expects atomic values. The query
orders the XML returned by the orderdate element. Although there is a single orderdate ele-
ment per order, XQuery does not know this, and it considers orderdate to be a sequence, not
an atomic value. The numeric predicate specifies the first orderdate element of an order as
the value to order by. Without this numeric predicate, you would get an error.

 Lesson 2: Querying XML Data with XQuery CHAPTER 7 245

The return clause shapes the XML returned. It converts the orderid attribute to an ele-
ment by creating the element manually and extracting only the value of the attribute with
the data() function. It returns the orderdate element as well, and wraps both in the Order-
orderid-element element. Note the braces around the expressions that extract the value of
the orderid element and the orderdate element. XQuery evaluates expressions in braces;
without braces, everything would be treated as a string literal and returned as such.

The let clause assigns a name to the $i/orderdate expression. This expression repeats twice
in the query, in the order by and the return clauses. To name the expression, you have to
use a variable different from $i. XQuery inserts the expression every time the new variable is
referenced. Here is the result of the query.

<Order-orderid-element>
 <orderid>10308</orderid>
 <orderdate>2006-09-18T00:00:00</orderdate>
</Order-orderid-element>
<Order-orderid-element>
 <orderid>10692</orderid>
 <orderdate>2007-10-03T00:00:00</orderdate>
</Order-orderid-element>
<Order-orderid-element>
 <orderid>10702</orderid>
 <orderdate>2007-10-13T00:00:00</orderdate>
</Order-orderid-element>

Quick Check
1. What do you do in the return clause of the FLWOR expressions?

2. What would be the result of the expression (12, 4, 7) != 7?

Quick Check Answers
1. In the return clause, you format the resulting XML of a query.

2. The result would be true.

PRACTICE Using XQuery/XPath Navigation

In this practice, you use XPath expressions for navigation inside XQuery. You start with simple
path expressions, and then use more complex path expressions with predicates.

If you encounter a problem completing an exercise, you can install the completed projects
from the companion content for this chapter and lesson.

 246 CHAPTER 7 Querying and Managing XML Data

EXERCISE 1 Use Simple Xpath Expressions

In this exercise, you use simple XPath expressions to return subsets of XML data.

1. If you closed SSMS, start it and connect to your SQL Server instance. Open a new query
window by clicking the New Query button.

2. Connect to your TSQL2012 database.

3. Use the following XML instance for testing the navigation.

DECLARE @x AS XML;
SET @x = N'
<CustomersOrders>
 <Customer custid="1">
 <!-- Comment 111 -->
 <companyname>Customer NRZBB</companyname>
 <Order orderid="10692">
 <orderdate>2007-10-03T00:00:00</orderdate>
 </Order>
 <Order orderid="10702">
 <orderdate>2007-10-13T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2008-03-16T00:00:00</orderdate>
 </Order>
 </Customer>
 <Customer custid="2">
 <!-- Comment 222 -->
 <companyname>Customer MLTDN</companyname>
 <Order orderid="10308">
 <orderdate>2006-09-18T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2008-03-04T00:00:00</orderdate>
 </Order>
 </Customer>
</CustomersOrders>';

4. Write a query that selects Customer nodes with child nodes. Select principal nodes
(ele ments in this context) only. The result should be similar to the abbreviated result
here.

1. Principal nodes
--
<companyname>Customer NRZBB</companyname><Order orderid="10692"><orderdate>2007-

Use the following query to get the desired result.

SELECT @x.query('CustomersOrders/Customer/*')
 AS [1. Principal nodes];

5. Now return all nodes, not just the principal ones. The result should be similar to the
abbreviated result here.

 Lesson 2: Querying XML Data with XQuery CHAPTER 7 247

2. All nodes
--
<!-- Comment 111 --><companyname>Customer NRZBB</companyname><Order orderid="106

Use the following query to get the desired result.

SELECT @x.query('CustomersOrders/Customer/node()')
 AS [2. All nodes];

6. Return comment nodes only. The result should be similar to the result here.

3. Comment nodes
--
<!-- Comment 111 --><!-- Comment 222 -->

Use the following query to get the desired result.

SELECT @x.query('CustomersOrders/Customer/comment()')
 AS [3. Comment nodes];

EXERCISE 2 Use Xpath Expressions with predicates

In this exercise, you use XPath expressions with predicates to return filtered subsets of XML
data.

1. Use the following XML instance (the same as in the previous exercise) for testing the
navigation.

DECLARE @x AS XML;
SET @x = N'
<CustomersOrders>
 <Customer custid="1">
 <!-- Comment 111 -->
 <companyname>Customer NRZBB</companyname>
 <Order orderid="10692">
 <orderdate>2007-10-03T00:00:00</orderdate>
 </Order>
 <Order orderid="10702">
 <orderdate>2007-10-13T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2008-03-16T00:00:00</orderdate>
 </Order>
 </Customer>
 <Customer custid="2">
 <!-- Comment 222 -->
 <companyname>Customer MLTDN</companyname>
 <Order orderid="10308">
 <orderdate>2006-09-18T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2008-03-04T00:00:00</orderdate>
 </Order>
 </Customer>
</CustomersOrders>';

 248 CHAPTER 7 Querying and Managing XML Data

2. Return all orders for customer 2. The result should be similar to the abbreviated result
here.

4. Customer 2 orders
--
<Order orderid="10308"><orderdate>2006-09-18T00:00:00</orderdate></Order><Order

Use the following query to get the desired result.

SELECT @x.query('//Customer[@custid=2]/Order')
 AS [4. Customer 2 orders];

3. Return all orders with order number 10952, no matter who the customer is. The result
should be similar to the abbreviated result here.

5. Orders with orderid=10952
--
<Order orderid="10952"><orderdate>2008-03-16T00:00:00</orderdate></Order><Order

Use the following query to get the desired result.

SELECT @x.query('//Order[@orderid=10952]')
 AS [5. Orders with orderid=10952];

4. Return the second customer who has at least one order. The result should be similar to
the abbreviated result here.

6. 2nd Customer with at least one Order
--
<Customer custid="2"><!-- Comment 222 --><companyname>Customer MLTDN</companyname

Use the following query to get the desired result.

SELECT @x.query('(/CustomersOrders/Customer/
 Order/parent::Customer)[2]')
 AS [6. 2nd Customer with at least one Order];

Lesson Summary
■■ You can use the XQuery language inside T-SQL queries to query XML data.

■■ XQuery supports its own data types and functions.

■■ You use XPath expressions to navigate through an XML instance.

■■ The real power of XQuery is in the FLWOR expressions.

Lesson Review
Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the “Answers” section at the end of this chapter.

 Lesson 3: Using the XML Data Type CHAPTER 7 249

1. Which of the following is not a FLWOR clause?

A. for

B. let

C. where

D. over

E. return

2. Which node type test can be used to retrieve all nodes of an XML instance?

A. Asterisk (*)

B. comment()

C. node()

D. text()

3. Which conditional expression is supported in XQuery?

A. IIF

B. if..then..else

C. CASE

D. switch

Lesson 3: Using the XML Data Type

XML is the standard format for exchanging data among different applications and platforms.
It is widely used, and almost all modern technologies support it. Databases simply have to
deal with XML. Although XML could be stored as simple text, plain text representation means
having no knowledge of the structure built into an XML document. You could decompose
the text, store it in multiple relational tables, and use relational technologies to manipulate
the data. Relational structures are quite static and not so easy to change. Think of dynamic or
volatile XML structures. Storing XML data in a native XML data type solves these problems,
enabling functionality attached to the type that can accommodate support for a wide variety
of XML technologies.

After this lesson, you will be able to:
■■ Use the XML data type and its methods.

■■ Index XML data.

Estimated lesson time: 45 minutes

 250 CHAPTER 7 Querying and Managing XML Data

When to Use the XML Data Type
A database schema is sometimes volatile. Think about situations in which you have to support
many different schemas for the same kind of event. SQL Server has many such cases within it.
Data definition language (DDL) triggers and extended events are good examples. There are
dozens of different DDL events. Each event returns different event information; each event
returns data with a different schema. A conscious design choice was that DDL triggers return
event information in XML format via the eventdata() function. Event information in XML for-
mat is quite easy to manipulate. Furthermore, with this architecture, SQL Server will be able to
extend support for new DDL events in future versions more easily.

Another interesting example of internal XML support is XML showplan. You can gener-
ate execution plan information in XML format by using the SET SHOWPLAN_XML and SET
STATISTICS XML statements. Think of the value for applications and tools that need execution
plan information—it’s easy to request and parse now. You can even force the optimizer to use
a specified execution plan by providing the XML plan in a USE PLAN query hint.

Another place to use XML is to represent data that is sparse. Your data is sparse and you
have a lot of NULLs if some columns are not applicable to all rows. Standard solutions for
such a problem introduce subtypes or implement an open schema model in a relational en-
vironment. However, a solution based on XML could be the easiest to implement. A solution
that introduces subtypes can lead to many new tables. SQL Server 2008 introduced sparse
columns and filtered indexes. Sparse columns could be another solution for having attributes
that are not applicable for all rows in a table. Sparse columns have optimized storage for
NULLs. If you have to index them, you can efficiently use filtered indexes to index known val-
ues only; this way, you optimize table and index storage. In addition, you can have access to
all sparse columns at once through a column set. A column set is an XML representation of all
the sparse columns that is even updateable. However, with sparse columns and a column set,
the schema is more complicated than a schema with an explicit XML column.

You could have other reasons to use an XML model. XML inherently supports hierarchical
and sorted data. If ordering is inherent in your data, you might decide to store it as XML. You
could receive XML documents from your business partner, and you might not need to shred
the document to tables. It might be more practical to just store the complete XML documents
in your database, without shredding.

XML Data Type Methods
In the XQuery introduction in this chapter, you already saw the XML data type. XQuery was a
parameter for the query() method of this type. An XML data type includes five methods that
accept XQuery as a parameter. The methods support querying (the query() method), retriev-
ing atomic values (the value() method), checking existence (the exist() method), modifying
sections within the XML data (the modify() method) as opposed to overwriting the whole
thing, and shredding XML data into multiple rows in a result set (the nodes() method). You
use the XML data type methods in the practice for this lesson.

 Lesson 3: Using the XML Data Type CHAPTER 7 251

The value() method of the XML data type returns a scalar value, so it can be specified any-
where where scalar values are allowed; for example, in the SELECT list of a query. Note that
the value() method accepts an XQuery expression as the first input parameter. The second pa-
rameter is the SQL Server data type returned. The value() method must return a scalar value;
therefore, you have to specify the position of the element in the sequence you are browsing,
even if you know that there is only one.

You can use the exist() method to test if a specific node exists in an XML instance. Typical
usage of this clause is in the WHERE clause of T-SQL queries. The exist() method returns a bit,
a flag that represents true or false. It can return the following:

■■ 1, representing true, if the XQuery expression in a query returns a nonempty result.
That means that the node searched for exists in the XML instance.

■■ 0, representing false, if the XQuery expression returns an empty result.

■■ NULL, if the XML instance is NULL.

The query() method, as the name implies, is used to query XML data. You already know
this method from the previous lesson of this chapter. It returns an instance of an untyped
XML value.

The XML data type is a large object type. The amount of data stored in a column of this
type can be very large. It would not be very practical to replace the complete value when
all you need is just to change a small portion of it; for example, a scalar value of some
subelement. The SQL Server XML data type provides you with the modify() method, simi-
lar in concept to the WRITE method that can be used in a T-SQL UPDATE statement for
VARCHAR(MAX) and the other MAX types. You invoke the modify() method in an UPDATE
T-SQL statement.

The W3C standard doesn’t support data modification with XQuery. However, SQL Server
provides its own language extensions to support data modification with XQuery. SQL Server
XQuery supports three data manipulation language (DML) keywords for data modification:
insert, delete, and replace value of.

The nodes() method is useful when you want to shred an XML value into relational data.
Its purpose is therefore the same as the purpose of the OPENXML rowset function intro-
duced in Lesson 1 of this chapter. However, using the nodes() method is usually much faster
than preparing the DOM with a call to sp_xml_preparedocument, executing a SELECT..FROM
OPENXML statement, and calling sp_xml_removedocument. The nodes() method prepares
DOM internally, during the execution of the T-SQL SELECT. The OPENXML approach could be
faster if you prepared the DOM once and then shredded it multiple times in the same batch.

The result of the nodes() method is a result set that contains logical copies of the original
XML instances. In those logical copies, the context node of every row instance is set to one of
the nodes identified by the XQuery expression, meaning that you get a row for every single
node from the starting point defined by the XQuery expression. The nodes() method returns
copies of the XML values, so you have to use additional methods to extract the scalar values

 252 CHAPTER 7 Querying and Managing XML Data

out of them. The nodes() method has to be invoked for every row in the table. With the T-SQL
APPLY operator, you can invoke a right table expression for every row of a left table expres-
sion in the FROM part.

Using the XML Data Type for Dynamic Schema
In this lesson, you learn how to use an XML data type inside your database through an ex-
ample. This example shows how you can make a relational database schema dynamic. The
example extends the Products table from the TSQL2012 database.

Suppose that you need to store some specific attributes only for beverages and other
attributes only for condiments. For example, you need to store the percentage of recom-
mended daily allowance (RDA) of vitamins only for beverages, and a short description only
for condiments to indicate the condiment’s general character (such as sweet, spicy, or salty).
You could add an XML data type column to the Production.Products table of the TSQL2012
database; for this example, call it additionalattributes. Because the other product categories
have no additional attributes, this column has to be nullable. The following code alters the
Production.Products table to add this column.

ALTER TABLE Production.Products
 ADD additionalattributes XML NULL;

Before inserting data in the new column, you might want to constrain the values of this
column. You should use a typed XML, an XML validated against a schema. With an XML
schema, you constrain the possible nodes, the data type of those nodes, and more. In SQL
Server, you can validate XML data against an XML schema collection. This is exactly what you
need for a dynamic schema; if you could validate XML data against a single schema only, you
could not use an XML data type for a dynamic schema solution, because XML instances would
be limited to a single schema. Validation against a collection of schemas enables support of
different schemas for beverages and condiments. If you wanted to validate XML values only
against a single schema, you would define only a single schema in the collection.

You create the schema collection by using the CREATE XML SCHEMA COLLECTION T-SQL
statement. You have to supply the XML schema, an XSD document, as input. Creating the
schema is a task that should not be taken lightly. If you make an error in the schema, some
invalid data might be accepted and some valid data might be rejected.

The easiest way to create XML schemas is to create relational tables first, and then use the
XMLSCHEMA option of the FOR XML clause. Store the resulting XML value (the schema) in a
variable, and provide the variable as input to the CREATE XML SCHEMA COLLECTION state-
ment. The following code creates two auxiliary empty tables for beverages and condiments,
and then uses SELECT with the FOR XML clause to create an XML schema from those tables.
Then it stores the schemas in a variable, and creates a schema collection from that variable.
Finally, after the schema collection is created, the code drops the auxiliary tables.

 Lesson 3: Using the XML Data Type CHAPTER 7 253

-- Auxiliary tables
CREATE TABLE dbo.Beverages
(
 percentvitaminsRDA INT
);
CREATE TABLE dbo.Condiments
(
 shortdescription NVARCHAR(50)
);
GO
-- Store the Schemas in a Variable and Create the Collection
DECLARE @mySchema NVARCHAR(MAX);
SET @mySchema = N'';
SET @mySchema = @mySchema +
 (SELECT *
 FROM Beverages
 FOR XML AUTO, ELEMENTS, XMLSCHEMA('Beverages'));
SET @mySchema = @mySchema +
 (SELECT *
 FROM Condiments
 FOR XML AUTO, ELEMENTS, XMLSCHEMA('Condiments'));
SELECT CAST(@mySchema AS XML);
CREATE XML SCHEMA COLLECTION dbo.ProductsAdditionalAttributes AS @mySchema;
GO
-- Drop Auxiliary Tables
DROP TABLE dbo.Beverages, dbo.Condiments;
GO

The next step is to alter the XML column from a well-formed state to a schema-validated
one.

ALTER TABLE Production.Products
 ALTER COLUMN additionalattributes
 XML(dbo.ProductsAdditionalAttributes);

You can get information about schema collections by querying the catalog views sys.xml_
schema_collections, sys.xml_schema_namespaces, sys.xml_schema_components, and some
others views in the sys schema with names that start with xml_schema_. However, a schema
collection is stored in SQL Server in tabular format, not in XML format. It would make sense to
perform the same schema validation on the client side as well. Why would you send data to
the server side if the relational database management system (RDBMS) will reject it? You can
perform schema collection validation in Microsoft .NET code as well, as long as you have the
schemas. Therefore, it makes sense to save the schemas you create with T-SQL in files in a file
system as well. If you forgot to save the schemas in files, you can still retrieve them from SQL
Server schema collections with the xml_schema_namespace system function. Note that the
schema returned by this function might not be lexically the same as the original schema used
when you created your schema collection. Comments, annotations, and white spaces are lost.
However, the aspects of the schema used for validation are preserved.

 254 CHAPTER 7 Querying and Managing XML Data

Before using the new data type, you have to take care of one more issue. How do you
avoid binding the wrong schema to a product of a specific category? For example, how do
you prevent binding a condiments schema to a beverage? You could solve this issue with a
trigger; however, having a declarative constraint, a check constraint, is preferable. This is why
the code added namespaces to the schemas. You need to check whether the namespace
is the same as the product category name. You cannot use XML data type methods inside
constraints. You have to create two additional functions: one retrieves the XML namespace of
the additionalattributes XML column, and the other retrieves the category name of a product.
In the check constraint, you can check whether the return values of both functions are equal.
Here is the code that creates both functions and adds a check constraint to the Production.
Products table.

-- Function to Retrieve the Namespace
CREATE FUNCTION dbo.GetNamespace(@chkcol XML)
 RETURNS NVARCHAR(15)
AS
BEGIN
 RETURN @chkcol.value('namespace-uri((/*)[1])','NVARCHAR(15)')
END;
GO
-- Function to Retrieve the Category Name
CREATE FUNCTION dbo.GetCategoryName(@catid INT)
 RETURNS NVARCHAR(15)
AS
BEGIN
 RETURN
 (SELECT categoryname
 FROM Production.Categories
 WHERE categoryid = @catid)
END;
GO
-- Add the Constraint
ALTER TABLE Production.Products ADD CONSTRAINT ck_Namespace
 CHECK (dbo.GetNamespace(additionalattributes) =
 dbo.GetCategoryName(categoryid));
GO

The infrastructure is prepared. You can try to insert some valid XML data in your new
column.

-- Beverage
UPDATE Production.Products
 SET additionalattributes = N'
<Beverages xmlns="Beverages">
 <percentvitaminsRDA>27</percentvitaminsRDA>
</Beverages>'
WHERE productid = 1;
-- Condiment
UPDATE Production.Products
 SET additionalattributes = N'
<Condiments xmlns="Condiments">
 <shortdescription>very sweet</shortdescription>
</Condiments>'
WHERE productid = 3;

 Lesson 3: Using the XML Data Type CHAPTER 7 255

To test whether the schema validation and check constraint work, you should try to insert
some invalid data as well.

-- String instead of int
UPDATE Production.Products
 SET additionalattributes = N'
<Beverages xmlns="Beverages">
 <percentvitaminsRDA>twenty seven</percentvitaminsRDA>
</Beverages>'
WHERE productid = 1;
-- Wrong namespace
UPDATE Production.Products
 SET additionalattributes = N'
<Condiments xmlns="Condiments">
 <shortdescription>very sweet</shortdescription>
</Condiments>'
WHERE productid = 2;
-- Wrong element
UPDATE Production.Products
 SET additionalattributes = N'
<Condiments xmlns="Condiments">
 <unknownelement>very sweet</unknownelement>
</Condiments>'
WHERE productid = 3;

You should get errors for all three UPDATE statements. You can check the data with the
SELECT statement. When you are done, you could clean up the TSQL2012 database with the
following code.

ALTER TABLE Production.Products
 DROP CONSTRAINT ck_Namespace;
ALTER TABLE Production.Products
 DROP COLUMN additionalattributes;
DROP XML SCHEMA COLLECTION dbo.ProductsAdditionalAttributes;
DROP FUNCTION dbo.GetNamespace;
DROP FUNCTION dbo.GetCategoryName;
GO

Quick Check
■■ Which XML data type method would you use to retrieve scalar values from an XML

instance?

Quick Check Answer
■■ The value() XML data type method retrieves scalar values from an XML instance.

 256 CHAPTER 7 Querying and Managing XML Data

XML Indexes
The XML data type is actually a large object type. There can be up to 2 gigabytes (GB) of
data in every single column value. Scanning through the XML data sequentially is not a very
efficient way of retrieving a simple scalar value. With relational data, you can create an index
on a filtered column, allowing an index seek operation instead of a table scan. Similarly,
you can index XML columns with specialized XML indexes. The first index you create on an
XML column is the primary XML index. This index contains a shredded persisted representa-
tion of the XML values. For each XML value in the column, the index creates several rows
of data. The number of rows in the index is approximately the number of nodes in the XML
value. Such an index alone can speed up searches for a specific element by using the exist()
method. After creating the primary XML index, you can create up to three other types of
secondary XML indexes:

■■ PATH This secondary XML index is especially useful if your queries specify path ex-
pressions. It speeds up the exist() method better than the Primary XML index. Such an
index also speeds up queries that use value() for a fully specified path.

■■ VALUE This secondary XML index is useful if queries are value-based and the path is
not fully specified or it includes a wildcard.

■■ PROPERTY This secondary XML index is very useful for queries that retrieve one or
more values from individual XML instances by using the value() method.

The primary XML index has to be created first. It can be created only on tables with a
clustered primary key.

PRACTICE Using XML Data Type Methods

In this practice, you use XML data type methods.

If you encounter a problem completing an exercise, you can install the completed projects
from the companion content for this chapter and lesson.

EXERCISE 1 Use the value() and exist() Methods

In this exercise, you use the value() and exist() XML data type methods.

1. If you closed SSMS, start it and connect to your SQL Server instance. Open a new query
window by clicking the New Query button.

2. Connect to your TSQL2012 database.

 Lesson 3: Using the XML Data Type CHAPTER 7 257

3. Use the following XML instance for testing the XML data type methods.

DECLARE @x AS XML;
SET @x = N'
<CustomersOrders>
 <Customer custid="1">
 <!-- Comment 111 -->
 <companyname>Customer NRZBB</companyname>
 <Order orderid="10692">
 <orderdate>2007-10-03T00:00:00</orderdate>
 </Order>
 <Order orderid="10702">
 <orderdate>2007-10-13T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2008-03-16T00:00:00</orderdate>
 </Order>
 </Customer>
 <Customer custid="2">
 <!-- Comment 222 -->
 <companyname>Customer MLTDN</companyname>
 <Order orderid="10308">
 <orderdate>2006-09-18T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2008-03-04T00:00:00</orderdate>
 </Order>
 </Customer>
</CustomersOrders>';

4. Write a query that retrieves the first customer name as a scalar value. The result should
be similar to the result here.

First Customer Name

Customer NRZBB

Use the following query to get the desired result.

SELECT @x.value('(/CustomersOrders/Customer/companyname)[1]',
 'NVARCHAR(20)')
 AS [First Customer Name];

5. Now check whether companyname and address nodes exist under the Customer node.
The result should be similar to the result here.

Company Name Exists Address Exists
------------------- --------------
1 0

Use the following query to get the desired result.

SELECT @x.exist('(/CustomersOrders/Customer/companyname)')
 AS [Company Name Exists],
 @x.exist('(/CustomersOrders/Customer/address)')
 AS [Address Exists];

 258 CHAPTER 7 Querying and Managing XML Data

EXERCISE 2 Use the query(), nodes(), and modify() Methods

In this exercise, you use the query(), nodes(), and modify() XML data type methods.

1. Use the following XML instance (the same instance as in the previous exercise) for test-
ing the XML data type methods.

DECLARE @x AS XML;
SET @x = N'
<CustomersOrders>
 <Customer custid="1">
 <!-- Comment 111 -->
 <companyname>Customer NRZBB</companyname>
 <Order orderid="10692">
 <orderdate>2007-10-03T00:00:00</orderdate>
 </Order>
 <Order orderid="10702">
 <orderdate>2007-10-13T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2008-03-16T00:00:00</orderdate>
 </Order>
 </Customer>
 <Customer custid="2">
 <!-- Comment 222 -->
 <companyname>Customer MLTDN</companyname>
 <Order orderid="10308">
 <orderdate>2006-09-18T00:00:00</orderdate>
 </Order>
 <Order orderid="10952">
 <orderdate>2008-03-04T00:00:00</orderdate>
 </Order>
 </Customer>
</CustomersOrders>';

2. Return all orders for the customer with @custid equal to 1 (the first customer in the
XML document) as XML. The result should be similar to the result here.

<Order orderid="10692">
 <orderdate>2007-10-03T00:00:00</orderdate>
</Order>
<Order orderid="10702">
 <orderdate>2007-10-13T00:00:00</orderdate>
</Order>
<Order orderid="10952">
 <orderdate>2008-03-16T00:00:00</orderdate>
</Order>

Use the following query to get the desired result.

SELECT @x.query('//Customer[@custid=1]/Order')
 AS [Customer 1 orders];

 Lesson 3: Using the XML Data Type CHAPTER 7 259

3. Shred all orders information for the customer with @custid equal to 1 (the first cus-
tomer in the XML document). The result should be similar to the result here.

Order Id Order Date
----------- -----------------------
10692 2007-10-03 00:00:00.000
10702 2007-10-13 00:00:00.000
10952 2008-03-16 00:00:00.000

Use the following query to get the desired result.

SELECT T.c.value('./@orderid[1]', 'INT') AS [Order Id],
 T.c.value('./orderdate[1]', 'DATETIME') AS [Order Date]
FROM @x.nodes('//Customer[@custid=1]/Order')
 AS T(c);

4. Update the name of the first customer and then retrieve the new name. The result
should be similar to the result here.

First Customer New Name

New Company Name

Use the following query to get the desired result.

SET @x.modify('replace value of
 /CustomersOrders[1]/Customer[1]/companyname[1]/text()[1]
 with "New Company Name"');
SELECT @x.value('(/CustomersOrders/Customer/companyname)[1]',
 'NVARCHAR(20)')
 AS [First Customer New Name];

5. Now Exit SSMS.

Lesson Summary
■■ The XML data type is useful for many scenarios inside a relational database.

■■ You can validate XML instances against a schema collection.

■■ You can work with XML data through XML data type methods.

Lesson Review
Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the “Answers” section at the end of this chapter.

 260 CHAPTER 7 Querying and Managing XML Data

1. Which of the following is not an XML data type method?

A. merge()

B. nodes()

C. exist()

D. value()

2. What kind of XML indexes can you create? (Choose all that apply.)

A. PRIMARY

B. PATH

C. ATTRIBUTE

D. PRINCIPALNODES

3. Which XML data type method do you use to shred XML data to tabular format?

A. modify()

B. nodes()

C. exist()

D. value()

Case Scenarios

In the following case scenarios, you apply what you’ve learned about querying and managing
XML data. You can find the answers to these questions in the “Answers” section at the end of
this chapter.

Case Scenario 1: Reports from XML Data
A company that hired you as a consultant uses a website to get reviews of their products from
their customers. They store those reviews in an XML column called reviewsXML of a table
called ProductReviews. The XML column is validated against a schema and contains, among
others, firstname, lastname, and datereviewed elements. The company wants to generate
a report with names of the reviewers and dates of reviews. Additionally, because there are
already many very long reviews, the company worries about the performance of this report.

1. How could you get the data needed for the report?

2. What would you do to maximize the performance of the report?

 Suggested Practices CHAPTER 7 261

Case Scenario 2: Dynamic Schema
You need to provide a solution for a dynamic schema for the Products table in your company.
All products have the same basic attributes, like product ID, product name, and list price.
However, different groups of products have different additional attributes. Besides dynamic
schema for the variable part of the attributes, you need to ensure at least basic constraints,
like data types, for these variable attributes.

1. How would you make the schema of the Products table dynamic?

2. How would you ensure that at least basic constraints would be enforced?

Suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the
following tasks.

Query XML Data
In the AdventureWorks2012 demo database, there is the HumanResources.JobCandidate
table. It contains a Resume XML data type column.

■■ Practice 1 Find all first and last names in this column.

■■ Practice 2 Find all candidates from Chicago.

■■ Practice 3 Return distinct states found in all resumes.

 262 CHAPTER 7 Querying and Managing XML Data

Answers

This section contains the answers to the lesson review questions and solutions to the case
scenarios in this chapter.

Lesson 1
1. Correct Answers: A and D

A. Correct: FOR XML AUTO is a valid option to produce automatically formatted
XML.

B. Incorrect: There is no FOR XML MANUAL option.

C. Incorrect: There is no FOR XML DOCUMENT option.

D. Correct: With the FOR XML PATH option, you can format XML explicitly.

2. Correct Answer: C

A. Incorrect: There is no specific ATTRIBUTES directive. Attribute-centric formatting
is the default.

B. Incorrect: With the ROOT option, you can specify a name for the root element.

C. Correct: Use the ELEMENTS option to produce element-centric XML.

D. Incorrect: With the XMLSCHEMA option, you produce inline XSD.

3. Correct Answers: B and D

A. Incorrect: FOR XML AUTO automatically formats the XML retuned.

B. Correct: FOR XML EXPLICIT allows you to manually format the XML returned.

C. Incorrect: FOR XML RAW automatically formats the XML retuned.

D. Correct: FOR XML PATH allows you to manually format the XML returned.

Lesson 2
1. Correct Answer: D

A. Incorrect: for is a FLWOR clause.

B. Incorrect: let is a FLWOR clause.

C. Incorrect: where is a FLWOR clause.

D. Correct: over is not a FLWOR clause; O stands for the order by clause.

E. Incorrect: return is a FLWOR clause.

 Answers CHAPTER 7 263

2. Correct Answer: C

A. Incorrect: With the asterisk (*), you retrieve all principal nodes.

B. Incorrect: With comment(), you retrieve comment nodes.

C. Correct: You use the node() node-type test to retrieve all nodes.

D. Incorrect: With text(), you retrieve text nodes.

3. Correct Answer: B

A. Incorrect: IIF is not an XQuery expression.

B. Correct: XQuery supports the if..then..else conditional expression.

C. Incorrect: CASE is not an XQuery expression.

D. Incorrect: switch is not an XQuery expression.

Lesson 3
1. Correct Answer: A

A. Correct: merge() is not an XML data type method.

B. Incorrect: nodes() is an XML data type method.

C. Incorrect: exist() is an XML data type method.

D. Incorrect: value() is an XML data type method.

2. Correct Answers: A and B

A. Correct: You create a PRIMARY XML index before any other XML indexes.

B. Correct: A PATH XML index is especially useful if your queries specify path expres-
sions.

C. Incorrect: There is no general ATTRIBUTE XML index.

D. Incorrect: There is no general PRINCIPALNODES XML index.

3. Correct Answer: B

A. Incorrect: You use the modify() method to update XML data.

B. Correct: You use the nodes() method to shred XML data.

C. Incorrect: You use the exist() method to test whether a node exists.

D. Incorrect: You use the value() method to retrieve a scalar value from XML data.

 264 CHAPTER 7 Querying and Managing XML Data

Case Scenario 1
1. You could use the value() XML data type method to retrieve the scalar values needed

for the report.

2. You should consider using XML indexes in order to maximize the performance of the
report.

Case Scenario 2
1. You could use the XML data type column to store the variable attributes in XML

format.

2. You could validate the XML against an XML schema collection.

677

[] (square brackets), 48, 271
@statement input parameter, 457
@@TRANCOUNT function, 415–419, 429, 444

output of, 428
XACT_STATE() vs., 416

_ (underscore), 34, 271
as wildcard, 48

A
abstraction layer, 317
accents, 194
ACCENT_SENSITIVITY option, 195
access control and permissions, 127
ACID properties, 413–414, 421, 426

atomicity, 413
consistency, 413
isolation, 413

across batches, 612
Actual Execution Mode, 655
Actual Number Of Rows property, 635–636
addition time functions, 45
ad hoc queries, 521
advanced locking modes, 422
AFTER triggers, 491–496, 512

nested, 494–495
writing, 498–499

aggregate data by criteria, 159
aggregate functions, 150, 152, 306

window, 172–176
aggregate functions (XQuery), 238
aggregation elements and PIVOT operator, 165
aliases

column, 178
for namespaces, 224
with table expressions, 121

Index

Symbols
$action function, 400
$ (dollar sign), 34, 271
& (ampersand), 223
' (apostrophe), 223
* (asterisk), 31, 241
@ (at sign), 34, 229, 240, 271
.bak extension, 484
: (colon), 227, 237
= (equal), 242
@@ERROR function, 435, 440, 444–445, 474

error handling using, 440
@error_message string, 443
@@FETCH_STATUS function, 602
> (greater than), 223, 242
>= (greater than or equal to), 71, 242
@@IDENTITY function, 371–372

SCOPE_IDENTITY vs., 372
< (less than) operator, 71, 223, 242
<= (less than or equal to), 242
.NET assemblies, 470
!= (not equal) operator, 3, 242
<> (not equal) operator, 3
(number sign), 34, 271
@numrows, 476
() (parentheses), 308
% (percent sign), 48
+ (plus) operator, 38, 47
? (question mark), 223
" (quotation mark), 223, 271
@range_first_value output parameter, 377
@range_size input parameter, 377
@@ROWCOUNT, 492
@rowsreturned, 476
; (semicolon), 223, 308
/ (slash character), 229

678

aliases, continued

authorized database users, 270
autocommit mode, 416
auto_created, 587
AUTO_CREATE_STATISTICS, 585, 589
AUTO option (XML), 227–229
auto-parameterization, 521
AUTO_UPDATE_STATISTICS, 585, 589
AUTO_UPDATE_STATISTICS_ASYNC, 585
avg_fragmentation_in_percent, 562
AVG function, 172

as aggregate function, 152
avg_page_space_used_in_percent, 561–562
avg_space_used_in_percent, 553
Avoiding MERGE Conflicts, 386
axis (Xquery navigation), 240

B
backing up the database, 266
BACKUP DATABASE commands, 484–485
bags, 7
balanced tree pages, 556
balanced tree(s), 550–563, 639–640
barcode numbers, 39
base tables, 266
basic joins, 638
basic locking, 422–426
batch operations, 647–660
batch processing, 653–658
BEGIN/END block, 474, 477, 479, 502–503
BEGIN/END statement, 502
begin tag (XML), 222
BEGIN (TRAN or TRANSACTION) command, 415–416,
418, 420
Ben-Gan, Itzik, 183
BETWEEN operator, 71, 578
BIGINT data type, 42, 84, 374
BINARY data type, 38, 39
binary strings, 37
bitmap

filtered hash join, 640
filtering optimized hash, 519

Bitmap operator, 655
blocking, 423, 426, 429–431

exclusive lock, 423
writers, 430
Writers, 426

and table names, 30
using short, 106

aliasing
attribute, 32
inline vs. external, 124
problems with, 22
of tables in joins, 104

“all-at-once” property, 124
all-at-once UPDATE, 351–352
allocation order scan, 633–634
ALTER command, 275, 473
ALTER DATABASE command, 590
ALTER FULLTEXT CATALOG statement, 195
ALTER INDEX ... REBUILD statement, 558
ALTER INDEX ... REORGANIZE statement, 558
ALTER SCHEMA TRANSFER statement, 270
ALTER SEQUENCE command, 375
ALTER statement, 471

with synonyms, 316
ALTER TABLE command, 276–277

and constraints, 281
declaring column as primary key with, 282

ALTER VIEW command, 305
American National Standards Institute (ANSI), 3
ampersand (&), 223
analyze a query, 537–538
analyzing error messages, 436
AND (&) bitwise operator, 496
AND (logical operator), 66–67, 519, 580–583

support, 583
and WHERE clause, 106

ANSI SQL standard, 271, 273, 453
apostrophe ('), 223
APPLY operator, 128–132, 388

CROSS APPLY operator, 129–131
OUTER APPLY operator, 131–132
UPDATE statement, 347

approximate numeric data types, 37
AS command, 474
asterisk (*), 31, 241
AS <type>, 374
“at” (@) character, 34, 229, 240, 271
atomicity, 413
atomic types (XQuery), 238
attribute:: axis (XQuery), 240
attribute-centric XML, 229
attribute(s), 4

aliasing, 32
of elements, 224

679

columnstore indexes

character functions, 46–49
concatenation, 46–47
string formatting, 49
string length, 48
substring extraction/position, 47–48

character strings, 37, 40
Unicode, 37

CHAR data type, 37, 39–40
full-text indexes on columns of, 192

CHARINDEX function, 48
check constraints, 286–287
CHECK constraint violation, 373
child:: axis (XQuery), 240
CHOOSE function, 52
cleanup with unpivoting, 168
CLOSE command, 602
cloud computing, 3
CLR (Common Language Runtime), 530

assemblies, synonyms used for, 316
routines, 501
stored procedures, 470

clustered indexes, 550, 555–564, 574, 582, 615, 618, 635
table, 556

Clustered Index Scan iterator, 633–634, 658, 668
Clustered Index Scan operator, 591
Clustered Index Seek, 635
clustered table, 550, 633, 635
clustering key, 566, 572
COALESCE expression, 397
COALESCE function, 47, 51, 65
Codd, Edgar F., 4, 9
code

T-SQL, 435
code reviewer position, interviewing for a, 24
coding standards, 3
colon (:), 227, 237
column aliases, 178
column identifiers, pivot queries and, 164
column operator value, 65
columns

choosing data types for, 272–273
computed, 274
constraints and computed, 284
as elements, 229
modifying, 277
naming, 270–272
synonyms referring to, 323

columnstore indexes, 648, 656

body (of relation), 4, 6
Books Online for SQL Server 2012, 37, 39, 41, 44, 48, 57,
202, 226, 239, 267, 306, 316
Books Online for SQL Server 2012 article, 377
Boolean constructor functions (XQuery), 238
Boolean functions (XQuery), 238
Boolean predicates, 241
brancing logic, 477–481
BREAK statement, 477, 479
Bubishi (Patrick McCarthy), 42
built-in database schemas, 269
built-in functions, T-SQL, 37
business key, 282

C
CACHE <some value> function, 377

NO CACHE vs., 377
CALLED ON NULL INPUT, 506
calling other stored procedures, 482
Cantor, Georg, 4
Cartesian product (of two input tables), 102
CASE expression and related functions, 49–53
case scenarios, 363–364, 405–406

filtering and sorting data, 95
queries and querying, 24
SELECT statement, 56–57
T-SQL, 24

code reviewer position, interviewing for a, 24
theory, importance of, 24

case sensitivity
in XML, 223
of XQuery, 236

CAST function, 3, 40–41, 68, 439
SELECT INTO statement, 336

catalogs, full-text
backup and restore of, 215–216
as container for full-text indexes, 194
creating, 194–200
syntax for creating, 195

CATCH block, 438, 440–444, 448, 464
error handling with, 474
error reporting, 442

CDATA section (XML), 223
CHANGE_TRACKING [=] { MANUAL | AUTO | OFF [,
NO POPULATION] } option, 196
character data, filtering, 68–69

680

Columnstore Index Scan operator

FREETEXT predicate vs., 204
language_term with, 210

CONTAINSTABLE function, 209
language_term with, 210

CONTINUE statement, 477, 479
control flow statements, 477

GOTO, 477
IF/ELSE, 477
RETURN, 477
WAITFOR, 477
WHILE, 477

CONVERT function, 3, 40–41, 70, 439, 483–484
SELECT INTO statement, 336
TRY_CONVERT vs., 439

correlated subqueries, 119–121
correlations, 119
COUNT_BIG aggregate function, 569
COUNT function, 165, 172, 239

as aggregate function, 152
COUNT(*) vs., 153

COUNT(*) function, 150, 153, 165
covered queries, 577
CPU, 648, 656

consumption, 541
CREATE AGGREGATE statement, 471
CREATE FUNCTION privileges, 505
Create Indexed Views article, 569
CREATE INDEX statement, 412, 558, 566, 578
CREATE PROCEDURE (or PROC) statement, 473, 476

using RECOMPILE query hint, 669
CREATE SEQUENCE command, 374
CREATE statement, 471, 473
CREATE statistics command, 586
CREATE SYNONYM statement, 315–317
CREATE TABLE statement, 231, 267–268, 274–275, 301,
412

and constraints, 281
as DML trigger, 491

CREATE VIEW statement, 300, 305
basic syntax for, 301–302

creating a sequence
using nondefault options, 379–381
using default options, 378–379

CROSS APPLY operator, 129–131
OUTER APPLY vs., 131

cross-column density statistic, 589
cross-database queries

using synonyms to simplify, 320–321
cross-database transactions, 421

Columnstore Index Scan operator, 657
COLUMNS_UPDATED(), 496
combining sets, 101–148, 144

answers to review questions, 145–148
APPLY operator and, 128–132
case scenarios, 143–144
with joins, 102–117
subqueries and, 118–121
suggested practices, 144
table expressions and, 121–128
and using set operators, 136–143

comma (,)
grouping sets separated by, 155
in pivot queries, 164
separating multiple CTEs by, 125
specifying multiple clauses with, 159
between table names, 104

commands, 415
comment() (node type test), 241
COMMIT (TRAN, TRANSACTION or WORK) com-
mand, 415–419, 422, 429
common table expressions. See CTEs (common table
expressions)
common table expressions (CTEs). See CTEs (common
table expressions)
compare old and new features, 406
composable DML, 399–400
composable DML, using, 402–403
composite key, 564
compression, 275
computed columns, 274

constraints and, 284
concatenation, 46–47
CONCAT function, 46
concurrency, 412–435

managing, 412–435
consistency, 413
constant monitoring, 545
constraints, 281–292

check, 286–287
data types as, 38
default, 288
foreign key, 285–286, 289–290
modification statements and, 331
primary key, 282–283
unique, 283–284, 291
using, 281–282
working with, 293

CONTAINS predicate, 202–203, 210

681

date and time functions

database schemas
built-in, 269
nesting and, 270
specifying, 269–270
table schemas vs., 269

database tables. See table(s)
database users, authorized, 270
data changes

T-SQL, 435
DataColumn, 525
data definition language. See DDL (data definition
language)
data definition languages (DLLs), 470
data, deleting, 356–363

based on a join, 359
DELETE statement, 357–358
sample data, 356
TRUNCATE statement, 358–359
using table expressions, 360

data() function, 236
data integrity

enforcing, 281–292
relational model and, 38
suggested practices, 294

DATALENGTH function, 48
“The Data Loading Performance Guide”, 333
data manipulation language (DML). See DML (data
manipulation language)
data model, using predicates to define, 5
data modification statements, 414, 435
data type(s)

choice of, for keys, 41–44
choosing appropriate, 37–41
column, 272–273
fixed vs. dynamic, 39
imprecise, 39
regular vs. Unicode, 40
size of, 42
XQuery, 238

data warehouses, 301
data warehousing scenarios, 382
DATEADD function, 45
date and time data types, 38

filtering, 70–71
date and time functions, 44–46

addition and difference functions, 45
current date and time, 44
offsets, 45–46
parts, date and time, 44–45

CROSS JOIN command, 102–104, 306
cross join, explicit, 350
cross join, implied, 350
CTEs, 360

UPDATE statement and, 348–349
updating data using, 354

CTEs (common table expressions), 4, 124–127, 383, 388,
392, 617, 622

defining multiple, 125
recursive form of, 126
using, 621–622
window aggregate functions, 175

CUBE clause, 156, 159
current date and time, 44
CURRENT_TIMESTAMP function, 44
cursor-based solution, 607
cursor/iterative solutions, 600–611

set-based vs., 600–611
cursors, 6, 8

case scenario, 624–625
compute aggregate using, 608–609
options, 602
performance improvement for, 625
suggested practices, 626
types, 602
WHILE statement, 478

custom coding, 440
CYCLE | NO CYCLE property, 374

D
Darwen, Hugh, 4
data, 38

improving process for updating, 364
inserting, 330–341
modifying, 369–410
updating, 341–355

data access layer, 471
data accessor functions functions (XQuery), 238
data analysis functions, 149
data analysis operations, 149–190

grouping, 150–162
pivoting/unpivoting, 163–171
windowing, 172–184

database administrator (DBA), 523, 594
databases

backing up, 266
querying, 266

682

Date, Chris

default options,creating a sequence using, 378–379
DEFAULT statement, 471
default values in tables, 273
deleted tables, 496–498
DELETE statements, 305, 357–358, 384, 388, 396–398,
412, 433, 456, 491, 493, 495, 504, 661

join, DELETE based on, 359
NOLOCK table hint and, 433
OUTPUT clause and, 396
synonyms with, 316
TRUNCATE vs., 358, 364
using table expressions, 360
without WHERE clause vs. Truncate, 372

delimited identifiers, 271–272
delimiters

identifiers, 34
required vs. optional, 34

DENSE_RANK function, 177
RANK vs., 177

deprecated rules, 281
derived tables, 122–124, 266, 360

nesting of, 124
subqueries vs., 122
UPDATE statement and, 348

descendant:: axis (XQuery), 240
descendant-or-self:: axis (XQuery), 240
Detecting and Ending Deadlocks article, 426
deterministic functions, 274

ORDER BY clause, 82
deterministic queries, 96
developer position, interviewing for, 185
diacritics_sensitive element, 194
difference time functions, 45
Disallow Results From Triggers, 493, 497
Discard Results After Execution, 606
discounts, 343
disk I/O, 648
DISTINCT clause, 7, 78

in general set functions, 153
distributed partitioned views, 306
distributed transactions, 421

local vs., 421
distribution statistics, 618
DML (data manipulation language), 305, 412–413,
416–418, 440

composable, using, 402–403
DELETE, 412

Date, Chris, 4, 6
DATE data type, 38, 70–71, 336

columns, 273
DATEDIFF function, 45
DATEFORMAT, 70
DATEFROMPARTS function, 45, 54
DATENAME function, 45
DATEPART function, 44
DATETIME2 data type, 38, 44, 70

columns, 273
DATETIME2FROMPARTS function, 45
DATETIME data type, 38, 44, 56, 70, 336
DATETIMEFROMPARTS function, 45
DATETIMEOFFSET data type, 38, 44
DATETIMEOFFSETFROMPARTS function, 45
DAY function, 44
DBCC CHECKIDENT command, 372
DBCC DROPCLEANBUFFERS command, 530–531
DBCC FREEPROCCACHE command, 648, 659

production, 648
DBCC SHOW_STATISTICS command, 586–587
dbo database schema, 269
dbo.Fact table, 656
dbo schema, 614
dbo.sp_spaceused procedure, 553, 555
dbo.sp_spaceused system procedure, 552
dbo.TestStructure table, 552, 561, 570
dbo.Transactions, 608
dbo (user name), 270
DDL (data definition language), 250

indexes and, 613–615
DDL statements, 412–414, 416–418, 435

CREATE INDEX, 412
CREATE TABLE, 412

deadlocking, 423–426, 429–431
locking sequences, 423
troubleshooting, 426

DEALLOCATE command, 602
DECIMAL data type, 273
declarative data integrity, 281
declarative plain language query, 601
DECLARE command, 602
DECLARE CURSOR, 602
DECLARE syntax, 473
DEFAULT constraint, 288, 375–376
default element namespace, 238
default initialization, 474
default language, changing the, 193

683

Estimated Execution Mode

encapsulate, 471
encapsulation, behavior, 38
ENCRYPTION, 506
END CATCH statement, 441
end tag (XML), 222
Enterprise edition of SQL Server 2012, 568
EOMONTH function, 45
equal (=) operator, 105, 242, 638
equijoins, 105, 639
error conditions, 435
error handling

implementing, 435–450, 463
store procedures and, 482
structured, 440, 448–449
unstructured, 440, 445–446
using XACT_ABORT, 446–447

ERROR_LINE function, 442
ERROR_MESSAGE function, 442
error messages

analyzing, 436
length limit on, 436
number, 436
severity level, 436
state, 436
T-SQL, 435
and Windows Application log, 436

error number, 436, 438
ERROR_NUMBER function, 442, 474
ERROR_PROCEDURE function, 442
errors

anticipating, 443
detecting, 435–440
handling after detection, 440–444
RAISERROR, 437
raising, 435–440
reporting, 442
structured handling using TRY/CATCH, 441–443
THROW, 438–439
TRY_CONVERT, 439–440
TRY_PARSE, 439–440
unstructured handling using @@ERROR, 440
using the CATCH block, 442
using XACT_ABORT with transactions, 441

ERROR_SEVERITY function, 442
ERROR_STATE function, 442
escalation, locks, 357
escaped values (XML), 223
Estimated Execution Mode, 655

INSERT, 412
UPDATE, 412

DML statements, 496, 501
DML triggers, 491–492

AFTER, 491
functions, 496
INSTEAD OF, 491
writing, 496–499

DMOs (Dynamic Management Objects), 539–546
about, 539–540
categories, 540–542

document properties
full-text queries for searching on, 194

dollar sign ($), 34, 271
DROP FULLTEXT CATALOG statement, 195
DROP statement, 456, 471, 473, 502
DROP STATISTICS command, 586
DROP SYNONYM statement, 317
DROP VIEW, 305
duplicates, 33
durability, 413
dynamic batch, 612
dynamic data types, 39
dynamic management functions, 539
dynamic management view (DMV), 415
Dynamic Management Views And Functions ar-
ticles, 545
Dynamic Management Views and Functions
(Transact-SQL) article, 540
dynamic schema (XML data type for), 252–256
dynamic SQL

EXECUTE command, 454–468
overview, 451–455
parameterized, 651
sp_executesql, 457–458
usage, 450–462
uses for, 452

E
element namespace, default, 238
elements (XML), 222

attributes of, 224
columns as, 229

ELSE clause, 50
ELSE statement, 477
empty grouping set, 155, 159

684

ETL process

F
FAST_FORWARD option, 602
fatal error, 442
Features Supported by the Editions of SQL Server 2012
article, 569
FETCH NEXT command, 601–602
fields, 10
FILLFACTOR option, 558
filtered statistics, 589
filtering data, 61

answers to review questions, 97–100
case scenarios, 95
character data, 68–69
date and time data, 70–71
full-text search, 192
in grouped queries, 151
with OFFSET-FETCH, 88–90
performance recommendations, 95
with predicates, 62–74
suggested practices, 96
with TOP option, 84–87
views, 307

filtering rows
based on the HAVING clause, 18–19
based on the WHERE clause, 17

filters, 525
explicit cross joins with, 350

fine-grained locks, 357
FIRST keyword, 88
FIRST_VALUE function, 179–180
fixed data types, 39
flags, 231
FLOAT (data type), 37, 39

typecasting issues with, 39
FLWOR expressions (XQuery), 239, 243–245
FLWOR statement, 243
fn_FilteredExtension, 509
fn namespace, 236
force plans, analyze, 672
FOR clause with pivot queries, 164
foreign key constraints, 285–286, 289–290
foreign key—unique key relationships, 106
For (FLWOR statement), 243
FORMAT function, 49
FORMATMESSAGE function, 437–438
formatting

RAISERROR, 437

ETL process, 568
ET STATISTICS TIME, 531
evaluation, of FROM clause, 16
EventCategory (SQL Trace/SQL Server Profiler), 524
EventClass (SQL Trace/SQL Server Profiler), 524
eventdata() function, 250
Event (SQL Trace/SQL Server Profiler), 524
exact numeric data types, 37
EXCEPT operator, 140–141, 306

using, 141
excluded middle, law of, 9
exclusive locks, 422–423
EXEC command, 454, 457–458, 461
EXEC sys.sp_help_fulltext_system_components 'filter'
query, 192
EXECUTE AS, 506
EXECUTE statement, 452, 470, 475, 501

dynamic SQL, 454–455
synonyms with, 316

execution plans, 532–536, 539, 545
analyze, 672
analyzing, 645–646
icons, 641
operators, 641
prediction, 644–645

Execution-related DMOs, 540
exist() method (XML data type), 250–251
EXISTS predicate, 120

negation of, 121
expansion element, 194
expansion words, 194
explicit cross join, 350
explicit inner join, 350
EXPLICIT option (FOR XML clause), 229
explicit transactions, 416, 435

implicit vs., 422
explicit transactions mode, 418–419
expressions

defining columns as values computed based on, 274
table, 266

Extended Events. See SQL Server Extended Events
extended stored procedures, 470
extents, 550
external aliasing, 124
external fragmentation, 561

685

grouping sets

G
general comparison operators, 242
generating keys, improved solution for, 405
generating T-SQL strings, 453–454
generation terms (in searches), 192
GEOGRAPHY types, 530
GEOMETRY types, 530
GETDATE function, 44
GetNums function, 604
GETUTCDATE function, 44
globally unique identifiers (GUIDs), 43, 562–563

nonsequential vs. sequential, 42
global vs. local temporary tables, 612–613
GO delimiter, 455
GO statements, 419
GOTO construct, 481
GOTO statement, 477
Graphical Execution Plan Icons (SQL Server Manage-
ment Studio) article, 534
greater than (>), 223, 242
greater than or equal to (>=), 71, 242
GROUP BY clause, 452, 519, 575–576, 642

explicit, 151
grouped queries and, 150
in logical query processing phases, 17–18
order of evaluation, 153
workarounds with, 154

GROUP BY statement, 399
grouped queries, 150–162

without explicit GROUP BY clause, 150
tables, defining with, 149
uses for, 150
writing, 159–161

group functions
grouped queries and, 150
window functions vs., 172

grouping
fixing problems with, 21
with multiple grouping sets, 155–161
and pivoting/unpivoting data, 163–171
pivoting as specialized form of, 149
with single grouping set, 150–154

GROUPING function, 157
GROUPING_ID function, 158
grouping rows (based on GROUP BY clause), 17–18
grouping sets, 150

empty, 155, 159
multiple elements in, 151

string, 49
type vs., of value, 38

FOR statement, 492
FOR XML AUTO option, 227–229
FOR XML clause, 222–235

examples using, 233–234
FOR XML RAW option, 226–227
FOX XML PATH option, 229–230
fragmentation, 561
framing with window aggregate functions, 174
FREETEXT predicate, 204

CONTAINS predicate vs., 204
language_term with, 210

FREETEXTTABLE function, 209
FROM clause, 383, 388, 501, 503–504

SELECT statements and, 388
UPDATE statement with, 350

FROM statement, 30–31, 452, 455, 519–548, 663–664
GROUP BY clause and, 153
in logical query processing phases, 16
with ROW_NUMBER clause, 123
SELECT clause and, 31
UNPIVOT operator and, 166
and WHERE clause, 106

FULL backup, 484
full logging, 337
FULL OUTER JOIN keywords, 112
full-text data queries, 191–220

case scenarios, 215
catalogs and indexes, creating, 192–201
catalogs and indexes, managing full-text, 194–196
components, 192–194
CONTAINS predicate for, 202–203
FREETEXT predicate for, 204
full-text search functions, 209–210
semantic search functions, 210–211
suggested practices, 215–216

full-text search functions, 209–210
dynamic management views, 215–216
example using, 211–212

functions
aggregate, 150, 306
data analysis, 149
deterministic, 274
inline, 307–313
standard vs. nonstandard, 3
user-defined, 316, 501–510
XQuery, 238–239

FUNCTION statement, 471

686

GROUPING SETS clause

MAXDOP number_of_processors, 662
MAXRECURSION number, 662
OPTIMIZE FOR UNKNOWN, 662
OPTIMIZE FOR (@variable_name { UNKNOWN | =
literal_constant } [,...n], 662
PARAMETERIZATION { SIMPLE | FORCED }, 662
RECOMPILE, 662, 669
ROBUST PLAN, 662
TABLE HINT (exposed_object_name [, <table_hint>
[[,]...n]], 662
use, 661
USE PLAN N'xml_plan, 662

hints (tables), 663
case scenario, 671
details, 664
FORCESCAN, 663
FORCESEEK, 663
HOLDLOCK, 663
IGNORE_CONSTRAINTS, 663
IGNORE_TRIGGERS, 663
INDEX (index_value [,...n]) | INDEX = (index_value
) | FORCESEEK [(index_value (index_column_name
[,...]))], 663
KEEPDEFAULTS, 663
KEEPIDENTITY, 663
NOEXPAND, 663
NOLOCK, 663
NOWAIT, 663
PAGLOCK, 663
READCOMMITTED, 664
READCOMMITTEDLOCK, 664
READPAST, 664
READUNCOMMITTED, 664
REPEATABLEREAD, 664
ROWLOCK, 664
SERIALIZABLE, 664
SPATIAL_WINDOW_MAX_CELLS = integer, 664
TABLOCK, 664
TABLOCKX, 664
UPDLOCK, 664
XLOCK, 664

histograms, 618
HOLDLOCK hint, 386
hypercubes. See Star schema

GROUPING SETS clause, 155, 159, 161
guaranteed order, 75–76
guarantees, 75–76
guest database schema, 269

H
handling errors after detection, 440–444
hash aggregation, 663

stream aggregation vs., 643
hash (as join algorithm), 519–548
hash function, 640
hash join, 640, 643, 655
Hash Match Aggregate operator, 643
Hash Match iterator, 655
Hash Match Join iterator, 643
Hash Match operator, 655, 657
HAVING clause, 62, 151, 452

GROUP BY clause and, 153
in logical query processing phases, 18–19

HAVING statement, 399
heading (of relation), 4, 6
heap(s), 550–563, 572, 634, 636

allocation, 555
allocation check, 552

hints
defined, 631
HOLDLOCK, 386
SERIALIZABLE, 386

hints (joins), 664
details, 665
HASH, 664
LOOP, 664
MERGE, 664
REMOTE, 664

hints (SQL Server Query Optimizer), 661–666
{ CONCAT | HASH | MERGE } UNION, 662
details, 662
EXPAND VIEWS, 662
FAST number_rows, 662
FORCE ORDER, 662
{ HASH | ORDER } GROUP, 662
IGNORE_NONCLUSTERED_COLUMNSTORE_IN-
DEX, 662
KEEPFIXED PLAN, 662
KEEP PLAN, 662
{ LOOP | MERGE | HASH } JOIN, 662

687

IN operator

inclusive operators, 580
INCREMENT BY property, 374
indexed views, 266, 304

implementing, 568–570
indexes, 106, 550–573, 639

clustered, 550, 555–563, 635
columnstore, 648, 656
DDL and, 613–615
full-text, 192
implementing, 568–570
nonclustered, 551, 634–635, 646
search arguments, 573–584
supporting queries, 574–578
table, 276
XML, 256

indexes, creating full-text, 194–200
examples, 196–200

indexes, full-text
backup and restore of, 215–216
installing a semantic database and creating a, 200
syntax for creating, 195

index idx_nc_orderdate, 621
index keys, 564
index leaf level, 633
index-related DMOs, 541

using, 542–543
Index Scan iterator, 634
Index Scan (NonClustered) operator, 591
Index Seek operator, 583, 636, 658–659
index usage, 574
inequality operator, 388
infinite loop, 478
inflectional forms, 204
INFORMATION_SCHEMA schema, 269
IN() function, 455
inline aliasing, 124
inline functions, 307–313

converting views into, 312–313
options with, 309–313
suggested practices, 324

inline TVFs vs. views, 127–128
inner batch, 612
inner join, explicit, 350
Inner Join operator, 655, 657
inner joins, 105–108
inner queries

with table expressions, 121
with CTEs, 125

IN operator, 579

I
IAM pages, 551–553, 555–556, 632
IDENT_CURRENT function, 358, 371–372

DELETE statement, 358
identifiers

delimited, 271–272
delimiting, 34
regular, 34, 271–272

IDENTITY column property, 42, 376–378, 395, 406
DELETE statement without WHERE clause in, 372
INSERT EXEC statement and, 334
INSERT SELECT statement, 333
INSERT VALUES statement and, 331
limitations of, 378
SELECT INTO statement, 336
sequence numbers and, 273–274
sequence object vs., 374
TRUNCATE statement in, 372
using, 370–373

IDENTITY_INSERT option, 331, 333, 373
INSERT EXEC statement, 334

IF clause, 440
IF/ELSE construct, 477–478
IF/ELSE statement, 477
IF @errnum clause, 447
IF statement, 477
if..then..else, 242
IIF function, 52
IMAGE data type, 530

full-text indexes on columns of, 192
implementing error handling, 435–450, 464
implementing nonclustered indexes, 564–568
implementing transactions, 428–433
implementing triggers

case scenario, 511–512
implicit transactions, 416, 428

advantages, 417
disadvantages, 417
explicit vs., 422

implicit transactions mode, 416–418
implied cross join, 350
imprecise data types, 39
improving modifications, 405–406
IN clause, 452

of PIVOT operator, 166
with pivot queries, 164

Include Actual Query Plan option, 618
INCLUDE clause, 578

688

IN PATH option

SERIALIZABLE, 427
SNAPSHOT, 427
SQL server row versioning and, 433
transactions, 426–433

is_user_process flag, 540
iterative constructs, 6
iterative solutions, 601–604

J
join

DELETE based on, 359
JOIN clause, 575
Join Hints (Transact-SQL) article, 665
JOIN keyword, 108
JOIN operator, 359, 388

DELETE statement based on, 359
join predicate, 638
joins, 102–117

algorithms used for, 638–641
aliasing tables in, 104
APPLY operator and, 128
cross, 102–104
deleting data using, 361
equi-, 105
explicit cross, 350
explicit inner, 350
hash, 640, 643, 655
hints, 661, 664
implied cross, 350
inner, 105–108
merge, 639, 644, 665
multi-join queries, 112–114
nested loops, 638, 665
non-equijoin, 638
outer, 108–112
self-, 104, 107
updating data using, 353

junior developer, tutoring a, 95

K
Kejser, Thomas, 43
KEY column, 209
keyed-in order, 15
KEY INDEX index_name option, 196

IN PATH option, 195
input elements, hierarchy of, 156
input parameters, 470, 475–476
INSERT, 305

synonyms with, 316
inserted tables, 496–498
INSERT EXEC statement, 334–335
inserting data, 330–341

for customers without orders, 338
INSERT EXEC statement, 334–335
INSERT SELECT statement, 333
INSERT VALUES statement, 331–332
sample data, 330–331
SELECT INTO statement, 335–337

INSERT SELECT statements, 333, 375–376, 399–400
INSERT EXEC vs., 334

Insert Snippet menu (SSMS), 492, 502
INSERT statements, 371, 377, 384, 386, 392, 395,
397–400, 412, 445, 448, 486, 491–497, 661

failure of, 373
OUTPUT clause, 395–396
query functions in, 371

INSERT VALUES statements, 331–332, 375–376
INSERT EXEC vs., 334
INSERT SELECT vs., 333

INSTEAD OF trigger, 491–492, 495–496
INT data type, 37–38, 41–42, 67
INTEGER data type, 652
intelligent keys, 41
intent locks, 422
internal fragmentation, 561
International Organization for Standards (ISO), 3
INTERSECT operator, 139, 306

EXCEPT operator vs., 140
using, 142

INTO clause, 394, 396
invoicing systems, 373
I/O

data size and, 38
statistics, 530

ISNULL function, 51–52, 65
SELECT INTO statement, 336

isolation (ACID property), 413
isolation level(s), 414, 540, 633

common, 431
READ COMMITTED, 426
READ COMMITTED SNAPSHOT, 426
READ UNCOMMITED, 426
REPEATABLE READ, 427

689

LTRIM function (string formatting function)

lock escalation, 357
locking, 414

basic, 422–426
blocking, 423
compatibility, 422–423
deadlocking, 423–426
sequences, 423

locks
advanced, 422
escalation, 357
exclusive, 422
fine-grained, 357
intent, 422
rows, 357
schema, 422
shared, 422
tables, 357
update, 422

logging
full vs. minimal, 337
using modifications that support optimized, 364

logical CPUs, 540
logical fragmentation, 632
logical query processing, 14–24

answers to review questions and case scenarios,
26–28
phases of. See logical query processing phases
review questions, 23–24
suggested practices, 185
summary, 23
and T-SQL as declarative English-like language,
14–15

logical query processing phases, 15–23
filter rows based on HAVING clause, 18–19
filter rows based on WHERE clause, 17
FROM clause, evaluating, 16
group rows based on GROUP BY clause, 17–18
ordering using the ORDER BY clause, 20–21
processing the SELECT clause, 19–20

logical reads, 530
loops, 6
LOWER function (string formatting function), 49
LTRIM function (string formatting function), 49

Key Lookup operator, 575, 577, 637, 644–645, 658–659
keys, 564

choice of data type for, 41–44
intelligent, 41
nonsequential, 43
sequential, 43
surrogate, 41–42

keywords
reserved, 34

KILL command, 442
Kutschera, Wolfgang 'Rick', 43

L
LAG function, 178–179
language, changing the default, 193
language ID, 194
languages, data in multiple, 40
language_term, 210
LAST_VALUE function, 179–180
law of excluded middle, 9
LEAD function, 178–179
leaf level pages, 556, 558
LEFT function, 47
LEFT OUTER JOIN keywords, 108
legacy RAISERROR command, 436
LEN function, 48
less than (<) operator, 71, 223, 242
less than or equal to (<=), 242
Let (FLWOR statement), 243
levels (of transactions), 415–416
like_i_sql_unicode_string, 526
LIKE operator, 578
LIKE predicate, 68–69
line-of-business (LOB) applications, 215
linked servers, objects referenced by, 317
literals, 40
literal types, 68
LOBs (large objects), 530
locale identifier (LCID), 210
local temporary tables, 612

global vs., 612–613
local transactions

distributed vs., 421
lock compatibility, 422–423

exclusive locks, 423
shared locks, 423

690

marking transactions

OUTPUT option, using, 394–404
sequence object, using, 374–381

modify() method (XML data type), 250–251
MONTH function, 44, 79
MSDTC (Distributed Transaction Coordinator), 421
multicolumn statistics, 589
multi-join queries, 112–114
multiple CTEs, defining, 125
multiple grouping sets

defining, 161
working with, 155–161

multiple languages, data in, 40
multiple queries

INSERT EXEC statement and, 335
multiple rows

INSERT VALUES statement with, 332
multisets, 7
multiset theory, 7

N
names

object, 272
of views, 303–307

namespace(s), 224, 227, 236
and database schemas, 269
default element, 238

naming
tables, 270–272
two-part, 268

natural key, 282
NCHAR data type, 37, 39–40, 68

full-text indexes on columns of, 192
negation of EXISTS predicate, 121
nested AFTER triggers, 494–495
nested elements (XML), 222
nested loops, 519–548

algorithm, 638–639
nested loops join, 638, 640, 665
nested transactions, 418–420, 419–420
nested triggers, 494
nesting

database schemas, 270
of derived tables, 124

NEWID() T-SQL function, 43, 56, 505, 562
New Session UI, 523–548
New Session Wizard, 523–548

M
marking transactions, 420–421
mathematical foundations of T-SQL, 2
max() function, 239
MAX function, 172

as aggregate function, 152
workaround using, 154

MAXVALUE property, 374
McCarthy, Patrick, 42
MERGE INTO statement, 383
merge join, 639–640, 644, 665
Merge Join iterator, 639, 645
MERGE statement, 394, 397, 406, 661

OUTPUT clause and, 397–398
role of ON clause in, 391
UPDATE vs., 346
usage, 390

merging data, 382–393
message, 438
message ID, 437
metadata, 473

tables, 318
views and, 306–307
in XML, 224

Microsoft .NET, 253
Microsoft Office 2010, 193
Microsoft SQL Server 2012

full-text search support in, 191
XML support in, 221

Microsoft SQL Server 2012 High-Performance T-SQL
Using Window Functions (Itzik Ben-Gan), 183
Microsoft Visual Basic, T-SQL vs., 3
Microsoft Visual C#, T-SQL vs., 3
Microsoft Windows Azure SQL Database, 3
MIN() aggregation function, 152, 172, 575
minimal logging, 337
MINVALUE property, 374–375
missing indexes, 543
missing values, 9
mixed extent, 550, 554
modes (of transactions), 416–419, 428–429
modification statements

constraints defined in target table and, 331
optimized logging supported by, 364

modifying data, 369–410
IDENTITY column property, using, 370–373
merging data, 382–393

691

old features

in grouped queries, 151
INSERT SELECT statement and, 333
INSERT VALUES statement and, 332
interaction of predicates with, 62
INTERSECT operator and, 139
with LEFT JOINs, 108
ordering and treatment of, 80
as placeholders, 157
as placeholders in grouped queries, 156
and primary keys, 283
SELECT INTO statement, 336
in tables, 273
UNPIVOT operator and, 168
XML data type and, 250

NULLS FIRST option, 80
NULLS LAST option, 80
number sign (#), 34, 271
NUMERIC data type, 37

columns, 273
numeric data types

approximate, 37
exact, 37

numeric functions (XQuery), 238
numeric predicates, 241
NVARCHAR data type, 37, 39–40, 68, 478

columns, 272
full-text indexes on columns of, 192

NVARCHAR(MAX) data type, 457, 530
columns, 273

O
OBJECT_ID() function, 305, 473, 493, 501
object names, length of, 272
OBJECT plan guides, 666
objects, 550

allowed, for synonyms, 316
linked servers, referenced by, 317

OFFSET-FETCH filter, 21, 306
filtering data with, 88–90
with inner queries, 121

offset functions, window, 178–180
offset of date/time functions, 45–46
offsets, 179
old features

new vs., 406

NEXT keyword, 88
NEXT VALUE FOR function, 375–376, 378
NO CACHE function, 377

CACHE <some value> vs., 377
NOCOUNT, 570

ON, 474
node() (node type test), 241
nodes functions functions (XQuery), 238
nodes in XML, 236
nodes() method (XML data type), 250–251
node test (Xquery navigation), 240–241
node types (XQuery), 238
noise words, 193
NOLOCK, 433
nonclustered indexes, 551, 577, 581, 588, 615, 634–635,
646

analyzing, 570–572
on a clustered table, 571–572
on a heap, 570–571
implementing, 564–568
scanning, 583
seeking, 636–637

nondefault options
creating a sequence using, 379–381

nondeterministic ordering
ORDER BY clause with, 81

nondeterministic queries, 96
nondeterministic UPDATE, 346–348
non-equijoin, 638
nonexistent objects, references to, 317
nonsequential GUIDs, 42
nonsequential keys, 43
nonstandard functions, 3
not equal (!=) operator, 242

<> operator vs., 3
NOT (logical operator), 66
NOT NULL data type, 38
NOWAIT command, 439
NTEXT data type (Unicode), 530

full-text indexes on columns of, 192
NTILE function, 177–178
NULL columns, 278
NULL data type, 38
NULLIF function, 50, 52
NULLs, 10, 47, 388, 397, 439, 476, 506, 566, 603

comparing two, 65
filtering rows with, using WHERE clause, 72
general set functions and, 152

692

OLTP (online transaction processing)

Ordered property, 633
ordered sets, 5
OR (logical operator), 66–67, 579–583

support, 581–582
orphans, synonym, 317
OUTER APPLY operator, 131–132

CROSS APPLY vs., 129
outer joins, 108–112

matching customers and orders with, 115
outer queries (with CTEs), 125
OUTPUT clause, 394–395, 399, 406

DELETE statement with, 396
INSERT statement with, 395–396
MERGE statement and, 398
MERGE statement with, 397–398
SELECT vs., 394
UPDATE statement with, 397
using in UPDATE statement, 401–402
working with, 394–395

OUTPUT keyword, 474
output limits, SSMS and, 454
OUTPUT option

using, 394–404
OUTPUT parameters, 458, 470, 474–477, 482

sp_executesql with, 461–462
OUTPUT statement, 461, 476
OVER clause, 172, 376
overflow error, 373

P
PAD_INDEX option, 558
page, 550
page-level compression, 275
Parallelism iterator, 655
parameterization, 666
parameterized dynamic SQL, 651
parameterized propositions, 5
parameterized queries, 647–660
parameterizing queries, 650
parameters

CATCH block, 443
inline table-valued functions, 308
input, 475–476
output, 461–462, 476–477
THROW command, 438

parent:: axis (XQuery), 240

OLTP (online transaction processing)
environment, 648
scenarios, 382

ON clause, 62
join's matching predicate specified in, 106
with LEFT JOINs, 109
role in MERGE statement, 391
WHERE clause vs., 106

ON FILEGROUP option, 195
on-line transactional processing applications. See OLTP
applications
online transaction processing (OLTP), 301, 558, 563,
636. See OLTP (online transaction processing)
on-premise SQL Server, 427
ON statement, 384
OPEN command, 602
OPENROWSET function (OPENXML), 383, 388

nodes() method vs., 251
OPENXML function, 231–232, 388

flag parameter for, 231
operators

general comparison, 242
value comparison, 242

optimization, 14
SQL Server and, 104
of table expressions, 122

optional delimiters, 34
OPTION clause, 661, 666, 669
options

views, 302
ORDER BY clause, 8, 452, 556, 574, 576, 600, 607

DELETE statement using, 360
with deterministic ordering, 82
as FLWOR statement, 243
GROUP BY clause and, 153
in logical query processing phases, 20–21
with nondeterministic ordering, 81
OFFSET-FETCH with, 88
and presentation vs. window ordering, 177
with ROW_NUMBER function, 123
and SELECT statement in views, 304
sorting data with, 76–81
TOP or OFFSET-FETCH option with, 121
window aggregate functions, 175
window functions allowed in, 178
XML queries, 228

ORDER BY list, 376
ordered partial scan, 636–637

693

querying

predicates, 5
Boolean, 241
combining, 66–68
filtering data with, 62–74
numeric, 241
search arguments and, 62–66
three-valued logic and, 62–66

predicate (Xquery navigation), 240
prefix terms (in searches), 192
prepare data, 536–537
presentation ordering

ORDER BY clause for, 20–21
window ordering vs., 177

PRIMARY KEY constraint, 282–283, 373, 614–615
IDENTITY property using, 373

printf style formatting, 437
PRINT statement, 437, 441, 454, 459, 478, 481, 483–484,
602
probe phase, 640
procedure recompilation, 659
PROCEDURE statement, 471
processing-instruction() (node type test), 241
processing instructions (XML), 223
programming languages, 2
proof-of-concept (POC) projects. See POC projects
PROPERTY (secondary XML index), 256
proximity terms (in searches), 192

Q
QName (qualified name), 236
quadratic (N2) scaling, 607
qualified name (QName), 236
queries, 574–578. See also subqueries

against CTEs, 124
grouped, 150–162
multi-join, 112–114
parameterized, 647–660

queries and querying, 6–8
answers to review questions, 26–28
case scenarios, 24
suggested practices, 25

query filters. See filters
query hints, 661
Query Hints (Transact-SQL) article, 662
querying

databases, 266
from views, 304

parentheses (()), 237, 308
with grouping sets, 155
with OVER clause, 172

PARSE function, 40–41, 70, 439
partial scan, 635
PARTITION BY actid, 607
partitioned views, 306
parts, date and time, 44–45
PATH option (FOR XML clause), 229–230
PATH (secondary XML index), 256
PATINDEX function, 48
peers, 176
PERCENT option, 85
performance considerations

query filters and, 65
performance optimization

COALESCE / ISNULL and, 66
performance recommendations, filtering and sort-
ing, 95
permanent tables, views referencing, 304
permissions, 270

and access control, 127
phases, logical query processing, 15
physical fragmentation, 632
physical memory, 540
physical processing, 14
physical reads, 530
PIVOT clause, 452
PIVOT() function, 455
pivoting

as inverse of unpivoting, 149
as specialized form of grouping, 149

pivoting data, 163
PIVOT operator, 163–166, 388

limitations of, 165
pivot queries, 163
Plan Caching in SQL Server 2008 article, 650
plan guides, 666–668

create, 667–668
OBJECT, 666
SQL, 666
TEMPLATE, 666–667

plan iterators, 632–647
access methods, 632–638
join algorithms, 638–641

plus (+) operator, 38
predicate logic, 5

694

query() method (XML data type)

READ COMMITTED statement, 431
READCOMMITTED table hint, 433
read-only environment, 633
read-only transactions, 412
read performance, 41
Read Uncommitted, 633
READ UNCOMMITTED isolation level, 426, 432,
634–635
READ UNCOMMITTED statement, 432
REAL data type, 37, 39
REBUILD, 563
records, 10
RECOVERY statement, 421
recursive queries, 126
regular data types, 40
regular identifiers, 34, 271–272
relational data

producing XML from, 226–230
relational database management system (RDBMS), 3,
253, 412
relational model, 4

data integrity and, 38
relation (mathematical concept), 4

heading and body of, 4
tables vs., 4

renaming, 32
REORGANIZE, 563
REPEATABLE READ isolation level, 427
REPLACE function, 48, 484
replacement element, 194
replacement words, 194
REPLICATE function, 49, 54
reporting

building views for, 310
synonyms and descriptive names for, 319–320

required delimiters, 34
reserved keywords, 34
results of views, ordering, 304
RETURN clause, 128
return codes, 474
Return (FLWOR statement), 243
RETURNS NULL ON NULL INPUT (UDF option), 506
RETURNS TABLE

inline table-valued functions, 308
RETURN statement, 474, 477, 482, 492, 503

inline table-valued functions, 308
RID Lookup, 636
RID Lookup operator, 564, 636–637

query() method (XML data type), 250–251
query optimization, 518–528

case scenario, 671
with parameterized queries, 648
problems, 518–522
with plan iterators, 632–647

Query Optimizer, 518–522, 578–580, 585, 589, 644
hints, 661–666

query parameterization
with batch processing, 653–658
exercise, 658

query performance
case scenario, 544–545
suggested practices, 545

query plans
analyzing, 529–539
reusing, 631

question mark (?), 223
quotation mark ("), 223, 271

single, 40
QUOTED_IDENTIFIER setting, 453
QUOTENAME function, 454

generate, 458–459
T-SQL strings and, 458–459

R
RAISERROR command, 436–441, 448, 491, 496

formatting, 437
simple form, 437
THROW vs., 438
THROW vs., in TRY/CATCH, 443

RAND() function, 505
random key generators, 43
RANGE option, 180
RANGE window frame extent, 176
RANK column, 209
RANK function, 177

DENSE_RANK vs., 177
ranking functions, window, 176–178
rank value, 209
RAW option (XML), 226–227
RCSI (READ COMMITTED SNAPSHOT isolation lev-
el), 426
read-ahead reads, 530
READ COMMITTED isolation level, 423, 426–428, 433
READ COMMITTED SNAPSHOT isolation level, 426–428,
433

695

self:: axis (XQuery)

search condition, 631
searches

enhancing, 215
security

database, 471
seek, 564
SELECT clause, 8, 19–20, 31–33, 394, 452, 455

GROUP BY clause and, 153
in logical query processing phases, 19–20
OUTPUT clause vs., 394
with ROW_NUMBER function, 123
UPDATE based on join and, 344
window aggregate functions, 175
window functions allowed in, 178

SELECT FROM statement
with views, 307

SELECT INTO statement, 267, 335–337
using, 339

selective query, 581
SELECT phase (window aggregate functions), 175
SELECT query, 383, 594

DELETE statement based on, 360
in SQL vs. T-SQL, 33
two main roles of, 30

SELECT statement, 29–60, 255, 388, 412, 416, 425–427,
431–433, 443, 452, 454, 456, 502–503, 506, 508, 661

answers to review questions, 58–60
CASE expression and related functions and, 49–53
character functions and, 46–49
and choice of data type, 37
and choice of data type for keys, 41–44
date/time functions and, 44–46
delimiting identifiers and, 34–35
FOR XML clause of, 222
FROM clause and, 30–31
inline table-valued functions, 308
review, lesson, 55–56
SELECT clause and, 31–33
suggested practices, 57
summary, lesson, 55
synonyms with, 316
UPDATE and, 350–351
UPDATE based on join and, 344
UPDATE statement and, 348
in views, 303
views defined by, 300
without a FROM clause, 385

self:: axis (XQuery), 240

RID (row identifier), 564, 572, 575, 577, 634, 636
RIGHT function, 47
RIGHT OUTER JOIN keywords, 111
roll back (of transaction), 617
ROLLBACK (TRAN, TRANSACTION or WORK) state-
ment, 415–419, 421–422, 429, 491
ROLLUP clause, 156, 159
row-by-row operations, 601
row identifier. See RID (row identifier)
row-level compression, 275
row locator, 564
row locks, 357
ROW_NUMBER function, 123, 177, 181
ROW/ROWS, 88

RANGE clause vs., 176, 180
rows

DELETE statement and, 357
filtering, based on the HAVING clause, 18–19
filtering, based on WHERE clause, 17
grouping, based on GROUP BY clause, 17–18
locks, 357
ranking, 176

ROWS UNBOUNDED PRECEDING, 175, 607
ROWVERSION data type, 273
row versioning, 427
RTRIM function, 49
rules, deprecated, 281
RULE statement, 471

S
SARGs. See search arguments (SARGs)
Savepoints, 421
SAVE TRANSACTION command, 421
scalar subqueries, 118
scalar UDFs, 502–503

writing, 507–508
scan count, 530
SCHEMABINDING option, 506, 569
schema locks, 422
schema name (of table), 30
schemas, database, 269–270
scope, 612–613
SCOPE_IDENTITY function, 371

@@IDENTITY vs, 372
search arguments (SARGs), 65, 578–580

predicates and, 62–66

696

self-contained subqueries

ordered, 5
suggested practices, 626

SET session options, 529–539
SET SHOWPLAN_ALL command, 532
SET SHOWPLAN_TEXT command, 532
SET SHOWPLAN_XML statement, 250, 532
SET statement, 478
SET STATISTICS IO T-SQL command, 529
SET STATISTICS PROFILE command, 532
SET STATISTICS TIME (session command), 531
SET STATISTICS XML statement, 250, 532
set theory, 4–5, 75
SET XACT_ABORT, 441
severity levels, 436–437
shared locks, 422–423
short circuits, 67
Showplan Logical and Physical Operators Reference
article, 545, 641
side-by-side sessions, 428
side effect, 505
simple terms (in searches), 192
single-column statistics, 589
single data modification, 416
single grouping set

workarounds, 154
working with, 150–154

single quotation marks, 40
size

data, 38
of data type, 42

slash (/) character, 229, 240
slow updates, 594
SMALLDATETIME data type, 38, 70
SMALLDATETIMEFROMPARTS function, 45
SNAPSHOT isolation level, 427
sorting data, 61, 74–84

answers to review questions, 97–100
case scenarios, 95
and guaranteed order, 75–76
with ORDER BY, 76–81
performance recommendations, 95
suggested practices, 96

Sort operator, 576, 641–642, 663
sought keys, 637
spaghetti code, 481
sparse data, 250
sp_configure procedure, 475

Disallow Results From Triggers option, 493

self-contained subqueries, 118–119
self-documenting views, 302
self-joins, 104, 107
semantic database, installing, 200
semantic key phrases, 192
SEMANTICKEYPHRASETABLE function, 210
Semantic Language Statistics Database, 196
semantic search, 196

table-valued functions and, 210
using, 215

semantic search functions, 210–211
example using, 213

SEMANTICSIMILARITYDETAILSTABLE function, 211
SEMANTICSIMILARITYTABLE function, 211
semicolon (;), 4, 223, 308
SEQUEL, 14
sequence numbers

Identity property and, 273–274
sequence object, 42, 377

IDENTITY column property vs., 374
using, 374–378

sequences (XQuery), 236
sequential GUIDs, 42
sequential keys, 43
SERIALIZABLE hint, 386
SERIALIZABLE isolation level, 427
Service Broker, 481
set-based solutions, 600–611

compute an aggregate using, 609–610
cursor/iterative vs., 600–611
cursor vs., 604–608
set theory, 600–601

SET clause, 375
UPDATE based on join and, 344
UPDATE statement and, 342, 350–351

SET IDENTITY_INSERT <table> session option, 371
SET IMPLICIT_TRANSACTIONS article, 422
set operators, 136–143

EXCEPT operator, 140–141
explaining, 144
general form of code using, 136
guidelines for working with, 137
INTERSECT operator, 139
UNION/UNION ALL operators, 137–139

SET QUOTED_IDENTIFIER, 453
sets. See also combining sets

case scenario, 624–625
combining, 144
grouping, 150

697

stopwords

SQL Server Integration Services (SSIS), 196
SQL Server Management Studio (SSMS), 270, 306, 401,
424, 428–430, 444–446, 454, 458, 502, 517, 632
SQL Server Profiler, 523–525, 539
SQL Server Query Optimizer, 304, 306, 518–548, 566,
568, 573, 607, 634

hints, 634–672
plan guides, 661–671

SQL server row versioning, 433
isolation levels, 433

sqlserver.sql_text, 526
sql_statement_completed event, 526
SQL Trace, 523–525

DMOs and, 539
sqltypes namespace, 236
square brackets ([]), 48, 271
standard vs. nonstandard functions, 3
Star join optimization, 519, 653
star schema, 653
START WITH property, 374, 375
state, 436, 438
statement_end_offset, 541
statement_start_offset, 541
statements, termination of, 4
states, transactions, 415–416
statistical semantic search, 192
STATISTICAL_SEMANTICS option, 196
statistics, 585–593

auto-created, 585–589
auto-creation, disabled, 591–592
case scenarios, 593–594
disable auto-creation, 590
filtered, 589
manually maintaining, 589–590
multicolumn, 589
single-column, 589
suggested practices, 594
temporary tables and, 618–620
updating, 586

STATISTICS IO, 569–570, 619, 657
STATS_DATE() system function, 588
stemmers, 193
stemming, 204
STOPATMARK statement, 421
STOPBEFOREMARK statement, 421
stoplists, 193
stopwords, 193

sp_estimate_data_compression_savings stored proce-
dure, 275
sp_executesql (system stored procedure), 452, 457–458

output parameters, 457, 461–462
parameters, 457
stored procedure, 459

spreading elements, 165
sp_sequence_get_range procedure, 377
SQL and Relational Theory (Date), 6
sql_handle, 541
SQL identifier length, 451
SQL Injection attacks, 456–457

article, 456
prevention, 459–461

SQLOS, 540
SQL plan guides, 666
SQL Server 2012, 3, 43, 56, 65, 67, 435, 453, 493, 501,
517, 523

data types supported by, 37
Extended Events, 523–525
features, 569
filtering character data, 68
generating T-SQL strings in, 453
and optimization, 104
profiler, 523–525
RAISERROR in, 437
registering filters in, 193
transaction durability and, 414

SQL Server 2012 Express edition, 666
SQL Server 2012 instance, 632
SQL Server Database Engine, 223
sqlserver.database_name, 526
SQL Server Extended Events, 518–548, 523–525, 539,
545

article, 545
creating sessions, 525–527
SQL Trace/SQL Server Profiler vs., 525
usage, 527

SQL Server Extended Events Live Data, 527
SQL Server Extended Events objects, 523–548

actions, 523
events, 523–548
maps, 523
predicates, 523
targets, 523–548
types, 523

SQL Server extension functions (XQuery), 238

698

stored procedures

logical query processing, describing, 25
public newsgroups, visiting, 25

SUM aggregate, 174
SUM function, 172

as aggregate function, 152
SUM window aggregate function, 607
supersets, 7
surrogate keys, 41–42
SWITCHOFFSET function, 45
synonym chaining, 316
synonym permissions, 317
synonyms, 315–322

abstraction layer and, 317
advantages of, over views, 318
ALTER statement with, 316
case scenarios, 323
converting, to other objects, 323
creating, 315–317
and descriptive names for reporting, 319–320
disadvantages of, 318
dropping, 317
editing/using thesaurus file to add, 206–208
finding, in thesaurus files, 194
names of, as T-SQL identifiers, 316
other database objects vs., 318
other objects, converting synonyms to, 323
permissions and, 317
and references to nonexistent objects, 317
simplifying cross-database queries with, 320–321
suggested practices, 324
in T-SQL statements, 316

syntax, creating views, 301–302
sysadmin, 442
sys database schema, 269
SYSDATETIME(), 625
SYSDATETIME function, 44
SYSDATETIMEOFFSET function, 44
sys.dm_db_index_physical_stats, 552, 559, 571
sys.dm_db_index_usage_stats, 574
sys.dm_db_index_usage_stats dynamic management
view, 541
sys.dm_db_missing_index_columns, 541
sys.dm_db_missing_index_details, 541
sys.dm_db_missing_index_groups, 541
sys.dm_db_missing_index_group_stats DMOs, 541
sys.dm_exec_query_stats, 648
sys.dm_exec_query_stats DMO, 541
sys.dm_exec_requests, 541

stored procedures, 435, 470–490, 612, 666
about, 470–474
advantages, 471
calling, 482
case scenario, 511
create, 483–486
designing, 470–490
developing, 481–483
dynamic SQL in, 482–483
error handling, 482
executing, 475–477
existence, 473
implementing, 470–490
parameters, 473–474
recompilation, 659
results, 482
suggested practices, 512
synonyms used for, 316
testing for the existence of, 473
VIEW statements and, 471

Stream Aggregate iterator, 642, 646
Stream Aggregate operator, 577, 642, 663
stream aggregation, 643
string functions (XQuery), 238
strings, 437

character, 40
formatting, 49
length, 48
literals, 455
T-SQL, 458–459
variables, 455

structured error handling, 440, 448–449
using TRY/CATCH, 448–449

STUFF function, 49
subqueries, 118–121

correlated, 119–121
derived tables vs., 122
scalar, 118
self-contained, 118–119
table-valued, 118

substring extraction and position, 47–48
SUBSTRING function, 47
suggested practices

combining sets, 144
filtering and sorting data, 96
queries and querying, 25
SELECT statement, 57
T-SQL, 25

699

tags, XML

table metadata, views and, 318
table name, 30

specifying target column name after, 331
table(s), 265–280, 556

aliasing of, in joins, 104
altering, 276–277
base, 266
case scenarios, 293
choosing indexes for, 276
clustered, 633, 635
compressing data in, 275
creating, 267–275
creating, with full-text components, 197
default values in, 273
derived, 122–124, 266
fields and records vs., 10
grouped, 149
naming, 270–272
NULL values in, 273
permanent vs. temporary, 304
relations vs., 4
schema name vs. table name of, 30
shredding XML to, 230–232
size of, 38
specifying database schemas for, 269–270
suggested practices, 294
synonyms referring to, 323
system, 266
temporary, 266
two-part naming of, 268
views appearing as, 300
views vs., 304
windowed, 149

tables
derived, 360
locks, 357

Table Scan iterator, 632
scenario for, 593

table schemas vs. database schemas, 269
table-valued subqueries, 118. See also table expressions
table-valued UDFs, 503–505

create, 508–509
inline, 503
multistatement, 504–505

table variables, 266, 611, 620
temporary tables vs., 611
using, 622–623

TABLOCK hint, 333
tags, XML, 222

sys.dm_exec_sessions DMO, 540
sys.dm_exec_sessions dynamic management view, 541
sys.dm_exec_sql_text DMO, 541
sys.dm_exec_sql_text DMO., 542
sys.dm_exec_sql_text dynamic management func-
tion, 541
sys.dm_os_sys_info, 540
sys.dm_os_waiting_tasks DMO, 540
sys.dm_tran_active_transactions, 420
sys.dm_tran_active_transactions (DMV), 415
sys.dm_tran_database_transactions, 412
sys.fn_validate_plan_guide, 667
sys.fulltext_document_types catalog view, 193
sys.indexes, 558, 570
sys.indexes catalog, 541
sys.indexes catalog view, 552
sys.messages, 438
sys.objects, 473, 501, 616–617
sys.plan_guides, 668
sys.sequences view, 377
sys.sp_control_plan_guide, 667
sys.sp_create_plan_guide, 667
sys.sp_create_plan_guide_from_handle, 667
sys.sp_executesql system procedure, 521, 651
sys.sp_get_query_template, 667
sys.sp_updatestats, 586
sys.sp_updatestats system, 586
system statistical page, 585
system tables, 266
system transactions, 415
SYSUTCDATE function, 44

T
table expressions, 121–128, 266

and views vs. inline table-valued functions, 127–128
CTEs and, 124–127
DELETE using, 360
derived tables and, 122–124
optimization of, 122
pivoting data using, 168
UPDATE statement and, 348–350

table functions
OPENROWSET, 388
OPENXML, 388

table hints, 661
Table Hints (Transact-SQL) article, 664

table lock, 357

700

target column names

with inner queries, 121
performance considerations with, 604
specifying number of rows for, 85

trace, 525
transaction commands

BEGIN (TRAN or TRANSACTION), 415, 416
COMMIT (TRAN, TRANSACTION or WORK), 415, 416
ROLLBACK (TRAN, TRANSACTION or WORK), 415,
416

transaction modes, 418–419, 428–429
autocommit, 416
explicit, 416, 418–419
implicit, 416–418

transactions, 412–435
ACID properties of, 413–414
additional options, 421–422
commands, 415
cross-database, 421
distributed, 421
durability, 414
exclusive locks, 423
explicit, 435
implementing, 463
implicit, 428
isolation levels, 426–428, 431–433
levels, 415–416
managing, 412–435
marking, 420–421
modes, 416–419
nested, 418–420, 419–420
states, 415–416
system, 415
temporary tables and, 617–618
@@TRANCOUNT, detecting levels with, 415
types, 415–422
understanding, 412–414
user, 415
user transactions, default name of, 415
XACT_ABORT with, 441
XACT_STATE(), finding state with, 415

Transactions table, 605–607
Transact-SQL (T-SQL). See T-SQL (Transact-SQL)
triggers

AFTER, 491–495
AFTER, nested, 494–495
DML, 491–492
implementing, 490–500
INSTEAD OF, 491, 495
suggested practices, 512

target column names
specifying, 331

target table
modification statements and constraints defined
in, 331

tempdb, 426–427, 572, 614
TEMPLATE plan guides, 666–667
template (SQL Trace/SQL Server Profiler), 525
temporary tables, 266, 304, 611, 620

case scenario, 624–625
DDL and, 613–615
global, 612–613
indexes and, 613–615
local, 612–613
physical representation in tempdb, 616–617
statistics and, 618–620
suggested practices, 626
table variables vs., 611
transaction and, 617–618

termination, T-SQL statements, 4
test procedure using RECOMPILE query hint, 669–670
TEXT data type, 530

full-text indexes on columns of, 192
text mining, 196
text() (node type test), 241
theory, importance of, 24
thesaurus files

finding synonyms in, 194
manually editing, 194

thesaurus terms (in searches), 192
three-valued logic, 62–66
THROW statements, 436, 438–439, 482, 491, 496

parameters, 438
RAISERROR vs., 438, 443

tiebreakers, 177
TIME data type, 38

columns, 273
TIMEFROMPARTS function, 45
time functions. See date and time functions
TINYINT data type, 38
TODATETIMEOFFSET function, 45
tokens, 193
TOP filter

DELETE filter using, 360
TOP operator, 306
TOP option (SELECT queries), 21

DELETE statement with, 357, 360
filtering data with, 84–87

701

UPDATE() function as DML trigger

two-part naming (of tables), 268
two-valued logic, 63
type of vs. formatting of value, 38

U
UDFs. See user-defined functions (UDFs)
UNBOUNDED FOLLOWING (ROWS delimiting op-
tion), 180
UNBOUNDED PRECEDING (ROWS delimiting op-
tion), 174
underscore (_), 34, 271
Understanding Row Versioning-Based Isolation Levels
article, 433
Unicode

character strings, types of, 37
literals, delimiting, 68
storage requirements, 40
XML and, 223

uniform extent (data storage), 550
UNION ALL operator, 137–139

view columns and, 306
UNION clause, SELECT statement and, 303
UNION operation

optimizer hints and, 661
view columns and, 306

UNION operator, 137–139
EXCEPT operator vs., 140

UNIQUE constraints (keys), 283–284
IDENTITY property using, 373
indexes and, 615

UNIQUEIDENTIFIER data type
GUIDs and, 43
surrogate key generators and, 42

unpivoting data, 166–168
and column types, 168
identification of three elements involved in, 167
as inverse of pivoting, 149

UNPIVOT operator, 166–168
USING clause and, 388

unqualified UPDATE statements, 342
unstructured error handling (@@ERROR), 440,
445–446
unused indexes, 542–543
UPDATE action, 384, 386–388, 397
UPDATED function, 491
UPDATE() function as DML trigger, 496

TRIGGER statement, 471
troubleshooting deadlocks, 426
TRUNCATE statement, 358–359, 374, 378

DELETE statement and, 356
DELETE statement without WHERE clause vs., 372
DELETE vs., 358, 364–365

truncating data, 362
TRY block, 442

RAISERROR and, 443
XACT_ABORT and, 444

TRY_CAST function, 40, 68
TRY/CATCH construct, 413, 444, 487, 512

stored procedures and, 482
structured error-handling with, 441–443
THROW command and, 438
using XACT_ABORT with, 444

TRY_CONVERT function, 40, 439–440
CONVERT vs., 439

TRY_PARSE function, 40, 439–440
T-SQL strings

generating, 453–454
QUOTENAME and, 458–459

T-SQL (Transact-SQL), 2–13
built-in functions in, 37
case scenarios, 24

code reviewer position, interviewing for a, 24
theory, importance of, 24

as declarative English-like language, 14–15
developers, 443
encapsulating code, 471
error handling, 435–450
evolution of, 2–5
generating strings, 453–454
mathematical foundations of, 2
multiple grouping sets defined in, 150
queries, grouping sets defined in, 150
review questions, 13
routine, 501
statements, 428, 440–441
stored procedures and, 470–490
suggested practices, 25

logical query processing, describing, 25
public newsgroups, visiting, 25

summary, 13
synonyms and, 316
terminology associated with, 10–12
using, in relational way, 5–10

tuples, 4

702

update locks

suggested practices, 512
synonyms for, 316
table-valued, 503–505

user transactions, 415–422. See also transactions
USING clause (MERGE statement), 383, 388

V
value comparison operators, 242
value() method (XML data type), 250–251
value operator column, as search argument, 65
VALUE (secondary XML index), 256
VALUES table, MERGE statements and, 385
value vs. type formatting, 38
VARBINARY data type, 38, 39
VARBINARY(MAX) data type, 530

columns, 273
full-text indexes on columns of, 192

VARCHAR data type, 41
columns, 272
full-text indexes on columns of, 192
Unicode types vs., 40

VARCHAR(MAX) data type
as LOB, 530
columns, 273

variables
UPDATE based on, 350–351

Venn diagrams
EXCEPT operator, 140
INTERSECT operator, 139
UNION ALL operator, 138
UNION operator, 137

VIEW DEFINITION (permission level), 306
views, 266, 300–307, 323. See also inline functions

abstracted layers presented by, 301
advantages of synonyms over, 318
altering, 305
appearance of, as tables, 300
building, for reports, 310
case scenarios, 323
converting, into inline functions, 312–313
creating, 300
distributed partitioned, 306
dropping, 305
filtering, 307
indexed, 266, 304
inline table-valued functions vs., 127–128

update locks, 422
UPDATE statements, 342–343, 494

AFTER triggers and, 492–493
all-at-once updates, 351–352
based on a variable, 350–351
based on join, 344–345
DBCC SHOW_STATISTICS command and, 586
as DML trigger, 491
IDENTITY property and, 378
inline TVFs and, 504
INSTEAD OF triggers and, 495
limits on, when used in views, 305
MERGE vs., 346
MERGE/WHEN MATCHED statements vs., 387
modify() XML method and, 251
NOLOCK table hint and, 433
nondeterministic update, 346–348
OUTPUT clause, with, 397, 401–402
query hints and, 661
sequence object and, 375
synonyms with, 316
and table expressions, 348–350
target table columns and, 398
as transaction, 412
transaction failure, ACID properties and, 413
unqualified, 342

updating data, 341–355
improving process for, 364
nondeterministic UPDATE, 346–348
sample data, 341–342
UPDATE all-at-once, 351–352
UPDATE and table expressions, 348–350
UPDATE based on a variable, 350–351
UPDATE based on join, 344–345
UPDATE statement, 342–343

UPPER function (strings), 49
USE command, 452, 455, 471
user-defined functions (UDFs), 501–510

about, 501
CALLED ON NULL INPUT option, 506
case scenario, 511
ENCRYPTION option, 506
EXECUTE AS option, 506
limitations, 505
options, 506
performance considerations, 506
RETURNS NULL ON NULL INPUT option, 506
scalar, 502–503
SCHEMABINDING option, 506

703

window partition clauses, LAG and LEAD functions and

filtering range of dates using, 73
filtering rows with NULLs using, 72
filtering views with, 307
full-text predicates as part of, 194
functions, using to limit output, 503
GROUP BY clause and, 153
heaps and, 632
indexes and, for optimization, 574–578
INSERT SELECT statements and, 399
in logical query processing phases, 17
ON clause vs., 106
performance considerations with, 506
query optimization within, 519
Query Optimizer vs., 578
referring to window functions in, 178
with ROW_NUMBER function, 123
UPDATE statement and, 342, 351
USE statements and, 455
variables vs. literals, using with, 472
with views, 309
window functions and, 181
with XML queries, 227

Where (FLWOR statement), 243
WHILE statements, 478–481

BEGIN/END blocks and, 479
branching logic and, 477
ensuring termination of, 479
unique iterator values for, 480

wildcards, 48, 69
with XQuery, 241

windowed tables, 149
window frame

clauses, 174
extents, 175
when not specified, 180

window functions, 172–184
aggregate, 180
aggregate functions, 172–176
group functions vs., 172
group queries vs., 172
offset functions, 178–180
ranking functions, 176–178
using, 180–182

window offset functions, 181
window ordering clauses, LAG and LEAD functions
and, 178
window partition clauses, LAG and LEAD functions
and, 178

and metadata, 306–307
modifying data through, 305–306
names of, 303–307
names of, as T-SQL identifiers, 303
options with, 302
ordering results of, 304
partitioned, 306
passing parameters to, 304
querying from, 304
reading from, 301
restrictions on, 304
SELECT and UNION statements in, 303
self-documenting, 302
suggested practices, 324
synonyms referring to, 323
WITH CHECK OPTION with, 303

W
WAITFOR command, 481
WAITFOR DELAY option (WAITFOR command), 481
WAITFOR RECEIVE option (WAITFOR command), 481
WAITFOR TIME option (WAITFOR command), 481
Warnings property (Properties window in SSMS), 591
weighted terms (in searches), 192
WHEN clause, 387, 391
WHEN MATCHED [AND <predicate>] THEN statement
(MERGE statement), 384
WHEN MATCHED clause, 387
WHEN MATCHED statement, 406
WHEN NOT MATCHED BY SOURCE [AND <predicate>]
THEN statement (MERGE statement), 384
WHEN NOT MATCHED BY SOURCE clause (T-SQL exten-
sion to USING clause), 388
WHEN NOT MATCHED BY SOURCE statement (MERGE
statement), 406
WHEN NOT MATCHED [BY TARGET] [AND <predicate>]
THEN statement (MERGE statement), 384
WHEN NOT MATCHED clause, 387, 391
WHEN NOT MATCHED statement, 406
WHERE clause, 62

aliases from SELECT clause and, 17
combining predicates in, 66–67
CONTAINS predicate with, 202
DELETE statement and, 357
Dynamic SQL and, 452
filtered indexes, creating with, 566

704

window ranking functions

producing, from relational data, 226–230
shredding, to tables, 230–232
using FOR XML to return results as, 222–235
and XML data type, 249–260
XQuery for querying data in, 235–249

XML data type, 249–260
for dynamic schema, 252–256
full-text indexes on columns of, 192
methods, 250–252, 256–259
when to use, 250

XML DML, 235
XML documents

formatting of, 222
navigating through, 240–243
returning, 233

XML fragments, 223
returning, 234

xml namespace, 236
XML nodes, 236
XML plans, 532

showing, 250
XML Schema Description (XSD) documents, 225, 228

XMLSCHEMA directive, returning with, 228
XPath expressions

simple, 246
with predicates in, 247
XQuery, specifying with, 240
XQuery vs., 235

XQuery, 221, 235–249
atomic data types, list of, 238
basics of, 236–239
data types in, 238
expressions with predicates in, 247
FLWOR expressions in, 243–245
functions in, 238–239
navigation in, 245–248
navigation using, 240–243
simple expressions in, 246

xsi namespace, 236
xs namespace, 236

Y
YEAR function, 44

window ranking functions, 181
Windows Application log, 436
Windows Azure SQL Database, 426–427
window vs. presentation ordering, 177
WITH CHECK OPTION (view options), 303
WITH ENCRYPTION (view option), 302, 309
WITH HISTOGRAM option (DBCC SHOW_STATISTICS
command), 587
WITH keyword, use with table hints, 663
WITH LOG clause, THROW statements and, 439
WITH MARK statement, 421
WITH (NOLOCK) table hint, 428, 432
WITH NOWAIT command, 440
WITH (READ UNCOMMITTED) table hint, 428, 432
WITH RECOMPILE option for stored procedures, 652,
659
WITH SCHEMABINDING (view option), 301–302, 309
WITH STOPATMARK statement, 421
WITH TIES option (SELECT command), 87
WITH VIEW_METADATA (view option), 302
word breakers, 193
World Wide Web Consortium (W3C), 235
WRITE method, 251
write performance, 41
writers, 426, 430

blocking, 426

X
XACT_ABORT, 440–441, 441

error handling, 446–447
TRY/CATCH with, 444

XACT_STATE() function, 415, 442, 444
@@TRANCOUNT vs., 416

XACT_STATE() values, 444
xdt namespace, 236
XML, 221–264, 530

attribute-centric, 229
basics of, 222–226
case scenarios, 260–261
indexes, 256
Microsoft SQL Server 2012 support for, 221
ordering in, 223

about the authors

ITZIK BEN-GAN is a mentor and cofounder of SolidQ. A Microsoft SQL Server
MVP since 1999, Itzik has delivered numerous training events around the
world that are focused on T-SQL querying, query tuning, and programming.
Itzik is the author of several books about T-SQL. He has written many articles
for SQL Server Pro, in addition to articles and white papers for MSDN and The
SolidQ Journal. Itzik’s speaking engagements include Tech-Ed, SQL PASS, SQL
Server Connections, presentations to various SQL Server user groups, and
SolidQ events. Itzik is a subject matter expert within SolidQ for the company’s
T-SQL–related activities. He authored SolidQ’s Advanced T-SQL and T-SQL
Fundamentals courses and delivers them regularly worldwide.

DEJAN SARKA , MCT and SQL Server MVP, focuses on development of
database and business intelligence applications. Besides working on projects,
he spends a large part of his time training and mentoring. He is the founder
of the Slovenian SQL Server and .NET Users Group. Dejan has authored or
coauthored 11 books about databases and SQL Server. He also developed two
courses and many seminars for Microsoft and SolidQ.

RON TALMAGE is a SolidQ database consultant who lives in Seattle. He is a
mentor and cofounder of SolidQ, a SQL Server MVP, PASS Regional Mentor,
and Chapter Leader of the Seattle SQL Server User Group (PNWSQL). He’s
been active in the SQL Server world since SQL Server 4.21a, and has authored
numerous articles and white papers.

	Introduction
	Chapter 1: Foundations of Querying
	Before You Begin
	Lesson 1: Understanding the Foundations of T-SQL
	Evolution of T-SQL
	Using T-SQL in a Relational Way
	Using Correct Terminology
	Lesson Summary
	Lesson Review

	Lesson 2: Understanding Logical Query Processing
	T-SQL As a Declarative English-Like Language
	Logical Query Processing Phases
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Importance of Theory
	Case Scenario 2: Interviewing for a Code Reviewer Position

	Suggested Practices
	Visit T-SQL Public Newsgroups and Review Code
	Describe Logical Query Processing

	Answers
	Lesson 1
	Lesson 2
	Case Scenario 1
	Case Scenario 2

	Chapter 7: Querying and Managing
	Before You Begin
	Lesson 1: Returning Results As XML with FOR XML
	Introduction to XML
	Producing XML from Relational Data
	Shredding XML to Tables
	Lesson Summary
	Lesson Review

	Lesson 2: Querying XML Data with XQuery
	XQuery Basics
	Navigation
	FLWOR Expressions
	Lesson Summary
	Lesson Review

	Lesson 3: Using the XML Data Type
	When to Use the XML Data Type
	XML Data Type Methods
	Using the XML Data Type for Dynamic Schema
	Lesson Summary
	Lesson Review

	Case Scenarios
	Case Scenario 1: Reports from XML Data
	Case Scenario 2: Dynamic Schema

	Suggested Practices
	Query XML Data

	Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Case Scenario 1
	Case Scenario 2

	Index

