

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2010 by Itzik Ben-Gan, Dejan Sarka, Ed Katibah, Greg Low, Roger Wolter, and Isaac Kunen

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2009932820

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to tkinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, BizTalk, MapPoint, MS, MultiPoint, SQL Server, Visio, Visual Basic, Visual C#,
Visual Studio and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Denise Bankaitis
Project Editor: Denise Bankaitis
Editorial Production: Ashley Schneider, S4Carlisle Publishing Services
Technical Reviewer: Steve Kass; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-74121

To my siblings, Ina & Mickey

—Itzik

 v

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Table of Contents
Foreword . xv

Acknowledgments . xvii

Introduction . xxi

 1 Views . 1
What Are Views? . 1

ORDER BY in a View . 3

Refreshing Views . 6

Modular Approach . 8

Updating Views . 16

View Options . 20

ENCRYPTION . 20

SCHEMABINDING . 20

CHECK OPTION . 22

VIEW_METADATA . 23

Indexed Views . 24

Conclusion . 29

 2 User-Defined Functions . 31
Some Facts About UDFs . 31

Scalar UDFs . 32

T-SQL Scalar UDFs . 32

Performance Issues . 34

UDFs Used in Constraints . 40

CLR Scalar UDFs . 43

SQL Signature . 57

Table-Valued UDFs . 63

Inline Table-Valued UDFs . 64

Split Array . 66

vi Table of Contents

ORDER Option for CLR Table-Valued UDFs . 71

Multistatement Table-Valued UDFs . 73

Per-Row UDFs . 77

Conclusion . 80

 3 Stored Procedures . 81
Types of Stored Procedures . 81

User-Defined Stored Procedures . 82

Special Stored Procedures . 85

System Stored Procedures . 87

Other Types of Stored Procedures . 89

The Stored Procedure Interface . 90

Scalar Input Parameters . 90

Table-Valued Parameters . 92

Output Parameters . 95

Resolution . 97

Dependency Information . 98

Compilations, Recompilations, and Reuse of Execution Plans 101

Reuse of Execution Plans . 102

Recompilations . 107

Variable Sniffing . 111

Plan Guides . 118

EXECUTE AS . 129

Parameterizing Sort Order . 130

CLR Stored Procedures . 136

Conclusion . 144

 4 Triggers . 145
AFTER Triggers . 146

The inserted and deleted Special Tables . 146

Identifying the Number of Affected Rows . 147

Identifying the Type of Trigger . 151

Not Firing Triggers for Specific Statements . 152

Nesting and Recursion . 156

UPDATE and COLUMNS_UPDATED . 158

Auditing Example . 160

INSTEAD OF Triggers . 163

Per-Row Triggers . 164

Used with Views . 167

Automatic Handling of Sequences . 170

 Table of Contents vii

DDL Triggers . 172

Database-Level Triggers . 173

Server-Level Triggers . 178

Logon Triggers . 180

CLR Triggers . 181

Conclusion . 190

 5 Transactions and Concurrency . 191
What Are Transactions? . 192

Locking and Blocking . 194

Lock Escalation . 199

Isolation Levels . 200

Read Uncommitted . 202

Read Committed . 204

Repeatable Read . 205

Serializable . 206

Row Versioning–Based Isolation Levels . 208

Savepoints . 214

Deadlocks . 216

Simple Deadlock Example . 217

Deadlock Caused by Missing Indexes . 218

Deadlock with a Single Table . 221

Conclusion . 223

 6 Error Handling . 225
Error Handling without the TRY/CATCH Construct . 225

Error Handling with the TRY/CATCH Construct . 229

TRY/CATCH . 229

Error-Handling Functions . 231

Errors in Transactions . 233

Conclusion . 244

 7 Temporary Tablesand Table Variables . 245
Temporary Tables . 246

Local Temporary Tables . 246

Global Temporary Tables . 257

Table Variables . 259

Limitations . 260

tempdb . 260

Scope and Visibility . 261

viii Table of Contents

Transaction Context . 261

Statistics . 262

Minimally Logged Inserts . 265

tempdb Considerations . 268

Table Expressions . 269

Comparison Summary . 270

Summary Exercises . 271

Comparing Periods . 272

Recent Orders . 274

Relational Division . 278

Conclusion . 283

 8 Cursors . 285
Using Cursors . 285

Cursor Overhead . 287

Dealing with Each Row Individually . 289

Order-Based Access . 290

Custom Aggregates . 291

Running Aggregations . 292

Maximum Concurrent Sessions . 300

Matching Problems . 308

Conclusion . 314

 9 Dynamic SQL . 315
EXEC . 317

Simple EXEC Examples . 317

EXEC Has No Interface . 318

Concatenating Variables . 321

EXEC AT . 322

sp_executesql . 326

The sp_executesql Interface . 326

Statement Limit . 330

Environmental Settings . 331

Uses of Dynamic SQL . 331

Dynamic Maintenance Activities . 331

Storing Computations . 333

Dynamic Filters . 338

Dynamic PIVOT/UNPIVOT . 349

 Table of Contents ix

SQL Injection . 364

SQL Injection: Code Constructed Dynamically at Client 364

SQL Injection: Code Constructed Dynamically at Server 365

Protecting Against SQL Injection . 370

Conclusion . 373

 10 Working with Date and Time . 375
Date and Time Data Types . 375

Date and Time Manipulation . 378

Date and Time Functions . 378

Literals . 383

Identifying Weekday . 385

Handling Date-only or Time-only Data Prior to SQL Server 2008 387

Examples of Date and Time Calculations . 388

Rounding Issues . 393

Date- and Time-Related Querying Problems . 395

Age Problems . 395

Overlaps . 399

Grouping by the Week .404

Working Days . 405

Generating a Series of Dates . 406

Conclusion . 407

 11 CLR User-Defined Types . 409
Theoretical Introduction to UDTs . 409

Domains and Relations . 409

Domains and Classes . 412

Complex Domains . 412

Why Do We Need Complex Classes? . 415

Language for Creating UDTs . 416

Programming a UDT . 416

UDT Requirements . 417

Creating a UDT . 419

Deploying the UDT Using T-SQL . 425

Conclusion . 437

 12 Temporal Support in the Relational Model 439
Timestamped Predicates and Propositions .440

Time Points . 441

Time Points Lookup Table . 442

x Table of Contents

Semitemporal Problems . 443

Semitemporal Constraints . 443

Testing Semitemporal Constraints . 445

Queries on Semitemporal Tables .446

Tables with Full Temporal Support .446

The IntervalCID UDT .448

Testing IntervalCID . 460

Full Temporal Tables Using IntervalCID . 464

Testing Full Temporal Constraints . 467

Queries on Tables with Full Temporal Support . 468

Unpack and Pack . 470

Expanded and Collapsed Forms of Interval Sets 473

The UNPACK Operator . 474

PACK Operator . 476

Sixth Normal Form in Use . 479

Horizontal and Vertical Decompositions . 479

Sixth Normal Form . 487

Conclusion . 488

 13 XML and XQuery . 491
Converting Relational Data to XML and Vice Versa . 491

Introduction to XML . 491

Producing XML from Relational Data . 495

Shredding XML to Tables . 502

The XQuery Language in SQL Server 2008 . 505

XQuery Basics . 506

Navigation . 510

Iteration and Returning Values . 516

XML Data Type . 521

XML Support in a Relational Database . 521

When Should You Use XML Instead of Relational
Representation? . 523

XML Serialized Objects in a Database . 525

XML as a Stored Procedure Parameter . 535

Dynamic Relational Schema . 536

Relational Solutions . 536

Object-Oriented Solutions . 537

Using the XML Data Type for Dynamic Schema . 538

Conclusion . 542

 Table of Contents xi

 14 Spatial Data . 543
Introduction to Spatial Data . 543

Basic Spatial Data Concepts .544

Vector Data and the OGC Simple Features Type Model 544

Planar and Geographic Coordinates . 546

Spatial Reference Identifiers . 548

Standards . 549

Working on the Ellipsoid . 549

Data . 550

Common Forms of Data . 551

Finding Spatial Data . 551

Loading Spatial Data . 552

Sample Spatial Data . 553

Getting Started with Spatial Data . 553

Creating a Table with a Spatial Column . 554

Well-Known Text . 554

Constructing Spatial Objects from Strings and
Inserting into a Table . 555

Basic Object Interaction Tests . 559

Basic Spatial Operations . 562

Proximity Queries . 569

The GEOGRAPHY Type . 576

Spatial Data Validity . 579

Data Validity Issues with Geometry Data . 579

Measuring Length and Area . 581

Comparing Length Measurements between GEOMETRY
and GEOGRAPHY Instances . 582

Comparing Area Measurements between GEOMETRY
and GEOMETRY Instances . 583

Indexing Spatial Data . 584

Spatial Index Basics . 584

SQL Server Spatial Indexes . 585

Using Spatial Indexes . 586

Geography Indexes . 588

Query Plans . 589

Integration with Spatial Methods . 591

Using Spatial Data to Solve Problems . 591

Loading Spatial Data . 592

Loading Spatial Data from Text Files . 594

xii Table of Contents

Finding Site Locations within Geographic Regions 599

Nearest Neighbor Searches . 602

Spatial Joins . 605

Processing Spatial Data . 608

Extending Spatial Support with CLR Routines . 614

Types on the Client . 614

User Defined Aggregate: Union and Dissolve . 615

Sinks and Builders: Linear Transformations . 618

Conclusion . 622

 15 Tracking Access and Changes to Data . 625
Which Technology Do I Use? . 625

Approaches Using Earlier SQL Server Versions . 625

Technologies Added in SQL Server 2008 . 626

Extended Events Implementation . 628

Extended Events Object Hierarchy . 628

Implementing a Scenario Using Extended Events 635

Exploring Extended Events Concepts . 638

SQL Server Audit Implementation . 642

Auditing Object Hierarchy . 642

Implementing a Scenario Using Auditing . 646

Exploring SQL Server Audit Concepts . 649

Change Tracking Implementation . 653

Implementing a Scenario Using Change Tracking 653

Change Tracking Management Issues . 660

Microsoft Sync Framework . 662

Change Data Capture Implementation . 665

Implementing a Scenario Using Change Data Capture 666

Change Data Capture Management Issues . 671

Conclusion . 674

 16 Service Broker . 675
Dialog Conversations . 676

Conversations . 676

Reliable . 677

Messages . 679

DEFAULT Message Type . 683

Queues . 683

Beginning and Ending Dialogs . 688

 Table of Contents xiii

Conversation Endpoints . 691

Conversation Groups . 693

Sending and Receiving . 695

Activation . 698

Internal Activation . 699

External Activation . 702

Conversation Priority . 706

Broker Priority Object . 707

Sample Dialog . 711

Poison Messages . 721

Dialog Security . 721

Asymmetric Key Authentication . 726

Configuring Dialog Security . 727

Routing and Distribution . 730

Adjacent Broker Protocol . 731

Service Broker Endpoints . 732

Routes . 737

Troubleshooting . 742

Scenarios . 746

Reliable SOA . 746

Asynchronous Processing . 747

Where Does Service Broker Fit? . 748

What Service Broker Is . 748

What Service Broker Isn’t . 748

Service Broker and MSMQ . 749

Service Broker and BizTalk . 749

Service Broker and Windows Communication
Foundation . 750

Conclusion . 750

Appendix A: Companion to CLR Routines . 751

Index . 781

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

 xv

Foreword
Let me start with a few words about the lead author of this book, Itzik Ben-Gan . He is
a mentor, consultant, presenter, teacher, and writer . All his roles have a common theme—
Microsoft SQL Server programming . But wait—there’s even more: he is an MVP (officially
“Microsoft Valued Professional,” but often interpreted as Most Valuable Programmer) and
a close partner with many SQL Server developers in Redmond, Washington . The combination
of these traits puts Itzik into a unique position when writing a book about SQL Server
 programming . He knows what works and what does not . He knows what performs and
what does not . He knows what questions people ask when he is teaching . And he knows
what people grasp easily and what they don’t when it comes to introducing more complex
 concepts of SQL Server programming .

Itzik invited several coauthors to write parts of this book . He does not hesitate to tap the
 resources of the SQL Server development team when it comes to introducing the newest SQL
Server technologies . This was the case with spatial data chapter written by Ed Katibah (a .k .a .
“Spatial Ed”) and Isaac Kunen and with the Service Broker chapter written by Roger Wolter .
Dejan Sarka helped with CLR and XML, and contributed the fascinating chapter on temporal
support in the relational model, where he pokes at SQL Server developers about usefulness
of PACK and UNPACK relational operators still missing in SQL Server . Greg Low untangled the
many ways one can go about tracking access and changes to data and metadata . Both Dejan
and Greg are SQL Server veterans and Itzik’s colleagues in Solid Quality Mentors .

I personally believe in hands-on learning when it comes to programming . This book has
many examples and they are all presented in a way that allows you to run them on your
own SQL Server installation . If you don’t have your own SQL Server installation, you can go
to http://www.microsoft.com/sql and download the evaluation version of SQL Server 2008
(you must have a Windows Live ID; the evaluation version is Enterprise and it is good for 180
days) . Preferably you should be using the Enterprise or Developer edition of SQL Server to
run the examples . And no, you don’t need to retype all code segments in the book! You can
download the source code from http://www.InsideTSQL.com .

If you are new to the SQL language you should start with the earlier published book,
Microsoft SQL Server 2008: T-SQL Fundamentals . If you are new to SQL Server but you
have used other SQL supporting products you may want to start with the companion book
Inside Microsoft SQL Server 2008: T-SQL Querying . But you can jump right into this book as
well; it will give you great insight into SQL Server–specific programming . You can use the
 examples in the book to find out whether you need to study specific statements where SQL
Server has a different implementation from your previous experiences and you can use these
books for reference .

xvi Foreword

Even if you are a seasoned SQL Server developer I’m sure this book will show you new and
more efficient ways to perform your tasks . For example, I agree with Dejan that there are
few CLR UDTs in production systems . And this is not only true for UDTs—few UDFs, triggers,
and stored procedures are written in CLR languages . The book provides numerous examples
of C# and Microsoft Visual Basic solutions . Most of the examples are presented in both C#
and Visual Basic, which are the most popular CLR languages . The authors are careful about
CLR recommendations because of performance implications . Itzik not only provides general
 performance guidelines, but he also tells you how long the alternatives took to execute on
his computer . Of course, you will try it on your computer!

Performance considerations are not restricted to CLR . You will find performance improvement
tips in every single chapter of this book . For example, in Chapter 7, “Temporary Tables and
Table Variables,” you will learn when it is better to use temporary tables and when it is better
to use table variables . Itzik uses simple examples, interpreting query plans and showing how
to use IO counters when comparing different solutions for the same task .

I mentioned that Chapter 12— Dejan’s “Temporal Support in the Relational Model”
 chapter—is fascinating . Why? Let me share a little secret . Some time ago we considered
implementing special support for temporal data inside SQL Server . The work was intense
and the SQL Server development team got help from leading academic sources as well .
One development lead even personalized the license plate on his car to “TIME DB .” What
 happened with the project? The implementation was complex and costly . Some of the
 alternatives were repeatedly re-evaluated without providing a clear winner . And there was
always a counter-argument—“you can use a workaround .” Whenever this argument was
challenged someone wrote a piece of code showing how a particular temporal task could
be achieved using existing features in SQL Server . But I don’t know anybody who did as
 complete a job as Dejan in Chapter 12 of this book!

I worked with Roger Wolter on the same team when he was responsible for developing the
brand new Service Broker in SQL Server 2005 . His chapter (Chapter 16) is great reflection of
his personality—deep with very accurate details in perfect structure . If you are new to Service
Broker you may want to start reading this chapter from the end, where you will learn which
scenarios you can use Service Broker with, along with a brief comparison of Service Broker with
messaging solutions delivered by Microsoft Message Queue (MSMQ), BizTalk, and Windows
Communication Foundation (WCF) . Bank Itau in Brazil and MySpace are two examples of SQL
Server customers who use Service Broker for very different purposes . Bank Itau uses Service
Broker for batch processing . In MySpace, Service Broker creates a communication fabric
among hundreds of SQL Servers behind the MySpace .com social networking site .

I’m confident you will find this book useful and worth reading whether you are a new or
seasoned SQL Server user . It is an invaluable reference for developers, data architects, and
administrators .

Lubor Kollar
Group Program Manager
SQL Server Customer Advisory Team
Microsoft, Redmond, Washington U .S .A .

 xvii

Acknowledgments
Several people contributed to the T-SQL Querying and T-SQL Programming books and I’d
like to acknowledge their contributions . Some were involved directly in writing or editing the
books, whereas others were involved indirectly by providing advice, support, and inspiration .

To the coauthors of Inside Microsoft SQL Server 2008: T-SQL Querying—Lubor Kollar, Dejan
Sarka, and Steve Kass; and to the coauthors of Inside Microsoft SQL Server 2008: T-SQL
Programming—Dejan Sarka, Roger Wolter, Greg Low, Ed Katibah, and Isaac Kunen, it is
a great honor to work with you . It is simply amazing to see the level of mastery that you have
over your areas of expertise, and it is pure joy to read your texts . Thanks for agreeing to be
part of this project .

To Lubor, besides directly contributing to the books by writing a chapter for T-SQL Querying
and the foreword to T-SQL Programming, you provide support, advice, friendship, and are
a great source of inspiration . I always look forward to spending time with you—hiking,
 drinking, and talking about SQL and other things .

To Dejko, your knowledge of the relational model is admirable . Whenever we spend time
together I learn new things and discover new depths . I like the fact that you don’t take
things for granted and don’t blindly follow the words of those who are considered experts
in the field . You have a healthy mind of your own, and see things that very few are capable
of seeing . I’d like to thank you for agreeing to contribute texts to the books . I’d also like to
thank you for your friendship; I always enjoy spending time with you . We need to do the beer
list thing again some time . It’s been almost 10 years!

To the technical editor of the books, Steve Kass, your unique mix of strengths in mathematics,
SQL, and English are truly extraordinary . I know that editing both books and also writing your
own chapters took their toll . Therefore I’d like you to know how much I appreciate your work .
I know you won’t like my saying this, but it is quite interesting to see a genius at work . It kept
reminding me of Domingo Montoya’s work on the sword he prepared for the six-fingered
man from William Goldman’s The Princess Bride .

To Umachandar Jayachandran (UC), many thanks for helping out by editing some of the
chapters . Your mastery of T-SQL is remarkable, and I’m so glad you could join the project in
any capacity . I’d also like to thank Bob Beauchemin for reviewing the chapter on spatial data .
I enjoy reading your texts; your insights on SQL Server programmability are always interesting
and timely .

To Cesar Galindo-Legaria, I feel honored that you agreed to write the foreword for the
T-SQL Querying book . The way you and your team designed SQL Server’s optimizer is simply
a marvel . I’m constantly trying to figure out and interpret what the optimizer does, and
whenever I manage to understand a piece of the puzzle, I find it astonishing what a piece of

xviii Acknowledgments

software is capable of . Your depth of knowledge, your pleasant ways, and your humility are
an inspiration .

To the team at Microsoft Press: Ken Jones, the product planner: I appreciate the personal
manner in which you handle things, and always look forward to Guinness sessions with you .
I think that you have an impossible job trying to make everyone happy and keep projects
moving, but somehow you still manage to do it .

To Sally Stickney, the development editor, thanks for kicking the project off the ground .
I know that the T-SQL Querying book was your last project at Microsoft Press before you
started your new chosen path in life, and am hopeful that it left a good impression on you .
I wish you luck and happiness in your new calling .

To Denise Bankaitis, the project editor, you of all people at Microsoft Press probably spent
the most time working on the books . Thanks for your elegant project management, and for
making sure things kept flowing . It was a pleasure to work with you .

I’d also like to thank DeAnn Montoya and Ashley Schneider, the project managers for the
vendor editorial team, S4Carlisle, and Becka McKay, the copy editor . I know you spent
 countless hours going over our texts, and I appreciate it a lot .

To Solid Quality Mentors, being part of this amazing company and group of people is by
far the best thing that happened to me in my career . It’s as if all I did in my professional
life led me to this place where I can fulfill my calling, which is teaching people about SQL .
To Fernando Guerrero, Brian Moran, Douglas McDowell: the company grew and matured
 because of your efforts, and you have a lot to be proud of . Being part of this company, I feel
a part of something meaningful, and that I’m among family and friends—among people that
I both respect and trust .

I’d like to thank my friends and colleagues from the company: Ron Talmage, Andrew J . Kelly,
Eladio Rincón, Dejan Sarka, Herbert Albert, Fritz Lechnitz, Gianluca Hotz, Erik Veerman, Jay
Hackney, Daniel A . Seara, Davide Mauri, Andrea Benedetti, Miguel Egea, Adolfo Wiernik,
Javier Loria, Rushabh Mehta, Greg Low, Peter Myers, Randy Dyess, and many others . I’d like
to thank Jeanne Reeves and Glen McCoin for making many of my classes possible, and all the
back-office team for their support . I’d also like to thank Kathy Blomstrom for managing our
writing projects and for your excellent edits .

I’d like to thank the members of the SQL Server development team that are working
on T-SQL and its optimization: Michael Wang, Michael Rys, Eric Hanson, Umachandar
Jayachandran (UC), Tobias Thernström, Jim Hogg, Isaac Kunen, Krzysztof Kozielczyk, Cesar
Galindo-Legaria, Craig Freedman, Conor Cunningham, Yavor Angelov, Susan Price, and many
others . For better or worse, what you develop is what we have to work with, and so far the
results are outstanding! Still, until we get a full implementation of the OVER clause, you know
I won’t stop bothering you .

 Acknowledgments xix

I’d like to thank Dubi Lebel and Assaf Fraenkel from Microsoft Israel, and also Ami Levin who
helps me run the Israeli SQL Server users group .

To the team at SQL Server Magazine: Megan Bearly, Sheila Molnar, Mary Waterloo, Michele
Crockett, Mike Otey, Lavon Peters, Anne Grubb; being part of this magazine is a great
 privilege . Congratulations on the tenth anniversary of the magazine! I can’t believe that
10 years passed so quickly, but that’s what happens when you have fun .

To my fellow SQL Server MVPs: Erland Sommarskog, Alejandro Mesa, Aaron Bertrand, Tibor
Karaszi, Steve Kass, Dejan Sarka, Roy Harvey, Tony Rogerson, Marcello Poletti (Marc), Paul
Randall, Bob Beauchemin, Adam Machanic, Simon Sabin, Tom Moreau, Hugo Kornelis, David
Portas, David Guzman, Paul Nielsen, and many others: Your contribution to the SQL Server
community is remarkable . Much of what I know today is thanks to our discussions and
 exchange of ideas .

To my fellow SQL Server MCTs: Tibor Karaszi, Chris Randall, Ted Malone, and others:
We go a long way back, and I’m glad to see that you’re all still around in the SQL teaching
 community . We all share the same passion for teaching . Of anyone, you best understand the
kind of fulfillment that teaching can bestow .

To my students: Without you my work would be meaningless . Teaching is what I like to do
best, and the purpose of pretty much everything else that I do with SQL—including writing
these books—is to support my teaching . Your questions make me do a lot of research, and
therefore I owe much of my knowledge to you .

To my parents, Emilia and Gabriel Ben-Gan, and to my siblings, Ina Aviram and Michael
 Ben-Gan, thanks for your continuous support . The fact that most of us ended up being
teachers is probably not by chance, but for me to fulfill my calling I end up traveling a lot .
I miss you all when I’m away and I always look forward to our family reunions when I’m back .

To Lilach, you’re the one who needs to put up with me all the time, and listen to my SQL
ideas that you probably couldn’t care less about . It’s brainwashing, you see—at some point
you will start asking for more, and before you know it you will even start reading my books .
Not because I will force you, rather because you will want to, of course . That’s the plan, at
least . . . Thanks for giving meaning to what I do, and for supporting me through some rough
times of writing .

 xxi

Introduction
This book and its prequel—Inside Microsoft SQL Server 2008: T-SQL Querying—cover
 advanced T-SQL querying, query tuning, and programming in Microsoft SQL Server
2008 . They are designed for experienced programmers and DBAs who need to write and
 optimize code in SQL Server 2008 . For brevity, I’ll refer to the books as T-SQL Querying and
T-SQL Programming, or just as these books .

Those who read the SQL Server 2005 edition of the books will find plenty of new material
covering new subjects, new features, and enhancements in SQL Server 2008, plus revisions
and new insights about the existing subjects .

These books focus on practical common problems, discussing several approaches to tackle
each . You will be introduced to many polished techniques that will enhance your toolbox and
coding vocabulary, allowing you to provide efficient solutions in a natural manner .

These books unveil the power of set-based querying, and they explain why it’s usually superior
to procedural programming with cursors and the like . At the same time, they teach you how
to identify the few scenarios where cursor-based solutions are superior to set-based ones .

The prequel to this book—T-SQL Querying—focuses on set-based querying and query
 tuning, and I recommend that you read it first . This book—T-SQL Programming—focuses on
 procedural programming and assumes that you read the first book or have sufficient querying
background .

T-SQL Querying starts with five chapters that lay the foundation of logical and physical query
processing required to gain the most from the rest of the chapters in both books .

The first chapter covers logical query processing . It describes in detail the logical phases
 involved in processing queries, the unique aspects of SQL querying, and the special mind-set
you need to adopt to program in a relational, set-oriented environment .

The second chapter covers set theory and predicate logic—the strong mathematical
 foundations upon which the relational model is built . Understanding these foundations will
give you better insights into the model and the language . This chapter was written by Steve
Kass, who was also the main technical editor of these books . Steve has a unique combination
of strengths in mathematics, computer science, SQL, and English that make him the ideal
 author for this subject .

xxii Introduction

The third chapter covers the relational model . Understanding the relational model is essential
for good database design and helps in writing good code . The chapter defines relations and
tuples and operators of relational algebra . Then it shows the relational model from a different
perspective called relational calculus . This is more of a business-oriented perspective, as the
logical model is described in terms of predicates and propositions . Data integrity is crucial for
transactional systems; therefore, the chapter spends time discussing all kinds of constraints .
Finally, the chapter introduces normalization—the formal process of improving database
design . This chapter was written by Dejan Sarka . Dejan is one of the people with the deepest
understanding of the relational model that I know .

The fourth chapter covers query tuning . It introduces a query tuning methodology we
 developed in our company (Solid Quality Mentors) and have been applying in production
systems . The chapter also covers working with indexes and analyzing execution plans . This
chapter provides the important background knowledge required for the rest of the chapters
in both books, which as a practice discuss working with indexes and analyzing execution
plans . These are important aspects of querying and query tuning .

The fifth chapter covers complexity and algorithms and was also written by Steve Kass .
This chapter particularly focuses on some of the algorithms used often by the SQL Server
 engine . It gives attention to considering worst-case behavior as well as average case
 complexity . By understanding the complexity of algorithms used by the engine you can
 anticipate, for example, how the performance of certain queries will degrade when more
data is added to the tables involved . Gaining a better understanding of how the engine
 processes your queries equips you with better tools to tune them .

The chapters that follow delve into advanced querying and query tuning, addressing both
logical and physical aspects of your code . These chapters cover the following subjects:
 subqueries, table expressions, and ranking functions; joins and set operations; aggregating
and pivoting data; TOP and APPLY; data modification; querying partitioned tables; and
graphs, trees, hierarchies, and recursive queries .

The chapter covering querying partitioned tables was written by Lubor Kollar . Lubor led the
development of partitioned tables and indexes when first introduced in the product, and
many of the features that we have today are thanks to his efforts . These days Lubor works
with customers that have, among other things, large implementations of partitioned tables
and indexes as part of his role in the SQL Server Customer Advisory Team (SQL CAT) .

Appendix A covers logic puzzles . Here you have a chance to practice logical puzzles to improve
your logic skills . SQL querying essentially deals with logic . I find it important to practice pure
logic to improve your query problem-solving capabilities . I also find these puzzles fun and
challenging, and you can practice them with the entire family . These puzzles are a compilation
of the logic puzzles that I covered in my T-SQL column in SQL Server Magazine . I’d like to thank
SQL Server Magazine for allowing me to share these puzzles with the book’s readers .

 Introduction xxiii

This book—T-SQL Programming—focuses on programmatic T-SQL constructs and expands
its coverage to treatment of XML and XQuery, and the CLR integration . The book’s chapters
cover the following subjects: views, user-defined functions, stored procedures, triggers,
 transactions and concurrency, exception handling, temporary tables and table variables,
 cursors, dynamic SQL, working with date and time, CLR user-defined types, temporal support
in the relational model, XML and XQuery (including coverage of open schema), spatial data,
tracking access and changes to data, and Service Broker .

The chapters covering CLR user-defined types, temporal support in the relational model,
and XML and XQuery were written by Dejan Sarka . As I mentioned, Dejan is extremely
knowledgeable in the relational model, and has very interesting insights into the model itself
and the way the constructs that he covers in his chapters fit in the model when used sensibly .

The chapter about spatial data was written by Ed Katibah and Isaac Kunen . Ed and Isaac
are with the SQL Server development team, and led the efforts to implement spatial data
 support in SQL Server 2008 . It is a great privilege to have this chapter written by the
 designers of the feature . Spatial data support is new to SQL Server 2008 and brings new
data types, methods, and indices . This chapter is not intended as an exhaustive treatise on
spatial data nor an encyclopedia of every spatial method which SQL Server now supports .
Instead, this chapter will introduce core spatial concepts and provide the reader with key
 programming constructs necessary to successfully navigate this new feature to SQL Server .

The chapter about tracking access and changes to data was written by Greg Low . Greg is
a SQL Server MVP and the managing director of SolidQ Australia . Greg has many years
of experience working with SQL Server—teaching, speaking, and writing about it—and is
highly regarded in the SQL Server community . This chapter covers extended events, auditing,
change tracking, and change data capture . The technologies that are the focus of this chapter
track access and changes to data and are new in SQL Server 2008 . At first glance, these
 technologies can appear to be either overlapping or contradictory and the best use cases
for each might be far from obvious . This chapter explores each technology, discusses the
 capabilities and limitations of each, and explains how each is intended to be used .

The last chapter, which covers Service Broker (SSB) was written by Roger Wolter . Roger is
the program manager with the SQL Server development team and led the initial efforts to
introduce SSB in SQL Server . Again, there’s nothing like having the designer of a component
explain it in his own words . The “sleeper” feature of SQL Server 2005 is now in production in
a wide variety of applications . This chapter covers the architecture of SSB and how to use SSB
to build a variety of reliable asynchronous database applications . The SQL 2008 edition adds
coverage of the new features added to SSB for the SQL Server 2008 release and includes
 lessons learned and best practices from SSB applications deployed since the SQL Server 2005
release . The major new features are Queue Priorities, External Activation, and a new SSB
 troubleshooting application that incorporates lessons the SSB team learned from customers
who have already deployed applications .

xxiv Introduction

Hardware and Software Requirements
To practice all the material in these books and run all code samples it is recommended that
you use Microsoft SQL Server 2008 Developer or Enterprise edition, and Microsoft Visual
Studio 2008 Professional or Database edition . If you have a subscription to MSDN, you
can download SQL Server 2008 and Visual Studio 2008 from http://msdn.microsoft.com .
Otherwise, you can download a 180-day evaluation copy of SQL Server 2008 Enterprise
edition free from: http://www.microsoft.com/sqlserver/2008/en/us/trial-software.aspx, and
a 90-day free trial of Visual Studio 2008 Professional edition from: http://www.microsoft.com/
visualstudio/en-us/try/default.mspx .

You can find the system requirements for SQL Server 2008 at the following link:
http://msdn.microsoft.com/en-us/library/ms143506.aspx, and for Visual Studio 2008 at the
following link: http://www.microsoft.com/visualstudio/en-us/products/default.mspx .

Companion Content and Sample Database
These books feature a companion Web site that makes available to you all the code used in
the books, the errata, additional resources, and more . The companion Web site is
http://www.insidetsql.com .

For each of these books the companion Web site provides a compressed file with the book’s
source code, a script file to create the books’ sample database, and additional files that are
required to run some of the code samples .

After downloading the source code, run the script file InsideTSQL2008 .sql to create the
 sample database InsideTSQL2008, which is used in many of the books’ code samples .
The data model of the InsideTSQL2008 database is provided in Figure I-1 for your
convenience .

Find Additional Content Online
As new or updated material becomes available that complements your books, it will be posted
online on the Microsoft Press Online Developer Tools Web site . The type of material you might
find includes updates to books content, articles, links to companion content, errata, sample
 chapters, and more . This Web site is available at http://microsoftpresssrv.libredigital.com/
serverclient/ and is updated periodically .

 Introduction xxv

HR.Employees

PK empid

I1 lastname
firstname
title
titleofcourtesy
birthdate
hiredate
address
city
region

I2 postalcode
country
phone

FK1 mgrid

Sales.Orders

PK orderid

FK2,I1
FK1,I2
I3

custid
empid
orderdate
requireddate

I4
FK3,15

shippeddate
shipperid
freight
shipname
shipaddress
shipcity
shipregion

I6 shippostalcode
shipcountry

Production.Suppliers

PK supplierid

I1 companyname
contactname
contacttitle
address
city
region

I2 postalcode
country
phone
fax

Production.Categories

PK categoryid

I1 categoryname
description

Sales.OrderDetails

PK,FK2,I1
PK,FK1,I2

orderid
productid

unitprice
qty
discount

Production.Products

PK productid

productname
supplierid
categoryid
unitprice
discontinued

I2
FK2,I3
FK1,l1

Sales.OrderTotalsByyear

orderyear
qty

Sales.OrderValues

orderid
custid
empid
shipperid
orderdate
val

Sales.CustOrders

custid
ordermonth
qty

Sales.Shippers

PK shipperid

companyname
phone

Sales.Customers

PK custid

companyname
contactname
contacttitle
address

I2

cityI1
regionI4
postalcode
country
phone
fax

I3

FiguRe i-1 Data model of the InsideTSQL2008 database

Support for These Books
Every effort has been made to ensure the accuracy of these books and the contents of
the companion Web site . As corrections or changes are collected, they will be added to
a Microsoft Knowledge Base article .

Microsoft Press provides support for books at the following Web site:

http://www.microsoft.com/learning/support/books/ .

xxvi Introduction

Questions and Comments
If you have comments, questions, or ideas regarding the books, or questions that are not
 answered by visiting the sites listed previously, please send them to me via e-mail to

itzik@SolidQ.com

or via postal mail to

Microsoft Press
Attn: Inside Microsoft SQL Server 2008: T-SQL Querying and Inside Microsoft SQL Server 2008:
T-SQL Programming Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above
addresses .

 81

Chapter 3

Stored Procedures
Itzik Ben-Gan and Dejan Sarka

Stored procedures are executable server-side routines . They give you great power and
 performance benefits if used wisely . Unlike user-defined functions (UDFs), stored procedures
are allowed to have side effects; that is, they are allowed to change data in tables, and even
alter object definitions . Stored procedures can be used as a security layer . You can control
access to objects by granting execution permissions on stored procedures and not to
 underlying objects . You can perform input validation in stored procedures, and you can use
stored procedures to allow activities only if they make sense as a whole unit, as opposed to
allowing users to perform activities directly against objects .

Stored procedures also give you the benefits of encapsulation; if you need to change the
 implementation of a stored procedure because you developed a more efficient way to
achieve a task, you can issue an ALTER PROCEDURE statement . As long as the procedure’s
interface remains the same, the users and the applications are not affected . On the other
hand, if you implement your business logic in the client application, the impact of a change
can be very painful .

Stored procedures also provide many important performance benefits . By default, a stored
procedure will reuse a previously cached execution plan, saving the CPU resources and
the time it takes to parse, resolve, and optimize your code . Network traffic is minimized
by shortening the code strings that the client submits to Microsoft SQL Server—the client
submits only the stored procedure’s name and its arguments, as opposed to the full code .
Moreover, all the activity is performed at the server, avoiding multiple roundtrips between
the client and the server . The stored procedure passes only the final result to the client
through the network .

This chapter explores stored procedures . It starts with brief coverage of the different types of
stored procedures supported by SQL Server 2008 and then delves into details . The chapter
covers the stored procedure’s interface, resolution process, compilation, recompilations and
execution plan reuse, plan guides, the EXECUTE AS clause, and common language runtime
(CLR) stored procedures .

Types of Stored Procedures
SQL Server 2008 supports different types of stored procedures: user-defined, system, and
extended . You can develop user-defined stored procedures with T-SQL or with the CLR . This
section briefly covers the different types .

82 Inside Microsoft SQL Server 2008: T-SQL Programming

User-Defined Stored Procedures
A user-defined stored procedure is created in a user database and typically interacts with the
database objects . When you invoke a user-defined stored procedure, you specify the EXEC
(or EXECUTE) command and the stored procedure’s schema-qualified name and arguments:

EXEC dbo.Proc1 <arguments>;

As an example, run the following code to create the GetSortedShippers stored procedure in
the InsideTSQL2008 database:

USE InsideTSQL2008;

IF OBJECT_ID('dbo.GetSortedShippers', 'P') IS NOT NULL

 DROP PROC dbo.GetSortedShippers;

GO

-- Stored procedure GetSortedShippers

-- Returns shippers sorted by requested sort column

CREATE PROC dbo.GetSortedShippers

 @colname AS sysname = NULL

AS

DECLARE @msg AS NVARCHAR(500);

-- Input validation

IF @colname IS NULL

BEGIN

 SET @msg = N'A value must be supplied for parameter @colname.';

 RAISERROR(@msg, 16, 1);

 RETURN;

END

IF @colname NOT IN(N'shipperid', N'companyname', N'phone')

BEGIN

 SET @msg =

 N'Valid values for @colname are: '

 + N'N''shipperid'', N''companyname'', N''phone''.';

 RAISERROR(@msg, 16, 1);

 RETURN;

END

-- Return shippers sorted by requested sort column

IF @colname = N'shipperid'

 SELECT shipperid, companyname, phone

 FROM Sales.Shippers

 ORDER BY shipperid;

ELSE IF @colname = N'companyname'

 SELECT shipperid, companyname, phone

 FROM Sales.Shippers

 ORDER BY companyname;

ELSE IF @colname = N'phone'

 SELECT shipperid, companyname, phone

 FROM Sales.Shippers

 ORDER BY phone;

GO

 Chapter 3 Stored Procedures 83

The stored procedure accepts a column name from the Sales .Shippers table in the
InsideTSQL2008 database as input (@colname); after input validation, it returns the rows from
the Shippers table sorted by the specified column name . Input validation here involves verifying
that a column name was specified, and that the specified column name exists in the Shippers
table . Later in the chapter, I will discuss the subject of parameterizing sort order in more detail;
for now, I just wanted to provide a simple example of a user-defined stored procedure . Run the
following code to invoke GetSortedShippers specifying N’companyname’ as input:

EXEC dbo.GetSortedShippers @colname = N'companyname';

This generates the following output:

shipperid companyname phone

----------- -------------- ---------------

2 Shipper ETYNR (425) 555-0136

1 Shipper GVSUA (503) 555-0137

3 Shipper ZHISN (415) 555-0138

You can leave out the keyword EXEC if the stored procedure is the first statement of a batch,
but I recommend using it all the time . You can also omit the stored procedure’s schema
name (dbo in our case), but when you neglect to specify it, SQL Server must resolve the
schema . The resolution in SQL Server 2008 occurs in the following order (adapted from SQL
Server Books Online):

 1. The sys schema of the current database .

 2. The caller’s default schema if executed in a batch or in dynamic SQL . Or, if the
 nonqualified procedure name appears inside the body of another procedure definition,
the schema containing this other procedure is searched next .

 3. The dbo schema in the current database .

For example, suppose that you connect to the InsideTSQL2008 database and your
user’s default schema in InsideTSQL2008 is called Sales . You invoke the following code
in a batch:

EXEC GetSortedShippers @colname = N'companyname';

The resolution takes place in the following order:

 1. Look for GetSortedShippers in the sys schema of InsideTSQL2008 (sys.
GetSortedShippers) . If found, execute it; if not, proceed to the next step (as in our case) .

 2. If invoked in a batch (as in our case) or dynamic SQL, look for GetSortedShippers in
Sales (Sales.GetSortedShippers) . Or, if invoked in another procedure (say, Production.
AnotherProc), look for GetSortedShippers in Production next . If found, execute it; if not,
proceed to the next step (as in our case) .

 3. Look for GetSortedShippers in the dbo schema (dbo.GetSortedShippers) . If found (as in
our case), execute it; if not, generate a resolution error .

84 Inside Microsoft SQL Server 2008: T-SQL Programming

As I mentioned earlier, you can use stored procedures as a security layer . You can control
access to objects by granting execution permissions on stored procedures and not on
 underlying objects . For example, suppose that there’s a database user called user1 in
the InsideTSQL2008 database . You want to allow user1 to invoke the GetSortedShippers
 procedure, but you want to deny user1 direct access to the Shippers table . You can achieve
this by granting the user EXECUTE permissions on the procedure, and denying SELECT (and
possibly other) permissions on the table, as in:

DENY SELECT ON Sales.Shippers TO user1;

GRANT EXECUTE ON dbo.GetSortedShippers TO user1;

SQL Server allows user1 to execute the stored procedure . However, if user1 attempts to query
the Shippers table directly:

SELECT shipperid, companyname, phone

FROM Sales.Shippers;

SQL Server generates the following error:

Msg 229, Level 14, State 5, Line 1

The SELECT permission was denied on the object 'Shippers', database 'InsideTSQL2008', schema

'Sales'.

This security model gives you a high level of control over the activities that users will be
 allowed to perform .

I’d like to point out other aspects of stored procedure programming through the
GetSortedShippers sample procedure:

n Notice that I explicitly specified column names in the query and didn’t use SELECT * .
Using SELECT * is a bad practice . In the future, the table might undergo schema changes
that cause your application to break . Also, if you really need only a subset of the table’s
columns and not all of them, the use of SELECT * prevents the optimizer from utilizing
covering indexes defined on that subset of columns .

n The query is missing a filter . This is not a bad practice by itself—it’s perfectly valid
if you really need all rows from the table . But you might be surprised to learn that
in performance-tuning projects at Solid Quality Mentors, we still find production
 applications that need filtered data but filter it only at the client . Such an approach
introduces extreme pressure on both SQL Server and the network . Filters allow the
 optimizer to consider using indexes, which minimizes the I/O cost . Also, by filtering at
the server, you reduce network traffic . If you need filtered data, make sure you filter it
at the server; use a WHERE clause (or ON, HAVING where relevant)!

n Notice the use of a semicolon (;) to suffix statements . Although not a requirement of
T-SQL for all statements, the semicolon suffix is an ANSI requirement . In SQL Server
2008, you are required to suffix some statements with a semicolon to avoid ambiguity

 Chapter 3 Stored Procedures 85

of your code . For example, the WITH keyword is used for different purposes—to define
a CTE, to specify a table hint, and so on . SQL Server requires you to suffix the statement
preceding the CTE’s WITH clause to avoid ambiguity . Similarly, the MERGE keyword is
used for different purposes—to specify a join hint and to start a MERGE statement .
SQL Server requires you to terminate a MERGE statement with a semicolon to avoid
 ambiguity . Getting used to suffixing all statements with a semicolon is a good practice .

Now let’s get back to the focus of this section—user-defined stored procedures .

As I mentioned earlier, to invoke a user-defined stored procedure, you specify EXEC, the
schema-qualified name of the procedure, and the parameter values for the invocation if
there are any . References in the stored procedure to system and user object names that are
not fully qualified (that is, without the database prefix) are always resolved in the database in
which the procedure was created . If you want to invoke a user-defined procedure created in
another database, you must database-qualify its name . For example, if you are connected to
a database called db1 and want to invoke a stored procedure called dbo.Proc1, which resides
in db2, you would use the following code:

USE db1;

EXEC db2.dbo.Proc1 <arguments>;

Invoking a procedure from another database wouldn’t change the fact that object names
that are not fully qualified would be resolved in the database in which the procedure was
created (db2, in this case) .

If you want to invoke a remote stored procedure residing in another instance of SQL Server,
you would use the fully qualified stored procedure name, including the linked server name:
server.database.schema.proc .

When done, run the following code for cleanup:

IF OBJECT_ID('dbo.GetSortedShippers', 'P') IS NOT NULL

 DROP PROC dbo.GetSortedShippers;

Special Stored Procedures
By special stored procedure I mean a stored procedure created with a name beginning with
sp_ in the master database . A stored procedure created in this way has a special behavior .

Important Note that Microsoft strongly recommends against creating your own stored
 procedures with the sp_ prefix . This prefix is used by SQL Server to designate system stored
 procedures . In this section, I will create stored procedures with the sp_ prefix to demonstrate
their special behavior .

86 Inside Microsoft SQL Server 2008: T-SQL Programming

As an example, the following code creates the special procedure sp_Proc1, which prints the
database context and queries the INFORMATION_SCHEMA .TABLES view—first with dynamic
SQL, then with a static query:

USE master;

IF OBJECT_ID('dbo.sp_Proc1', 'P') IS NOT NULL DROP PROC dbo.sp_Proc1;

GO

CREATE PROC dbo.sp_Proc1

AS

PRINT 'master.dbo.sp_Proc1 executing in ' + DB_NAME();

-- Dynamic query

EXEC('SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_TYPE = N''BASE TABLE'';');

-- Static query

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_TYPE = 'BASE TABLE';

GO

One of the unique aspects of a special procedure is that you don’t need to database-qualify
its name when connected to another database . For example, you can be connected to
InsideTSQL2008 and still be able to run it without database-qualifying its name:

USE InsideTSQL2008;

EXEC dbo.sp_Proc1;

The PRINT command returns master.dbo.sp_Proc1 executing in InsideTSQL2008 . The database
name in the printed message was obtained by the DB_NAME function . It seems that DB_NAME
“thinks” that the database context is InsideTSQL2008 (the current database) and not master .
Similarly, dynamic SQL also assumes the context of the current database; therefore, the EXEC
command (which invokes a query against INFORMATION_SCHEMA .TABLES) returns table
names from the InsideTSQL2008 database . In contrast to the previous two statements, the static
query against INFORMATION_SCHEMA .TABLES seems to “think” that it is running in master—it
returns table names from the master database and not InsideTSQL2008 . Similarly, if you refer
with static code to user objects (for example, a table called T1), SQL Server looks for them in
master . If that’s not confusing enough, static code referring to compatibility views (for example,
sys .objects) is normally resolved in master, but if the catalog view is a backward-compatibility
one (for example, sys .sysobjects) the code is resolved in the current database .

Interestingly, the sp_ prefix also works magic with other types of objects in addition to stored
procedures .

Caution The behavior described in the following section is undocumented and you should not
rely on it in production environments .

 Chapter 3 Stored Procedures 87

For example, the following code creates a table with the sp_ prefix in master:

USE master;

IF OBJECT_ID('dbo.sp_Globals', 'U') IS NOT NULL

 DROP TABLE dbo.sp_Globals;

CREATE TABLE dbo.sp_Globals

(

 var_name sysname NOT NULL PRIMARY KEY,

 val SQL_VARIANT NULL

);

And the following code switches between database contexts and always manages to find the
table even though the table name is not database-qualified .

USE InsideTSQL2008;

INSERT INTO dbo.sp_Globals(var_name, val)

 VALUES('var1', 10);

USE AdventureWorks2008;

INSERT INTO dbo.sp_Globals(var_name, val)

 VALUES('var2', CAST(1 AS BIT));

USE tempdb;

SELECT var_name, val FROM dbo.sp_Globals;

This generates the following output:

var_name val

--------- ----

var1 10

var2 1

For cleanup, run the following code:

USE master;

IF OBJECT_ID('dbo.sp_Globals', 'U') IS NOT NULL

 DROP TABLE dbo.sp_Globals;

Do not drop sp_Proc1 yet; we’ll use it in the following section .

System Stored Procedures
System stored procedures are procedures that were shipped by Microsoft . Historically, system
stored procedures resided in the master database, had the sp_ prefix, and were marked as system
objects with a special flag (MS Shipped) . In SQL Server 2008, system stored procedures reside
physically in an internal hidden Resource database, and they exist logically in every database .

A special procedure (sp_ prefix, created in master) that is also marked as a system procedure
gets additional unique behavior . You can mark a procedure as a system procedure by using
the undocumented procedure sp_MS_marksystemobject .

88 Inside Microsoft SQL Server 2008: T-SQL Programming

Caution You should not use the sp_MS_marksystemobject stored procedure in production
because you won’t get any support if you run into trouble with it . Also, the behavior you get by
marking your procedures as system isn’t guaranteed to remain the same in future versions of SQL
Server, or even future service packs . I’m going to use it here for demonstration purposes to show
additional behaviors that system procedures have .

Run the following code to mark the special procedure sp_Proc1 also as a system procedure:

USE master;

EXEC sp_MS_marksystemobject 'dbo.sp_Proc1';

If you now run sp_Proc1 in databases other than master, you will observe that all code
 statements within the stored procedure assume the context of the current database:

USE InsideTSQL2008;

EXEC dbo.sp_Proc1;

USE AdventureWorks2008;

EXEC dbo.sp_Proc1;

EXEC InsideTSQL2008.dbo.sp_Proc1;

As a practice, avoid using the sp_ prefix for user-defined stored procedures . Remember
that if a local database has a stored procedure with the same name and schema as a special
 procedure in master, the user-defined procedure will be invoked . To demonstrate this, create
a procedure called sp_Proc1 in InsideTSQL2008 as well:

USE InsideTSQL2008;

IF OBJECT_ID('dbo.sp_Proc1', 'P') IS NOT NULL DROP PROC dbo.sp_Proc1;

GO

CREATE PROC dbo.sp_Proc1

AS

PRINT 'InsideTSQL2008.dbo.sp_Proc1 executing in ' + DB_NAME();

GO

If you run the following code, you will observe that when connected to InsideTSQL2008,
sp_Proc1 from InsideTSQL2008 was invoked:

USE InsideTSQL2008;

EXEC dbo.sp_Proc1;

USE AdventureWorks2008;

EXEC dbo.sp_Proc1;

Drop the InsideTSQL2008 version so that it doesn’t interfere with the following examples:

USE InsideTSQL2008;

IF OBJECT_ID('dbo.sp_Proc1', 'P') IS NOT NULL DROP PROC dbo.sp_Proc1;

 Chapter 3 Stored Procedures 89

Interestingly, system procedures have an additional unique behavior: They also resolve
user objects in the current database, not just system objects . To demonstrate this, run the
 following code to re-create the sp_Proc1 special procedure—which queries a user table
called Sales .Orders—and to mark the procedure as system:

USE master;

IF OBJECT_ID('dbo.sp_Proc1', 'P') IS NOT NULL DROP PROC dbo.sp_Proc1;

GO

CREATE PROC dbo.sp_Proc1

AS

PRINT 'master.dbo.sp_Proc1 executing in ' + DB_NAME();

SELECT orderid FROM Sales.Orders;

GO

EXEC sp_MS_marksystemobject 'dbo.sp_Proc1';

Run sp_Proc1 in InsideTSQL2008, and you will observe that the query ran successfully against
the Sales .Orders table in InsideTSQL2008:

USE InsideTSQL2008;

EXEC dbo.sp_Proc1;

Make a similar attempt in AdventureWorks2008:

USE AdventureWorks2008;

EXEC dbo.sp_Proc1;

You get the following error:

master.dbo.sp_Proc1 executing in AdventureWorks2008

Msg 208, Level 16, State 1, Procedure sp_Proc1, Line 4

Invalid object name 'Sales.Orders'.

The error tells you that SQL Server looked for a Sales .Orders table in AdventureWorks2008
but couldn’t find one .

When you’re done, run the following code for cleanup:

USE master;

IF OBJECT_ID('dbo.sp_Proc1', 'P') IS NOT NULL DROP PROC dbo.sp_Proc1;

USE InsideTSQL2008

IF OBJECT_ID('dbo.sp_Proc1', 'P') IS NOT NULL DROP PROC dbo.sp_Proc1;

Other Types of Stored Procedures
SQL Server also supports other types of stored procedures:

n Temporary stored procedures You can create temporary procedures by prefixing
their names with a single number symbol or a double number symbol (# or ##) .

90 Inside Microsoft SQL Server 2008: T-SQL Programming

A single number symbol makes the procedure a local temporary procedure; two
 number symbols make it a global one . Local and global temporary procedures behave
in terms of visibility and scope like local and global temporary tables, respectively .

More Info For details about local and global temporary tables, please refer to Chapter 7,
“Temporary Tables and Table Variables .”

n Extended stored procedures These procedures allow you to create external routines
with a programming language such as C using the Extended Stored Procedure API .
These were used in older versions of SQL Server to extend the functionality of the
product . External routines were written using the Extended Stored Procedure API,
 compiled to a .dll file, and registered as extended stored procedures in SQL Server .
They were used like user-defined stored procedures with T-SQL . In SQL Server 2008,
extended stored procedures are supported for backward compatibility and will be
 removed in a future version of SQL Server . Now you can rely on the .NET integration
in the product and develop CLR stored procedures, as well as other types of routines .
I’ll cover CLR procedures later in the chapter .

The Stored Procedure interface
This section covers the interface (that is, the input and output parameters) of stored
 procedures . Stored procedures accept three kinds of parameters: scalar input parameters,
table-valued input parameters, and scalar output parameters .

Scalar Input Parameters
A scalar input parameter must be provided with a value when the stored procedure is
 invoked, unless you assign the parameter with a default value . For example, the following
code creates the GetCustOrders procedure, which accepts a customer ID and datetime range
boundaries as inputs, and returns the given customer’s orders in the given datetime range:

USE InsideTSQL2008;

IF OBJECT_ID('dbo.GetCustOrders', 'P') IS NOT NULL

 DROP PROC dbo.GetCustOrders;

GO

CREATE PROC dbo.GetCustOrders

 @custid AS INT,

 @fromdate AS DATETIME = '19000101',

 @todate AS DATETIME = '99991231'

AS

SET NOCOUNT ON;

 Chapter 3 Stored Procedures 91

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE custid = @custid

 AND orderdate >= @fromdate

 AND orderdate < @todate;

GO

Tip The SET NOCOUNT ON option tells SQL Server not to produce the message saying how
many rows were affected for data manipulation language (DML) statements . Some client
 database interfaces, such as OLEDB, absorb this message as a row set . The result is that when you
expect to get a result set of a query back to the client, you instead get this message of how many
rows were affected as the first result set . By issuing SET NOCOUNT ON, you avoid this problem in
those interfaces, so you might want to adopt the practice of specifying it .

When invoking a stored procedure, you must specify inputs for those scalar parameters
that were not given default values in the definition (for @custid in our case) . There are two
 formats for assigning values to parameters when invoking a stored procedure: unnamed and
named . In the unnamed format, you just specify values without specifying the parameter
names . Also, you must specify the inputs by declaration order of the parameters . You can
omit inputs only for parameters that have default values and that were declared at the end
of the parameter list . You cannot omit an input between two parameters for which you do
specify values . If you want such parameters to use their default values, you need to specify
the DEFAULT keyword for those .

As an example, the following code invokes the procedure without specifying the inputs for
the two last parameters, which will use their default values:

EXEC dbo.GetCustOrders 1;

This generates the following output:

orderid custid empid orderdate

----------- ----------- ----------- -----------------------

10692 1 4 2007-10-03 00:00:00.000

10702 1 4 2007-10-13 00:00:00.000

10643 1 6 2007-08-25 00:00:00.000

10835 1 1 2008-01-15 00:00:00.000

10952 1 1 2008-03-16 00:00:00.000

11011 1 3 2008-04-09 00:00:00.000

If you want to specify your own value for the third parameter but use the default for the
 second, specify the DEFAULT keyword for the second parameter:

EXEC dbo.GetCustOrders 1, DEFAULT, '20100212';

And, of course, if you want to specify your own values for all parameters, just specify them in
order:

EXEC dbo.GetCustOrders 1, '20070101', '20080101';

92 Inside Microsoft SQL Server 2008: T-SQL Programming

This produces the following output:

orderid custid empid orderdate

----------- ----------- ----------- -----------------------

10643 1 6 2007-08-25 00:00:00.000

10692 1 4 2007-10-03 00:00:00.000

10702 1 4 2007-10-13 00:00:00.000

These are the basics of stored procedures . You’re probably already familiar with them,
but I decided to include this coverage to lead to a recommended practice . Many
 maintenance-related issues can arise when you use the unnamed assignment format .
You must specify the arguments in order; you must not omit an optional parameter; and
by looking at the code, it might not be clear what the inputs actually mean and to which
 parameter they relate . Therefore, it’s a good practice to use the named assignment format,
in which you specify the name of the argument and assign it with an input value, as in the
 following example:

EXEC dbo.GetCustOrders

 @custid = 1,

 @fromdate = '20070101',

 @todate = '20080101';

The code is much more readable, you can play with the order in which you specify the inputs,
and you can omit any parameter that you like if it has a default value .

Table-Valued Parameters
SQL Server 2008 introduces table types and table-valued parameters . A table type allows you
to store the definition of a table structure as a user-defined object in the database and later
use it as the type for table variables and table-valued parameters . A table type definition
can include most common elements of a table definition, including column names; types;
NULLability; properties such as IDENTITY and COLLATE; and constraint definitions such as
PRIMARY KEY, UNIQUE, and CHECK (but not FOREIGN KEY) .

For example, the following code creates a table type called dbo .OrderIDs in the
InsideTSQL2008 database:

USE InsideTSQL2008;

IF TYPE_ID('dbo.OrderIDs') IS NOT NULL DROP TYPE dbo.OrderIDs;

CREATE TYPE dbo.OrderIDs AS TABLE

(

 pos INT NOT NULL PRIMARY KEY,

 orderid INT NOT NULL UNIQUE

);

 Chapter 3 Stored Procedures 93

The type defines orders with attributes called pos and orderid representing a position for
sorting purposes and an order ID, respectively . Once created, you can use OrderIDs as the
type for table variables , like so:

DECLARE @T AS dbo.OrderIDs;

INSERT INTO @T(pos, orderid)

 VALUES(1, 10248),(2, 10250),(3, 10249);

SELECT * FROM @T;

This generates the following output:

pos orderid

----------- -----------

1 10248

3 10249

2 10250

Such use of table types as the type for table variables prevents you from the need to repeat
the table definition . Of course, it’s not just about code brevity . The real news in supporting
table types is that you can use those as types for input parameters in stored procedures
and UDFs . Client APIs were also enhanced to support passing table-valued parameters to
 routines, so you are not restricted to using T-SQL to invoke such routines .

Note that when defining a table-valued parameter in a routine, you have to specify the
 attribute READONLY, indicating that you can only read from the parameter but not write to
it . For now, this attribute is mandatory . I hope that in the future SQL Server will also support
writable table-valued parameters .

As an example, the following code creates a stored procedure called GetOrders that accepts
an input table-valued parameter called @T of the OrderIDs type, and returns the orders from
the Sales .Orders table whose IDs appear in @T, sorted by pos:

IF OBJECT_ID('dbo.GetOrders', 'P') IS NOT NULL DROP PROC dbo.GetOrders;

GO

CREATE PROC dbo.GetOrders(@T AS dbo.OrderIDs READONLY)

AS

SELECT O.orderid, O.orderdate, O.custid, O.empid

FROM Sales.Orders AS O

 JOIN @T AS K

 ON O.orderid = K.orderid

ORDER BY K.pos;

GO

94 Inside Microsoft SQL Server 2008: T-SQL Programming

To invoke the procedure from T-SQL, first declare and populate a local table variable of the
OrderIDs type in the calling batch, then call the procedure and pass the variable as the input
parameter, like so:

DECLARE @Myorderids AS dbo.OrderIDs;

INSERT INTO @Myorderids(pos, orderid)

 VALUES(1, 10248),(2, 10250),(3, 10249);

EXEC dbo.GetOrders @T = @Myorderids;

This generates the following output:

orderid orderdate custid empid

----------- ----------------------- ----------- -----------

10248 2006-07-04 00:00:00.000 85 5

10250 2006-07-08 00:00:00.000 34 4

10249 2006-07-05 00:00:00.000 79 6

The input parameter is passed by reference, meaning that SQL Server gets a pointer to the
parameter, rather than internally generating a copy . This makes the use of table-valued
 parameters very efficient . SQL Server can also efficiently reuse a previously cached plan of
our stored procedure for subsequent invocations of the procedure .

Internally, SQL Server treats table-valued parameters very much like table variables . This means
that SQL Server does not maintain distribution statistics (histograms) on them . The downside
of not having distribution statistics on table variables is that the optimizer can’t come up with
accurate selectivity estimates for filters . The upside is that you get fewer recompiles, because
no refreshes of statistics would trigger plan optimality–related recompiles .

Note that unlike with scalar input parameters, SQL Server won’t generate an error if you omit an
input table-valued parameter when executing the procedure . In such a case, SQL Server simply
uses an empty table by default . This means that if you omit such a parameter by mistake, you will
have a logical bug in the code that might go unnoticed . For example, run the following code:

EXEC dbo.GetOrders;

You don’t get an error—instead, the stored procedure uses an empty table by default,
 producing an empty set as the output:

orderid orderdate custid empid

----------- ----------------------- ----------- -----------

(0 row(s) affected)

When you’re done, run the following code for cleanup:

IF OBJECT_ID('dbo.GetOrders', 'P') IS NOT NULL DROP PROC dbo.GetOrders;

IF TYPE_ID('dbo.OrderIDs') IS NOT NULL DROP TYPE dbo.OrderIDs;

 Chapter 3 Stored Procedures 95

Output Parameters
Output parameters allow you to return output values from a stored procedure . A change
made to the output parameter within the stored procedure is reflected in the variable from
the calling batch that was assigned to the output parameter . The concept is similar to a
pointer in C or a ByRef parameter in Visual Basic .

As an example, the following code alters the definition of the GetCustOrders procedure,
 adding to it the output parameter @numrows:

USE InsideTSQL2008;

GO

ALTER PROC dbo.GetCustOrders

 @custid AS INT,

 @fromdate AS DATETIME = '19000101',

 @todate AS DATETIME = '99991231',

 @numrows AS INT OUTPUT

AS

SET NOCOUNT ON;

DECLARE @err AS INT;

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE custid = @custid

 AND orderdate >= @fromdate

 AND orderdate < @todate;

SELECT @numrows = @@rowcount, @err = @@error;

RETURN @err;

GO

@numrows returns the number of rows affected by the query . Notice that the stored
 procedure also uses a RETURN clause to return the value of the @@error function after the
invocation of the query .

To get the output parameter back from the stored procedure when invoking it, you need to
assign it with a variable defined in the calling batch and mention the keyword OUTPUT . To
get back the return status, you also need to provide a variable from the calling batch right
before the procedure name and an equal sign, as in the following example:

DECLARE @myerr AS INT, @mynumrows AS INT;

EXEC @myerr = dbo.GetCustOrders

 @custid = 1,

 @fromdate = '20070101',

 @todate = '20080101',

 @numrows = @mynumrows OUTPUT;

SELECT @myerr AS err, @mynumrows AS rc;

96 Inside Microsoft SQL Server 2008: T-SQL Programming

This generates the following output:

orderid custid empid orderdate

----------- ----------- ----------- -----------------------

10643 1 6 2007-08-25 00:00:00.000

10692 1 4 2007-10-03 00:00:00.000

10702 1 4 2007-10-13 00:00:00.000

err rc

----------- -----------

0 3

The stored procedure returns the applicable orders, plus it assigns the return status 0 to
@myerr and the number of affected rows (in this case, 3) to the @mynumrows variable .

If you want to manipulate the row set returned by the stored procedure with T-SQL, you
need to create a table first and use the INSERT/EXEC syntax, by running the following code:

IF OBJECT_ID('tempdb..#CustOrders', 'U') IS NOT NULL

 DROP TABLE #CustOrders;

CREATE TABLE #CustOrders

(

 orderid INT NOT NULL PRIMARY KEY,

 custid INT NOT NULL,

 empid INT NOT NULL,

 orderdate DATETIME NOT NULL

);

GO

DECLARE @myerr AS INT, @mynumrows AS INT;

INSERT INTO #CustOrders(orderid, custid, empid, orderdate)

 EXEC @myerr = dbo.GetCustOrders

 @custid = 1,

 @fromdate = '20070101',

 @todate = '20080101',

 @numrows = @mynumrows OUTPUT;

SELECT orderid, custid, empid, orderdate

FROM #CustOrders;

SELECT @myerr AS err, @mynumrows AS rc;

When you’re done, run the following code for cleanup:

IF OBJECT_ID('dbo.GetCustOrders', 'P') IS NOT NULL

 DROP PROC dbo.GetCustOrders;

IF OBJECT_ID('tempdb..#CustOrders', 'U') IS NOT NULL

 DROP TABLE #CustOrders;

 Chapter 3 Stored Procedures 97

Resolution
When you create a stored procedure, SQL Server first parses the code to check for syntax
errors . If the code passes the parsing stage successfully, SQL Server attempts to resolve the
names it contains . The resolution process verifies the existence of object and column names,
among other things . If the referenced objects exist, the resolution process will take place
fully—that is, it also checks for the existence of the referenced column names .

If an object name exists but a column within it doesn’t, the resolution process produces an
error and the stored procedure is not created . However, if the object doesn’t exist at all,
SQL Server creates the stored procedure and defers the resolution process to run time, when
the stored procedure is invoked . Of course, if a referenced object or a column is still missing
when you execute the stored procedure, the code will fail . This process of postponing name
resolution until run time is called deferred name resolution .

I’ll demonstrate the resolution aspects I just described . First run the following code to make
sure that the Proc1 procedure, the Proc2 procedure, and the table T1 do not exist within
tempdb:

USE tempdb;

IF OBJECT_ID('dbo.Proc1', 'P') IS NOT NULL DROP PROC dbo.Proc1;

IF OBJECT_ID('dbo.Proc2', 'P') IS NOT NULL DROP PROC dbo.Proc2;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

Run the following code to create the stored procedure Proc1, which refers to a table named
T1, which doesn’t exist:

CREATE PROC dbo.Proc1

AS

SELECT col1 FROM dbo.T1;

GO

Because table T1 doesn’t exist, resolution was deferred to run time, and the stored procedure
was created successfully . If T1 does not exist when you invoke the procedure, it fails at run
time . Run the following code:

EXEC dbo.Proc1;

You get the following error:

Msg 208, Level 16, State 1, Procedure Proc1, Line 4

Invalid object name 'dbo.T1'.

Next, create table T1 with a column called col1:

CREATE TABLE dbo.T1(col1 INT);

INSERT INTO dbo.T1(col1) VALUES(1);

98 Inside Microsoft SQL Server 2008: T-SQL Programming

Invoke the stored procedure again:

EXEC dbo.Proc1;

This time it will run successfully .

Next, attempt to create a stored procedure called Proc2, referring to a nonexistent column
(col2) in the existing T1 table:

CREATE PROC dbo.Proc2

AS

SELECT col2 FROM dbo.T1;

GO

Here, the resolution process was not deferred to run time because T1 exists . The stored
 procedure was not created, and you got the following error:

Msg 207, Level 16, State 1, Procedure Proc2, Line 4

Invalid column name 'col2'.

When you’re done, run the following code for cleanup:

USE tempdb;

IF OBJECT_ID('dbo.Proc1', 'P') IS NOT NULL DROP PROC dbo.Proc1;

IF OBJECT_ID('dbo.Proc2', 'P') IS NOT NULL DROP PROC dbo.Proc2;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

Dependency information
Prior to SQL Server 2008, dependency information between objects was not reliable .
Dependency information was recorded only if the referenced object existed when the
 referencing object was created . But if the referenced object didn’t exist when the referencing
object was created, and SQL Server ended up using deferred name resolution, object
 dependency simply wasn’t recorded . So when asking for dependency information prior
to SQL Server 2008 (by querying the sys.sql_dependencies or sys.sysdepends compatibility
views, or by executing the sp_depends system procedure) the information that you got was
 incomplete and thus not reliable .

SQL Server 2008 addresses this problem by providing reliable dependency information . When
you create an object, SQL Server parses its text and records dependency information regardless
of whether the referenced object exists . SQL Server exposes dependency information through
three objects: the sys.sql_expression_dependencies catalog view and the sys.dm_sql_referenced_
entities and sys.dm_sql_referencing_entities dynamic management functions (DMFs) . I will explain
the purpose of each object shortly . When querying these objects, if a referenced object doesn’t
exist, you get only object name information . If a referenced object exists, you get both object
name and ID information . Dependency information keeps track of all relevant parts, including
server, database, schema, object, and even column .

 Chapter 3 Stored Procedures 99

Note that SQL Server records only dependency information for references that appear in
static T-SQL code . It doesn’t record dependency information for references that appear in
dynamic SQL and CLR code .

To demonstrate retrieving reliable dependency information in SQL Server 2008, first run the
following code, which creates a few objects with dependencies:

USE tempdb;

IF OBJECT_ID('dbo.Proc1', 'P') IS NOT NULL DROP PROC dbo.Proc1;

IF OBJECT_ID('dbo.Proc2', 'P') IS NOT NULL DROP PROC dbo.Proc2;

IF OBJECT_ID('dbo.V1', 'V') IS NOT NULL DROP VIEW dbo.V1;

IF OBJECT_ID('dbo.V2', 'V') IS NOT NULL DROP VIEW dbo.V2;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

IF OBJECT_ID('dbo.T2', 'U') IS NOT NULL DROP TABLE dbo.T2;

GO

CREATE PROC dbo.Proc1

AS

SELECT * FROM dbo.T1;

EXEC('SELECT * FROM dbo.T2');

GO

CREATE PROC dbo.Proc2

AS

SELECT * FROM dbo.T3;

GO

CREATE TABLE dbo.T1(col1 INT);

CREATE TABLE dbo.T2(col2 INT);

GO

CREATE VIEW dbo.V1

AS

SELECT col1 FROM dbo.T1;

GO

CREATE VIEW dbo.V2

AS

SELECT col1 FROM dbo.T1;

GO

Observe that the procedure Proc1 has a dependency on the table T1 in static code and on
the table T2 in dynamic code . Also notice that the procedure is created before the referenced
tables are created . The procedure Proc2 has a reference to the table T3 in static code, but the
table doesn’t exist . The views V1 and V2 refer to the column col1 in T1 .

Next I’ll describe the purpose of the three objects that give you dependency information, or
more accurately, information about references by name . The sys.sql_expression_dependencies
view gives you object dependency information by name . Run the following code in the tempdb
database:

SELECT

 OBJECT_SCHEMA_NAME(referencing_id) AS srcobjschema,

 OBJECT_NAME(referencing_id) AS srcobjname,

 referencing_minor_id AS srcminorid,

100 Inside Microsoft SQL Server 2008: T-SQL Programming

 referenced_schema_name AS tgtschema,

 referenced_id AS tgtobjid,

 referenced_entity_name AS tgtobjname,

 referenced_minor_id AS tgtminorid

FROM sys.sql_expression_dependencies;

You get the following output:

srcobjschema srcobjname srcminorid tgtschema tgtobjid tgtobjname tgtminorid

------------- ----------- ----------- ---------- ----------- ----------- -----------

dbo Proc1 0 dbo 2098106515 T1 0

dbo Proc2 0 dbo NULL T3 0

dbo V1 0 dbo 2098106515 T1 0

dbo V2 0 dbo 2098106515 T1 0

Observe that you got only dependency information for references that appear in static code .
The reference in Proc1 to T2 in the dynamic SQL code wasn’t recorded . Also observe that
for referenced objects that exist (for example, T1) you get both name and ID information,
but for objects that don’t exist (for example, T3) you get only name information . For objects
that exist, you get the object ID even if the dependency was established before the object
existed—the ID is effectively “filled in” when known .

If you attempt to run code that refers to a nonexistent object, you get a Level 16 resolution
error . If you want to know which objects a certain object depends on, query the sys.dm_sql_
referenced_entities function and provide the referencing object name as the first input and
OBJECT as the second input, like so:

SELECT

 referenced_schema_name AS objschema,

 referenced_entity_name AS objname,

 referenced_minor_name AS minorname,

 referenced_class_desc AS class

FROM sys.dm_sql_referenced_entities('dbo.Proc1', 'OBJECT');

You get the following output, indicating that Proc1 depends on the table T1 and on the
 column col1 within T1:

objschema objname minorname class

---------- -------- ---------- -----------------

dbo T1 NULL OBJECT_OR_COLUMN

dbo T1 col1 OBJECT_OR_COLUMN

If you want to know which objects depend on a certain object—for example before dropping
an object—query the sys.dm_sql_referencing_entities function and provide the referenced
object name as the first input and ‘OBJECT’ as the second input, like so:

SELECT

 referencing_schema_name AS objschema,

 referencing_entity_name AS objname,

 referencing_class_desc AS class

FROM sys.dm_sql_referencing_entities('dbo.T1', 'OBJECT');

 Chapter 3 Stored Procedures 101

This generates the following output indicating that Proc1, V1, and V2 depend on T1:

objschema objname class

---------- -------- -----------------

dbo Proc1 OBJECT_OR_COLUMN

dbo V1 OBJECT_OR_COLUMN

dbo V2 OBJECT_OR_COLUMN

Important These objects contain a bit less than full dependency information—they give you
information about references by name (with some exceptions, such as references to temporary
tables) . If there’s an indirect dependency (e .g ., Proc3 calls Proc1, and Proc1 references T1 by
name), the simple calls to these objects won’t reveal it (here, Proc3 depends on T1) . However,
an indirect dependency like this may be just as important to know about as a direct named
 reference . If you want to know what will be affected when you drop an object, for example, you
have to follow the dependencies yourself . The good news is that in SQL Server 2008, you can .

When you’re done experimenting with object dependency information run the following
code for cleanup:

IF OBJECT_ID('dbo.Proc1', 'P') IS NOT NULL DROP PROC dbo.Proc1;

IF OBJECT_ID('dbo.V1', 'V') IS NOT NULL DROP VIEW dbo.V1;

IF OBJECT_ID('dbo.V2', 'V') IS NOT NULL DROP VIEW dbo.V2;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

IF OBJECT_ID('dbo.T2', 'U') IS NOT NULL DROP TABLE dbo.T2;

Compilations, Recompilations,
and Reuse of execution Plans

Earlier I mentioned that when you create a stored procedure, SQL Server parses your code
and then attempts to resolve it . If resolution was deferred, it will take place at first invocation .
Upon first invocation of the stored procedure, if the resolution phase finished successfully,
SQL Server analyzes and optimizes the queries within the stored procedure and generates
an execution plan . An execution plan holds the instructions to process the query . These
 instructions include which order to access the tables in; which indexes, access methods,
and join algorithms to use; whether to spool interim sets; and so on . SQL Server typically
 generates multiple permutations of execution plans and will choose the one with the lowest
cost out of the ones that it generated .

Note that SQL Server won’t necessarily create all possible permutations of execution plans; if it
did, the optimization phase might take too long . SQL Server limits the optimizer by calculating
a threshold for optimization based on the sizes of the tables involved as well as other factors .

Stored procedures can reuse a previously cached execution plan, thereby saving the resources
 involved in generating a new execution plan . This section will discuss the reuse of execution plans,
cases when a plan cannot be reused, parameter and variable sniffing issues, and plan guides .

102 Inside Microsoft SQL Server 2008: T-SQL Programming

Reuse of Execution Plans
The process of optimization requires mainly CPU resources . SQL Server will, by default,
reuse a previously cached plan from an earlier invocation of a stored procedure, without
 investigating whether it is actually a good idea to do so .

To demonstrate plan reuse, first run the following code, which creates the GetOrders stored
procedure:

USE InsideTSQL2008;

IF OBJECT_ID('dbo.GetOrders', 'P') IS NOT NULL DROP PROC dbo.GetOrders;

GO

CREATE PROC dbo.GetOrders

 @odate AS DATETIME

AS

SELECT orderid, custid, empid, orderdate /* 33145F87-1109-4959-91D6-F1EC81F8428F */

FROM Sales.Orders

WHERE orderdate >= @odate;

GO

The stored procedure accepts an order date as input (@odate) and returns orders placed on
or after the input order date . I embedded a comment with a GUID in the code to be able to
easily track down cached plans that are associated with this query .

Turn on the STATISTICS IO option to get back I/O information for your session’s activity:

SET STATISTICS IO ON;

Run the stored procedure for the first time, providing an input with high selectivity (that is, an
input for which a small percentage of rows will be returned):

EXEC dbo.GetOrders '20080506';

This generates the following output:

orderid custid empid orderdate

----------- ----------- ----------- -----------------------

11074 73 7 2008-05-06 00:00:00.000

11075 68 8 2008-05-06 00:00:00.000

11076 9 4 2008-05-06 00:00:00.000

11077 65 1 2008-05-06 00:00:00.000

Examine the execution plan produced for the query, shown in Figure 3-1 .

Because this is the first time the stored procedure is invoked, SQL Server generated an
 execution plan for it based on the selective input value and cached that plan .

 Chapter 3 Stored Procedures 103

FiguRe 3-1 Execution plan showing that the index on orderdate is used

The optimizer uses cardinality and density information to estimate the cost of the access
methods that it considers applying, and the selectivity of filters is an important factor . For
example, a query with a highly selective filter can benefit from a nonclustered, noncovering
index, whereas a low selectivity filter (that is, one that returns a high percentage of rows)
would not justify using such an index .

For highly selective input such as that provided to our stored procedure, the optimizer chose
a plan that uses a nonclustered, noncovering index on the orderdate column . The plan first
performed a seek within that index (Index Seek operator), reaching the first index entry that
matches the filter at the leaf level of the index . This seek operation caused two page reads,
one at each of the two levels in the index . In a larger table, such an index might contain three
or four levels .

Following the seek operation, the plan performed a partial ordered forward scan within the
leaf level of the index (which is not seen in the plan but is part of the Index Seek operator) .
The partial scan fetched all index entries that match the query’s filter (that is, all orderdate
values greater than or equal to the input @odate) . Because the input was very selective,
only four matching orderdate values were found . In this particular case, the partial scan did
not need to access additional pages at the leaf level beyond the leaf page that the seek
 operation reached, so it did not incur additional I/O .

The plan used a Nested Loops operator, which invoked a series of Clustered Index Seek
 operations to look up the data row for each of the four index entries that the partial scan
found . Because the clustered index on this small table has two levels, the lookups cost eight
page reads: 2 × 4 = 8 . In total, there were 10 page reads: 2 (seek) + 2 × 4 (lookups) = 10 . This
is the value reported by STATISTICS IO as logical reads .

That’s the optimal plan for this selective query with the existing indexes .

Remember that I mentioned earlier that stored procedures will, by default, reuse a previously
cached plan . Now that you have a plan stored in cache, additional invocations of the stored
procedure will reuse it . That’s fine if you keep invoking the stored procedure with a highly
selective input . You will enjoy the fact that the plan is reused, and SQL Server will not waste
resources on generating new plans . That’s especially important with systems that invoke
stored procedures very frequently .

104 Inside Microsoft SQL Server 2008: T-SQL Programming

However, imagine that the stored procedure’s inputs vary considerably in selectivity—some
 invocations have high selectivity whereas others have low selectivity . For example, the
 following code invokes the stored procedure with an input that has low selectivity:

EXEC dbo.GetOrders '20060101';

Because a plan is in cache, it will be reused, which is unfortunate in this case . I provided an input
value earlier than the earliest orderdate in the table . This means that all rows in the table (830)
qualify . The plan will require a clustered index lookup for each qualifying row . This invocation
generated 1,664 logical reads, even though the whole Orders table resides on 21 data pages .
Keep in mind that the Orders table is very small and that in production environments such a
table would typically have millions of rows . The cost of reusing such a plan would then be much
more dramatic given a similar scenario . For example, take a table with 1,000,000 orders residing
on about 25,000 pages . Suppose that the clustered index contains three levels . Just the cost of
the lookups would then be 3,000,000 reads: 1,000,000 × 3 = 3,000,000 .

Obviously, in a case such as this, with a lot of data access and large variations in selectivity,
it’s a very bad idea to reuse a previously cached execution plan .

Similarly, if you invoke the stored procedure for the first time with a low selectivity input, you
get a plan that is optimal for that input—one that issues a table scan (unordered clustered
index scan)—and that plan would be cached . Then, in later invocations, the plan would be
reused even when the input has high selectivity .

You can observe the fact that an execution plan was reused by querying the sys.syscacheobjects
view, which contains information about execution plans:

SELECT cacheobjtype, objtype, usecounts, sql

FROM sys.syscacheobjects

WHERE sql NOT LIKE '%sys%'

 AND sql LIKE '%33145F87-1109-4959-91D6-F1EC81F8428F%';

As you can see, planting a GUID in a comment embedded in the query makes it very easy to
filter only the plans of interest . This code generates the following output:

cacheobjtype objtype usecounts sql

-------------- -------- ---------- ----------------------------

Compiled Plan Proc 2 CREATE PROC dbo.GetOrders...

Notice that one plan was found for the GetOrders procedure in cache, and that it was used
twice (usecounts = 2) .

One way to solve the problem is to create two stored procedures—one for requests with
high selectivity and a second for low selectivity . You create another stored procedure with
flow logic, examining the input and determining which procedure to invoke based on the
input’s selectivity that your calculations estimate . The idea is nice in theory, but it’s very
 difficult to implement in practice . It can be very complex to calculate the boundary point
dynamically without consuming additional resources . Furthermore, this stored procedure
 accepts only one input, so imagine how complex things would become with multiple inputs .

 Chapter 3 Stored Procedures 105

Another way to solve the problem is to create (or alter) the stored procedure with the
RECOMPILE option, as in:

ALTER PROC dbo.GetOrders

 @odate AS DATETIME

WITH RECOMPILE

AS

SELECT orderid, custid, empid, orderdate /* 33145F87-1109-4959-91D6-F1EC81F8428F */

FROM Sales.Orders

WHERE orderdate >= @odate;

GO

The RECOMPILE option tells SQL Server to create a new execution plan every time it is
 invoked . This option actually tells SQL Server not to bother to cache the plan, hence every
 invocation of the procedure ends up creating a new plan because it won’t find an existing
one . It is especially useful when the cost of the recompiles is lower than the extra cost
 associated with reusing suboptimal plans .

First, run the altered procedure specifying an input with high selectivity:

EXEC dbo.GetOrders '20080506';

You get the plan shown earlier in Figure 3-1, which is optimal in this case and generates an
I/O cost of 10 logical reads .

Next, run it specifying an input with low selectivity:

EXEC dbo.GetOrders '20060101';

You get the plan in Figure 3-2, showing a table scan (unordered clustered index scan), which
is optimal for this input . The I/O cost in this case is 21 logical reads .

FiguRe 3-2 Execution plan showing a table scan (unordered clustered index scan)

As mentioned, when creating a stored procedure with the RECOMPILE option, SQL Server
doesn’t even bother to keep the execution plan for it in cache . If you now query
sys.syscacheobjects, you will get no plan back for the GetOrders procedure:

SELECT cacheobjtype, objtype, usecounts, sql

FROM sys.syscacheobjects

WHERE sql NOT LIKE '%sys%'

 AND sql LIKE '%33145F87-1109-4959-91D6-F1EC81F8428F%';

106 Inside Microsoft SQL Server 2008: T-SQL Programming

If you had multiple queries in your stored procedure, the RECOMPILE procedure option
would cause all of them to get recompiled every time the procedure ran . Of course, that’s
a waste of resources if only some of the queries would benefit from recompiles whereas
 others would benefit from plan reuse .

SQL Server 2008 supports statement-level recompiles . Instead of having all queries in the
stored procedure recompiled, SQL Server can recompile individual statements . You can
 request a statement-level recompile by specifying a query hint called RECOMPILE (not to be
confused with the RECOMPILE procedure option) . This way, other queries can benefit from
reusing previously cached execution plans if you don’t have a reason to recompile them
 every time the stored procedure is invoked .

Run the following code to alter the procedure, specifying the RECOMPILE query hint:

ALTER PROC dbo.GetOrders

 @odate AS DATETIME

AS

SELECT orderid, custid, empid, orderdate /* 33145F87-1109-4959-91D6-F1EC81F8428F */

FROM Sales.Orders

WHERE orderdate >= @odate

OPTION(RECOMPILE);

GO

In our case, there’s only one query in the stored procedure, so it doesn’t really matter
 whether you specify the RECOMPILE option at the procedure or the query level . But try to
think of the advantages of this hint when you have multiple queries in one stored procedure .

Note There is a certain difference between the RECOMPILE procedure option and the
RECOMPILE query hint that might be worth noting, and it is regarding estimated execution plans .
When the procedure is created with the RECOMPILE procedure option, there is no cached plan .
Consequently, a new plan is generated when the estimated plan is requested . If the RECOMPILE
query option is used, however, a plan is cached, as mentioned, and the RECOMPILE query option
forces a recompile at run time, but not at estimated-plan-generation time . In other words,
 estimated and actual query plans may not match when statement-level OPTION (RECOMPILE) is
present . They will match if the procedure-level RECOMPILE option is used instead .

To see that you get good plans, first run the procedure specifying an input with high selectivity:

EXEC dbo.GetOrders '20080506';

You will get the plan in Figure 3-1 and an I/O cost of 10 logical reads .

Next, run it specifying an input with low selectivity:

EXEC dbo.GetOrders '20060101';

You will get the plan in Figure 3-2 and an I/O cost of 21 logical reads .

 Chapter 3 Stored Procedures 107

Don’t be confused by the fact that syscacheobjects shows a plan with the value 2 as the
usecounts:

SELECT cacheobjtype, objtype, usecounts, sql

FROM sys.syscacheobjects

WHERE sql NOT LIKE '%sys%'

 AND sql LIKE '%33145F87-1109-4959-91D6-F1EC81F8428F%';

This generates the following output:

cacheobjtype objtype usecounts sql

-------------- -------- ---------- ----------------------------

Compiled Plan Proc 2 CREATE PROC dbo.GetOrders...

Remember that if other queries were in the stored procedure, they could potentially reuse
the execution plan .

At this point, you can turn off the STATISTICS IO option:

SET STATISTICS IO OFF;

Recompilations
As I mentioned earlier, as a rule a stored procedure will reuse a previously cached execution
plan by default . There are some exceptions to this rule, and in certain situations there is a
 recompilation even when there is a plan in cache . Remember that in SQL Server 2008, a
 recompilation occurs at the statement level .

Such exceptions might be caused by issues related to plan stability (correctness) or plan
optimality . Plan stability issues include schema changes in underlying objects (for example,
adding or dropping a column, adding or dropping an index, and so on) or changes to SET
options that can affect query results (for example, ANSI_NULLS, CONCAT_NULL_YIELDS_
NULL, and so on) . Plan optimality issues that cause recompilation include making data
changes in referenced objects to the extent that a new plan might be more optimal—for
 example, as a result of a statistics update .

Both types of causes for recompilations have many particular cases . At the end of this
 section, I will provide you with a resource that describes them in great detail .

Naturally, if a plan is removed from cache after a while for lack of reuse, SQL Server
 generates a new one when the procedure is invoked again .

To see an example of a cause of a recompilation, first run the following code, which creates
the stored procedure CustCities:

IF OBJECT_ID('dbo.CustCities', 'P') IS NOT NULL

 DROP PROC dbo.CustCities;

GO

108 Inside Microsoft SQL Server 2008: T-SQL Programming

CREATE PROC dbo.CustCities

AS

SELECT custid, country, region, city, /* 97216686-F90E-4D5A-9A9E-CFD9E548AE81 */

 country + '.' + region + '.' + city AS CRC

FROM Sales.Customers

ORDER BY country, region, city;

GO

The stored procedure queries the Customers table, concatenating the three parts of the
 customer’s geographical location: country, region, and city . By default, the SET option
CONCAT_NULL_YIELDS_NULL is turned ON, meaning that when you concatenate a NULL
with any string, you get a NULL as a result .

Run the stored procedure for the first time:

EXEC dbo.CustCities;

This generates the following output, shown here in abbreviated form:

custid country region city CRC

------- ---------- ------- --------------- -------------------------

12 Argentina NULL Buenos Aires NULL

54 Argentina NULL Buenos Aires NULL

64 Argentina NULL Buenos Aires NULL

20 Austria NULL Graz NULL

59 Austria NULL Salzburg NULL

50 Belgium NULL Bruxelles NULL

76 Belgium NULL Charleroi NULL

61 Brazil RJ Rio de Janeiro Brazil.RJ.Rio de Janeiro

67 Brazil RJ Rio de Janeiro Brazil.RJ.Rio de Janeiro

34 Brazil RJ Rio de Janeiro Brazil.RJ.Rio de Janeiro

31 Brazil SP Campinas Brazil.SP.Campinas

88 Brazil SP Resende Brazil.SP.Resende

81 Brazil SP Sao Paulo Brazil.SP.Sao Paulo

21 Brazil SP Sao Paulo Brazil.SP.Sao Paulo

15 Brazil SP Sao Paulo Brazil.SP.Sao Paulo

...

As you can see, whenever region was NULL, the concatenated string became NULL . SQL
Server cached the execution plan of the stored procedure for later reuse . Along with the
plan, SQL Server also stored the state of all SET options that can affect query results . You can
observe those in a bitmap called setopts in sys.syscacheobjects .

Set the CONCAT_NULL_YIELDS_NULL option to OFF, telling SQL Server to treat a NULL in
concatenation as an empty string:

SET CONCAT_NULL_YIELDS_NULL OFF;

Rerun the stored procedure:

EXEC dbo.CustCities;

 Chapter 3 Stored Procedures 109

This generates the following output:

custid country region city CRC

------- ---------- ------- --------------- -------------------------

12 Argentina NULL Buenos Aires Argentina..Buenos Aires

54 Argentina NULL Buenos Aires Argentina..Buenos Aires

64 Argentina NULL Buenos Aires Argentina..Buenos Aires

20 Austria NULL Graz Austria..Graz

59 Austria NULL Salzburg Austria..Salzburg

50 Belgium NULL Bruxelles Belgium..Bruxelles

76 Belgium NULL Charleroi Belgium..Charleroi

61 Brazil RJ Rio de Janeiro Brazil.RJ.Rio de Janeiro

67 Brazil RJ Rio de Janeiro Brazil.RJ.Rio de Janeiro

34 Brazil RJ Rio de Janeiro Brazil.RJ.Rio de Janeiro

31 Brazil SP Campinas Brazil.SP.Campinas

88 Brazil SP Resende Brazil.SP.Resende

81 Brazil SP Sao Paulo Brazil.SP.Sao Paulo

21 Brazil SP Sao Paulo Brazil.SP.Sao Paulo

15 Brazil SP Sao Paulo Brazil.SP.Sao Paulo

...

You can see that when region was NULL, it was treated as an empty string, and as a result,
you didn’t get a NULL in the CRC column . Changing the session option in this case changed
the meaning of a query . When you ran this stored procedure, SQL Server first checked for a
cached plan that also had the same state of SET options . SQL Server didn’t find one, so it had
to generate a new plan .

Query sys.syscacheobjects:

SELECT cacheobjtype, objtype, usecounts, setopts, sql

FROM sys.syscacheobjects

WHERE sql NOT LIKE '%sys%'

 AND sql LIKE '%97216686-F90E-4D5A-9A9E-CFD9E548AE81%';

In the output, you find two plans for CustCities with two different setopts bitmaps:

cacheobjtype objtype usecounts setopts sql

-------------- -------- ---------- -------- ------------------------------

Compiled Plan Proc 1 4347 CREATE PROC dbo.CustCities...

Compiled Plan Proc 1 4339 CREATE PROC dbo.CustCities...

Turn the CONCAT_NULL_YIELDS_NULL option back ON:

SET CONCAT_NULL_YIELDS_NULL ON;

Note that regardless of whether the change in the SET option affects the query’s meaning,
SQL Server looks for a match in the set options state to reuse a plan . For example, run the
following code to re-create the procedure GetOrders that I used in my previous examples:

IF OBJECT_ID('dbo.GetOrders', 'P') IS NOT NULL DROP PROC dbo.GetOrders;

GO

110 Inside Microsoft SQL Server 2008: T-SQL Programming

CREATE PROC dbo.GetOrders

 @odate AS DATETIME

AS

SELECT orderid, custid, empid, orderdate /* 33145F87-1109-4959-91D6-F1EC81F8428F */

FROM Sales.Orders

WHERE orderdate >= @odate;

GO

Run the procedure for the first time when the set option is on:

EXEC dbo.GetOrders '20080506';

Run the following code to turn the option off:

SET CONCAT_NULL_YIELDS_NULL OFF;

Run the procedure a second time when the option is off:

EXEC dbo.GetOrders '20080506';

Inspect the cached plans associated with the query:

SELECT cacheobjtype, objtype, usecounts, setopts, sql

FROM sys.syscacheobjects

WHERE sql NOT LIKE '%sys%'

 AND sql LIKE '%33145F87-1109-4959-91D6-F1EC81F8428F%';

Observe in the output that there are two plans:

cacheobjtype objtype usecounts setopts sql

-------------- -------- ---------- -------- -----------------------------

Compiled Plan Proc 1 4339 CREATE PROC dbo.GetOrders...

Compiled Plan Proc 1 4347 CREATE PROC dbo.GetOrders...

No concatenation is going on in the GetOrders procedure, so clearly the change in this set
option doesn’t have any impact on the behavior of the code . Still, SQL Server just compares
bitmaps and creates a new plan if they are different .

Why should you care? Client interfaces and tools typically change the state of some SET
options whenever you make a new connection to the database . Different client interfaces
change different sets of options, yielding different execution environments . If you’re using
multiple database interfaces and tools to connect to the database and they have different
 execution environments, they won’t be able to reuse each other’s plans . You can easily
 identify the SET options that each client tool changes by running a trace while the applications
 connect to the database, or by running DBCC USEROPTIONS . If you see discrepancies in the
execution environment, you can code explicit SET commands in all applications, which will
be submitted whenever a new connection is made . This way, all applications have sessions with
the same execution environment and can reuse one another’s plans .

 Chapter 3 Stored Procedures 111

When you’re done testing run the following code to set the option back on:

SET CONCAT_NULL_YIELDS_NULL ON;

As for recompiles caused by plan optimality, a classic example is refresh of distribution
 statistics (histograms) . After SQL Server refreshes statistics, the next time you run a query
with a nontrivial plan that relies on those statistics the plan will be recompiled . SQL Server
makes the assumption that data distribution may have changed to the degree that a different
plan might be optimal . If you know that your procedure is called with such inputs that
the query would keep benefiting from the same plan even after statistics refresh, you can
specify the KEEPFIXED PLAN query hint . This hint indicates to SQL Server not to perform plan
 optimality–related recompiles .

This section offered just a couple of examples for recompiles . There are many others . Later I’ll
provide a resource where you can find more .

Variable Sniffing
As I mentioned earlier, SQL Server generates a plan for a stored procedure based on the
inputs provided to it upon first invocation, for better or worse . First invocation also refers to
the first invocation after a plan was removed from cache for lack of reuse (or for any other
reason) . This capability is called parameter sniffing, meaning that when optimizing the code,
the optimizer can “sniff” the values of the procedure’s parameters . The optimizer “knows” the
values of the input parameters, and it generates an adequate plan for those inputs . However,
things are different when you refer to local variables in your queries . And for the sake of
our discussion, it doesn’t matter whether these are local variables of a plain batch or of a
stored procedure . When optimizing the code at the batch level, the optimizer cannot sniff
the content of the variables; therefore, when it optimizes the query, it must make a guess .
Obviously, this can lead to poor plans if you’re not aware of the problem and don’t take
 corrective measures .

To demonstrate the problem, first insert a new order to the Orders table, specifying the
CURRENT_TIMESTAMP function for the orderdate column:

INSERT INTO Sales.Orders

 (custid, empid, orderdate, requireddate, shippeddate, shipperid, freight,

 shipname, shipaddress, shipcity, shipregion, shippostalcode, shipcountry)

 VALUES

 (1, 1, CURRENT_TIMESTAMP, '20100212 00:00:00.000', NULL, 1, 1,

 N'a', N'a', N'a', N'a', N'a', N'a');

Re-create the GetOrders stored procedure so that it declares a local variable and use it in the
query’s filter:

IF OBJECT_ID('dbo.GetOrders', 'P') IS NOT NULL DROP PROC dbo.GetOrders;

GO

112 Inside Microsoft SQL Server 2008: T-SQL Programming

CREATE PROC dbo.GetOrders

 @d AS INT = 0

AS

DECLARE @odate AS DATETIME;

SET @odate = DATEADD(day, -@d, CONVERT(VARCHAR(8), CURRENT_TIMESTAMP, 112));

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= @odate;

GO

The procedure defines the integer input parameter @d with a default value 0 . It declares a
datetime local variable called @odate, which is set to today’s date minus @d days . The stored
procedure then issues a query returning all orders with an orderdate greater than or equal to
@odate . Invoke the stored procedure using the default value of @d:

EXEC dbo.GetOrders;

GO

This generates the following output:

orderid custid empid orderdate

----------- ----------- ----------- -----------------------

11078 1 1 2009-03-09 04:19:01.540

Note The output that you get will have a value in orderdate that reflects the CURRENT_
TIMESTAMP value of when you inserted the new order .

Unlike recompiles, initial compiles take place at the batch level—not the statement level .
Therefore, the optimizer didn’t know what the value of @odate was when it optimized the
query . So it used a conservative, hard-coded value that is 30 percent of the number of
rows in the table . For such a low-selectivity estimation, the optimizer naturally chose a full
 clustered index scan, even though the query in practice is highly selective and would be
much better off using the index on orderdate .

You can observe the optimizer’s estimation and chosen plan by looking at the execution
plan . The actual execution plan you get for this invocation of the stored procedure is shown
in Figure 3-3 .

FiguRe 3-3 Execution plan showing estimated number of rows

 Chapter 3 Stored Procedures 113

You can see that the optimizer chose a table scan (unordered clustered index scan) because
of its selectivity estimation of 30 percent (249 .3 rows/831 total number of rows), although in
 actuality only one row was returned .

You can tackle this problem in several ways . One is to use, whenever possible, inline
 expressions in the query that refer to the input parameter instead of a variable . In our case, it
is possible:

ALTER PROC dbo.GetOrders

 @d AS INT = 0

AS

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= DATEADD(day, -@d, CONVERT(VARCHAR(8), CURRENT_TIMESTAMP, 112));

GO

Run GetOrders again, and notice the use of the index on orderdate in the execution plan:

EXEC dbo.GetOrders;

The plan that you get is similar to the one shown earlier in Figure 3-1 . The I/O cost here is just
four logical reads .

Another way to deal with the problem is to use a stub procedure—that is, create two
 procedures . The first procedure accepts the original parameter, assigns the result of the
 calculation to a local variable, and invokes a second procedure providing it with the variable
as input . The second procedure accepts an input order date passed to it and invokes the
query that refers directly to the input parameter . When a plan is generated for the procedure
that actually invokes the query (the second procedure), the value of the parameter will, in
fact, be known at optimization time .

Run the following code to implement this solution:

IF OBJECT_ID('dbo.GetOrdersQuery', 'P') IS NOT NULL

 DROP PROC dbo.GetOrdersQuery;

GO

CREATE PROC dbo.GetOrdersQuery

 @odate AS DATETIME

AS

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= @odate;

GO

ALTER PROC dbo.GetOrders

 @d AS INT = 0

AS

114 Inside Microsoft SQL Server 2008: T-SQL Programming

DECLARE @odate AS DATETIME;

SET @odate = DATEADD(day, -@d, CONVERT(VARCHAR(8), CURRENT_TIMESTAMP, 112));

EXEC dbo.GetOrdersQuery @odate;

GO

Invoke the GetOrders procedure:

EXEC dbo.GetOrders;

You get an optimal plan for the input similar to the one shown earlier in Figure 3-1, yielding
an I/O cost of only four logical reads .

Don’t forget the issues I described in the previous section regarding the reuse of execution
plans . The fact that you got an efficient execution plan for this input doesn’t necessarily
mean that you would want to reuse it in following invocations . It all depends on whether the
inputs are typical or atypical . Make sure you follow the recommendations I gave earlier in
case the inputs are atypical .

The stub procedure approach is a bit convoluted, however . SQL Server supports two much
 simpler options to tackle the variable sniffing problem—using the OPTIMIZE FOR and
RECOMPILE query hints . Which of the two you use depends on whether you want to cache and
reuse the plan . If you want to reuse the plan, use the OPTIMIZE FOR hint . This hint allows you
to provide SQL Server with a literal that reflects the selectivity of the variable, in case the input
is typical . For example, if you know that the variable will typically end up with a highly selective
value, as you did in our example, you can provide the literal ‘99991231’, which reflects that:

ALTER PROC dbo.GetOrders

 @d AS INT = 0

AS

DECLARE @odate AS DATETIME;

SET @odate = DATEADD(day, -@d, CONVERT(VARCHAR(8), CURRENT_TIMESTAMP, 112));

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= @odate

OPTION(OPTIMIZE FOR(@odate = '99991231'));

GO

Run the stored procedure:

EXEC dbo.GetOrders;

You get an optimal plan for a highly selective orderdate similar to the one shown earlier in
Figure 3-1, yielding an I/O cost of four logical reads .

If, on the other hand, you don’t want to reuse the plan because the variable sometimes ends
up with a selective value and sometimes a nonselective one, the OPTIMIZE FOR hint won’t
help you . Surprisingly, in such a case, the RECOMPILE query hint that I introduced earlier also

 Chapter 3 Stored Procedures 115

 resolves the variable sniffing problem . If you think about it, the variable sniffing problem
has to do with SQL Server’s default choice of compiling the whole batch as a unit initially .
Recompiles, on the other hand, happen at the statement level . By specifying the RECOMPILE
query hint (as opposed to the RECOMPILE procedure option), you explicitly request the
 compilation of this query to happen at the statement level . The benefit in this approach is that
by the time SQL Server gets to optimize the query, the preceding statements—including the
assignment of the variable—were already executed; hence the value of the variable is known
at this stage . So at the cost of recompiling the statement in every invocation of the procedure,
the optimization is aware of the variable’s value, and this usually results in more efficient plans .

Run the following code to re-create the stored procedure with the RECOMPILE query option:

ALTER PROC dbo.GetOrders

 @d AS INT = 0

AS

DECLARE @odate AS DATETIME;

SET @odate = DATEADD(day, -@d, CONVERT(VARCHAR(8), CURRENT_TIMESTAMP, 112));

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= @odate

OPTION(RECOMPILE);

GO

Run the procedure with selective and nonselective values:

EXEC dbo.GetOrders @d = 1;

EXEC dbo.GetOrders @d = 365;

Examine the execution plans for the two invocations shown in Figure 3-4, and observe that
both got optimal plans—the first for a selective filter and the second for a nonselective one .

FiguRe 3-4 Execution plans for selective and nonselective filters

116 Inside Microsoft SQL Server 2008: T-SQL Programming

Note that you might face similar problems to variable sniffing when changing the values
of input parameters before using them in queries . For example, say you define an input
 parameter called @odate and assign it with a default value of NULL . Before using the
 parameter in the query’s filter, you apply the following code:

SET @odate = COALESCE(@odate, '19000101');

The query then filters orders where orderdate >= @odate . If optimization happens at the
batch level, when the query is optimized the optimizer is not aware of the fact that @odate
has undergone a change, and it optimizes the query with the original input (NULL) in mind .
You will face a similar problem to the one I described with variables, and you should tackle it
using similar logic .

Ironically, you may end up facing kind of an inverse problem to the variable sniffing one with
parameters . As mentioned and demonstrated earlier, SQL Server does support parameter
sniffing .

OPTIMIZE FOR UNKNOWN
In the previous section I described scenarios in which the optimizer doesn’t sniff variable
values or the correct parameter values and ends up generating an execution plan based on
atypical inputs . I explained that if you knew that plan reuse was a good thing for the query,
and you also knew which static values the query should be optimized for, you could use the
OPTIMIZE FOR hint and provide those static values as the variable or parameter values .

Another scenario that you might face is one in which the majority of the invocations of your
procedure are with typical inputs, but occasionally the procedure is invoked with atypical
ones . You do know that the query would benefit from plan reuse provided that the cached
plan would be the one that was optimized for the typical inputs . But the risk is that upon
first invocation of the procedure—after service restart, recompile, or any other reason—the
procedure will be invoked with atypical inputs, and you will end up with a cached plan that is
suboptimal for the typical invocation of the stored procedure . If you have static input values
that adequately represent the common case—both currently and in the future—you can use
the OPTIMIZE FOR hint and specify those values . But what if there are no such static values?

SQL Server 2008 enhances the OPTIMIZE FOR hint, allowing you to indicate that you want
the optimizer to optimize the query for unknown variable or parameter input values .
With this option you tell SQL Server to use its existing algorithms based on statistical
data to optimize the query, as opposed to attempting to sniff the inputs . For example,
 recall from earlier discussions that I mentioned that for a range filter the optimizer uses a
 selectivity estimate of 30 percent when it cannot sniff the input . By using the OPTIMIZE FOR
UNKNOWN hint, you tell the optimizer that you actually want it to use such estimates even in
scenarios where it could technically sniff the inputs .

 Chapter 3 Stored Procedures 117

You can indicate that specific parameters or variables should be assumed as unknown for
 optimization by using the following form:

<query> OPTION(OPTIMIZER FOR(@p1 UNKNOWN, @p2 UNKNWON, ...);

You can also indicate that all parameters and variables in the query should be assumed as
unknown for optimization by using the following form:

<query> OPTION(OPTIMIZER FOR UNKNWON);

To demonstrate using this hint, run the following code, re-creating the stored procedure
GetOrders, indicating to the optimizer to optimize the query as if the value of the @odate
parameter is unknown:

IF OBJECT_ID('dbo.GetOrders', 'P') IS NOT NULL DROP PROC dbo.GetOrders;

GO

CREATE PROC dbo.GetOrders

 @odate AS DATETIME

AS

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= @odate

OPTION(OPTIMIZE FOR (@odate UNKNOWN));

GO

Suppose that in the vast majority of the invocations of the procedure, the inputs have low
selectivity, but the procedure is invoked first time with a highly selective input, as follows:

EXEC dbo.GetOrders @odate = '20080506';

The execution plan for this execution is shown in Figure 3-5 .

FiguRe 3-5 Execution plan for query with OPTIMIZE FOR UNKNOWN hint

Observe that you got a plan that is optimal for a low selectivity filter even though the input
was highly selective . Also notice that the estimated number of rows shows 249 .3, which is 30
percent of the number of rows in the table . That’s the value that the optimizer optimized the
query for . The actual number of rows returned was 5 . This plan was cached, so the common
subsequent invocations of the procedure that specify inputs with low selectivity can benefit
from reusing this plan .

118 Inside Microsoft SQL Server 2008: T-SQL Programming

Plan Guides
SQL Server allows you to specify hints in your queries to force certain behavior . The three
categories of hints are table, join, and query . Query hints are specified in an OPTION clause
at the end of the query and indicate certain behavior at the whole query, or statement, level .
Earlier in the chapter I covered a few query hints: OPTIMIZE FOR, RECOMPILE, and KEEPFIXED
PLAN . SQL Server supports many others, and you can find details about those in SQL Server
Books Online .

Before proceeding I should also mention the usual disclaimer regarding hints . You should use
them with care, because a hint forces SQL Server to behave in a certain way, overriding its
default behavior in that respect . Especially with performance hints such as forcing certain join
ordering (FORCE ORDER), certain join algorithm ({LOOP | MERGE | HASH} JOIN), and so on,
you force that part of optimization to become static . With respect to the part of optimization
that you forced, you prevent dynamic cost-based optimization that would have normally taken
place, and that would have taken into consideration data distribution and other changes .

Assuming that you know what you’re doing and that you have your reasons to use a query
hint, adding such a hint requires you to change the query’s code . You need to add the
OPTION clause with the relevant hint . However, changing a query’s code is not always an
option . For example, the code might be submitted from a third-party application, or your
service-level agreements may prevent you from making revisions even if you technically
could make them .

SQL Server 2008 supports a feature called plan guides that allows you to attach a query hint
to a query without changing the query’s code . A plan guide is an object in the database;
as such, as soon as it is created and until it is dropped or disabled, it affects the query it is
 associated with .

You create a plan guide by using the sp_create_plan_guide stored procedure . You drop or
 disable a plan guide by using the sp_control_plan_guide procedure . SQL Server supports
three types of plan guides, and you indicate the type of plan you want to create using the
sp_create_plan_guide procedure under the @type parameter, whose valid values are
N’OBJECT’, N’SQL’, and N’TEMPLATE’ . You should use the type OBJECT when the statement
appears in the context of a T-SQL routine such as a stored procedure . You should use the
type SQL when the statement appears in the context of a stand-alone statement or batch .
Finally, use the type TEMPLATE when you want to override the database’s parameterization
behavior for a certain class of statements . You need ALTER permission on the referenced
 object to create an object plan guide, and ALTER permissions on the database to create
a SQL or template plan guide .

The next sections provide details about the three plan guide types .

 Chapter 3 Stored Procedures 119

Object Plan Guides
Use an object plan guide when the statement that you want to apply the hint to resides in a
T-SQL routine . The applicable routines are: stored procedures, scalar UDFs, multi-statement
table-valued UDFs, and DML triggers in the current database .

To demonstrate object plan guides, first run the following code, which re-creates the stored
procedure GetOrders that you used in the section “Variable Sniffing” earlier:

IF OBJECT_ID('dbo.GetOrders', 'P') IS NOT NULL DROP PROC dbo.GetOrders;

GO

CREATE PROC dbo.GetOrders

 @d AS INT = 0

AS

DECLARE @odate AS DATETIME;

SET @odate = DATEADD(day, -@d, CONVERT(VARCHAR(8), CURRENT_TIMESTAMP, 112));

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= @odate;

GO

Remember that if there’s no plan in cache, the next time the procedure is invoked SQL
Server will optimize the code at the batch level . Therefore, during optimization of the query
the value of the variable @odate will be unknown . Now invoke the procedure relying on the
 default value of the input parameter @d:

EXEC dbo.GetOrders;

The query’s filter ends up being very selective, but because the optimizer wasn’t aware of
the value of @odate the optimization was for an unknown value of @odate (30 percent
 selectivity for a range filter) . You get the execution plan shown in Figure 3-6, showing a full
unordered clustered index scan .

FiguRe 3-6 Execution plan without object plan guide

Suppose that you know that the value of @odate usually ends up being very selective, and
you want to add the query hint OPTION (OPTIMIZE FOR (@odate = ‘99991231’)) to the

120 Inside Microsoft SQL Server 2008: T-SQL Programming

 procedure’s query . However, you can’t—or aren’t allowed to—change the procedure’s code
directly . You create a plan guide for the procedure’s query by running the following code:

EXEC sp_create_plan_guide

 @name = N'PG_GetOrders_Selective',

 @stmt = N'SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= @odate;',

 @type = N'OBJECT',

 @module_or_batch = N'dbo.GetOrders',

 @hints = N'OPTION (OPTIMIZE FOR (@odate = ''99991231''))';

You specify the plan guide name in the @name argument; the statement to which you want to
add the hint in the @stmt argument; the type OBJECT in the @type argument; the name of the
procedure in the @module_or_batch argument; and finally the hint itself in the @hints argument .

note Regarding object plan guides, SQL Server doesn’t expect an exact match between the
query in the procedure and the one you specify in the @stmt argument . For example, SQL Server
doesn’t expect an exact match in terms of use of white spaces . If SQL Server can’t match the
statement in the @stmt argument with a statement in the procedure, it generates an error such
as the following:

Msg 10507, Level 16, State 1, Procedure GetOrders, Line 2

Cannot create plan guide 'PG_GetOrders_Selective' because the statement specified by

@stmt and @module_or_batch, or by @plan_handle and @statement_start_offset, does not

match any statement in the specified module or batch. Modify the values to match a

statement in the module or batch.

So if you don’t get an error, this fact by itself is a kind of validation that SQL Server successfully
managed to match your plan guide with a statement in the procedure . Unfortunately, with the
other types of plan guides SQL Server is much more strict, expecting an exact match between
the code that you provide when creating the guide and the code that executes against SQL
Server that is supposed to use the guide .

Execute the stored procedure again:

EXEC dbo.GetOrders;

You get the execution plan shown in Figure 3-7, showing that the index on the orderdate
 column was used, as is optimal for a selective filter .

FiguRe 3-7 Execution plan with object plan guide

 Chapter 3 Stored Procedures 121

If you want to know whether the plan guide was used, examine the XML form of the query’s
execution plan . For object and SQL plan guides you should find the attributes PlanGuideDB
and PlanGuideName, which are self-explanatory . You can obtain the XML plan form of a
query using the SHOWPLAN_XML or STATISTICS XML set options, or the Showplan XML trace
event . For example, run the following code to return the XML form of the query’s estimated
execution plan:

SET SHOWPLAN_XML ON;

GO

EXEC dbo.GetOrders;

GO

SET SHOWPLAN_XML OFF;

Within the XML plan you will find these attributes: PlanGuideDB=”InsideTSQL2008” and
PlanGuideName=”PG_GetOrders_Selective” .

You can also query the sys.plan_guides view to get information about the plan guides that
are stored in the current database, like so:

SELECT * FROM sys.plan_guides;

When you’re done, run the following code to drop the plan guide PG_GetOrders_Selective:

EXEC sp_control_plan_guide N'DROP', N'PG_GetOrders_Selective';

Note that if you only want to disable the plan guide but still keep it in the database for later
enabling, you should specify DISABLE instead of DROP when invoking the sp_control_plan_
guide procedure . Later you can call the sp_control_plan_guide procedure again with the
ENABLE option to enable the plan guide .

SQL Plan Guides
SQL plan guides are guides for statements that are submitted in the context of a stand-alone
statement or batch . The statement can be submitted through any mechanism .

When creating the plan guide using the sp_create_plan_guide procedure, specify N’SQL’
in the @type argument . The way you use some of the other arguments depends on the
 scenario . If you want the plan guide to be used only when the statement specified in the
@stmt argument appears in the context of some batch containing multiple statements,
 specify the batch in the @module_or_batch argument . If you specify NULL for the
@module_or_batch argument, SQL Server internally sets it to the value of @stmt .

Note Unlike object plan guides, for SQL plan guides SQL Server requires an exact match
 between the text specified when creating the plan guide and the text used when submitting the
code . This applies both to the batch specified in the @module_or_batch argument and to the
statement specified in the @stmt argument .

122 Inside Microsoft SQL Server 2008: T-SQL Programming

The argument @params is applicable when the statement is parameterized . If the statement
is not parameterized, specify a NULL in this argument or omit it since NULL is the default .
As an example for a plan guide for a nonparameterized stand-alone query, suppose that
you want to attach a plan guide to the following query, restricting its maximum degree of
 parallelism to 1:

SELECT empid, COUNT(*) AS cnt

FROM Sales.Orders

GROUP BY empid;

Run the following code to create the plan guide:

EXEC sp_create_plan_guide

 @name = N'PG_MyQuery1_MAXDOP1',

 @stmt = N'SELECT empid, COUNT(*) AS cnt

FROM Sales.Orders

GROUP BY empid;

',

 @type = N'SQL',

 @module_or_batch = NULL,

 @hints = N'OPTION (MAXDOP 1)';

As you can see, the @module_or_batch argument was set to NULL because this statement is
not part of a batch with multiple statements, and the @params argument was set to NULL
because the statement is not parameterized .

To verify that the plan guide was used, request the XML form of the execution plan by
 running the following code:

SET SHOWPLAN_XML ON;

GO

SELECT empid, COUNT(*) AS cnt

FROM Sales.Orders

GROUP BY empid;

GO

SET SHOWPLAN_XML OFF;

Make sure that you find the attributes PlanGuideDB=”InsideTSQL2008” and PlanGuideName=
”PG_MyQuery1_MAXDOP1” .

To request information about the plan guide, issue the following query:

SELECT *

FROM sys.plan_guides

WHERE name = 'PG_MyQuery1_MAXDOP1';

When you’re done, run the following code to drop the plan guide:

EXEC sp_control_plan_guide N'DROP', N'PG_MyQuery1_MAXDOP1';

 Chapter 3 Stored Procedures 123

If the statement is parameterized either explicitly (for example, when submitted through
sp_executesql), or implicitly internally by SQL Server, specify the parameterized form in the
@stmt argument and the parameters declaration in the @params argument . For statements
that are parameterized using sp_executesql, specify the exact form used in the @stmt and @
params argument of sp_executesql in the corresponding @stmt and @params arguments of
sp_create_plan_guide . For statements that get parameterized internally by SQL Server, use the
sp_get_query_template procedure to create their parameterized form .

In the next section I’ll demonstrate how to create a SQL plan guide for a parameterized
query .

Template Plan Guides
Use template plan guides when you want to override the database’s parameterization
 behavior for a certain class of statements . The database’s parameterization behavior can be
set to either SIMPLE (the default) or FORCED, using the database option PARAMETERIZATION .
Simple parameterization means that for simple cases SQL Server internally tries to substitute
constants with arguments to increase the chances for reusing previous cached plans for
the same class of queries, even when the referenced constants are different . With simple
 parameterization, only a small class of query types are parameterized . Using forced
 parameterization, you increase the chances for queries to get parameterized; with few
 exceptions, all constants will be substituted with arguments during compilation .

Using a template plan guide you can override the database’s parameterization behavior for a
specified class of queries .

Because SQL Server is very strict about how it matches the text of the plan guide to the text
of the query submitted to SQL Server, you should use the sp_get_query_template procedure
to produce the text for both the query template and the parameters declaration . You specify
the text of a sample query as the input parameter of the sp_get_query_template procedure,
and you get the text of a normalized form of the query template and the parameters
 declaration through the procedure’s output parameters . As an example, the following code
demonstrates using the sp_get_query_template procedure to generate the text for the query
template and parameters declaration for a given query:

DECLARE @stmt AS NVARCHAR(MAX);

DECLARE @params AS NVARCHAR(MAX);

EXEC sp_get_query_template

 @querytext = N'SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= ''99991231'';',

 @templatetext = @stmt OUTPUT,

 @parameters = @params OUTPUT;

SELECT @stmt AS stmt, @params AS params;

124 Inside Microsoft SQL Server 2008: T-SQL Programming

This generates the following output:

stmt

select orderid , custid , empid , orderdate from Sales . Orders where orderdate > = @0

params

@0 varchar(8000)

To create a template plan guide for a certain class of queries, run the sp_create_plan_guide
procedure, specifying N’TEMPLATE’ in the @type argument, NULL in the @module_or_batch
argument, the query template in the @stmt argument, and the parameters declaration text
in the @params argument .

Note that you can combine template and SQL plan guides . For example, for a certain class
of queries you can override the database’s parameterization behavior by creating a template
plan guide . For the same class of queries you can create a SQL plan guide to add any query
hint that you want . The following is an example of creating both a template plan guide and a
SQL plan guide for the query template shown at the beginning of this section:

-- Create template plan guide to use forced parameterization

DECLARE @stmt AS NVARCHAR(MAX);

DECLARE @params AS NVARCHAR(MAX);

EXEC sp_get_query_template

 @querytext = N'SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= ''99991231'';',

 @templatetext = @stmt OUTPUT,

 @parameters = @params OUTPUT;

EXEC sp_create_plan_guide

 @name = N'PG_MyQuery2_ParameterizationForced',

 @stmt = @stmt,

 @type = N'TEMPLATE',

 @module_or_batch = NULL,

 @params = @params,

 @hints = N'OPTION(PARAMETERIZATION FORCED)';

-- Create a SQL plan guide on the query template

EXEC sp_create_plan_guide

 @name = N'PG_MyQuery2_Selective',

 @stmt = @stmt,

 @type = N'SQL',

 @module_or_batch = NULL,

 @params = @params,

 @hints = N'OPTION(OPTIMIZE FOR (@0 = ''99991231''))';

The template plan guide overrides parameterization behavior for our query template to
forced, and the SQL plan guide adds the OPTIMIZE FOR hint to the same query template,
 ensuring that it will get a plan for a selective filter .

 Chapter 3 Stored Procedures 125

To determine whether both plan guides are used for our query template, run the following code:

SET SHOWPLAN_XML ON;

GO

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate >= '20060101';

GO

SET SHOWPLAN_XML OFF;

You should find the following attributes in the XML plan: TemplatePlanGuideDB=”Inside
TSQL2008”, TemplatePlanGuideName=”PG_MyQuery2_ParameterizationForced”, and
PlanGuideDB=”InsideTSQL2008” PlanGuideName=”PG_MyQuery2_Selective” .

Run the following query to request information about the plan guides:

SELECT *

FROM sys.plan_guides

WHERE name IN('PG_MyQuery2_ParameterizationForced',

'PG_MyQuery2_Selective');

When you’re done, run the following code to drop the plan guides:

EXEC sp_control_plan_guide N'DROP', N'PG_MyQuery2_ParameterizationForced';

EXEC sp_control_plan_guide N'DROP', N'PG_MyQuery2_Selective';

Using a Fixed XML Plan
SQL Server supports a query hint called USE PLAN that you can think of as the ultimate hint .
With this hint you specify an XML value representing a complete query execution plan . SQL
Server also supports creating a plan guide in which you specify an XML value representing a
query execution plan as the hint . You can produce the XML form of the query plan you want
in a controlled environment, and then use that XML value when creating the plan guide .

As an example, run the following code to create the stored procedure GetOrders, which accepts
an order date as input (@odate) and returns all orders placed on or after the input date:

IF OBJECT_ID('dbo.GetOrders', 'P') IS NOT NULL DROP PROC dbo.GetOrders;

GO

CREATE PROC dbo.GetOrders

 @odate AS DATETIME

AS

SELECT orderid, custid, empid, orderdate

/* 33145F87-1109-4959-91D6-F1EC81F8428F */

FROM Sales.Orders

WHERE orderdate >= @odate;

GO

Once again, I specified a GUID in a comment to make it easy to track down the cached plan
associated with this query .

126 Inside Microsoft SQL Server 2008: T-SQL Programming

Suppose that this procedure is usually invoked with a selective filter and you want to create
a plan guide that ensures that the query uses the best plan for a selective filter . I already
showed several ways to achieve this—for example, by using the OPTIMIZE FOR hint . Here I’ll
show an example using an XML plan representation .

First, run the procedure in a controlled environment, providing a selective value as input . Next,
pull the XML form of the plan from cache by querying the dynamic management objects
sys.dm_exec_query_stats, sys.dm_exec_sql_text, and sys.dm_exec_query_plan . Finally, create
the plan guide using the sp_create_plan_guide procedure and specify the XML plan that you
pulled from cache in the @hint argument . Here’s the complete code to achieve this task:

EXEC dbo.GetOrders '99991231';

GO

DECLARE @query_plan AS NVARCHAR(MAX);

SET @query_plan = CAST(

 (SELECT query_plan

 FROM sys.dm_exec_query_stats AS QS

 CROSS APPLY sys.dm_exec_sql_text(QS.sql_handle) AS ST

 CROSS APPLY sys.dm_exec_query_plan(QS.plan_handle) AS QP

 WHERE

 SUBSTRING(ST.text, (QS.statement_start_offset/2) + 1,

 ((CASE statement_end_offset

 WHEN -1 THEN DATALENGTH(ST.text)

 ELSE QS.statement_end_offset END

 - QS.statement_start_offset)/2) + 1

) LIKE N'%SELECT orderid, custid, empid, orderdate

/* 33145F87-1109-4959-91D6-F1EC81F8428F */

FROM Sales.Orders

WHERE orderdate >= @odate;%'

 AND ST.text NOT LIKE '%sys%') AS NVARCHAR(MAX));

EXEC sp_create_plan_guide

 @name = N'PG_GetOrders_Selective',

 @stmt = N'SELECT orderid, custid, empid, orderdate

/* 33145F87-1109-4959-91D6-F1EC81F8428F */

FROM Sales.Orders

WHERE orderdate >= @odate;',

 @type = N'OBJECT',

 @module_or_batch = N'dbo.GetOrders',

 @hints = @query_plan;

I used the GUID that I planted in the code to easily identify the plan associated with my
 specific query, but of course, you might not have such a GUID planted in your procedure’s
code . You can specify any part of the query that is sufficient to identify it uniquely .

Run the following code to ensure that the plan guide is used:

SET SHOWPLAN_XML ON;

GO

EXEC dbo.GetOrders '20080506';

GO

SET SHOWPLAN_XML OFF;

 Chapter 3 Stored Procedures 127

You should get the following attributes: PlanGuideDB=”InsideTSQL2008” and
PlanGuideName=”PG_GetOrders_Selective” .

Run the following code to get information about the plan guide:

SELECT *

FROM sys.plan_guides

WHERE name = 'PG_GetOrders_Selective';

SQL Server provides a table-valued function called fn_validate_plan_guide that validates a
plan guide . You may want to validate a plan guide after a schema change in a referenced
 object, for example . The function accepts a plan guide ID as input, which you can obtain
from the sys.plan_guides view . If the plan guide is valid, the function returns an empty result
set; otherwise, it returns the first error that it encounters .

For example, the following code drops the index on the orderdate column from the
Sales .Orders table and then validates the plan guide PG_GetOrders_Selective:

BEGIN TRAN

 DROP INDEX Sales.Orders.idx_nc_orderdate;

 SELECT plan_guide_id, msgnum, severity, state, message

 FROM sys.plan_guides

 CROSS APPLY fn_validate_plan_guide(plan_guide_id)

 WHERE name = 'PG_GetOrders_Selective';

ROLLBACK TRAN

Because the plan guide is invalid after the index is dropped you get the following output
 indicating the error:

plan_guide_id msgnum severity state

------------- ------- -------- ------

65544 8712 16 0

message

Index 'InsideTSQL2008.Sales.Orders.idx_nc_orderdate',

specified in the USE PLAN hint, does not exist.

Specify an existing index, or create an index with the specified name.

When you’re done, run the following code to drop the plan guide:

EXEC sp_control_plan_guide N'DROP', N'PG_GetOrders_Selective';

Plan Freezing
Prior to SQL Server 2008, if you wanted to create a plan guide based on an existing plan in
cache you had to first pull the complete XML plan from cache and then specify it as the hint
when creating the guide . SQL Server 2008 introduces a new feature called plan freezing to
allow you to create a plan guide directly from a plan in cache by using a stored procedure

128 Inside Microsoft SQL Server 2008: T-SQL Programming

called sp_create_plan_guide_from_handle . The procedure accepts as arguments the name you
want to assign to the plan (@name), the plan handle (@plan_handle), and the statement start
offset in the parent batch (@statement_start_offset) . Of course, you can query the dynamic
management objects sys.dm_exec_query_stats, sys.dm_exec_sql_text, and sys.dm_exec_query_
plan to pull the plan handle and statement start offset for a given query . Here’s an example
of plan freezing:

EXEC dbo.GetOrders '99991231';

GO

DECLARE @plan_handle AS VARBINARY(64), @offset AS INT, @rc AS INT;

SELECT @plan_handle = plan_handle, @offset = statement_start_offset

FROM sys.dm_exec_query_stats AS QS

 CROSS APPLY sys.dm_exec_sql_text(QS.sql_handle) AS ST

 CROSS APPLY sys.dm_exec_query_plan(QS.plan_handle) AS QP

WHERE

 SUBSTRING(ST.text, (QS.statement_start_offset/2) + 1,

 ((CASE statement_end_offset

 WHEN -1 THEN DATALENGTH(ST.text)

 ELSE QS.statement_end_offset END

 - QS.statement_start_offset)/2) + 1

) LIKE N'%SELECT orderid, custid, empid, orderdate

/* 33145F87-1109-4959-91D6-F1EC81F8428F */

FROM Sales.Orders

WHERE orderdate >= @odate;%'

 AND ST.text NOT LIKE '%sys%';

SET @rc = @@ROWCOUNT;

IF @rc = 1

 EXEC sp_create_plan_guide_from_handle

 @name = N'PG_GetOrders_Selective',

 @plan_handle = @plan_handle,

 @statement_start_offset = @offset;

ELSE

 RAISERROR(

 'Number of matching plans should be 1 but is %d. Plan guide not created.',

 16, 1, @rc);

The code executes the stored procedure GetOrders in a controlled environment using
a selective input . The code then pulls the plan handle and statement start offset for the
 procedure’s query from cache by querying the aforementioned objects . The code finally
 executes the sp_create_plan_guide_from_handle procedure to create a plan guide for
the query .

Run the following code to check whether the plan guide is used:

SET SHOWPLAN_XML ON;

GO

EXEC dbo.GetOrders '20080506';

GO

SET SHOWPLAN_XML OFF;

 Chapter 3 Stored Procedures 129

You should get the following attributes in the output: PlanGuideDB=”InsideTSQL2008” and
PlanGuideName=”PG_GetOrders_Selective” .

Run the following query to get information about the plan guide:

SELECT *

FROM sys.plan_guides

WHERE name = 'PG_GetOrders_Selective';

When you’re done experimenting with this plan guide, run the following code to drop it:

EXEC sp_control_plan_guide N'DROP', N'PG_GetOrders_Selective';

When you’re done experimenting with compilations, recompilations, and reuse of execution
plans, run the following code for cleanup:

DELETE FROM Sales.Orders WHERE orderid > 11077;

DBCC CHECKIDENT('Sales.Orders', RESEED, 11077);

IF OBJECT_ID('dbo.GetOrders') IS NOT NULL

 DROP PROC dbo.GetOrders;

IF OBJECT_ID('dbo.CustCities') IS NOT NULL

 DROP PROC dbo.CustCities;

IF OBJECT_ID('dbo.GetOrdersQuery') IS NOT NULL

 DROP PROC dbo.GetOrdersQuery;

More Info For more information on the subject, please refer to the white paper “Batch
Compilation, Recompilation, and Plan Caching Issues in SQL Server 2005,” by Arun Marathe,
revised by Shu Scott, which can be accessed at http://technet.microsoft.com/en-us/library/
cc966425.aspx . Though written originally for SQL Server 2005, most of the coverage describing
SQL Server 2005 behavior is applicable to SQL Server 2008 as well .

eXeCuTe AS
Stored procedures can play an important security role . You can grant users EXECUTE
 permissions on the stored procedure without granting them direct access to the underlying
objects, thereby giving you more control over resource access . However, certain exceptions
require the caller to have direct permissions on underlying objects . To avoid requiring direct
permissions from the caller, all of the following must be true:

n The stored procedure and the underlying objects belong to the same owner .

n The activity is static (as opposed to using dynamic SQL) .

n The activity is DML (SELECT, INSERT, UPDATE, DELETE, or MERGE), or it is an execution
of another stored procedure .

130 Inside Microsoft SQL Server 2008: T-SQL Programming

If any listed item is not true, the caller will be required to have direct permissions against the
underlying objects . Otherwise, the statements in the stored procedure that do not meet the
requirements will fail on a security violation .

That’s the default behavior in SQL Server 2008, which cannot be changed . However, you can
set the security context of the stored procedure to that of another user, as if the other user
were running the stored procedure . When you create the stored procedure, you can specify
an EXECUTE AS clause with one of the following options:

n CALLeR (default) Security context of the caller

n SeLF Security context of the user creating or altering the stored procedure

n OWneR Security context of the owner of the stored procedure

n ‘user_name’ Security context of the specified user name

Remember, all chaining rules and requirements not to have direct permissions for underlying
objects still apply, but they apply to the effective user, not the calling user (unless CALLER
was specified, of course) .

In addition, a user that has impersonation rights can issue an independent EXECUTE AS
 <option> command to impersonate another entity (login or user) . If this is done, it’s as if the
session changes its security context to that of the impersonated entity .

Parameterizing Sort Order
To practice what you’ve learned so far, try to provide a solution to the following task: write
a stored procedure called GetSortedShippers that accepts a column name from the Shippers
table in the InsideTSQL2008 database as one of the inputs (@colname), and that returns
the rows from the table sorted by the input column name . Assume also that you have a
sort direction as input (@sortdir), with the value ‘A’ representing ascending order and ‘D’
 representing descending order . The stored procedure should be written with performance
in mind—that is, it should use indexes when appropriate (for example, a clustered or
 nonclustered covering index on the sort column) .

Here’s the first suggested solution for the task:

USE InsideTSQL2008;

IF OBJECT_ID('dbo.GetSortedShippers', 'P') IS NOT NULL

 DROP PROC dbo.GetSortedShippers;

GO

CREATE PROC dbo.GetSortedShippers

 @colname AS sysname, @sortdir AS CHAR(1) = 'A'

AS

 Chapter 3 Stored Procedures 131

IF @sortdir = 'A'

 SELECT shipperid, companyname, phone

 FROM Sales.Shippers

 ORDER BY

 CASE @colname

 WHEN N'shipperid' THEN shipperid

 WHEN N'companyname' THEN companyname

 WHEN N'phone' THEN phone

 ELSE CAST(NULL AS SQL_VARIANT)

 END

ELSE

 SELECT shipperid, companyname, phone

 FROM Sales.Shippers

 ORDER BY

 CASE @colname

 WHEN N'shipperid' THEN shipperid

 WHEN N'companyname' THEN companyname

 WHEN N'phone' THEN phone

 ELSE CAST(NULL AS SQL_VARIANT)

 END DESC;

GO

The solution uses an IF statement to determine which of two queries to run based on the
 requested sort direction . The only difference between the queries is that one uses an ascending
order for the sort expression and the other uses a descending order . Each query uses a single
CASE expression that returns the appropriate column value based on the input column name .

Note SQL Server determines the data type of the result of a CASE expression based on the data
type with the highest precedence among the possible result values of the expression—not by
the data type of the actual returned value . This means, for example, that if the CASE expression
 returns a VARCHAR(30) value in one of the THEN clauses and an INT value in another, the result
of the expression will always be INT, because INT is higher in precedence than VARCHAR . If in
practice the VARCHAR(30) value is returned, SQL Server will attempt to convert it . If the value
is not convertible, you get a run-time error . If it is convertible, it becomes an INT, and of course
might have a different sort behavior than the original value .

To avoid issues resulting from implicit type conversion in the CASE expression, I caused an
implicit conversion of all possible return values to SQL_VARIANT by specifying an expression
of an SQL_VARIANT type in the ELSE clause . SQL_VARIANT has a higher precedence than
all other types; therefore, SQL Server sets the data type of the CASE expression to SQL_
VARIANT, but it preserves the original base types within that SQL_VARIANT .

Run the following code to test the solution, requesting to sort the shippers by shipperid in
descending order:

EXEC dbo.GetSortedShippers @colname = N'shipperid', @sortdir = N'D';

132 Inside Microsoft SQL Server 2008: T-SQL Programming

This generates the following output:

shipperid companyname phone

----------- -------------- ---------------

3 Shipper ZHISN (415) 555-0138

2 Shipper ETYNR (425) 555-0136

1 Shipper GVSUA (503) 555-0137

The output is logically correct, but notice the plan generated for the stored procedure,
shown in Figure 3-8 .

FiguRe 3-8 Execution plan showing a table scan (unordered clustered index scan) and a sort operator

Remember that the optimizer cannot rely on the sort that the index maintains if you
 performed manipulation on the sort column . The plan shows an unordered clustered index
scan followed by an explicit sort operation . For the problem the query was intended to solve,
an optimal plan would have performed an ordered scan operation in the clustered index
 defined on the shipperid column—eliminating the need for an explicit sort operation .

Here’s the second solution for the task:

ALTER PROC dbo.GetSortedShippers

 @colname AS sysname, @sortdir AS CHAR(1) = 'A'

AS

SELECT shipperid, companyname, phone

FROM Sales.Shippers

ORDER BY

 CASE WHEN @colname = N'shipperid' AND @sortdir = 'A'

 THEN shipperid END,

 CASE WHEN @colname = N'companyname' AND @sortdir = 'A'

 THEN companyname END,

 CASE WHEN @colname = N'phone' AND @sortdir = 'A'

 THEN phone END,

 CASE WHEN @colname = N'shipperid' AND @sortdir = 'D'

 THEN shipperid END DESC,

 CASE WHEN @colname = N'companyname' AND @sortdir = 'D'

 THEN companyname END DESC,

 CASE WHEN @colname = N'phone' AND @sortdir = 'D'

 THEN phone END DESC;

GO

This solution uses CASE expressions in a more sophisticated way . Each column and sort
 direction combination is treated with its own CASE expression . Only one of the CASE
 expressions yields TRUE for all rows, given the column name and sort direction that particular
CASE expression is looking for . All other CASE expressions return NULL for all rows . This
means that only one of the CASE expressions—the one that looks for the given column name
and sort direction—affects the order of the output .

 Chapter 3 Stored Procedures 133

Run the following code to test the stored procedure:

EXEC dbo.GetSortedShippers @colname = N'shipperid', @sortdir = N'D';

Although this stored procedure applies an interesting logical manipulation, it doesn’t change
the fact that you perform manipulation on the column and don’t sort by it as is . This means
that you will get a similar nonoptimal plan to the one shown earlier in Figure 3-8 .

Here’s the third solution for the task:

ALTER PROC dbo.GetSortedShippers

 @colname AS sysname, @sortdir AS CHAR(1) = 'A'

AS

IF @colname NOT IN (N'shipperid', N'companyname', N'phone')

BEGIN

 RAISERROR('Possible SQL injection attempt.', 16, 1);

 RETURN;

END

DECLARE @sql AS NVARCHAR(500);

SET @sql = N'SELECT shipperid, companyname, phone

FROM Sales.Shippers

ORDER BY '

 + QUOTENAME(@colname)

 + CASE @sortdir WHEN 'D' THEN N' DESC' ELSE '' END

 + ';';

EXEC sp_executesql @sql;

GO

This solution simply uses dynamic SQL concatenating the input column name and sort
 direction to the ORDER BY clause of the query . In terms of performance the solution achieves
our goal—namely, it uses an index efficiently if an appropriate one exists . To see that it does,
run the following code:

EXEC dbo.GetSortedShippers @colname = N'shipperid', @sortdir = N'D';

Observe in the execution plan, shown in Figure 3-9, that the plan performs an ordered
 backward clustered index scan with no sort operator, which is optimal for these inputs .

Another advantage of this solution is that it’s easy to maintain . The downside of this solution
is that there are some negative implications to using dynamic SQL . As mentioned earlier
in this chapter, SQL Server doesn’t report dependency information for code invoked with
 dynamic SQL . Also, dynamic SQL involves security-related issues (for example, ownership
chaining and SQL injection if the inputs are not validated) . For details about security and
other issues related to dynamic SQL, please refer to Chapter 9, “Dynamic SQL .”

134 Inside Microsoft SQL Server 2008: T-SQL Programming

FiguRe 3-9 Execution plan showing an ordered backward clustered index scan

Here’s the fourth solution that I’ll cover:

CREATE PROC dbo.GetSortedShippers_shipperid_A

AS

 SELECT shipperid, companyname, phone

 FROM Sales.Shippers

 ORDER BY shipperid;

GO

CREATE PROC dbo.GetSortedShippers_companyname_A

AS

 SELECT shipperid, companyname, phone

 FROM Sales.Shippers

 ORDER BY companyname;

GO

CREATE PROC dbo.GetSortedShippers_phone_A

AS

 SELECT shipperid, companyname, phone

 FROM Sales.Shippers

 ORDER BY phone;

GO

CREATE PROC dbo.GetSortedShippers_shipperid_D

AS

 SELECT shipperid, companyname, phone

 FROM Sales.Shippers

 ORDER BY shipperid DESC;

GO

CREATE PROC dbo.GetSortedShippers_companyname_D

AS

 Chapter 3 Stored Procedures 135

 SELECT shipperid, companyname, phone

 FROM Sales.Shippers

 ORDER BY companyname DESC;

GO

CREATE PROC dbo.GetSortedShippers_phone_D

AS

 SELECT shipperid, companyname, phone

 FROM Sales.Shippers

 ORDER BY phone DESC;

GO

ALTER PROC dbo.GetSortedShippers

 @colname AS sysname, @sortdir AS CHAR(1) = 'A'

AS

IF @colname = N'shipperid' AND @sortdir = 'A'

 EXEC dbo.GetSortedShippers_shipperid_A;

ELSE IF @colname = N'companyname' AND @sortdir = 'A'

 EXEC dbo.GetSortedShippers_companyname_A;

ELSE IF @colname = N'phone' AND @sortdir = 'A'

 EXEC dbo.GetSortedShippers_phone_A;

ELSE IF @colname = N'shipperid' AND @sortdir = 'D'

 EXEC dbo.GetSortedShippers_shipperid_D;

ELSE IF @colname = N'companyname' AND @sortdir = 'D'

 EXEC dbo.GetSortedShippers_companyname_D;

ELSE IF @colname = N'phone' AND @sortdir = 'D'

 EXEC dbo.GetSortedShippers_phone_D;

GO

This solution might seem awkward at first glance . You create a separate stored procedure
with a single static query for each possible combination of inputs . Then, GetSortedShippers
can act as a redirector . Simply use a series of IF/ELSE IF statements to check for each possible
combination of inputs, and you explicitly invoke the appropriate stored procedure for each .
Sure, it is a bit long and requires more maintenance than the previous solution, but it uses
static queries that generate optimal plans . Note that each query gets its own plan and can
reuse a previously cached plan for the same query .

To test the procedure, run the following code:

EXEC dbo.GetSortedShippers @colname = N'shipperid', @sortdir = N'D';

You get the optimal plan for the given inputs, similar to the plan shown earlier in Figure 3-9 .

When you’re done, run the following code for cleanup:

IF OBJECT_ID('dbo.GetSortedShippers', 'P') IS NOT NULL

 DROP PROC dbo.GetSortedShippers;

IF OBJECT_ID('dbo.GetSortedShippers_shipperid_A', 'P') IS NOT NULL

 DROP PROC dbo.GetSortedShippers_shipperid_A;

IF OBJECT_ID('dbo.GetSortedShippers_companyname_A', 'P') IS NOT NULL

 DROP PROC dbo.GetSortedShippers_companyname_A;

IF OBJECT_ID('dbo.GetSortedShippers_phone_A', 'P') IS NOT NULL

 DROP PROC dbo.GetSortedShippers_phone_A;

136 Inside Microsoft SQL Server 2008: T-SQL Programming

IF OBJECT_ID('dbo.GetSortedShippers_shipperid_D', 'P') IS NOT NULL

 DROP PROC dbo.GetSortedShippers_shipperid_D;

IF OBJECT_ID('dbo.GetSortedShippers_companyname_D', 'P') IS NOT NULL

 DROP PROC dbo.GetSortedShippers_companyname_D;

IF OBJECT_ID('dbo.GetSortedShippers_phone_D', 'P') IS NOT NULL

 DROP PROC dbo.GetSortedShippers_phone_D;

CLR Stored Procedures
SQL Server 2008 allows you to develop CLR stored procedures (as well as other routines)
 using a .NET language of your choice . The previous chapter provided background about CLR
routines, gave advice on when to develop CLR routines versus T-SQL ones, and described the
technicalities of how to develop CLR routines . Remember to read Appendix A for instructions
on developing, building, deploying, and testing your .NET code . Here I’d just like to give a
couple of examples of CLR stored procedures that apply functionality outside the reach of
T-SQL code .

The first example is a CLR procedure called GetEnvInfo . This stored procedure collects
 information from environment variables and returns it in table format . The environment
variables that this procedure will return include: Machine Name, Processors, OS Version,
CLR Version .

Note that to collect information from environment variables, the assembly needs external
access to operating system resources . By default, assemblies are created (using the CREATE
ASSEMBLY command) with the most restrictive PERMISSION_SET option, SAFE, which means
that they’re limited to accessing database resources only . This is the recommended option
to obtain maximum security and stability . The permission set options EXTERNAL_ACCESS
and UNSAFE (specified in the CREATE ASSEMBLY or ALTER ASSEMBLY commands, or in the
Project | Properties dialog box in Visual Studio under the Database tab) allow external access
to system resources such as files, the network, environment variables, or the registry . To allow
EXTERNAL_ACCESS and UNSAFE assemblies to run, you also need to set the database option
TRUSTWORTHY to ON . Allowing EXTERNAL_ACCESS or UNSAFE assemblies to run represents
a security risk and should be avoided . I will describe a safer alternative shortly, but first I’ll
demonstrate this option . To set the TRUSTWORTHY option of the CLRUtilities database to ON
and to change the permission set of the CLRUtilities assembly to EXTERNAL_ACCESS, run the
following code:

USE CLRUtilities;

-- Database option TRUSTWORTHY needs to be ON for EXTERNAL_ACCESS

ALTER DATABASE CLRUtilities SET TRUSTWORTHY ON;

-- Alter assembly with PERMISSION_SET = EXTERNAL_ACCESS

ALTER ASSEMBLY CLRUtilities

WITH PERMISSION_SET = EXTERNAL_ACCESS;

 Chapter 3 Stored Procedures 137

At this point you can run the GetEnvInfo stored procedure . Keep in mind, however, that
UNSAFE assemblies have complete freedom and can compromise the robustness of SQL
Server and the security of the system . EXTERNAL_ACCESS assemblies get the same reliability
and stability protection as SAFE assemblies, but from a security perspective they’re like
UNSAFE assemblies .

A more secure alternative is to sign the assembly with a strong name key file or
Authenticode with a certificate . This strong name (or certificate) is created inside SQL Server
as an asymmetric key (or certificate) and has a corresponding login with EXTERNAL ACCESS
ASSEMBLY permission (for external access assemblies) or UNSAFE ASSEMBLY permission (for
unsafe assemblies) . For example, suppose that you have code in the CLRUtilities assembly
that needs to run with the EXTERNAL_ACCESS permission set . You can sign the assembly
with a strong-named key file from the Project | Properties dialog box in Visual Studio under the
Signing tab . Then run the following code to create an asymmetric key from the executable
 .dll file and a corresponding login with the EXTERNAL_ACCESS ASSEMBLY permission:

-- Create an asymmetric key from the signed assembly

-- Note: you have to sign the assembly using a strong name key file

USE master

CREATE ASYMMETRIC KEY CLRUtilitiesKey

 FROM EXECUTABLE FILE =

 'C:\CLRUtilities\CLRUtilities\bin\Debug\CLRUtilities.dll'

-- Create login and grant it with external access permission

CREATE LOGIN CLRUtilitiesLogin FROM ASYMMETRIC KEY CLRUtilitiesKey

GRANT EXTERNAL ACCESS ASSEMBLY TO CLRUtilitiesLogin

For more details about securing your assemblies, please refer to SQL Server Books Online
and to the following URL: http://msdn2.microsoft.com/en-us/library/ms345106.aspx .

Here’s the definition of the GetEnvInfo stored procedure using C# code:

 // GetEnvInfo Procedure

 // Returns environment info in tabular format

 [SqlProcedure]

 public static void GetEnvInfo()

 {

 // Create a record - object representation of a row

 // Include the metadata for the SQL table

 SqlDataRecord record = new SqlDataRecord(

 new SqlMetaData("EnvProperty", SqlDbType.NVarChar, 20),

 new SqlMetaData("Value", SqlDbType.NVarChar, 256));

 // Marks the beginning of the result set to be sent back to the client

 // The record parameter is used to construct the metadata

 // for the result set

 SqlContext.Pipe.SendResultsStart(record);

 // Populate some records and send them through the pipe

 record.SetSqlString(0, @"Machine Name");

 record.SetSqlString(1, Environment.MachineName);

138 Inside Microsoft SQL Server 2008: T-SQL Programming

 SqlContext.Pipe.SendResultsRow(record);

 record.SetSqlString(0, @"Processors");

 record.SetSqlString(1, Environment.ProcessorCount.ToString());

 SqlContext.Pipe.SendResultsRow(record);

 record.SetSqlString(0, @"OS Version");

 record.SetSqlString(1, Environment.OSVersion.ToString());

 SqlContext.Pipe.SendResultsRow(record);

 record.SetSqlString(0, @"CLR Version");

 record.SetSqlString(1, Environment.Version.ToString());

 SqlContext.Pipe.SendResultsRow(record);

 // End of result set

 SqlContext.Pipe.SendResultsEnd();

 }

In this procedure, you can see the usage of some specific extensions to ADO .NET for
 usage within SQL Server CLR routines . These are defined in the Microsoft.SqlServer.Server
namespace in the .NET Framework .

When you call a stored procedure from SQL Server, you are already connected . You don’t
have to open a new connection; you need access to the caller’s context from the code
 running in the server . The caller’s context is abstracted in a SqlContext object . Before using
the SqlContext object, you should test whether it is available by using its IsAvailable property .

The procedure retrieves some environmental data from the operating system . The data can
be retrieved by the properties of an Environment object, which can be found in the System
namespace . But the data you get is in text format . In the CLR procedure, you can see how to
generate a row set for any possible format . The routine’s code stores data in a SqlDataRecord
object, which represents a single row of data . It defines the schema for this single row by
 using the SqlMetaData objects .

SELECT statements in a T-SQL stored procedure send the results to the connected caller’s
“pipe .” This is the most effective way of sending results to the caller . The same technique is
exposed to CLR routines running in SQL Server . Results can be sent to the connected pipe
using the send methods of the SqlPipe object . You can instantiate the SqlPipe object with the
Pipe property of the SqlContext object .

Here’s the definition of the GetEnvInfo stored procedure using Visual Basic code:

 ' GetEnvInfo Procedure

 ' Returns environment info in tabular format

 <SqlProcedure()> _

 Public Shared Sub GetEnvInfo()

 ' Create a record - object representation of a row

 ' Include the metadata for the SQL table

 Dim record As New SqlDataRecord(_

 New SqlMetaData("EnvProperty", SqlDbType.NVarChar, 20), _

 New SqlMetaData("Value", SqlDbType.NVarChar, 256))

 ' Marks the beginning of the result set to be sent back to the client

 ' The record parameter is used to construct the metadata for

 ' the result set

 Chapter 3 Stored Procedures 139

 SqlContext.Pipe.SendResultsStart(record)

 '' Populate some records and send them through the pipe

 record.SetSqlString(0, "Machine Name")

 record.SetSqlString(1, Environment.MachineName)

 SqlContext.Pipe.SendResultsRow(record)

 record.SetSqlString(0, "Processors")

 record.SetSqlString(1, Environment.ProcessorCount.ToString())

 SqlContext.Pipe.SendResultsRow(record)

 record.SetSqlString(0, "OS Version")

 record.SetSqlString(1, Environment.OSVersion.ToString())

 SqlContext.Pipe.SendResultsRow(record)

 record.SetSqlString(0, "CLR Version")

 record.SetSqlString(1, Environment.Version.ToString())

 SqlContext.Pipe.SendResultsRow(record)

 ' End of result set

 SqlContext.Pipe.SendResultsEnd()

 End Sub

Run the following code to register the C# version of the GetEnvInfo stored procedure in the
CLRUtilities database:

USE CLRUtilities;

IF OBJECT_ID('dbo.GetEnvInfo', 'PC') IS NOT NULL

 DROP PROC dbo.GetEnvInfo;

GO

CREATE PROCEDURE dbo.GetEnvInfo

AS EXTERNAL NAME CLRUtilities.CLRUtilities.GetEnvInfo;

Use the following code to register the stored procedure in case you used Visual Basic to
 develop it:

CREATE PROCEDURE dbo.GetEnvInfo

AS EXTERNAL NAME

 CLRUtilities.[CLRUtilities.CLRUtilities].GetEnvInfo;

Run the following code to test the GetEnvInfo procedure:

EXEC dbo.GetEnvInfo;

This generated the following output on my computer:

EnvProperty Value

-------------------- --

Machine Name DOJO

Processors 2

OS Version Microsoft Windows NT 6.0.6001 Service Pack 1

CLR Version 2.0.50727.3074

The second example for a CLR procedure creates the GetAssemblyInfo stored procedure,
which returns information about an input assembly .

140 Inside Microsoft SQL Server 2008: T-SQL Programming

Here’s the definition of the GetAssemblyInfo stored procedure using C# code:

 // GetAssemblyInfo Procedure

 // Returns assembly info, uses Reflection

 [SqlProcedure]

 public static void GetAssemblyInfo(SqlString asmName)

 {

 // Retrieve the clr name of the assembly

 String clrName = null;

 // Get the context

 using (SqlConnection connection =

 new SqlConnection("Context connection = true"))

 {

 connection.Open();

 using (SqlCommand command = new SqlCommand())

 {

 // Get the assembly and load it

 command.Connection = connection;

 command.CommandText =

 "SELECT clr_name FROM sys.assemblies WHERE name = @asmName";

 command.Parameters.Add("@asmName", SqlDbType.NVarChar);

 command.Parameters[0].Value = asmName;

 clrName = (String)command.ExecuteScalar();

 if (clrName == null)

 {

 throw new ArgumentException("Invalid assembly name!");

 }

 Assembly myAsm = Assembly.Load(clrName);

 // Create a record - object representation of a row

 // Include the metadata for the SQL table

 SqlDataRecord record = new SqlDataRecord(

 new SqlMetaData("Type", SqlDbType.NVarChar, 50),

 new SqlMetaData("Name", SqlDbType.NVarChar, 256));

 // Marks the beginning of the result set to be sent back

 // to the client

 // The record parameter is used to construct the metadata

 // for the result set

 SqlContext.Pipe.SendResultsStart(record);

 // Get all types in the assembly

 Type[] typesArr = myAsm.GetTypes();

 foreach (Type t in typesArr)

 {

 // Type in a SQL database should be a class or

 // a structure

 if (t.IsClass == true)

 {

 record.SetSqlString(0, @"Class");

 }

 else

 {

 record.SetSqlString(0, @"Structure");

 }

 record.SetSqlString(1, t.FullName);

 SqlContext.Pipe.SendResultsRow(record);

 // Find all public static methods

 Chapter 3 Stored Procedures 141

 MethodInfo[] miArr = t.GetMethods();

 foreach (MethodInfo mi in miArr)

 {

 if (mi.IsPublic && mi.IsStatic)

 {

 record.SetSqlString(0, @" Method");

 record.SetSqlString(1, mi.Name);

 SqlContext.Pipe.SendResultsRow(record);

 }

 }

 }

 // End of result set

 SqlContext.Pipe.SendResultsEnd();

 }

 }

 }

A DBA could have a problem finding out exactly what part of a particular .NET assembly is
loaded to the database . Fortunately, this problem can be easily mitigated . All .NET assemblies
include metadata, describing all types (classes and structures) defined within it, including
all public methods and properties of the types . In .NET, the System.Reflection namespace
 contains classes and interfaces that provide a managed view of loaded types .

For a very detailed overview of a .NET assembly stored in the file system, you can use the
Reflector for .NET, a very sophisticated tool created by Lutz Roeder . Because it is downloadable
for free from his site at http://www.aisto.com/roeder/dotnet/, it is very popular among .NET
 developers . Also, in his blog at http://blogs.msdn.com/sqlclr/archive/2005/11/21/495438.aspx,
Miles Trochesset wrote a SQL Server CLR DDL trigger that is fired on the CREATE ASSEMBLY
statement . The trigger automatically registers all CLR objects from the assembly, including UDTs,
UDAs, UDFs, SPs, and triggers . I used both tools as a starting point to create my simplified version
of a SQL Server CLR stored procedure . I thought that a DBA might prefer to read the assembly
metadata from a stored procedure, not from an external tool (which Lutz Roeder’s Reflector for
 .NET is) . I also thought that a DBA might just want to read the metadata first, not immediately
register all CLR objects from the assembly the way that Miles Trochesset’s trigger does .

The GetAssemblyInfo procedure has to load an assembly from the sys.assemblies catalog
view . To achieve this task, it has to execute a SqlCommand . SqlCommand needs a connection .
In the GetEnvInfo procedure’s code you saw the usage of the SqlContext class; now you need
an explicit SqlConnection object . You can get the context of the caller’s connection by using a
new connection string option, “Context connection = true” .

As in the GetEnvInfo procedure, you want to get the results in tabular format . Again you use
the SqlDataRecord and SqlMetaData objects to shape the row returned . Remember that the
SqlPipe object gives you the best performance to return the row to the caller .

Before you can read the metadata of an assembly, you have to load it . The rest is quite easy .
The GetTypes method of a loaded assembly can be used to retrieve a collection of all types
defined in the assembly . The code retrieves this collection in an array . Then it loops through

142 Inside Microsoft SQL Server 2008: T-SQL Programming

the array, and for each type it uses the GetMethods method to retrieve all public methods in
an array of the MethodInfo objects . This procedure retrieves type and method names only .
The Reflection classes allow you to get other metadata information as well—for example, the
names and types of input parameters . Here’s the definition of the GetAssemblyInfo stored
procedure using Visual Basic code:

 ' GetAssemblyInfo Procedure

 ' Returns assembly info, uses Reflection

 <SqlProcedure()> _

 Public Shared Sub GetAssemblyInfo(ByVal asmName As SqlString)

 ' Retrieve the clr name of the assembly

 Dim clrName As String = Nothing

 ' Get the context

 Using connection As New SqlConnection("Context connection = true")

 connection.Open()

 Using command As New SqlCommand

 ' Get the assembly and load it

 command.Connection = connection

 command.CommandText = _

 "SELECT clr_name FROM sys.assemblies WHERE name = @asmName"

 command.Parameters.Add("@asmName", SqlDbType.NVarChar)

 command.Parameters(0).Value = asmName

 clrName = CStr(command.ExecuteScalar())

 If (clrName = Nothing) Then

 Throw New ArgumentException("Invalid assembly name!")

 End If

 Dim myAsm As Assembly = Assembly.Load(clrName)

 ' Create a record - object representation of a row

 ' Include the metadata for the SQL table

 Dim record As New SqlDataRecord(_

 New SqlMetaData("Type", SqlDbType.NVarChar, 50), _

 New SqlMetaData("Name", SqlDbType.NVarChar, 256))

 ' Marks the beginning of the result set to be sent back

 ' to the client

 ' The record parameter is used to construct the metadata

 ' for the result set

 SqlContext.Pipe.SendResultsStart(record)

 ' Get all types in the assembly

 Dim typesArr() As Type = myAsm.GetTypes()

 For Each t As Type In typesArr

 ' Type in a SQL database should be a class or a structure

 If (t.IsClass = True) Then

 record.SetSqlString(0, "Class")

 Else

 record.SetSqlString(0, "Structure")

 End If

 record.SetSqlString(1, t.FullName)

 SqlContext.Pipe.SendResultsRow(record)

 ' Find all public static methods

 Dim miArr() As MethodInfo = t.GetMethods

 For Each mi As MethodInfo In miArr

 If (mi.IsPublic And mi.IsStatic) Then

 record.SetSqlString(0, " Method")

 record.SetSqlString(1, mi.Name)

 Chapter 3 Stored Procedures 143

 SqlContext.Pipe.SendResultsRow(record)

 End If

 Next

 Next

 ' End of result set

 SqlContext.Pipe.SendResultsEnd()

 End Using

 End Using

 End Sub

Run the following code to register the C# version of the GetAssemblyInfo stored procedure in
the CLRUtilities database:

IF OBJECT_ID('dbo.GetAssemblyInfo', 'PC') IS NOT NULL

 DROP PROC dbo.GetAssemblyInfo;

GO

CREATE PROCEDURE GetAssemblyInfo

 @asmName AS sysname

AS EXTERNAL NAME CLRUtilities.CLRUtilities.GetAssemblyInfo;

And in case you used Visual Basic to develop the stored procedure, use the following code to
register it:

CREATE PROCEDURE GetAssemblyInfo

 @asmName AS sysname

AS EXTERNAL NAME

 CLRUtilities.[CLRUtilities.CLRUtilities].GetAssemblyInfo;

Run the following code to test the GetAssemblyInfo procedure, providing it with the
CLRUtilities assembly name as input:

EXEC GetAssemblyInfo N'CLRUtilities';

You get the following output with the assembly name and the names of all methods
(routines) defined within it:

Type Name

---------- ----------------------

Class CLRUtilities

 Method RegexIsMatch

 Method RegexReplace

 Method FormatDatetime

 Method ImpCast

 Method ExpCast

 Method SQLSigCLR

 Method SplitCLR

 Method ArrSplitFillRow

 Method GetEnvInfo

 Method GetAssemblyInfo

 Method trg_GenericDMLAudit

 Method SalesRunningSum

Structure CLRUtilities+row_item

144 Inside Microsoft SQL Server 2008: T-SQL Programming

You should recognize most routine names except trg_GenericDMLAudit and SalesRunningSum,
which will be covered later in the book .

When you’re done, run the following code for cleanup:

USE CLRUtilities;

IF OBJECT_ID('dbo.GetEnvInfo', 'PC') IS NOT NULL

 DROP PROC dbo.GetEnvInfo;

IF OBJECT_ID('dbo.GetAssemblyInfo', 'PC') IS NOT NULL

 DROP PROC dbo.GetAssemblyInfo;

Conclusion
Stored procedures are one of the most powerful tools that SQL Server provides .
Understanding them well and using them wisely will result in robust, secure databases
that perform well . Stored procedures give you a security layer, encapsulation, reduction
in network traffic, reuse of execution plans, and much more . SQL Server 2008 supports
 developing CLR routines, allowing you to enhance the functionality of your database .

 245

Chapter 7

Temporary Tables
and Table Variables
Itzik Ben-Gan

T-SQL programming often involves the need to materialize data temporarily . Temporary
tables are just one solution; other ways for handling an independent physical or logical
 materialization of a set include table variables and table expressions such as views, inline
user-defined functions (UDFs), derived tables, and common table expressions (CTEs) .

You might need to physically persist interim states of your data for performance reasons, or
just as a staging area . Examples of such scenarios include:

n Materializing aggregated data to some level of granularity (for example, employee and
month), and issuing running, sliding, and other statistical reports against that data

n Materializing a result of a query for paging purposes

n Materializing result sets of interim queries, and querying the materialized data

n Materializing the result of a query with the GROUPING SETS, CUBE and ROLLUP
 options, and issuing queries against that data

n Walking through the output of a cursor and saving information you read or calculate
per row for further manipulation

n Pivoting data from an Open Schema environment to a more traditional form, and
 issuing queries against the pivoted data

n Creating a result set that contains a hierarchy with additional attributes such as
 materialized paths or levels, and issuing reports against the result

n Holding data that needs to be scrubbed before it can be inserted

One of the benefits of materializing data in a temporary table is that it can be more compact
than the base data, with preprocessed calculations, and you can index it when it might be
inefficient or impractical to index all the base data . In terms of performance, you typically
benefit from materializing the data when you need to access it multiple times, but in some
cases, even when all you have is a single query against the data, you benefit .

You might also need to materialize interim sets logically in virtual temporary tables (table
 expressions) to develop solutions in a modular approach . I’ll show examples in this chapter
that address this need as well . Either way, there are many cases in which using temporary
tables, table variables, or table expressions can be useful .

246 Inside Microsoft SQL Server 2008: T-SQL Programming

There’s a lot of confusion around choosing the appropriate type of temporary object for a
given task, and there are many myths regarding the differences between temporary tables
and table variables . Furthermore, temporary tables and table variables are often misused
 because of lack of knowledge of efficient set-based programming .

In this chapter, I will try to provide you with a clear picture of how the different temporary
object types behave, in which circumstances you should use each, and whether you should
use them at all . At the end of the chapter, I’ll provide a summary table (Table 7-1) that
 contrasts and compares the different types . This table covers the factors you should take into
consideration before making your choice .

Temporary Tables
SQL Server supports two types of temporary tables: local and global . For the most part, I’ll
focus on local temporary tables because this is the type you would typically consider in the
same situations as table variables and table expressions . I’ll also describe global temporary
tables, but these typically have different uses than local temporary tables .

Local Temporary Tables
I’ll start with some fundamentals of local temporary tables before showing examples, and
I’ll do the same whenever discussing a new temporary object type . When referring to
 temporary tables in this section, assume that the discussion pertains to local ones .

You create and manipulate a temporary table just as you would a permanent one, for the
most part . I’ll point out the aspects of temporary tables that are different from permanent
ones, or aspects that are often misunderstood .

tempdb
Temporary tables are created in tempdb, regardless of the database context of your
 session . They have physical representation in tempdb, although when they’re small enough
and Microsoft SQL Server has enough memory to spare, their pages reside in cache . SQL
Server persists the temporary table’s pages on disk when there is too little free memory .
Furthermore, tempdb’s recovery model is SIMPLE and cannot be changed . This means that
bulk operations against temporary tables can benefit from minimal logging . Also, SQL Server
supports a deferred drop feature in tempdb . When the application drops a large temporary
table SQL Servers defers the drop activity to a background thread, so the application can
continue working immediately .

Unlike user databases, tempdb is created from scratch as a copy of the model database
 every time you restart SQL Server, hence there’s no need for a recovery process in tempdb .
This fact leads to optimizations that you can benefit from when modifying data in tempdb

 Chapter 7 Temporary Tables and Table Variables 247

 regardless of the object type you are working with (temp table, table variable, or even
a regular table) . The transaction log doesn’t need to be flushed to disk and therefore
 transactions in tempdb are committed faster . Also, certain types of modifications against
 objects in tempdb (mainly INSERT and UPDATE operations on heap and LOB data) can
 benefit from optimized logging: because you don’t need to run a redo phase from the log
(roll forward transactions that were committed after the last checkpoint) only the value
 before the change needs to be recorded in the log—not the value after the change . Later in
the chapter I’ll provide more details about working with tempdb .

One reason to use a temporary table is to take the load off of a user database when you
need to persist temporary data . You can also enjoy the fact that tempdb is treated differently
from user databases .

Tip My preferred method for checking whether an object already exists is to use the OBJECT_ID
function . If the function returns NULL, the object doesn’t exist . If you want to check whether a
temporary table already exists, make sure you specify the tempdb database prefix; otherwise,
SQL Server looks for it in the current database, doesn’t find it, and always returns NULL . For
 example, to check whether #T1 exists, use OBJECT_ID(‘tempdb..#T1’) and not OBJECT_ID(‘#T1’) .

Also, SQL Server supports a second argument for OBJECT_ID, where you can specify the object
type you’re looking for (for example, ‘U’ for user table) . The second argument’s value must
match the type column in sys.objects .

Scope and Visibility
Temporary table names are prefixed with a number symbol (#) . A temporary table is owned
by the creating session and visible only to it . However, SQL Server allows different sessions
to create a temporary table with the same name . Internally, SQL Server adds underscores
and a unique numeric suffix to the table name to distinguish between temporary tables with
the same name across sessions . For example, suppose that you created a temporary table
called #T1 . If you query the view sys.objects in tempdb looking for a table with the name
LIKE ‘#T1%’, you will find a table with a name similar to the following (the suffix will vary):

#T1__
_________________________________00000000001E . Although this is the table’s internal name, you
refer to it in your code by the name you used when you created it—#T1 .

Within the session, the temporary table is visible only to the creating level in the call stack
and also inner levels, not to outer ones . For example, if you create a temp table in the
 session’s outermost level, it’s available anywhere within the session, across batches, and even
in inner levels—for example, dynamic batch, stored procedure, and trigger . As long as you
don’t close the connection, you can access the temporary table . If it’s created within a stored
procedure, it’s visible to the stored procedure and inner levels invoked by that procedure
(for example, a nested procedure or a trigger) . You can rely on the visibility behavior of

248 Inside Microsoft SQL Server 2008: T-SQL Programming

 temporary tables—for example, when you want to pass data between different levels in
your session, or even just signal something to an inner level and that inner level doesn’t
 support input parameters (for example, a trigger) . However, in some cases, you can pass such
information through the context_info feature, which is visible across the session . (See SET
CONTEXT_INFO in SQL Server Books Online for details .)

When its creating level gets out of scope (terminates), a temporary table is automatically
destroyed . If a temporary table was created in the outermost level, it is destroyed when the
session is terminated . If it’s created within a stored procedure, it is automatically dropped as
soon as the stored procedure is finished .

Remember that a temporary table is not visible to levels outside of the creating one in the
call stack . That’s why, for example, you can’t use a temporary table created in a dynamic
batch in the calling batch . When the dynamic batch is out of scope, the temporary table is
gone . Later in the chapter, I’ll suggest alternatives to use when such a need occurs . The next
part, regarding the scope, is a bit tricky . You can, in fact, create multiple temporary tables
with the same name within the same session, as long as you create them in different levels—
although doing so might lead to trouble . I’ll elaborate on this point in the “Temporary Table
Name Resolution” section later in the chapter .

The scope and visibility of a temporary table are very different than they are with both
 permanent tables and table variables and can be major factors in choosing one type of
 temporary object over another .

Transaction Context
A temporary table is an integral part of an outer transaction if it’s manipulated in one (with
DML or DDL) . This fact has consequences for logging and locking . Logging has to support
rollback operations only, not roll-forward ones . (Remember, there is no recovery process in
tempdb .) As for locking, because the temporary table is visible only to the creating session,
less locking is involved than with permanent tables, which can be accessed from multiple
sessions .

Therefore, one of the factors you should consider when choosing a temporary object type is
whether you want manipulation against it to be part of an outer transaction .

Statistics
The optimizer creates and maintains distribution statistics (column value histograms) for
 temporary tables and keeps track of their cardinality, much as it does for permanent ones .
This capability is especially important when you index the temporary table . Distribution
 information is available to the optimizer when it needs to estimate selectivity, and you will
get optimized plans that were generated based on this information . This is one of the main
areas in which temporary tables differ from table variables in terms of performance .

 Chapter 7 Temporary Tables and Table Variables 249

Also, because statistics are maintained for temporary tables, queries against your temporary
tables will be recompiled because of plan optimality reasons (recompilation threshold reached,
statistics refreshed, and so on) . The recompilation threshold is reached when a sufficient number
of rows of a referenced table have changed since the last compilation . The recompilation
threshold (RT) is based on the table type and the number of rows . For permanent tables, if
n ≤ 500, then RT = 500 (n = table’s cardinality when a query plan is compiled) . If n > 500, then
RT = 500 + 0.20 × n . For temporary tables, if n < 6, then RT = 6 . If 6 ≤ n ≤ 500, then RT = 500.
If n > 500, then RT = 500 + 0.20 × n . You realize that, for example, after inserting six rows into a
temporary table, adding a seventh will trigger a recompile, whereas with permanent tables the
first trigger will occur much later . If you want queries against temporary tables to use the same
recompilation thresholds as against permanent ones, use the KEEP PLAN query hint .

The fact that the optimizer maintains distribution statistics for temporary tables and the
aforementioned implications are the most crucial aspects of choosing a temporary object
type . These factors are especially important when choosing between temporary tables and
table variables, for which the optimizer doesn’t create or maintain distribution statistics .
Rowcount information is maintained for table variables (in sys.partitions) but this information
is often inaccurate . Table variables themselves do not trigger recompiles because of plan
 optimality reasons, and recompiles are required to update the rowcount information . You
can force a recompile for a query involving table variables using the RECOMPILE query hint .

You must ask yourself two main questions when considering which type of temporary object
to use:

 1. Does the optimizer need distribution statistics or accurate cardinality estimations to
generate an efficient plan, and if so, what’s the cost of using an inefficient plan when
statistics are not available?

 2. What’s the cost of recompilations if you do use temporary tables?

In some cases the optimizer doesn’t need statistics to figure out an optimal plan—for example,
given a query requesting all rows from a table, a point query filtering a column on which a
unique index is defined, a range query that utilizes a clustered or covering index, and so on . In
such cases, regardless of the table’s size, there’s no benefit in having statistics because you will
only suffer from the cost of recompilations . In such cases, consider using a table variable .

Also, if the table is tiny (say, a couple of pages), the alternatives are 1) using a table variable
resulting in complete scans and few or no recompilations; or 2) using a temporary table
 resulting in index seeks and more recompilations . The advantage of seeks versus scans may
be outweighed by the disadvantage of recompiles . That’s another case for which you should
consider using table variables .

On the other hand, if the optimizer does need statistics to generate an efficient plan and
you’re not dealing with tiny tables, the cost of using an inefficient plan might well be
 substantially higher than the cost of the recompilations involved . That’s a case in which you

250 Inside Microsoft SQL Server 2008: T-SQL Programming

should consider using temporary tables . In the “Table Variables” section, I’ll provide examples
related to these scenarios in which I’ll also demonstrate execution plans .

Temporary Table Name Resolution
As I mentioned earlier, technically you’re allowed to create multiple local temporary tables
with the same name within the same session, as long as you create them in different levels .
However, you should avoid doing this because of name-resolution considerations that might
cause your code to break .

When a batch is resolved, the schema of a temporary table that is created within that batch
is not available . So resolution of code that refers to the temporary table is deferred to run
time . However, if a temporary table name you refer to already exists within the session (for
 example, it has been created by a higher level in the call stack), that table name will resolve
to the existing temporary table . However, the code will always run against the innermost
temporary table with the referenced name .

This resolution architecture can cause your code to break when you least expect it; this can
happen when temporary tables with the same name exist in different levels with different
schemas .

This part is very tricky and is probably best explained by using an example . Run the following
code to create the stored procedures proc1 and proc2:

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.proc1', 'P') IS NOT NULL DROP PROC dbo.proc1;

IF OBJECT_ID('dbo.proc2', 'P') IS NOT NULL DROP PROC dbo.proc2;

GO

CREATE PROC dbo.proc1

AS

CREATE TABLE #T1(col1 INT NOT NULL);

INSERT INTO #T1 VALUES(1);

SELECT * FROM #T1;

EXEC dbo.proc2;

GO

CREATE PROC dbo.proc2

AS

CREATE TABLE #T1(col1 INT NULL);

INSERT INTO #T1 VALUES(2);

SELECT * FROM #T1;

GO

 Chapter 7 Temporary Tables and Table Variables 251

proc1 creates a temporary table called #T1 with a single integer column, inserts a row with
the value 1, returns #T1’s contents, and invokes proc2, which also creates a temporary table
called #T1 with a single integer column, inserts a row with the value 2, and returns #T1’s
 contents . Both #T1 tables have the same schema . Now, invoke proc1:

EXEC dbo.proc1;

The output is what you probably expected:

col1

1

col1

2

Both procedures returned the contents of the #T1 table they created . Being oblivious to the
resolution process I described earlier doesn’t really affect you in this case . After all, you did
get the expected result, and the code ran without errors . However, things change if you alter
proc2 in such a way that it creates #T1 with a different schema than in proc1:

ALTER PROC dbo.proc2

AS

CREATE TABLE #T1(col1 INT NULL, col2 INT NOT NULL);

INSERT INTO #T1 VALUES(2, 2);

SELECT * FROM #T1;

GO

Run proc1 again:

EXEC dbo.proc1;

And notice the error you get in the output:

col1

1

Msg 213, Level 16, State 1, Procedure proc2, Line 5

Insert Error: Column name or number of supplied values does not match table definition.

Can you explain the error? Admittedly, the problem in the resolution process I described is
very elusive, and you might not have realized it after the first read . Try to read the paragraph
describing the resolution process again, and then see whether you can explain the error .
Essentially, when proc2 was invoked by proc1, a table called #T1 already existed . So even
though proc2’s code creates a table called #T1 with two columns and inserts a row with two
values, when the INSERT statement is resolved, proc2’s #T1 does not exist yet, but proc1’s
does . Therefore, SQL Server reports a resolution error—you attempt to insert a row with two
values to a table with one column (as if) .

252 Inside Microsoft SQL Server 2008: T-SQL Programming

If you invoke proc2 alone, the code has no reason to fail because no other #T1 table exists in
the session—and it doesn’t fail:

EXEC dbo.proc2;

You get an output with the row loaded to proc2’s #T1:

col1 col2

----------- -----------

2 2

The execution plan for proc2 now resides in cache . Ironically, if you now run proc1 again, the
code will complete without errors . proc2 will not go through a resolution process again (neither
will it go through parsing or optimization); rather, SQL Server simply reuses the plan from cache:

EXEC dbo.proc1;

And now you get the output you probably expected to begin with:

col1

1

col1 col2

----------- -----------

2 2

However, if proc2’s plan is removed from cache and you run proc1, your code will break:

EXEC sp_recompile 'dbo.proc2';

EXEC dbo.proc1;

This generates the following output:

Object 'dbo.proc2' was successfully marked for recompilation.

col1

1

Msg 213, Level 16, State 1, Procedure proc2, Line 5

Column name or number of supplied values does not match table definition.

In short, I hope that you realize it’s wise to avoid naming temporary tables the same in
 different stored procedures/levels . A way to avoid such issues is to add a unique proc
 identifier to the names of temporary tables . For example, you could name the temporary
table in proc1 #T1_proc1, and in proc2 name the temporary table #T1_proc2 .

When you’re done, run the following code for cleanup:

IF OBJECT_ID('dbo.proc1', 'P') IS NOT NULL DROP PROC dbo.proc1;

IF OBJECT_ID('dbo.proc2', 'P') IS NOT NULL DROP PROC dbo.proc2;

 Chapter 7 Temporary Tables and Table Variables 253

Schema Changes to Temporary Tables in Dynamic Batches
Remember that a local temporary table created in a certain level is not visible to outer levels
in the call stack . Occasionally, programmers look for ways around this limitation, especially
when working with dynamic execution . That is, you want to construct the schema of the
 temporary table dynamically and populate it based on some user input, and then access it
from an outer level . Frankly, insisting on using local temporary tables in such a scenario is
very problematic . The solution involves ugly code, as is the nature of dynamic SQL in general,
plus recompilations resulting from schema changes and data modifications . You should
consider other alternatives to provide for the original need . Still, I want to show you a way
around the limitations .

Here’s an initial algorithm that attempts to provide a solution for this request:

 1. In the outer level, create temporary table #T with a single dummy column .

 2. Within a dynamic batch, perform the following tasks:

 a. Alter #T, adding the columns you need .

 b. Alter #T, dropping the dummy column .

 c. Populate #T .

 3. Back in the outer level, access #T in a new batch .

The problem with this algorithm lies in the last item within the dynamic batch . References
to #T will be resolved against the outer #T’s schema . Remember that when the batch is
 resolved, #T’s new schema is not available yet . The solution is to populate #T within another
dynamic batch, in a level inner to the dynamic batch that alters #T’s schema . You do this by
performing the following tasks:

 1. In the outer level, create temporary table #T with a single dummy column .

 2. Within a dynamic batch, perform the following tasks:

 a. Alter #T, adding the columns you need .

 b. Alter #T, dropping the dummy column .

 c. Open another level of dynamic execution and within it populate #T .

 3. Back in the outer level, access #T in a new batch .

Here’s some sample code that implements this algorithm:

-- Assume @column_defs and @insert were constructed dynamically

-- with appropriate safeguards against SQL injection

DECLARE @column_defs AS VARCHAR(1000), @insert AS VARCHAR(1000);

SET @column_defs = 'col1 INT, col2 DECIMAL(10, 2)';

SET @insert = 'INSERT INTO #T VALUES(10, 20.30)';

254 Inside Microsoft SQL Server 2008: T-SQL Programming

-- In the outer level, create temp table #T with a single dummy column

CREATE TABLE #T(dummycol INT);

-- Within a dynamic batch:

-- Alter #T adding the columns you need

-- Alter #T dropping the dummy column

-- Open another level of dynamic execution

-- Populate #T

EXEC('

ALTER TABLE #T ADD ' + @column_defs + ';

ALTER TABLE #T DROP COLUMN dummycol;

EXEC(''' + @insert + ''')');

GO

-- Back in the outer level, access #T in a new batch

SELECT * FROM #T;

-- Cleanup

DROP TABLE #T;

This generates the following output:

col1 col2

----------- -----------

10 20.30

Caching of Temporary Objects
SQL Server 2008 supports the caching of temporary objects across repeated calls of routines .
This feature is applicable to local temporary tables, table variables, and table-valued functions
used within routines such as stored procedures, triggers, and user-defined functions . When
the routine finishes, SQL Server keeps the catalog entry . If the object is smaller than 8 MB,
SQL Server keeps one data page and one IAM page, and uses those instead of allocating
new ones when the object is created again . If the object is larger than 8 MB, SQL Server
uses deferred drop, and immediately returns control to the application . This feature results
in reduction of contention against system catalog tables and allocation pages, and in faster
 creating and dropping of temporary objects .

I’ll demonstrate caching of temporary objects (across repeated calls of routines) through an
example . Run the following code to create a stored procedure called TestCaching that creates
a temporary table called #T1 and populates it with a few rows:

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.TestCaching', 'P') IS NOT NULL

 DROP PROC dbo.TestCaching;

GO

CREATE PROC dbo.TestCaching

AS

 Chapter 7 Temporary Tables and Table Variables 255

CREATE TABLE #T1(n INT, filler CHAR(2000));

INSERT INTO #T1 VALUES

 (1, 'a'),

 (2, 'a'),

 (3, 'a');

GO

Run the following query to determine which entries representing temporary tables exist in
the system catalog:

SELECT name FROM tempdb.sys.objects WHERE name LIKE '#%';

At this point there are no entries in the system catalog representing temporary tables;
 therefore, this query returns an empty set .

Execute the TestCaching procedure:

EXEC dbo.TestCaching;

The stored procedure terminated, but the temporary table was cached—or more specifically,
SQL Server kept its entry in the system catalog, an IAM page, and a data page . Query
 tempdb.sys.objects again:

SELECT name FROM tempdb.sys.objects WHERE name LIKE '#%';

This time you get an entry back representing the temporary table that was cached . I got the
following output (but of course you will get a different table name):

name

#2DE6D218

If the procedure’s execution plan is recompiled or removed from cache, SQL Server removes
the cached temporary objects that were created by the stored procedure from cache as well .
SQL Server also removes cached temporary objects when tempdb has little free space .

Run the following code to mark the stored procedure for recompile, causing the associated
cached temporary object to be removed from cache:

EXEC sp_recompile 'dbo.TestCaching';

Query sys.objects:

SELECT name FROM tempdb.sys.objects WHERE name LIKE '#%';

The query should return an empty result set . If not, try again in a few seconds, because the
table is dropped in the background .

256 Inside Microsoft SQL Server 2008: T-SQL Programming

Note that in the following cases SQL Server will not cache temporary objects across
 procedure calls:

n When you issue a DDL statement against the temporary table after it was created
"e .g ., CREATE INDEX" .

n When you define a named constraint .

n When you create the temporary object in a dynamic batch within the routine .

n When you create the temporary object in an ad-hoc batch (not within a routine) .

I’ll first demonstrate the effect of applying DDL changes post-creation of the temporary
table . Run the following code to alter the procedure TestCaching, adding an index to the
temporary table after it was created:

ALTER PROC dbo.TestCaching

AS

CREATE TABLE #T1(n INT, filler CHAR(2000));

CREATE UNIQUE INDEX idx1 ON #T1(n);

INSERT INTO #T1 VALUES

 (1, 'a'),

 (2, 'a'),

 (3, 'a');

GO

Next, run the procedure and query sys.objects:

EXEC dbo.TestCaching;

SELECT name FROM tempdb.sys.objects WHERE name LIKE '#%';

This returns an empty result set, indicating that the temporary table wasn’t cached .

As a workaround, you can include an unnamed UNIQUE or PRIMARY KEY constraint as part
of the temporary table definition . The constraint implicitly creates a unique index on the
 constraint keys . Run the following code to test this approach:

ALTER PROC dbo.TestCaching

AS

CREATE TABLE #T1(n INT, filler CHAR(2000), UNIQUE(n));

INSERT INTO #T1 VALUES

 (1, 'a'),

 (2, 'a'),

 (3, 'a');

GO

EXEC dbo.TestCaching;

SELECT name FROM tempdb.sys.objects WHERE name LIKE '#%';

 Chapter 7 Temporary Tables and Table Variables 257

This time the query against sys.objects should report one temporary table . I got the following
output:

name

#3A4CA8FD

Note that you can create composite indexes implicitly without sacrificing caching by
 including a composite UNIQUE or PRIMARY KEY constraint in your table definition, as in
UNIQUE(col1, col2, col3) .

As for named constraints, you might find this restriction odd, but naming a constraint
 prevents SQL Server from caching your temporary objects . You just saw in the last example
that when the UNIQUE constraint was not named, SQL Server cached the temporary table .
Now try the same example, but this time name the constraint:

ALTER PROC dbo.TestCaching

AS

CREATE TABLE #T1(n INT, filler CHAR(2000), CONSTRAINT UNQ_#T1_n UNIQUE(n));

INSERT INTO #T1 VALUES

 (1, 'a'),

 (2, 'a'),

 (3, 'a');

GO

EXEC dbo.TestCaching;

SELECT name FROM tempdb.sys.objects WHERE name LIKE '#%';

This time the temporary object wasn’t cached (again, it may take a few seconds for the
 temporary object that was cached previously to be removed from cache) . So even though
naming constraints is in general a good practice, bear in mind that if you want to benefit
from caching of temporary objects, you shouldn’t name them .

Global Temporary Tables
Global temporary tables differ from local ones mainly in their scope and visibility . They
are accessible by all sessions, with no security limitations whatsoever . Any session can even
drop the table . So when you design your application, you should factor in security and
 consider whether you really want temporary tables or just permanent ones . You create
global temporary tables by prefixing their names with two number signs (##), and like local
 temporary tables, they are created in tempdb . However, because global temporary tables
are accessible to all sessions, you cannot create multiple ones with the same name; neither in
the same session nor across sessions . So typical scenarios for using global temporary tables
are when you want to share temporary data among sessions and don’t care about security .

258 Inside Microsoft SQL Server 2008: T-SQL Programming

Unlike local temporary tables, global ones persist until the creating session—not the creating
level—terminates . For example, if you create such a table in a stored procedure and the
stored procedure goes out of scope, the table is not destroyed . SQL Server will automatically
attempt to drop the table when the creating session terminates, all statements issued against
it from other sessions finish, and any locks they hold are released .

I’ll walk you through a simple example to demonstrate the accessibility and termination of
a global temporary table . Open two connections to SQL Server (call them Connection 1 and
Connection 2) . In Connection 1, create and populate the table ##T1:

CREATE TABLE ##T1(col1 INT);

INSERT INTO ##T1 VALUES(1);

In Connection 2, open a transaction and modify the table:

BEGIN TRAN

 UPDATE ##T1 SET col1 = col1 + 1;

Then close Connection 1 . If not for the open transaction that still holds locks against the
 table, SQL Server would have dropped the table at this point . However, because Connection 2
still holds locks against the table, it’s not dropped yet . Next, in Connection 2, query the table
and commit the transaction:

 SELECT * FROM ##T1;

COMMIT

At this point, SQL Server drops the table because no active statements are accessing it, and
no locks are held against it . If you try to query it again from any session, you will get an error
saying that the table doesn’t exist:

SELECT * FROM ##T1;

In one special case you might want to have a global temporary table available but not
owned by any session . In this case, it will always exist, regardless of which sessions are open
or closed, and eliminated only if someone explicitly drops it . To achieve this, you create the
table within a procedure, and mark the stored procedure with the startup procedure option .
SQL Server invokes a startup procedure every time it starts . Furthermore, SQL Server always
maintains a reference counter greater than zero for a global temporary table created within
a startup procedure . This ensures that SQL Server will not attempt to drop it automatically .

Here’s some sample code that creates a startup procedure called CreateGlobals, which in turn
creates a global temporary table called ##Globals .

USE master;

IF OBJECT_ID('dbo.CreateGlobals', 'P') IS NOT NULL DROP PROC dbo.CreateGlobals

GO

CREATE PROC dbo.CreateGlobals

AS

 Chapter 7 Temporary Tables and Table Variables 259

CREATE TABLE ##Globals

(

 varname sysname NOT NULL PRIMARY KEY,

 val SQL_VARIANT NULL

);

GO

EXEC dbo.sp_procoption 'dbo.CreateGlobals', 'startup', 'true';

After restarting SQL Server, the global temporary table will be created automatically and
 persist until someone explicitly drops it . To test the procedure, restart SQL Server and then
run the following code:

SET NOCOUNT ON;

INSERT INTO ##Globals VALUES('var1', CAST('abc' AS VARCHAR(10)));

SELECT * FROM ##Globals;

You probably guessed already that ##Globals is a shared global temporary table where you
can logically maintain cross-session global variables . This can be useful, for example, when
you need to maintain temporary counters or other “variables” that are globally accessible by
all sessions . The preceding code creates a new global variable called var1, initializes it with
the character string ‘abc’, and queries the table . Here’s the output of this code:

varname val

----------- -----------

var1 abc

When you’re done, run the following code for cleanup:

USE master;

DROP PROC dbo.CreateGlobals;

DROP TABLE ##Globals;

Table Variables
Table variables are probably among the least understood T-SQL elements . Many myths
and misconceptions surround them, and these are embraced even by experienced T-SQL
 programmers . One widespread myth is that table variables are memory-resident only,
 without physical representation . Another myth is that table variables are always preferable
to temporary tables . In this section, I’ll dispel these myths and explain the scenarios in which
table variables are preferable to temporary tables as well as scenarios in which they aren’t
preferable . I’ll do so by first going through the fundamentals of table variables, just as I did
with temporary tables, and follow with tangible examples .

260 Inside Microsoft SQL Server 2008: T-SQL Programming

You create a table variable using a DECLARE statement, followed by the variable name and
the table definition . You then refer to it as you do with permanent tables . Here’s a very basic
example:

DECLARE @T1 TABLE(col1 INT);

INSERT @T1 VALUES(1);

SELECT * FROM @T1;

Note that the table-valued parameters that were added in SQL Server 2008 are implemented
internally like table variables . So the performance discussions in this section regarding table
variables apply to table-valued parameters as well . Table-valued parameters were discussed
earlier in the book in Chapter 3, “Stored Procedures .”

Limitations
Many limitations apply to table variables but not to temporary tables . In this section, I’ll
 describe some of them, whereas others will be described in dedicated sections .

n You cannot create explicit indexes on table variables, only PRIMARY KEY and UNIQUE
constraints, which create unique indexes underneath the covers . You cannot create
non-unique indexes . If you need an index on a non-unique column, you must add
 attributes that make the combination unique and create a PRIMARY KEY or UNIQUE
constraint on the combination .

n You cannot alter the definition of a table variable once it is declared . This means that
everything you need in the table definition must be included in the original DECLARE
statement . This fact is limiting on one hand, but it also results in fewer recompilations .
Remember that one of the triggers of recompilations is DDL changes .

n You cannot issue SELECT INTO against a table variable, rather you have to use INSERT
SELECT instead . Prior to SQL Server 2008 this limitation put table variables at a
 disadvantage compared to temporary tables because SELECT INTO could be done
as a minimally logged operation, though INSERT SELECT couldn’t . SQL Server 2008
 introduces improvements in minimally logged operations, including the ability to process
INSERT SELECT with minimal logging . I’ll demonstrate this capability later in the chapter .

n You cannot qualify a column name with a nondelimited table variable name (as in
@T1 .col1) . This is especially an issue when referring to a table variable’s column in
 correlated subqueries with column name ambiguity . To circumvent this limitation, you
have to delimit the table variable name (as in [@T1] .col1, or “@T1” .col1) .

n In queries that modify table variables, parallel plans will not be used . Queries that only
read from table variables can be parallelized .

tempdb
To dispel what probably is the most widespread myth involving table variables, let me state
that they do have physical representation in tempdb, very similar to temporary tables .

 Chapter 7 Temporary Tables and Table Variables 261

As proof, run the following code that shows which temporary tables currently exist in tempdb
by querying metadata info, creating a table variable, and querying metadata info again:

SELECT TABLE_NAME

FROM tempdb.INFORMATION_SCHEMA.TABLES

WHERE TABLE_NAME LIKE '#%';

GO

DECLARE @T TABLE(col1 INT);

INSERT INTO @T VALUES(1);

SELECT TABLE_NAME

FROM tempdb.INFORMATION_SCHEMA.TABLES

WHERE TABLE_NAME LIKE '#%';

When I ran this code, the first batch returned no output, whereas the second returned
#0CBAE877, which is the name of the temporary table in tempdb that represents the table
variable @T . Of course, you will probably get a different name when you run this code . But
the point is to show that a hidden temporary table is created behind the scenes . Just like
temporary tables, a table variable’s pages reside in cache when the table is small enough and
when SQL Server has enough memory to spare . So the discussion about aspects of working
with temporary tables with regard to tempdb applies to table variables as well .

Scope and Visibility
The scope of a table variable is well defined . It is defined as the current level, and within it the
current batch only, just as with any other variable . That is, a table variable is not accessible to
inner levels, and not even to other batches within the same level . In short, you can use it only
within the same batch it was created . This scope is much more limited than that of a local
temporary table and is typically an important factor in choosing a temporary object type .

Transaction Context
Unlike a temporary table, a table variable is not part of an outer transaction; rather, its
 transaction scope is limited to the statement level to support statement rollback capabilities
only . If you modify a table variable and the modification statement is aborted, the changes
of that particular statement will be undone . However, if the statement is part of an outer
 transaction that is rolled back, changes against the table variable that finished will not be
 undone . Table variables are unique in this respect .

You can rely on this behavior to your advantage . For example, suppose that you need to
write an audit trigger that audits changes against some table . If some logical condition
is met, you want to roll back the change; however, you still want to audit the attempted
change . If you copy data from inserted/deleted to your audit tables, a rollback in the trigger
also undoes the audit writes . If you first roll back the change and then try to audit it, deleted
and inserted are empty .

262 Inside Microsoft SQL Server 2008: T-SQL Programming

To solve the problem, you first copy data from inserted/deleted to table variables, issue
a rollback, and then in a new transaction within the trigger, copy the data from the table
variables to your audit tables . This is the simplest way around the problem .

The unique transaction context of table variables has performance advantages over
 temporary tables because less logging and locking are involved .

Statistics
As I mentioned earlier, SQL Server doesn’t create distribution statistics or maintain accurate
cardinality information for table variables as it does for temporary tables . This is one of the
main factors you should consider when choosing a type of temporary object for a given task .
The downside is that you might get inefficient plans when the optimizer needs to consult
histograms to determine selectivity . This is especially a problem with big tables, where you
might end up with excessive I/O . The upside is that table variables, for the very same reason,
involve much fewer recompilations . Before making your choice, you need to figure out which
is more expensive in the particular task for which you’re designating the temporary object .

To explain the statistics aspect of table variables in a more tangible way, I’ll show you some
queries, their execution plans, and their I/O costs .

Examine the following code, and request an estimated execution plan for it from SQL Server
Management Studio (SSMS):

DECLARE @T TABLE

(

 col1 INT NOT NULL PRIMARY KEY,

 col2 INT NOT NULL,

 filler CHAR(200) NOT NULL DEFAULT('a'),

 UNIQUE(col2, col1)

);

INSERT INTO @T(col1, col2)

 SELECT n, (n - 1) % 10000 + 1 FROM dbo.Nums

 WHERE n <= 100000;

SELECT * FROM @T WHERE col1 = 1;

SELECT * FROM @T WHERE col1 <= 50000;

SELECT * FROM @T WHERE col2 = 1;

SELECT * FROM @T WHERE col2 <= 2;

SELECT * FROM @T WHERE col2 <= 5000;

You can find the code to create and populate the Nums table in Chapter 2, “User-Defined
Functions .”

The estimated execution plans generated for these queries are shown in Figure 7-1 .

 Chapter 7 Temporary Tables and Table Variables 263

FiguRe 7-1 Estimated execution plans for queries against a table variable

The code creates a table variable called @T with two columns . The values in col1 are unique,
and each value in col2 appears 10 times . The code creates two unique indexes underneath
the covers: one on col1, and one on (col2, col1) .

The first important thing to notice in the estimated plans is the number of rows the optimizer
estimates to be returned from each operator—one in all five cases, even when looking for a
non-unique value or ranges . You realize that unless you filter a unique column, the optimizer
simply cannot estimate the selectivity of queries for lack of statistics . So it assumes one row .
This hard-coded assumption is based on the fact that SQL Server assumes that you use table
 variables only with small sets of data .

As for the efficiency of the plans, the first two queries get a good plan (seek, followed by
a partial scan in the second query) . But that’s because you have a clustered index on the
 filtered column, and the optimizer doesn’t need statistics to figure out what the optimal plan
is in this case . However, with the third and fourth queries you get a table scan (an unordered
clustered index scan) even though both queries are very selective and would benefit from
using the index on (col2, col1), followed by a small number of lookups . The fifth query would
benefit from a table scan because it has low selectivity . Fortunately, it got an adequate plan,
but that’s by chance . To analyze I/O costs, run the code after turning on the SET STATISTICS
IO option . The amount of I/O involved with each of the last three queries is 2,713 reads,
which is equivalent to the number of pages consumed by the table .

264 Inside Microsoft SQL Server 2008: T-SQL Programming

Next, go through the same analysis process with the following code, which uses a temporary
table instead of a table variable:

SELECT n AS col1, (n - 1) % 10000 + 1 AS col2,

 CAST('a' AS CHAR(200)) AS filler

INTO #T

FROM dbo.Nums

WHERE n <= 100000;

ALTER TABLE #T ADD PRIMARY KEY(col1);

CREATE UNIQUE INDEX idx_col2_col1 ON #T(col2, col1);

GO

SELECT * FROM #T WHERE col1 = 1;

SELECT * FROM #T WHERE col1 <= 50000;

SELECT * FROM #T WHERE col2 = 1;

SELECT * FROM #T WHERE col2 <= 2;

SELECT * FROM #T WHERE col2 <= 5000;

The estimated execution plans generated for these queries are shown in Figures 7-2 and 7-3 .

FiguRe 7-2 Estimated execution plans for queries 1, 2, and 3 against a temporary table

 Chapter 7 Temporary Tables and Table Variables 265

FiguRe 7-3 Estimated execution plans for queries 4 and 5 against a temporary table

As an aside, in case you’re curious about the Missing Index messages, SSMS 2008 reports
this information in the graphical execution plan . Both SQL Server 2005 and SQL Server 2008
may enter a phase in optimization where they report missing index info . In both versions this
 information is available in the XML form of the execution plan . The new feature in SSMS 2008 is
that it exposes this info graphically with the green-colored messages, whereas SSMS 2005 didn’t .

Now that statistics are available, the optimizer can make educated estimations . You can
see that the estimated number of rows returned from each operator is more reasonable .
You can also see that high-selectivity queries 3 and 4 use the index on (col2, col1), and the
 low-selectivity query 5 does a table scan, as it should .

STATISTICS IO reports dramatically reduced I/O costs for queries 3 and 4 . These are 32 and
62 reads, respectively, against the temporary table versus 2,713 for each of these queries
against the table variable .

When you’re done, drop #T for cleanup:

DROP TABLE #T;

Minimally Logged Inserts
As mentioned earlier, you can use SELECT INTO with temporary tables but not with
 table variables . With table variables you have to use INSERT SELECT instead . Prior to SQL
Server 2008, INSERT SELECT involved more logging than SELECT INTO . This was true
even with the reduced logging that happens with inserts against objects in tempdb . SQL
Server 2008 adds the INSERT SELECT statement to the list of insertion methods that can be
performed in a minimally logged mode, just like SELECT INTO .

266 Inside Microsoft SQL Server 2008: T-SQL Programming

I’ll demonstrate this capability through an example . I’ll insert data into the temporary object
using SELECT INTO and INSERT SELECT in both SQL Server 2005 and SQL Server 2008 . To
figure out the amount of logging involved with the operation, I’ll query the undocumented
fn_dblog function before and after the operation, and calculate the differences in terms of
number of log records, and total record lengths, like so:

CHECKPOINT;

GO

DECLARE @numrecords AS INT, @size AS BIGINT;

SELECT

 @numrecords = COUNT(*),

 @size = COALESCE(SUM([Log Record Length]), 0)

FROM fn_dblog(NULL, NULL) AS D;

-- <operation>

SELECT

 COUNT(*) - @numrecords AS numrecords,

 CAST((COALESCE(SUM([Log Record Length]), 0) - @size)

 / 1024. / 1024. AS NUMERIC(12, 2)) AS size_mb

FROM fn_dblog(NULL, NULL) AS D;

The first test is with the SELECT INTO statement that is processed with minimal logging
in both SQL Server 2005 and SQL Server 2008, provided that the recovery model of the
 database is not set to FULL . As a reminder, tempdb’s recovery model is SIMPLE and cannot
be changed . Here’s the code I used for this test:

USE tempdb;

CHECKPOINT;

GO

DECLARE @numrecords AS INT, @size AS BIGINT;

SELECT

 @numrecords = COUNT(*),

 @size = COALESCE(SUM([Log Record Length]), 0)

FROM fn_dblog(NULL, NULL) AS D;

SELECT n, CAST('a' AS CHAR(2000)) AS filler

INTO #TestLogging

FROM dbo.Nums

WHERE n <= 100000;

SELECT

 COUNT(*) - @numrecords AS numrecords,

 CAST((COALESCE(SUM([Log Record Length]), 0) - @size)

 / 1024. / 1024. AS NUMERIC(12, 2)) AS size_mb

FROM fn_dblog(NULL, NULL) AS D;

GO

DROP TABLE #TestLogging;

 Chapter 7 Temporary Tables and Table Variables 267

As you can see, the operation is a SELECT INTO statement populating the temporary table
#TestLogging with 100,000 rows by querying the Nums table . The output I got in SQL
Server 2005 and SQL Server 2008 was similar:

numrecords size_mb

----------- --------

9560 0.63

The number of log records is far lower than the number of rows inserted because only
changes in allocation bitmaps (GAM, SGAM, PFS, IAM) were recorded in the log . Also, the
total size recorded in the log is very small .

Next, I used the following code to test an INSERT SELECT against a table variable populating
it with the same sample data used in the SELECT INTO test:

USE tempdb;

CHECKPOINT;

GO

DECLARE @numrecords AS INT, @size AS BIGINT;

SELECT

 @numrecords = COUNT(*),

 @size = COALESCE(SUM([Log Record Length]), 0)

FROM fn_dblog(NULL, NULL) AS D;

DECLARE @TestLogging AS TABLE(n INT, filler CHAR(2000));

INSERT INTO @TestLogging(n, filler)

 SELECT n, CAST('a' AS CHAR(2000))

 FROM dbo.Nums

 WHERE n <= 100000;

SELECT

 COUNT(*) - @numrecords AS numrecords,

 CAST((COALESCE(SUM([Log Record Length]), 0) - @size)

 / 1024. / 1024. AS NUMERIC(12, 2)) AS size_mb

FROM fn_dblog(NULL, NULL) AS D;

GO

Here’s the output I got in SQL Server 2005, indicating more logging activity than the
 corresponding SELECT INTO method:

numrecords size_mb

----------- --------

184394 12.92

In SQL Server 2008 the output of the INSERT SELECT method was similar to the output I got
for the corresponding SELECT INTO test, indicating minimal logging in both cases:

numrecords size_mb

----------- --------

9539 0.63

268 Inside Microsoft SQL Server 2008: T-SQL Programming

This improvement in SQL Server 2008 means that temporary tables don’t have an advantage
over table variables in terms of amount of logging of SELECT INTO versus INSERT SELECT .

tempdb Considerations
Remember that temporary tables and table variables are physically stored in tempdb . SQL
Server also stores data in tempdb for many implicit activities that take place behind the
scenes . Examples for such activities include: spooling data as part of an execution plan of a
query, sorting, hashing, and maintaining row versions . You realize that tempdb can become a
bottleneck, and you should give it focused tuning attention so that it will accommodate the
workload against your server .

Here are some important points you should consider when tuning tempdb:

n In systems where tempdb is heavily used (explicitly or implicitly), consider placing tempdb
on its own disk array, and not on the same drives where other databases are located . Also,
stripe the data portion to multiple drives to increase I/O throughput . The more spindles,
the better . Ideally, use RAID 10 for the data portion and RAID 1 for the log .

n Every time you restart SQL Server, tempdb is re-created, and its size reverts to the
 effective defined size . If you made no changes to the original size configuration after
installing SQL Server, tempdb’s size will default to 8 MB and its growth increment will
default to 10 percent . In most production environments, these values might not be
practical . Whenever a process needs to store data in tempdb and tempdb is full, SQL
Server will initiate an autogrow operation . The process will have to wait for the space
to be allocated . Also, when the database is small, 10 percent is a very small unit . The
small fragments will most probably be allocated in different places on disk, resulting
in a high level of file-system fragmentation . And if that’s not enough, remember that
every time SQL Server restarts, tempdb’s size will revert to its defined size (8 MB) . This
means that the whole process will start again, where tempdb will keep on autogrowing
until it reaches a size appropriate to your environment’s workload . Until it reaches that
point, processes will suffer as they wait while tempdb autogrows .

n You can figure out the appropriate size for tempdb by observing its actual size after
a period of activity without restarts . You then alter the database and change the SIZE
parameter of tempdb’s files so that tempdb’s size will be appropriate . Whenever SQL
Server is restarted, tempdb will just start out at the defined size . If you do this, there
won’t be a need for autogrowth until tempdb gets full, which should occur only with
irregular and excessive tempdb activity .

n Remember that logically tempdb is re-created whenever SQL Server restarts . Like any
other new database, tempdb is created as a copy of the model database . This means
that if you create permanent objects in tempdb (permanent tables, user-defined types,

 Chapter 7 Temporary Tables and Table Variables 269

database users, and so on), they’re erased in the next restart . If you need objects to
 exist in tempdb after restarts, you have two options . One is to create them in model .
They will appear in tempdb after a restart . However, this option will also affect new user
databases you create . Another option is to encapsulate code that creates all objects in
a startup procedure . (See information on startup procedures earlier in the chapter in
the “Global Temporary Tables” section .) Remember that a startup procedure is invoked
whenever SQL Server is restarted . Essentially the objects will be re-created every time
upon restart, but this will be invisible to users .

n With regard to temporary tables, obviously dealing with very large volumes of data
can cause performance problems . However, you might face performance problems
with tempdb even when working with small temporary tables . When many concurrent
 sessions create temporary tables, SQL Server might experience latch contention on
 allocation bitmaps when it tries to allocate pages . In the last couple of versions of SQL
Server this problem was reduced substantially because of improvements in the engine—
caching of temporary objects across routine calls—and improvements in the proportional
fill algorithm SQL Server uses . Still, the problem may occur . The recommended practices
to mitigate the problem are to use multiple data files for tempdb (as a general rule of
thumb, one file per each CPU core), and to meet the requirements described earlier that
would allow caching of temporary objects across routine calls .

More Info You can find more details about tempdb in papers found at the following URLs:
http://technet.microsoft.com/en-us/library/cc966545.aspx and http://technet.microsoft.com/en-us/
library/cc966425.aspx . Even though the papers were originally written for SQL Server 2005, most
of the content describing SQL Server 2005 behavior is applicable for SQL Server 2008 as well .

Table expressions
In this chapter’s opening paragraphs, I mentioned that there might be cases in which
you need “logical” temporary tables—that is, only virtual materialization of interim sets,
as opposed to physical materialization in temporary tables and table variables . Table
 expressions give you this capability . These include derived tables, CTEs, views, and inline
table-valued UDFs . Here I’ll point out the scenarios in which these are preferable to other
temporary objects and provide an example .

You should use table expressions in cases where you need a temporary object mainly for
simplification—for example, when developing a solution in a modular approach, a step
at a time . Also, use table expressions when you need to access the temporary object only
once or a very small number of times and you don’t need to index interim result sets . SQL
Server doesn’t physically materialize a table expression . The optimizer merges the outer
query with the inner one, and it generates one plan for the query accessing the underlying
tables directly . So I’m mainly talking about simplification, and I show such examples

270 Inside Microsoft SQL Server 2008: T-SQL Programming

throughout the book . But even beyond simplification, in some cases you will be able to
 improve performance of solutions by using table expressions . There might be cases where
the optimizer will generate a better plan for your query compared to alternative queries .

In terms of scope and visibility, derived tables and CTEs are available only to the current
 statement, whereas views and inline UDFs are available globally to users that have permissions
to access them .

As an example of using a table expression to solve a problem, suppose you want to return
from the Sales .Orders table in the InsideTSQL2008 database, the row with the highest
 orderid for each employee . Here’s a solution that uses a CTE:

USE InsideTSQL2008;

WITH EmpMax AS

(

 SELECT empid, MAX(orderid) AS maxoid

 FROM Sales.Orders

 GROUP BY empid

)

SELECT O.orderid, O.empid, O.custid, O.orderdate

FROM Sales.Orders AS O

 JOIN EmpMax AS EM

 ON O.orderid = EM.maxoid;

This generates the following output:

orderid empid custid orderdate

----------- ----------- ----------- -----------------------

11077 1 65 2008-05-06 00:00:00.000

11073 2 58 2008-05-05 00:00:00.000

11063 3 37 2008-04-30 00:00:00.000

11076 4 9 2008-05-06 00:00:00.000

11043 5 74 2008-04-22 00:00:00.000

11045 6 10 2008-04-23 00:00:00.000

11074 7 73 2008-05-06 00:00:00.000

11075 8 68 2008-05-06 00:00:00.000

11058 9 6 2008-04-29 00:00:00.000

Comparison Summary
Table 7-1 contains a summary of the functionality and behavior of the different object
types . Note that I don’t include global temporary tables because typically you use those
for different purposes than the other types of temporary objects . You might find this table
handy as a reference when you need to choose the appropriate temporary object type for
a given task .

 Chapter 7 Temporary Tables and Table Variables 271

TABLe 7-1 Comparison Summary

Functionality/Object Type Local Temp Table Table Variable Table Expression

Scope/Visibility Current and inner
levels

Local Batch Derived Table/CTE:
Current statement

View/Inline UDF: Global

Physical representation in
tempdb

Yes Yes No

Part of outer transaction/
affected by outer transaction
rollback

Yes No N/A

Logging and locking To support
 transaction
rollback

To support
 statement
 rollback

N/A

Statistics/recompilations/
efficient plans

Yes No N/A

Table size Any Typically
 recommended
for small tables

Any

Summary exercises
This section will introduce three scenarios in which you need to work with temporary objects .
Based on the knowledge you’ve acquired in this chapter, you need to implement a solution
with the appropriate temporary object type .

The scenarios involve querying Customers and Orders tables . To test the logical correctness
of your solutions, use the Sales .Customers and Sales .Orders tables in the InsideTSQL2008
sample database . To test the performance of your solutions, use the tables that you create
and populate in tempdb by running the code in Listing 7-1 .

LiSTing 7-1 Code that creates large tables for summary exercises

SET NOCOUNT ON;

USE tempdb;

IF SCHEMA_ID('Sales') IS NULL EXEC('CREATE SCHEMA Sales');

IF OBJECT_ID('Sales.Customers', 'U') IS NOT NULL DROP TABLE Sales.Customers;

IF OBJECT_ID('Sales.Orders', 'U') IS NOT NULL DROP TABLE Sales.Orders;

GO

SELECT n AS custid

INTO Sales.Customers

FROM dbo.Nums

WHERE n <= 10000;

272 Inside Microsoft SQL Server 2008: T-SQL Programming

ALTER TABLE Sales.Customers ADD PRIMARY KEY(custid);

SELECT n AS orderid,

 DATEADD(day, ABS(CHECKSUM(NEWID())) % (4*365), '20060101') AS orderdate,

 1 + ABS(CHECKSUM(NEWID())) % 10000 AS custid,

 1 + ABS(CHECKSUM(NEWID())) % 40 AS empid,

 CAST('a' AS CHAR(200)) AS filler

INTO Sales.Orders

FROM dbo.Nums

WHERE n <= 1000000;

ALTER TABLE Sales.Orders ADD PRIMARY KEY(orderid);

CREATE INDEX idx_cid_eid ON Sales.Orders(custid, empid);

Comparing Periods
The first exercise involves multiple references to the same intermediate result set of a query .
The task is to query the Orders table, and return for each order year the number of orders
placed that year, and the difference from the number of orders placed in the previous year .
Here’s the desired output when you run your solution against InsideTSQL2008:

orderyear numorders diff

----------- ----------- -----------

2006 152 NULL

2007 408 256

2008 270 -138

You could use a table expression representing yearly counts of orders, and join two instances
of the table expression to match to each current year the previous year, so that you can
 calculate the difference . Here’s an example for implementing such an approach using a CTE:

SET STATISTICS IO ON;

WITH YearlyCounts AS

(

 SELECT YEAR(orderdate) AS orderyear, COUNT(*) AS numorders

 FROM Sales.Orders

 GROUP BY YEAR(orderdate)

)

SELECT C.orderyear, C.numorders, C.numorders - P.numorders AS diff

FROM YearlyCounts AS C

 LEFT OUTER JOIN YearlyCounts AS P

 ON C.orderyear = P.orderyear + 1;

Remember that a table expression is nothing but a reflection of the underlying tables . When
you query two occurrences of the YearlyCounts CTE, both get expanded behind the scenes .
All the work of scanning the data and aggregating it happens twice . You can see this clearly
in the query’s execution plan shown in Figure 7-4 .

 Chapter 7 Temporary Tables and Table Variables 273

FiguRe 7-4 Execution plan for a solution to the “comparing periods” exercise (using table expressions)

Scanning the base data from the clustered index involves 28,807 reads . Because the data
was scanned twice, STATISTICS IO reports 57,614 reads . As you can realize, scanning and
 aggregating the base data twice is unnecessary . This is a scenario where you should consider
using a temporary table or a table variable . When choosing between the two, remember
that one of the things to consider is the size of the intermediate result set that will be stored
in the temporary object . Because the intermediate result set here will have only one row per
year, obviously it’s going to be very tiny, and it will probably require only one or two pages .
In this case, it makes sense to use a table variable and benefit from the fact that it will not
cause plan optimality related recompiles .

Here’s the solution using a table variable:

DECLARE @YearlyCounts AS TABLE

(

 orderyear INT PRIMARY KEY,

 numorders INT

);

INSERT INTO @YearlyCounts(orderyear, numorders)

 SELECT YEAR(orderdate) AS orderyear, COUNT(*) AS numorders

 FROM Sales.Orders

 GROUP BY YEAR(orderdate);

274 Inside Microsoft SQL Server 2008: T-SQL Programming

SELECT C.orderyear, C.numorders, C.numorders - P.numorders AS diff

FROM @YearlyCounts AS C

 LEFT OUTER JOIN @YearlyCounts AS P

 ON C.orderyear = P.orderyear + 1;

The work that includes scanning the base data and aggregating it happens only once and
the tiny result is stored in a table variable . Then the last query joins two instances of the tiny
table variable to produce the desired output . The execution plan for this solution is shown in
Figure 7-5 .

FiguRe 7-5 Execution plan for a solution to the “comparing periods” exercise (using table variables)

Because the base data from the clustered index on the Orders table was scanned only
once, STATISTICS IO reports only about half the number of reads (28,621) compared to the
 previous solution . It also reports a very small number of reads (11) from the table variable .

Recent Orders
The task in the second exercise is to query the Orders table, and return for each customer the
orders with the most recent order date for the customer . Here’s the desired output when you
run your solution against InsideTSQL2008, shown in abbreviated form:

orderid orderdate custid empid

----------- ----------------------- ----------- -----------

11044 2008-04-23 00:00:00.000 91 4

11005 2008-04-07 00:00:00.000 90 2

11066 2008-05-01 00:00:00.000 89 7

10935 2008-03-09 00:00:00.000 88 4

 Chapter 7 Temporary Tables and Table Variables 275

11025 2008-04-15 00:00:00.000 87 6

11046 2008-04-23 00:00:00.000 86 8

10739 2007-11-12 00:00:00.000 85 3

10850 2008-01-23 00:00:00.000 84 1

10994 2008-04-02 00:00:00.000 83 2

10822 2008-01-08 00:00:00.000 82 6

...

There are many ways to solve this problem, some of which I’ll present here . But most
 solutions benefit from the following index on custid, orderdate as the keys and empid, orderid
as included columns:

CREATE INDEX idx_cid_od_i_eid_oid ON Sales.Orders(custid, orderdate)

 INCLUDE(empid, orderid);

The first solution I’ll present is one where I use a CTE to calculate the maximum order date
per customer, and then in the outer query join the Orders table with the CTE to return the
orders with the maximum order date for each customer, like so:

WITH CustMax AS

(

 SELECT custid, MAX(orderdate) AS mx

 FROM Sales.Orders

 GROUP BY custid

)

SELECT O.orderid, O.orderdate, O.custid, O.empid

FROM Sales.Orders AS O

 JOIN CustMax AS M

 ON O.custid = M.custid

 AND O.orderdate = M.mx;

Here the fact that a table expression is not materialized—rather its definition gets
 expanded—is an advantage . You might expect SQL Server to scan the data twice—once to
process the inner reference to the Orders table in the CTE query, and another for the outer
reference to the Orders table . But the optimizer figured out a way to handle this query by
scanning the data only once, which is truly admirable . Figure 7-6 shows the execution plan
the optimizer produced for this query .

FiguRe 7-6 Execution plan for a solution to the “recent orders” exercise (using a CTE and join)

The Index Seek operator against the index you just created seeks the last entry in the leaf
of the index, and then starts scanning the leaf level backward . The Segment operator
 segments the rows by customer, and the Top operator filters only the rows with the
 maximum order date per customer . This is a very efficient plan that requires scanning the
 index you created earlier only once, in order . STATISTICS IO reports 3,231 reads, which is
close to the number of pages in the leaf of the index .

276 Inside Microsoft SQL Server 2008: T-SQL Programming

You realize that if you implement a similar solution, except using a temporary table instead
of the table expression, the data will have to be scanned more than once—one time to
produce the aggregated information you store in the temporary table, and another time
to process the outer reference to Orders representing the base data that you join with the
temporary table . Here’s an implementation of this approach:

CREATE TABLE #CustMax

(

 custid INT NOT NULL PRIMARY KEY,

 mx DATETIME NOT NULL

);

INSERT INTO #CustMax(custid, mx)

 SELECT custid, MAX(orderdate) AS mx

 FROM Sales.Orders

 GROUP BY custid;

SELECT O.orderid, O.orderdate, O.custid, O.empid

FROM Sales.Orders AS O

 JOIN #CustMax AS M

 ON O.custid = M.custid

 AND O.orderdate = M.mx;

DROP TABLE #CustMax;

The execution plan for this solution is shown in Figure 7-7 .

FiguRe 7-7 Execution plan for a solution to the “recent orders” exercise (using temporary tables)

 Chapter 7 Temporary Tables and Table Variables 277

The first plan is for the population of the temporary table, and here you can see the first
scan of the index you created earlier, plus aggregation of the data, and storing the result
in the temp table’s clustered index . The second plan is for the join query, showing that the
base data from the index on Orders is scanned again, as well as the data from the temporary
 table, and the two inputs are joined using a merge join algorithm . STATISTICS IO reports
twice 3,231 logical reads against Orders for the first plan, plus 3,231 logical reads against
Orders and 28 logical reads against the temporary table for the second plan .

Clearly, in this case, the approach using the table expression was more efficient . By the way,
this problem has other solutions using table expressions . For example, the following solution
uses the CROSS APPLY operator and a derived table:

SELECT A.*

FROM Sales.Customers AS C

 CROSS APPLY (SELECT TOP (1) WITH TIES orderid, orderdate, custid, empid

 FROM Sales.Orders AS O

 WHERE O.custid = C.custid

 ORDER BY orderdate DESC) AS A;

Figure 7-8 shows the execution plan for this query .

FiguRe 7-8 Execution plan for a solution to the “recent orders” exercise (using a derived table and APPLY)

As you can see, the plan scans the clustered index on the Customers table, and for each
customer, uses a seek operation against the nonclustered index on Orders to pull the orders
that were placed by the current customer in its maximum order date . With a low density of
customers—as in our case—this plan is less efficient than the one shown in Figure 7-7 for the
previous solution based on a CTE . STATISTICS IO reports 31,931 reads from Orders, and those
are random reads unlike the sequential ones you got from the plan in Figure 7-7 . The solution
based on the APPLY operator excels particularly when the density of customers is very high,
and the number of seek operations is therefore accordingly small .

Finally, another solution based on table expressions that you might want to consider
is one that assigns ranks to orders partitioned by customer—ordered by order date
 descending—and then filter only the rows with a rank value equal to 1 . For a partitioned
ranking calculation, the optimizer will only use an index and avoid sorting if the key columns

278 Inside Microsoft SQL Server 2008: T-SQL Programming

have the same sorting direction in the index as they do in the ranking calculation’s OVER
clause . Create a nonclustered index with orderdate descending like so:

CREATE INDEX idx_cid_od_i_eid_oidD ON Sales.Orders(custid, orderdate DESC)

 INCLUDE(empid, orderid);

Then you will get an efficient plan from the following solution:

WITH OrderRanks AS

(

 SELECT orderid, orderdate, custid, empid,

 RANK() OVER(PARTITION BY custid ORDER BY orderdate DESC) AS rnk

 FROM Sales.Orders

)

SELECT *

FROM OrderRanks

WHERE rnk = 1;

The plan is shown in Figure 7-9 .

FiguRe 7-9 Execution plan for a solution to the “recent orders” exercise (using ranks and a CTE)

The efficiency of the plan is quite similar to the one shown earlier in Figure 7-7 . Here as well
the nonclustered index is scanned once in order . STATISTICS IO reports 3,231 logical reads as
expected . This plan, like the one shown in Figure 7-7, excels when the density of customers
is low .

When you’re done, run the following code for cleanup:

DROP INDEX Sales.Orders.idx_cid_od_i_eid_oid;

DROP INDEX Sales.Orders.idx_cid_od_i_eid_oidD;

Relational Division
For the last summary exercise, you’re given the following task: you need to determine which
 customers have orders handled by the same set of employees . The result set should contain one
row for each customer, with two columns: the customer ID and a value that identifies the group
of employees that handled orders for the customer . The latter is expressed as the minimum
 customer ID out of all customers that share the same group of employees . That is, if customers
A, B, and D were handled by one group of employees (for example, 3, 7, 9), and customers C and

 Chapter 7 Temporary Tables and Table Variables 279

E by a different group (for example, 3 and 7), the result set would contain {(A, A), (B, A), (D, A), (C,
C), (E, C)} . It will be convenient to use NULL instead of the minimum customer ID to identify the
group of no employees for customers without orders . Following is the desired result against the
InsideTSQL2008 database, shown here in abbreviated form:

custid grp

----------- -----------

22 NULL

57 NULL

1 1

2 2

78 2

3 3

81 3

4 4

5 5

34 5

...

You can observe, for example, that customers 2 and 78 were handled by the same group
of employees, because for both customers, grp is 2 . Remember that you should use the
sample tables in the InsideTSQL2008 database only to check the accuracy of your result . For
 performance estimations, use the tables you created earlier in tempdb by running the code
in Listing 7-1 . Like before, also with this problem the performance measures I will mention
were measured against the tables in tempdb .

The first solution doesn’t make any use of temporary objects; rather, it implements a classic
relational division approach applying reverse logic with subqueries:

SELECT custid,

 CASE WHEN EXISTS(SELECT * FROM Sales.Orders AS O

 WHERE O.custid = C1.custid)

 THEN COALESCE(

 (SELECT MIN(C2.custid)

 FROM Sales.Customers AS C2

 WHERE C2.custid < C1.custid

 AND NOT EXISTS

 (SELECT * FROM Sales.Orders AS O1

 WHERE O1.custid = C1.custid

 AND NOT EXISTS

 (SELECT * FROM Sales.Orders AS O2

 WHERE O2.custid = C2.custid

 AND O2.empid = O1.empid))

 AND NOT EXISTS

 (SELECT * FROM Sales.Orders AS O2

 WHERE O2.custid = C2.custid

 AND NOT EXISTS

 (SELECT * FROM Sales.Orders AS O1

 WHERE O1.custid = C1.custid

 AND O1.empid = O2.empid))),

 custid) END AS grp

FROM Sales.Customers AS C1

ORDER BY grp, custid;

280 Inside Microsoft SQL Server 2008: T-SQL Programming

The query invokes a CASE expression for every customer from the Customers table (C1) .
The CASE expression invokes the COALESCE function for customers who placed orders, and
 returns NULL for customers who placed no orders . If the customer placed orders, COALESCE
will substitute a NULL returned by the input expression with the current custid . The input
 expression will return the result of the following:

n Return the minimum custid from a second instance of Customers (C2)

n Where C2.custid (cust2) is smaller than C1.custid (cust1)

n And you cannot find an employee in cust1’s orders that does not appear in cust2’s
orders

n And you cannot find an employee in cust2’s orders that does not appear in cust1’s
orders

Logically, you could do without filtering cust2 < cust1, but this expression is used to avoid
wasting resources . Anyway, you need to return the minimum custid out of the ones with the
same employee list . If customer A has the same employee group as customer B, both will
end up with a grp value of A . For customer B, there’s a point in comparing it to customer A
(smaller ID), but for customer A there’s no point in comparing it to customer B (higher ID) .
Naturally, the minimum custid with a given employee group will not have the same employee
group as any customers with smaller IDs . In such a case, the expression will return NULL,
and the outer COALESCE will substitute the NULL with the current custid . As for the rest, it’s
a classical phrasing of relational division with reverse logic .

This solution is expensive because of the excessive scan count, which has to do with the large
number of invocations of the correlated subqueries . To give you a sense, this solution ran
over an hour before I gave up waiting for it to finish and stopped it . Most standard set-based
solutions you can come up with for this problem that don’t use temporary objects will
 typically be expensive .

If you devise a solution in which you generate an interim set that can benefit from an index,
you might want to consider using temporary tables . For example, you can materialize the
distinct list of custid, empid values; index the temporary table; and continue from there . The
materialized data would substantially reduce the number of rows in the set you’ll query . Still,
you won’t be dealing with a tiny set, and most probably your solution will access the table
multiple times . You want efficient plans to be generated based on distribution statistics and
accurate cardinality information . All this should lead you to use a local temporary table and
not a table variable .

Here’s a solution that first creates the suggested local temporary table, indexes it, and then
queries it:

SELECT DISTINCT custid, empid

INTO #CustsEmps

FROM Sales.Orders;

 Chapter 7 Temporary Tables and Table Variables 281

CREATE UNIQUE CLUSTERED INDEX idx_cid_eid

 ON #CustsEmps(custid, empid);

GO

WITH Agg AS

(

 SELECT custid,

 MIN(empid) AS MN,

 MAX(empid) AS MX,

 COUNT(*) AS CN,

 SUM(empid) AS SM,

 CHECKSUM_AGG(empid) AS CS

 FROM #CustsEmps

 GROUP BY custid

),

AggJoin AS

(

 SELECT A1.custid AS cust1, A2.custid AS cust2, A1.CN

 FROM Agg AS A1

 JOIN Agg AS A2

 ON A2.custid <= A1.custid

 AND A2.MN = A1.MN

 AND A2.MX = A1.MX

 AND A2.CN = A1.CN

 AND A2.SM = A1.SM

 AND A2.CS = A1.CS

),

CustGrp AS

(

 SELECT cust1, MIN(cust2) AS grp

 FROM AggJoin AS AJ

 WHERE CN = (SELECT COUNT(*)

 FROM #CustsEmps AS C1

 JOIN #CustsEmps AS C2

 ON C1.custid = AJ.cust1

 AND C2.custid = AJ.cust2

 AND C2.empid = C1.empid)

 GROUP BY cust1

)

SELECT custid, grp

FROM Sales.Customers AS C

 LEFT OUTER JOIN CustGrp AS G

 ON C.custid = G.cust1

ORDER BY grp, custid;

GO

DROP TABLE #CustsEmps;

I also used CTEs here to build the solution in a modular approach . The first CTE (Agg) groups
the data from the temporary table by custid, and returns several aggregates based on empid
for each customer (MIN, MAX, COUNT, SUM, CHECKSUM_AGG) .

The second CTE (AggJoin) joins two instances of Agg (A1 and A2)—matching each customer in
A1 to all customers in A2 with a lower custid that have the same values for all the aggregates .

282 Inside Microsoft SQL Server 2008: T-SQL Programming

The purpose of comparing aggregates is to identify pairs of customers that potentially
share the same group of employees . The reasoning behind the use of less than or equal to (<=)
in the filter is similar to the one in the previous solution . That is, comparing groups of employees
between customers when A2.custid (cust2) is greater than A1.custid (cust1) is superfluous .

The third CTE, (CustGrp), filters from AggJoin only pairs of customers that actually share the
same group of employees, by verifying that the count of matching employees in both groups
is identical to the total count of employees in each group by itself . The query aggregates
the filtered rows by cust1, returning the minimum cust2 for each cust1 . At this point, CustGrp
contains the correct grp value for each customer .

Finally, the outer query performs a left outer join that adds customers without orders .

This solution runs for eight seconds . Note that you could use a CTE with the set of distinct
custid, empid combinations instead of the temporary table #CustEmps . This way, you could
avoid using temporary tables altogether . I tested such a solution and it ran for about 12
seconds—50 percent more than the solution that utilizes a temporary table . The advantage
in the temporary table approach was that you could index it .

Considering the fastest solution we had so far—the one utilizing a temporary table—is
this really the best you can get? Apparently not . You can use the FOR XML PATH option to
 concatenate all distinct empid values per customer . You can then group the data by the
concatenated string, and return for each customer the minimum custid within the group
 using the OVER clause . The fast and nifty concatenation technique was originally devised by
Michael Rys and Eugene Kogan . The PATH mode provides an easier way to mix elements and
attributes than the EXPLICIT directive . Here’s the complete solution:

WITH CustGroups AS

(

 SELECT custid,

 (SELECT CAST(empid AS VARCHAR(10)) + ';' AS [text()]

 FROM (SELECT DISTINCT empid

 FROM dbo.Orders AS O

 WHERE O.custid = C.custid) AS D

 ORDER BY empid

 FOR XML PATH('')) AS CustEmps

 FROM dbo.Customers AS C

)

SELECT custid,

 CASE WHEN CustEmps IS NULL THEN NULL

 ELSE MIN(custid) OVER(PARTITION BY CustEmps) END AS grp

FROM CustGroups

ORDER BY grp, custid;

The solution is short and slick, doesn’t use temporary tables at all, and runs for six seconds!

 Chapter 7 Temporary Tables and Table Variables 283

Conclusion
I hope this chapter helped you realize the significant differences between the various types
of temporary objects supported by SQL Server . I had to dispel a few widespread myths,
 especially with regard to table variables . Remember that it’s typically advisable to use table
variables for small tables and to compare table variables against temporary tables for the
most critical queries . You realize that there’s a time and place for each type and that no one
type is always preferable to the others . I gave you a summary table with the aspects and
functionality of each type, which should help you make the right choices based on your
needs . Also, remember to pay special attention to tempdb, which can become a bottleneck
in your system, especially when working extensively with temporary tables .

 781

Index

Symbols and numbers
[] (square brackets), 512
- (minus) operator, 378
(single number) symbol, 89, 247
(double number) symbol, 89, 257
#endregion, 424
#region, 424
$ (dollar sign), 517
& (ampersand), 492
() (parentheses), 512
* (asterisk), 3, 511

in SCHEMABINDING option, 20–21
in SELECT statements, 6
in strings, 40

 .dbf file, 551, 593
 .NET language, 61

 .NET SqlTypes, 419
Common Language Runtime triggers in, 181–90
for creating user-defined types, 416
native types, 54–55
string replacement, 51
T-SQL language compared to, 44

 .NET SQL types, 54–55
 .prj file, 551
 .shp file, 551, 593
 .shx file, 551, 593
/ (slash character), 500, 510
/i1all/i0 functions, in change data capture, 670
/i1net/i0 functions, in change data capture, 670
/i1package0/i0 packages, 629
/i1SecAudit /i0packages, 629
/i1to /i0attribute, 446–48
/i1to/i0 attribute, 441
; semicolon, 84, 492, 507
– (question mark), 492
@ character, 500, 511
@@ERROR function, 225–26
@@rowcount function, 150, 226
@dialog, 688, 696
@mode variable, 58
@module, 122
@p1 parameter, 58
@params, 122–24, 326
@parselength, 58
@separator, 66
@stmt, 326
@string, 66
__$update_mask columns, 669
+ (plus) operator, 378
< (less than), 492
> (greater than), 492
6NF (sixth normal form), 479, 487–88

A
ABP (adjacent broker protocol), 731–32, 734–37
abstraction mechanism, use of views as an, 1
access

indirect, 650–51
parameterized, 651
tracking, 625

accessor methods, 417, 557
Accumulate method, 615
ACID (Atomicity, Consistency, Isolation,

and Durability), 191
ACS (Audit Collection Service), 651
actions, 631–33, 646
activation, 698–706

external, 702–06
internal, 699–702
sample dialog, 714–16

ACTIVATION parameter, 699, 701
AddLine, 618
AddOne function, 36–38
ADDRESS, 738
addresses, Server Broker, 739
adjacency list model, 411, 523
adjacent broker protocol (ABP), 731–32, 734–37
ADO .NET Sync Services, 627, 662–65
AES (advanced encryption standard) algorithm, 733
AFTER triggers, 145–46, 172
age, calculating, 395–98
aggregate concatenation technique, 33
aggregate functions, 509, 611–13
aggregations

custom, 291–92
running, 292–300

algorithms
/i1greedy/i0 matching, 312–14
encryption, 733

aliases, in XML, 493, 500
allocation order scan, 203–05
ALTER ANY DATABASE AUDIT permission, 646
ALTER ANY SERVER AUDIT permission, 643, 645
ALTER ASSEMBLY command, 430
ALTER DATABASE statement, 654
ALTER ENDPOINT statement, 732–33
ALTER EVENT SESSION, 635
ALTER permissions, 118
ALTER QUEUE statement, 685, 699
ALTER statement, 23
ALTER TABLE DISABLE TRIGGER command, 152
ALTER TABLE SWITCH statement, 660
ampersand (&), 492
analysis, inconsistent, 201
angular measures, 546

782 ANSI SQL standard

ANSI SQL standard, 286
ANY keyword, 708, 710–11
applications, asynchronous, 698–99
ApplicationServiceList element, 706
APPLY operator, 39
arc, great elliptic, 549
area, calculating, 581, 583–84
arithmetic operations, programming, 424–25, 428–29
arrays, split, 66–67
assertions, 413
asterisk (*), 3, 511

in SCHEMABINDING option, 20–21
in SELECT statements, 6
in strings, 40

asymmetric encryption, 726–30
asynchronous applications, 638
asynchronous database options, 747–48
asynchronous message delivery, 678–79, 698–99
asynchronous_file_target, 638
atomic types, XQuery, 508
atomic unit of activity, 191
atomic values, 512, 521
attribute axis, 511
attribute-centric presentation, 493, 500, 504–05
attributes

declaring, in user-defined type, 420
XML, 493

Audit Collection Service (ACS), 651
audit records, 642–43
AUDIT_CHANGE_GROUP, 644–45
auditing, 181

implementing a scenario using, 646–49
removing scheme, 652–53
to the security events log, 651–52

audits, 625, 627
changing configuration, 642
database-level DDL, 174–76
destination options, 642
in SQL Server Audit, 642–43
triggers as, 160–63

authentication, 726–30
Windows, 733–34

AUTHORIZATION parameter, 727
Auto mode, XML, 496–99
AutoCreatedLocal route, 739
Autodesk, 592
autogrowth, of tempdb, 268
autonumbering system, 214
avg function, 509
axes, supported in SQL Server 2008, 510–11

B
BACKUP CERTIFICATE command, 729
batch argument, 122
batch, dynamic, 253–54, 347
BEGIN DIALOG command, 694–95
BEGIN DIALOG CONVERSATION, 688

BEGIN TRAN statements, 192, 214
BeginFigure, 618
BeginGeometry, 618
binary serialization, 524
bitmap images, 544
BizTalk, 749
Boolean constructor functions, 509
Boolean operators, 453–54, 460–64
Boolean predicates, 512–13
bounding box, 585–87
boxcarring, 732
broker priority objects, 707–11
BROKER_INSTANCE parameter, 739
B-tree, 206, 584
buffers, 572–76, 600
builders, 618–20
BULK rowset, 526
bulk update (BU) locks, 195

C
C# language

audit trigger code, 183–90
code to register C# version of SQLSigCLR

function, 61
comparison of implicit vs explicit castings, 55
creating user-defined type in, 419
date and time function code, 53–54
namespaces and CLRUtilities class, 43–44
RegexReplace function, 51
register RegexReplace function code, 52
SQL signature, 59
testing intervalCID, 460–64

cache
flushing, 192
temporary objects, 254–57

Cadcorp, 592
calendars, 376–77
CALLER option, 130
calling batch, 316
capability values, 629
cartographic generalization, 567–69
CASE expression and sort order, 131–33, 280
CAST command, 696
casting, 55–56, 395
catalog views, SQL Server, 681
CD (CLOSED) state, 692
CDATA section, XML, 492
ceiling() function, 509
CELLS_PER_OBJECT clauses, 587–88
certificate authentication, 734–37
certificate identifier, 727
certificates, 727
change data capture, 627, 665–74

implementing a scenario using, 666–71
management issues, 671–74

change tracking, 627, 653–62
enabling at table level, 654–55

 CREATE ASSEMBLY command 783

implementing a scenario using, 653–60
management issues, 660–62

CHANGE_TRACKING_IS_COLUMN_IN_MASK
function, 661

CHANGETABLE function, 657–58
check constraints, 41, 49–50, 413, 540–41
CHECK option, 22
checkpoint, 192
child axis, 511
class hierarchies, 419
class name, 420
classes

complex, 415
domains and, 412
in object-oriented programming, 409

classifier routine, 686–87
client code, 413
client-based attacks, 364–65
CLOSED (CD) state, 692
CLR (Common Language Runtime) .

See Common Language Runtime (CLR)
CO (CONVERSING) state, 692
COALESCE function, 34, 280, 341
code strings, 318
CodePlex, 598
collapsed form, 474
colon (), 497, 507
column names, 2, 260
column set, 523
columns

change tracking for, 655
CHECK constraints, 41
computed, 41
creating, with a spatial column, 554–55
in DEFAULT constraints, 40
in Service Broker, 685–86, 691–92
message_type_name, 696
sparse, 523
transmission_status, 687
user-defined function constraints, 41

COLUMNS_UPDATED function, 158–60
command value, @mode, 58–59
comment function, 511
comments

in XQuery expressions, 507
XML, 492

COMMIT TRAN statements, 192, 214
Common Language Runtime (CLR), 31, 43–44, 59

cursors, 296–98
date and time values, 53
pattern-based replacement, 51–52
size limitations in SQL Server, 409
spatial types and, 614–22
stored procedures, 136–44
triggers, 181–90
user-defined types, 537–38

common table expressions (CTEs), 2, 15, 270,
281–82, 602–03

comparison operators, 512–13
complexity, 307
ComplexNumberVB_SUM UDA, 436–37
compliance, 625–26
computations, storing, 333–38
Compute Scalar function, 395
computed columns, 41–43
concat function, 509
ConcatOrders function, 32–34
concurrency, 191–92, 201–02, 694
Concurrency element, 706
conditional expressions, in XQuery, 513
CONFIGURATION mode, 744–45
conflict detection, 210–12
CONNECT permission, 733
CONNECT TO parameter, 745
ConnectionString element, 705
consistency, 194, 202–03
Constant Scan operator, 395
constraints

check, 41, 49–50, 413, 540–41
data integrity and, 410–11
data warehouse, 439
DEFAULT, 40–41
in simple domains, 413–14
INSTEAD OF trigger, 164
scalar user-defined function, 40
semitemporal, 443–46
UNIQUE, 27, 41–42, 256, 260
where to implement, 413–14

constructors, 421, 450
contains function, 509
context_info, 154–56
contracts, 681–82, 708
CONTROL SERVER permission, 643
conversation groups, 693–95, 697
conversation_group_id columns, 694
conversation_handle columns, 692
conversation_handle parameter, 696
conversation_id columns, 692
ConversationPriorityName, 709
conversations, 676–79

identifying targets of, 687
troubleshooting excess accumulation of, 742–43

CONVERSING (CO) state, 692
conversions

batch termination by error, 225–26
character string to binary value, 328–30
query result sets to XML, 495

CONVERT function, 52, 329, 384
coordinate pairs, 554–55
Coordinated Universal Time (UTC), 379
coordinates

ordering of, 578
overview, 546

count function, 509–10
CREATE AGGREGATE command, 430
CREATE ASSEMBLY command, 425

784 CREATE BROKER PRIORITY command

CREATE BROKER PRIORITY command, 709–11
CREATE CERTIFICATE command, 727
CREATE CONTRACT command, 681–82
CREATE DATABASE AUDIT SPECIFICATION command,

647–48
CREATE DOMAIN command, 416
CREATE ENDPOINT statement, 732–33
CREATE EVENT NOTIFICATION statement, 703
CREATE EVENT SESSION command, 635
CREATE MESSAGE TYPE command, 680–81
CREATE QUEUE statement, 684–86, 699
CREATE ROUTE command, 737–38, 741
CREATE SERVER AUDIT SPECIFICATION command, 647
CREATE SERVICE statement, 687
CREATE SPATIAL INDEX statement, 586–87
CREATE SYNONYM command, 49
CREATE TYPE command

binding SQL Server type to .Net code, 425–26
CREATE XML SCHEMA COLLECTION statement, 538
CTEs (common table expressions) . See common table

expressions (CTEs)
culture dependency, 44–45
Cunningham, Conor, 33
CURRENT_TIMESTAMP function, 379, 387–88
cursor-based solutions

maximum concurrent sessions, 303–06
cursors, 2, 285

Common Language Runtime solution, 296–98
custom aggregation and, 291–92
running aggregation and, 292–300
scans using set-based code versus, 287–89

curves, 549–50
custom aggregation, 291–92

D
DAL (Data Access Layer) procedures, 413
data

exchanging and fixed metadata, 494
forms of spatial, 551
historical, 439
locking, 191
materializing in temporary tables, 245–46
producing XML from relational, 495–502
reference, 550
sample, 307–08
tracking changes to, 625

data () function, 501, 509
Data Access Layer (DAL) procedures, 413
data accessor functions, 509
data integrity, 410–11, 439, 522
data loaders, 552

commercial, 592
data manipulation, set-based, 32
data modification, 531

triggers, 145
data representation, in highways

project, 609–13

data types, 412–13
Common Language Runtime defined, 419
date and time, 375–76
XQuery, 508–09

data types, XML, 521–35
for dynamic schema, 538–42
methods supported by, 525

data warehouses, 439
database mirroring, 652–53, 741
database schema, 413
database-level groups, 643–45
databases

audit specifications, 645–46
change tracking, 653–54
relational, and XML, 521–22
role of views in, 1

data-definition language (DDL)
change tracking, 661
statements and temporary tables, 256
stored procedures, 177–78
triggers, 145, 172–80, 523

data-manipulation language (DML) triggers, 145–46
date and time data types, 375–76
date and time values, 52, 383–85
DATE function, 375, 384, 393
Date, C . J, 479
DATEADD function, 378
DATEDIFF function, 378, 380, 388
DATENAME function, 379
DATEPART function, 379
dates

first or last day of a period, 389
first or last weekday, 391–93
generating series of, 406–07
previous or next weekday, 389–91
rounding, 393
specifying only, 387–88

DATETIME function, 375, 384, 393–94
earliest date for, 376–77

DATETIME2 function, 376, 384, 393
DATETIMEOFFSET function, 376, 380, 384, 393
DAY function, 379
daylight savings time, 377
days, working, 405–06
DDL (data-definition language) .

See data-definition language (DDL), triggers
Deadlock Graph event, 219–20
DEADLOCK_PRIORITY option, 216
deadlocks, 216–23

error handling in, 238–42
missing index, 218–21
simple, 217–18
with a single table, 221

DECLARE statements, 260
DEFAULT constraints, 40–41
DEFAULT contracts, 689, 696
DEFAULT keyword, 91
DEFAULT message type, 683, 696

 exist() method 785

deferred drop feature, 246
deferred name resolution, 97
defragmentation, index, 332–33
delete (DML keyword), 531–32
DELETE . . . OUTPUT command, 695, 697
deleted tables, 146–47, 163
dependencies, 98–101
deployment, 414
descendant axis, 511
DI (DISCONNECTED_INBOUND) state, 692
dialog conversations, 676–98

in T-SQL language, 688–91
orphaned, 690

dialog protocol, 731
dirty reads, 191, 201–04
DISABLE option, 121
DISABLED encryption setting, 733
Discard results after execution option, 35, 62
DISCONNECTED_INBOUND (DI) state, 692
disjointness, 562–64
dissolve, 617
distance, 570–71, 573–74
distribution, 248, 730–31
DKNF (Domain-Key normal form), 411
document handle, 503
Document Object Model (DOM), 495, 502
documents, typed XML, 495
dollar sign ($), 517
DOM (Document Object Model), 495, 502
Domain-Key normal form (DKNF), 411
domains, 409–10, 412–15
doomed transaction state, 233
double number (##) symbol, 89, 257
DROP EVENT option, 641
DROP option, 121
during attribute, 440–41, 448, 464–67
dynamic batch, 331

EXEC command, 317

e
EAV (Entity-Attribute-Value) table, 537
edge table, 503–04
edges, 549, 596
element-centric presentation, 493, 504–05
ELEMENTS keyword, 496
elements, XML, 492–93

mapping, 503–05
ellipsoid, 546, 549–50
email address validation, 48–49
EMPTY option, 680–81
ENABLE_BROKER option, 731
enabling code, 46
encapsulation, 81, 268, 412–15
encryption, 726–30, 733
ENCRYPTION clause, 733
ENCRYPTION option, 20

ENCRYPTION parameter, 689
END CONVERSATION statement, 689–91, 742–43
EndDialog message, 690
EndFigure, 618
EndGeometry, 618
endpoints

configuring ABP, 733–37
conversation, 676, 691–93
Service Broker, 732–37

Entity-Attribute-Value (EAV) table, 537
environmental settings, 316, 331
EPSG (European Petroleum Survey Group), 548
ERROR (ER) state, 692
error handling

functions, 231–33
in dialog conversations, 689
using TRY/CATCH constructs, 229–44
without TRY/CATCH constructs, 225–29

errors
message delivery, 677–78
multirow modifications, 165–66

ESRI, 592
estimations by optimizer, 112–13, 116–17
ETL (extract, transform, and load) process, 597, 666–71
ETW (Event Tracing for Windows) target, 626, 641
European Petroleum Survey Group (EPSG), 548
event log, performance issues, 181–82
event sessions

adding, 641
creating, 635
deleting, 641
managing existing, 641
stopping, 641
viewing existing, 639–41

Event Tracing for Windows (ETW) target, 626, 641
event_data columns, 636–37
EVENTDATA() function, 172–73, 180, 523
events

determining action group, 643–45
extended, 160, 626, 628–41, 650
SQL Server 2008, 630

exclusive (X) locks, 194
EXEC AT syntax, 322–26
EXEC command, 315, 317–22
EXEC sys .sp_cdc_enable_db, 666–67
EXECUTE AS clause, 31, 129–30, 316
EXECUTE AS parameter, 701
EXECUTE command, 82
execution plans . See also plan guides

compilation of, 101–29
dynamic, schema changes, 253–54
estimations by optimizer, 112–13
estimations of, 262–65
in different versions of SQL Server, 5
in XML format, 523
reading, 533–35
reusing with dynamic SQL, 347–49

exist() method, 525

786 exists method

exists method, 521
EXISTS predicate, 2–3
expanded form, 474
ExpCast function, 55
explicit conversions, 54–56
EXPLICIT mode, 499–500
expressions . See also common table

expressions (CTEs)
FLWOR, 510, 516–20
if . .then . .else, 513
regular, 44–45, 421
table, 269–70
XPATH, 499–500, 503, 510
XQuery, 507, 513

extended events, 160, 626
implementation, 628–41
implementing a scenario using, 635–38
objects, 628–35
viewing audit details via, 650

extended stored procedures, 90
External Activation Service, 703–06
EXTERNAL_ACCESS assemblies, 46
EXTERNAL_ACCESS permissions, 425
ExternalActivationQueue messages, 703–04
extract, transform, and load (ETL) process, 666–71

F
failed transaction state, 233–34
false function, 509
far_broker_instance columns, 691
far_service columns, 691
fast recovery, 192
Feature Manipulation Engine (FME), 592, 597
file fragmentation, 268
filtered indexes, 28–29, 523
filters

at server level, 84
dynamic, 338–39
extended events, 630
in spatial indexes, 585–86

first invocation, 111
flags, 418, 504

trustworthy, 729–30
floor() function, 509
flow handling, 148
FLWOR (for, let, where, order by, and return)

expressions, 510, 516–20
FME (Feature Manipulation Engine), 592, 597
fn namespace, 507
fn_validate_plan_guide, 127
fn_varbintohexstr function, 329
for clause, 516–17
for each loop, 516
FOR XML AUTO clause, 496–99
FOR XML clause, 491, 538–39
FOR XML EXPLICIT, 499–500
FOR XML PATH option, 34, 282, 500–02

FOR XML RAW clause, 495–96
FOR XML specification, 3

use with ORDER BY clause, 2–3
for, let, where, order by, and return (FLWOR)

expressions, 510, 516–20
foreign keys, creating for semitemporal

tables, 443–46
FormatDatetime function, 54
formats

date and time values, 52
named and unnamed, 91–92
native, 417

forwarding routes, 741–42
fragments, XML, 492
from attribute, 441, 446–48
FROM clause, 697
FROM SERVICE clauses, 688
full temporal data, 439
functions, XQuery, 509–10

g
generalization, 567–69
generalized join, 488
Geodetic Parameter Dataset, 548
geographic systems, 546
GEOGRAPHY spatial type, 547–48, 576–79

area measurements, 583–84
data validity issues, 595–98
highways table, 608–14
index structure, 588–89
length measurements, 582–83

GeographyBuilder classes, 618
GeographyMakeValidFromGeometry() function, 608
GeographySink interface, 618
GeographyUnionAggregate() function, 611–13
GEOMETRY spatial type, 547–48

area measurements, 583–84
data validity issues, 579–81
index structure, 585–88
length measurements, 582–83
moving to GEOGRAPHY column, 598–99

GeometryBuilder classes, 618
GeometryCollection, 545
GeometrySink interface, 618
GeoNames database, 594–95
GetAssemblyInfo stored procedure, 139–44
GETDATE function, 79–80, 379
GetEnvInfo stored procedure, 136–39
GetSequence stored procedure, 215–16
GETUTCDATE function, 379
global temporary tables, 89, 257–59
Globalization namespace, 421
globally unique identifiers (GUIDs), 125–26,

154–56, 695
great elliptic arc, 549
greater than (>), 492
grid cells, 585–88

 Jordan curve theorem 787

grouping
by the week, 404–05
overlaps in sessions, 401–03

grouping factor, 477
in ranking calculations, 14–15
in subquery, 11

groups
action, 643–45
database-level, 644–46

Guerrero, Fernando G ., 314
GUIDs (globally unique identifiers) . S

ee globally unique identifiers (GUIDs)

H
heap, 194
hierarchical data arrangement and XML, 523
highways project, 608–14
hints, table, 202
historgrams, 94
history, maintaining, 479–87
HOLDLOCK hint, 202
horizontal decomposition, 479
hyperlinks, XML data as, 526

i
IBinarySerialize interface, 418
IF solution, 131
if . .then . .else expressions, 513
Imaginary properties, 423, 427–28
ImpCast function, 55
impersonation rights, 130, 725–26
implementing

constraints, where to, 413–14
interval operators, 456–60

implicit conversions, 54–56
inconsistent analysis, 201
increment property, 638
index defragmentation, 332–33
index order scan, 203–05
indexed views, 2

creating, 476
partition-aligned, 27

indexes
creating, 432
filtered, 28–29, 523
performance role of views, 2
phantom, 206–07
spatial data, 584–91
to prevent deadlocks, 220–21
XML, 529–30

inheritance relationships, 419, 422
initiator endpoints, 681–82, 688
initiator services, 688–89, 716–18, 738
inline expression, 35–36
inline schema, 499
input parameters, 357

insert (DML keyword), 531
INSERT command, 696
INSERT SELECT method, 260, 265, 267–68
INSERT statements, 22
inserted tables, 146–47

INSTEAD OF triggers, 163
inserts, logged, 265
InsideTSQL2008 database, 82–83,

86, 653–54
instance methods, 558
INSTEAD OF INSERT triggers, 165–67
INSTEAD OF triggers, 145, 163–72
integration, 591
intent exclusive (IX) locks, 195
intent locks, 195
Intergraph, 592
internal activation, 699–702
Intersect interval operator, 454–60
intersection, 561–65
interval data type, 448
interval operators

algebra, 454–60
testing, 460–64

interval sets, 473–74
intervalCID, 448–67

beginning and end of, 462–63
constructors, 450
defined, 449–50
regular expressions in, 449
testing, 460–64

INullable interface, 421
inventory service sample dialog, 711–20
InventoryQueue, 703
invocation, first, 111
invoking

ExpCast function, 56
ImpCast function, 56
nodes method in FROM clause, 533

IS NULL, 339–41
IsByteOrdered property, 418
ISDATE function, 379
IsFixedLength property, 418
IsNull method, 55
IsNull property, 418
ISO week numbering system, 381–83
ISO_WEEK part, 381–82
isolation levels, 191, 194, 200–14

summary table, 214
iteration, 516

J
joins

generalized, 488
hints, 118
spatial, 605–07
using FLWOR expressions to mimic, 519–20

Jordan curve theorem, 550

788 Karaszi, Tibor

K
Karaszi, Tibor, 376–77
Kass, Steve, 325, 411
KEEPFIXED PLAN query hint, 111
KEK (key exchange key), 726–27
Kelly, Andrew J ., 61
KERBEROS, 733
key, 194
key exchange key (KEK), 726–27
key range locks, 195, 206–07
key values, 182

generating new, 170–72
reusing, 40–41

keys
asymmetric encryption, 726–30
domains and, 411
index, 205
primary, 660

Kogan, Eugene, 34, 282

L
language neutral formats, 383–84
language setting, 383, 404–05
latency, 672
latitude, 546, 554
LaunchInfo element, 706
LayoutKind value, 417
leap years, 395–96
left-hand rule, 550, 578, 596
length, calculating, 581–83
less than (<), 492
let clause, 516, 519
LIFETIME parameter, 689
linear measures, 546
linear transformations, 618–22
LineStrings, 545, 554

data issues with, 596
LISTENER_PORT clause, 733
literal value, @ mode, 58–59
literals, 383–85
load balancing, 740–41
loading spatial data, 592–95
LOCAL address, 739
local coordinate systems, 547
local service parameter, 708–09
local temporary tables, 89, 246–57, 280–81
local variables, 316, 318
local-name function, 509
Lock

Deadlock Chain event, 219
Deadlock event, 219
Timeout event, 219

lock modes, 194–98
lock timeout, 198
LOCK_ESCALATION table option, 199–200
locking

conversation group, 693–95, 697
Service Broker, 683
temporary tables, 248

locks, 181, 191, 194–200
intent, 195
intent exclusive (IX), 195

log sequence number, in change data capture, 670–71
logging, 260, 265–68

change data capture and, 673
temporary tables, 248

logical ordering, 286
logins, 727
logon triggers, 145, 180–81
longitude, 546, 554
lost updates, preventing, 201, 205, 216
lower-case function, 509

M
maintenance activities, automated, 331
MakeValid() method, 581, 597–98
MakeValidGeographyfromGeometry() function, 598
Manifold, 592
mapping

object-relational, 415
XML elements using WITH clause, 503–05

MapPoint 2009 Add-In, 593
maps, 633
markup characters, 492
MARS (multiple active result sets), 197
matching problems, 287, 308
max function, 509
MAX_DISPATCH_LATENCY, 635, 638
max_file_size property, 638
MAX_QUEUE_READERS parameter, 700
MAX_ROLLOVER_FILES, 638, 643
MaxByteSize property, 418
maximum concurrent sessions problem, 300–02
MAXSIZE, 643
memory queues, 741–42
Merge method, 615
message body, 679
message header, 679–80
message processing, sample dialog, 719–20
message type, 680
message_sequence_number columns, 686
message_type_name columns, 696
messages

incoming, 739
no response to, 742–43
poison, 721, 744
Service Broker, 679

metadata
browse mode, 23–24
refreshing, 6–8
sample dialog, 712–14
XML, 494

metric operations, 547

 ordering 789

microsecond part, 381
Microsoft Message Queue (MSMQ), 749
Microsoft SQL Service Broker External Activator, 704
Microsoft Sync Framework, 662–65
Microsoft System Center Operations Manager, 651
Microsoft Visual Studio 2008 . See Visual Studio 2008
Microsoft .SqlServer .Server, 615
Microsoft .SqlServer .Server .SqlUserDefinedType, 417
Microsoft .SqlServer .Types, 615
middle-tier code, 413
min function, 509–10
minus interval operator, 454–60
Missing Index messages, 262–65
modify method, 521, 525, 531
modules, 628
monolog conversations, 676–77
MONTH function, 379
MSMQ (Microsoft Message Queue), 749
MultiLineString, 545
multiple active result sets (MARS), 197
MultiPoint, 545
MultiPolygon, 545
mutator methods, 417

n
Name property, in Visual Studio 2008, 418
name resolution

postponing, 97
temporary table, 250–52

names, message type, 680
namespaces

declaration, 420, 507–08
preventing root, 47–48
retrieving, 540–41
XML, 493

namespace-uri () function, 509
nanosecond part, 381
native formats, 417
navigation, examples of, 513–16
negative buffers, 574
NEWID function, 77
node tests, 510–11
node types, 508
nodes function, XQuery, 509
nodes() method

for querying nodes, 511
for shredding XML data, 502–05, 521, 525, 532–35
to pass an array, 524

nodes, context, 511
NOEXPAND hint, 27
NOLOCK hint, 202
nondeterministic functions, 77
NONE option, 680–81
nonrepeatable reads, 201
not function, 509
NotificationService element, 705
NTLM protocol, 733

NULL
in non-parameterized query, 122
input parameters, 45
instance, 418
property, 418
specifying in RegexIsMatch function, 48

NULLs, checking for, 427–28
number value, @ mode, 58–59
numbers table (Nums), 602
numbers, auxiliary table of, 35
numeric functions, XQuery, 509
numeric predicates, 512–13
Nums table, 35, 407, 602
NVARCHAR(MAX), 321

O
object dependency, 21, 98–101
object plan guides, 119–21
OBJECT_ID function, 247
object-oriented programming, 409
object-oriented solutions, 537–38
objects

audit, 642–46
spatial, 555–59
temporary, 270–71

OGC (Open Geospatial Consortium), 545, 549
ON <filegroup> option, 685
ON CONTRACT clauses, 689
OnNotification element, 706
Open Geospatial Consortium (OGC), 545, 549
OpenGIS model, 545
OpenGisGeometryType type, 618
OPENQUERY table function, 322
OPENROWSET table function, 322
OPENXML rowset function, 491, 502–05, 532
operations, spatial, 559–69
operators

comparison, 512
overloading, 416
relational, 473

optimality, plan, 107, 111
optimistic concurrency model, 200–01
OPTIMIZE FOR query hints, 114, 116–17
OPTIMIZE FOR UNKNOWN query hints, 116–17
optimizers, 3, 111–17
ORDER BY clause, 2–3, 286, 516, 518

exceptions, 4
in converting query set results to XML, 497–98
when used with TOP specification, 4–5

ORDER option, 71–73
order-based access, 290–314
ordered backward clustered index scan, 133
ordering

and XML, 524
of message delivery, 678
of XML elements, 492
XQuery standard mode, 520

790 origins

origins, 546
outer query

ORDER BY clause, 5–6
output parameters, 95–96

sp_executesql, 328
using to return values to a variable defined in calling

batch, 328
OVER clause, 286, 299, 307
overlaps, 399–403
overloading, 429
OWNER parameter, 130, 701
Ozer, Stuart, 58–61

P
PACK operators, 476–79
packages, 628–30
page splits, 203–05
Pair Matching target, 634
parallel plans, 260
parameter sniffing, 111–16

OPTIMIZE FOR query hints, 114
RECOMPILE query hint, 114–16
stub procedure, 113–14

parameterization
forced, 123
simple, 123
sort order, 130–36
user inputs and, 315
views, 64

parameters
input, 357
output, 95–96, 328
passing array, to stored procedure, 524
scalar input, 90–92
table-valued, 67, 92–94, 260, 524

parent axis, 511
Parent integers, 499
parent level, 499
parentheses (), 512
Parse method, 417, 422–23, 555
PARTITION BY clauses, 286, 299
partition size, solutions and, 295–96, 298
partition-aligned indexed views, 27
pass-through code, 322
PATH index, 529
PATH option, 282, 499–502
PATINDEX function (T-SQL), 50–51
pattern matching, 371
performance

benefits of stored procedures, 81
change data capture and, 672
change tracking, impact of, 661
complex domains and, 414
indexed view, 24–27
inline expression and, 36–37
of signature user-defined functions, 62–63
query constructs for improved, 290–314

scalar user-defined functions, 34
triggers and, 147, 181–82
T-SQL and CLR Splits, 71
use of cursors and, 286–87

Performance Log Users group, 641
Performance Monitor Users group, 641
periods, comparing

exercise, 272–74
PERMISSION_SET clause, 425
permissions

activation security context and, 701
configuring for ABP connections, 733
impersonation, 725–26
limiting to reduce SQL injection attacks, 370
no login, 727

PERSISTED column, 43
pessimistic concurrency model, 200–01
phantoms, 201, 206–07
pipelines, 620–21
Pitney Bowes Business Insight (MapInfo), 592
PIVOT operator, 354–55
pivoting, 325, 349–64
plan guides, 118–29 . See also execution plans

freezing, 127–29
object, 119–21
optimality, 107, 111
SQL, 121–23
stability, 107–11
TEMPLATE, 123–25
validation of, 127

planar systems, 546–48
point location, 604–05
Point method, 555
point objects, 558–59, 602–03
points, 545, 554
poison messages, 721

disabling queue, 744
Poletti, Marcello (Mark), 343
policies, 173
Policy-Based Management, 173
polygon

data issues with, 596
polygons, 545, 554

reorientation, 0–598
Populate methods, 618
PostEventNotification Service Contract, 703–04
precedence, deadlock, 216
precision, 377
predicates, 512–13

extended events and, 630
timestamped, 440–41

presentation, 4
primary filters, 585
PRIMARY KEY constraints, 41–43
primary keys, in spatial indexes, 586
primary XML index, 529–30
prime meridian, 546
primitives, OGC geometry, 545–46

 RETURNS NULL ON NULL INPUT option 791

principal nodes, 511
priority columns, 686
priority, conversation, 706–11
PROCEDURE_NAME parameter, 699
processing instructions, XML, 492, 511
programming

arithmetic operations, 424–25
bad practices, 354

projection transformation functions, 584
prolog, XML, 492, 507
PROPERTY index, 529
propositions

in relational databases, 410
timestamped, 440–41

protocols, 731, 733
proximity, 569–76

Q
QName, 507
queries

on semitemporal tables, 446
proximity search, 569–76
relationship to views, 1
requirements for defining views, 2

query constructs
for improved performance, 290–314
logical ordering and, 286

query hints, 118
KEEPFIXED PLAN, 111
OPTIMIZE, 114, 116–17
RECOMPILE, 106, 114, 339, 342–43
USE PLAN, 125

query method, 521, 525, 527–29
query plans, 589–90
query processor, 1
query strings, returning signatures of,

57–62
query tuning using cursors, 285
querying

by date and time, 395–407
message types, 682
tables with full temporal support, 468–70

question mark (–), 492
QUEUE_ACTIVATION event, 703–04
QUEUE_ACTIVATION SQL Event

Notification, 706
QUEUE_DELAY audit option, 643
queues, message, 683–87
queuing_order columns, 686
QUOTENAME function, 371–72

R
RAISERROR command, 231
RAND function, 77–79
ranking calculations, solving problems

using, 12–16

raster data, 544–45
RAW mode, XML, 495–96, 499
RC4 algorithm, 733
READ_ONLY option and locks, 199
read-committed isolation level, 204–05
read-committed snapshot, 212–14
read-only lookup tables, 413
read-only properties, 422
READPAST hint, 202
read-uncommitted isolation level, 202–04
Real properties, 423, 427–28
RECEIVE message command, 695–98
RECEIVE statements, 708–09
receive_sequence columns, 691
receive_sequence_frag columns, 691
recompilation threshold, 249
recompilations, 107–11, 249
RECOMPILE option

creating stored procedure with, 105–06
query hints, 106, 114, 339, 342–43

recursion, INSTEAD OF triggers and, 164
RECURSIVE_TRIGGERS, 156
redo phase, 192
Reduce() method, 567–69
reference data, 550
REFERENCES, 648
Regex .Replace method, 63
RegexIsMatch function

C#, 44–45
C# code, in CLRUtilities database, 47
Visual Basic, 45–47

RegexReplace function, 51–52
regular expressions, 44–48, 421
RELATED_CONVERSATION_GROUP parameter, 695
relational databases

management systems, 409, 413–14
temporal support, 439
XML support in, 521

relational model and cursors, 285–86
relations and domains, 409–11
relationships, inheritance, 419
reliability, of message delivery, 677–78, 691
reload database, 47
remote procedure calls (RPCs), 324–25
Remote Service Binding object, 727
remote service parameter, 708–09
repeatable read isolation levels, 205–06
REPLACE function, 40
replace value of (DML keyword), 531–32
replacement, patterned based, 51–52
REQUIRED encryption setting, 733
resolution, 97–98
restoration, database and change tracking, 661
RETENTION option, 695

in CREATE QUEUE, 685
status column, 685

RETURN clause, 64, 516–17
RETURNS NULL ON NULL INPUT option, 31

792 reuse of execution plans

reuse of execution plans
OPTIMIZE FOR query hints, 114
RECOMPILE query hint, 114
stored procedures and, 102–07

RID (row identifier), 194
right-hand rule, 596
Ring Buffer targets, 634
rings, 549–50, 578
Rogerson, Tony, 34, 342
rollback statements, 261
roll-back transactions, 192–94
rollbacks

in triggers, 145
roll-forward recovery, 192
root node, XML, 492
round() function, 509
routes

database mirroring and, 741
incoming, 739
Service Broker, 730–31, 737–42

row counts, 91, 249
row identifier (RID), 194
row insets, DEFAULT constraints and, 41
row level

granularity of data, 194
row versioning, 146–47, 200–01, 208–14
rowpattern, 503
rows

cursors, 285
identifying trigger affected, 147–50
iterating through, 289–90
multirow modifications, 164
processing cursor, 287
tracking changes to, 627

RPCs (remote procedure calls), 324–25
running aggregation, 292–300
RUNTIME mode, 745
Rys, Michael, 34, 282

S
SAFE permissions, 46, 425
Safe Software, 592
Sarka, Dejan, 61
SAVE TRAN statements, 214
savepoints, 214–16

error handling using, 235–38
scalar input parameters, 90–92
scans, 249, 287–89
schema changes, 6–8, 253–54

auditing, 174–76
handling, 536–42
in change data capture, 671–72

schema collection
creating XML, 538–40
message contents and, 681

schema locks, 195
schema modification (SCH-M) locks, 195

schema name, 82
schema stability (Sch-S) locks, 195
SCHEMABINDING option, 20, 31–32

constraints, 41–42
in first index requirements, 25

schemas, 522–23
schema-validated XML columns, 538–41
screen event handlers, 413
searches

geographic regions, 599–602
nearest neighbor, 602–05

SeAuditPrivilege, 651–52
secondary filters, 585
secondary XML indexes, 529–30
SECONDS, 635
security

change data capture, 673
change tracking, 661
CLR triggers, 182–83
configuring dialog, 727–30
dialog, 689, 721–26
row level, 16
sample dialog, 728–30
stored procedures, 129–30

security context, 701
Security Event log, 651–52
security flaws, 351–57
security layer, use of views a, 1
security risks, user assemblies and, 46
Security Support Provider Interface (SSPI)

protocol, 733
seeks, index, 249
SELECT *, use of, 84
SELECT command, 507
SELECT INTO statement, 265–67
SELECT list, 3, 496–98

in EXPLICIT mode, 499
self axis, 511
SELF option, 130, 701
semi-colon (;), 84, 492, 507
semitemporal data, 439

tables, 443
SEND message command, 695–96
send_sequence columns, 691
sequences

automatic handling of, 170–72
comparison operators and, 512
custom, 214
in XQuery, 505–06
iteration through, 516
non-blocking, 215

serializable isolation level, 206
serialization

binary, 524
user-defined, 417–18
XML, 415, 419, 524, 537–38

server-based attacks, 365–70
servers, audit specification for, 643–45

 SQL injection 793

Service Broker
BizTalk comparison, 749
columns, 685–86, 691–92
endpoints, 731–37
External Activator, 704
internal tables, 684
inventory service sample dialog, 711–20
limitations, 748
locking, 683
messages, 679
Microsoft Message Queue (MSMQ) comparison, 749
overview, 675
routes, 730–31, 737–42
security, 721–26
strengths, 748
troubleshooting, 742–46
using activation in, 702
viewing table names, 684
Windows Communications Foundation (WCF)

comparison, 702, 750
Service Broker 2005, 707
service objects, 687
service_broker_guid columns, 691
service_id columns, 691
SERVICE_NAME, 687, 738
service-oriented architecture (SOA), 746–47
services, 687–88
session context, 320
sessions

managing existing event, 641
maximum concurrent, 300–08
overlapping in, 399–403
viewing existing event, 639–41

SET DATEFORMAT option, 383
SET NOCOUNT ON option, 91
SET options, 108–10
SET SHOWPLAN_XML statements, 523
SET STATISTICS XML statements, 523
set theory, 411
SetSrid(int srid), 618
severity levels, error, 234
shape points, 567–69
Shape2SQL program, 592–93, 597, 609
shapefiles, 551, 592–93
shared (S) locks, 194

read-committed isolation level and, 205
repeatable read isolation level, 205–06

shared secret encryption, 726
SharpGIS, 592–93
SHOWPLAN_XML, 121, 523, 534–35
shredding, XML, 502–05, 521
side effects

stored procedures, 81
user-defined function, 31

signatures, 57
since attribute, 440–41, 443
single number (#) symbol, 89, 247
sink interfaces, 618–20

site locations, finding, 599–602
sixth normal form (6NF), 479, 487–88
slash character (/), 500
SMALLDATETIME function, 375, 384, 393
SMSS (SQL Server Management Studio), 6
snapshot isolation levels

change tracking and, 654
overview, 208–12
read-committed, 212–14
row changes and, 656
update conflicts and, 243–44

SOA (service-oriented architecture), 746–47
solutions

creating user-defined type, 419–20
cursor-based, 285
set-based, 285, 287, 300–02
standard, using XML data types, 538–42

sort order, parameterizing, 130–36
sp_addlinkedsrvlogin, 324
sp_create_plan_guide stored procedure, 118, 121
sp_create_plan_guide_from_handle, 127–29
sp_droplinkedsrvlogin, 324
sp_executesql, 316, 326–30
sp_get_query_template procedure, 123–24
sp_MS_marksystemobject

undocumented, 87
sp_pivot stored procedure, 351–57

creation script, 352–54
sp_refreshview stored procedure, 6–7
sp_serveroption, 324
sp_xml_preparedocument, 502
sparse columns, 523
spatial buffers, 572–76, 600
spatial data

forms of, 551
indexes, 584–91
loading, 592–95
overview, 543–44
problem solving with, 591–614
sources of, 551–52

spatial reference identifiers (SRIDs), 548–49, 576–77, 613
spatial types, 547, 614
special (sp_) stored procedures, 85–87
special characters, 34
split function

CLR user-defined, 67–68
page, 203–05

SplitCLR function
using ORDER option, 72–73
Visual Basic, 69–70

SplitTSQL inline table function, 66
sql

variable function, 509
SQL

StmtStarting event, 219
SQL injection, 364–72

(security breach), 315
protective measures against, 370–72

794 SQL plan guides

SQL plan guides, 121–23
combining with TEMPLATE plan guides, 124–25

SQL Server
early approaches to tracking access and changes, 625
extension functions, 509
index and underlying tables in, 25
inline table-valued user defined function, 39
Service Broker . See Service Broker

SQL Server 2000, 5–6
SQL Server 2005, 5, 27
SQL Server 2008, 27

cursors, 285
date and time functions, 378–82
debugging tool for Service Broker, 744
execution plan, 5
MapPoint 2009 Add-In, 593
matching object plan guides, 120–21
matching SQL plan guides, 121
object dependency, 98–101
OPTIMIZE FOR query hints, 116
ORDER option, 71–73
plan freezing feature, 127–29
predefined namespaces, 507
reuse of execution plans, 102
side effects, 79
spatial indexes, 585–88
sqltypes namespace, 508
statement level recompilation (search earlier), 107
system stored procedures, 87
table-valued parameters in, 92–94
tracking access and data change technologies

added to, 626–27
XQuery language in, 505

SQL Server Agent, 667
SQL Server Audit, 160, 173, 626–28, 641–53

management issues, 652–53
SQL Server Developer edition, 26
SQL Server Enterprise edition, 26
SQL Server Management Studio (SSMS)

deploying UDT using T-SQL, 425–37
parsing XML data, 526
Policy-Based Management, 173
saving XML execution plan, 530
turning on Discard results option, 35
view designer, 6
viewing spatial data, 556

sql; column function, 509
SqlBoolean attribute, 45
SqlFacet attribute, 431–32
SqlGeography instance, 615
SqlMethod attribute, 432–36
SQLSigCLR function, 59–62
SQLSigTSQL function, 57–59
sqltypes namespace, 507–08
SqlUserDefinedAggregate property, 615
SqlUserDefinedType class, 417–19
Square brackets ([]), 512
SRIDs (spatial reference identifiers), 548–49, 576–77, 613

ssbdiagnose .exe tool, 744–46
SSMS (SQL Server Management Studio)

deploying UDT using T-SQL, 425–37
parsing XML data, 526
Policy-Based Management, 173
saving XML execution plan, 530
turning on Discard results option, 35
view designer, 6
viewing spatial data, 556

SSPI (Security Support Provider Interface) protocol, 733
STArea() method, 581
startup procedure option, 258
STAsText method, 556
STATE = STARTED line, 733
state columns, 692
state_desc columns, 692
statements

limitations, 330
triggers on, 146

static methods, 558
static solutions, 345–46
statistics, 248–50, 262–65
STATISTICS IO reports, 262–65
STATISTICS XML set options, 121
status columns, in Service Broker, 685
STATUS option, in CREATE QUEUE, 685
STATUS parameter, 699
STBoundary() method, 574
STBuffer () method, 572–76
STBuffer() method, 558
STContains() method, 591
STDifference() method, 572–76
STDisjoint() method, 562
STDistance() method, 570–71, 573–74, 576, 591, 601–02
steps, in XPath expressions, 510
STEquals() method, 591
STExteriorRing() method, 575
STIntersects method, 561–65
STIntersects() method, 591
STLength() method, 581
storage

computation, 333–38
date and time, 376

stored procedures, 371, 413
activation, 700–01
CLR, 136–44
data-definition language (DDL), 177–78
interface, 90–96
security, 129–30
selectivity in, 102–04
side effects, 81
special (sp_), 85–89
system, 87–89
triggers and, 145
types of, 81
using dynamic SQL, 347
XML as, 535

STOverlaps() method, 591

 temporary tables 795

string concatenation, 34, 501
string functions, XQuery, 509
string manipulation, 44, 52
string matching, 44–45
string replacement, 50
string-length function, 509
strings, user-defined, 419
StructLayout attribute, 417
STTouches() method, 591
stub procedure, 113–14
STUnion() method, 565–67, 615
STWithin() method, 591
subqueries

in XML PATH mode, 502
scalar, 38
solving problems using, 10–12

substring function, 509
subtypes, 536
sum function, 509
Suppliers_During tables, 464–73, 479–81
Suppliers_Since tables, 443–46, 465–66, 479–82
SUPPORTED encryption setting, 733
SWITCHOFFSET function, 380
symmetric keys, 726
sync adapter, 662
Sync Framework, 662–65
synchronization, 24
synonyms, creating, 49
syntax, 558
sys .conversation_endpoints view, 691–93, 740

troubleshooting, 742–43
sys .conversation_groups view, 694
sys .dm_audit_actions view, 643
sys .dm_db_index_physical_stats function, 332–33
sys .dm_exec_connections, 197
sys .dm_exec_sessions, 197–98
sys .dm_sql_referenced_entities function, 98, 100
sys .dm_sql_referencing_entities function, 100–01
sys .endpoints catalog view, 732
sys .routes view, 738–39
sys .service_contract_message_usages, 682
sys .service_contract_usages, 688
sys .service_contracts, 682
sys .service_message_types, 681
sys .services, 688
sys .sp_cdc_enable_db, 666–67
sys .spatial_reference_systems view, 548, 576–77
sys .sql_expression_dependencies, 98–100
sys .syscacheobjects, 347
sys .transmission_queue view, 686–87
SYS_CHANGE_CONTEXT, 659–60
SYSDATETIME function, 379
SYSDATETIMEOFFSET function, 379
system stored procedures, 87–89
System .Data .SqlTypes namespace, 419
System .Data .SqlTypes .INullable interface, 418
System .Xml .IXmlSerializable interface, 419
SYSUTCDATETIME function, 379

T
table expressions, 2, 269–70
table hints, 118
table names

resolution of temporary, 250–52
temporary, 247

table truncation and change tracking, 661
table types, 92–93
table variables, 249, 259–70

create using a DECLARE statement, 260
limitations, 260
scope of, 261
statistic aspects of, 262–65

tables, 2
creating, with a spatial column, 554–55
deleted, 146–47, 163
derived, 2, 270
emptying large, 215
Entity-Attribute-Value (EAV), 537
full temporal, 464–67
global temporary, 257–59
inserted, 146–47, 163
numbers, 602
partitioned, 660
querying, 274–78
read-only lookup, 413
relational, 502–05
relationship to views, 1
Service Broker internal, 684
Session, 300–06
temporary, 254–56
time points lookup, 442
tracking changes to, 627
triggers on permanent, 146
virtual, 1

table-valued parameters, 67, 92–94, 260, 524
Tag integers, 499
tags, XML, 492, 511
Talmage, Ron, 328
TARGET endpoints, 681–82, 688
target service, 738
target service name, 688–89
targets, 633–35
tempdb

determining size for, 268–69
row versioning in, 146–47
table variables in, 260–61
temporary tables, 153, 246–47
tuning, 268

TEMPLATE plan guides, 123–25
temporal support

defined, 439
temporary objects

cache, 254–57
temporary stored procedures, 89
temporary tables

creating, 430

796 termination, batch

global, 246
in tempdb, 153, 246–47
in T-SQLprogramming, 245–69
local, 246
locking, 248
logging, 248
logical, 269–70
name resolution, 250–52
visibility, 247–48, 316

termination, batch, 225
TestCaching, 256
TestCaching procedure, 254–55
testing

full temporal tables, 467–68
semitemporal constraints, 445–46

text () function, 501, 511
text files, loading spatial data from, 594–95
text nodes, 511
time, 387–88, 393
TIME function, 376, 393
time points, 441–42
time points lookup table, 442–43
timeout, 198
TIMEOUT clause, 698
TIMEOUT parameter, 745
TO SERVICE clauses, 688
TODATETIMEOFFSET function, 380
tolerance, 567–69
TOP option, 2–4, 6
ToString method, 417, 422, 426–27
tr_MScdc_ddl_event, 667
trace flags/traces, 219–20
transaction states

error handling and, 233
transactions, 145, 191–94, 208
transformations, linear, 618–20
transmission_status columns, 687
TRANSPORT address, 740
triggers

as part of transaction, 181–82
catching invalid data using, 444–46, 466–67
common runtime language, 181–90
constraint, 413
database-level DDL, 172–80
generic C# audit code, 183–90
identifying action types for, 151–52
INSTEAD OF, 163–72
limiting to single row at a time, 470–73
logon, 180–81
nesting of, 156
overview, 145–46
per-row, 164–67
recursion of, 156–57
server-level DDL, 173, 178–80
suppressing/disabling, 152

troubleshooting
blocking, 196–98
deadlocks, 219

true function, 509
trustworthy flags, 729–30
TRY/CATCH constructs, 225, 229–30
T-SQL language, 31

CONVERT function, 52
cursors, 285
deploying user-defined types, 425–37
dynamic SQL, 133, 316, 331–64
error handling, 225
object plan guides, 118
split array, 66–67
SQL signature function, 57–59
string replacement in, 50–51
triggers, 145
user-defined functions, 32, 43
XQuery language and, 505

tuples, 411, 446–47
type

plan guide, 118
size of, 418

TYPE directive, 502
typed XML documents, 495
TZoffset part, 381

u
UDAs (user-defined aggregates) . See user-defined

aggregates (UDAs)
UDFs (user-defined functions) .

See user-defined functions (UDFs)
UDTs (user-defined types) .

See user-defined types (UDTs)
undo phase, 192
Unicode text, 492
union aggregates, building, 615–17
UNION ALL operator, 499
Union interval operators, 454–60
union of spatial objects, 565–67
UNIQUE constraints, 27, 41–42, 256

table variables, indexes and, 260
units of measurement, 578
unknown values, 418
UNPACK operators, 474–76
unpivoting, 349–64
UNSAFE permission setting, 46, 425
update (U) locks, 194
UPDATE . . . OUTPUT command, 697
update conflicts, 210–12, 243–44
UPDATE predicates, 158
UPDATE statements, 22

triggers, 158–60
use of INSTEAD OF triggers with views and, 167–69

upper-case function, 509
USE PLAN query hints, 125
user inputs, 315, 370
user_name, 130
user-defined aggregates

(UDAs), 34, 416, 429–30, 615–17

 well-known text (WKT) 797

UserDefined formats, 417
user-defined functions (UDFs)

CLR scalar, 43
inline table-valued, 2, 31, 37, 39, 64–65, 270
multistatement table-valued, 73–77
overview, 31–32
per-row, 77–80
scalar-valued, 31–32
static solution using inline table-valued, 343–45
table-valued, 31, 63–77

user-defined stored procedures
invoking from another database or server, 85
overview, 82–84
security flaws in, 357
use of sp_prefix, 88

user-defined types (UDTs)
CLR, 537–38
creating, 419–25
programming, 416–37
requirements, 417–19

usp_pivot stored procedure, 358–62
UTC (Coordinated Universal Time), 379

V
VALID_XML option, 680–81
validation

email address, 48–49
intervalCID, 451–52
message type, 681
plan guides, 127
schema collection, 538–40
spatial data, 579–81
XML document, 495

VALIDATION clause, 680
ValidationMethodName property, 418, 449
value comparison operators, 512–13
VALUE index, 529
value method, 521, 525, 527, 535

used in a WHERE clause, 527–28
XQuery expressions in, 527

values
constraining, 538–42
trapping, for error handling, 226–29

VARBINARY(MAX) data type
Service Broker message body, 679

VARCHAR(MAX) data type, 321
variables, 321

@mode, 58
local, 316, 318
table . See table variables

vector data, 544–45
Velben, Oswald, 550
VERSION option

CHANGETABLE function, 658
versioning

identifying, 479
row, 146–47, 200–01, 208–14

vertex points, 567–69
vertical decomposition, 481
VIEW CHANGE TRACKING permission, 661
view designer, 6
view reference, 1
VIEW_Metadata option, 23–24
viewing

audit details, 649–50
event sessions, 639–41
Service Broker table names, 684
spatial data, 556
table names in Service Broker, 684

views
as an abstraction mechanism, 1
audit, 649–50
defined, 1–2
first index requirement, 25
indexed, 1, 24–29
INSTEAD OF triggers and, 164, 167–69
modular, 8
nonindexed, 1
ORDER BY clause in, 3–6
parameterized, 64
partition-aligned indexed, 27
refreshing, 6–8
row level security using, 16–19
updating, 16

visibility, temporary table, 247–48, 316
Visual Basic, 62, 456–60

comparison of implicit vs explicit castings, 55–56
date and time function code, 53–54
namespaces and CLRUtilities class, 43–44
RegexReplace function, 51
register RegexReplace function code, 52
SplitCLR function, 69–70
SQLSigCLR function, 60

Visual Studio 2008
creating user-defined types in, 419–20
creating Windows form in, 662–64
preventing creation of root namespace, 47–48
triggers in, 186
user-defined type requirements, 417–18

W
W3C standard, 531
WAITFOR parameter, 704, 706
WAITFOR statement, 698–700
WCF (Windows Communications

Foundation), 702, 750
weekdays, calculating, 385–87

first or last, 391–93
previous or next weekday, 389–91

WELL_FORMED_XML option, 680–81
well-formed XML documents, 492

changing to schema-validated, 538–41
well-known binary (WKB), 554–55, 598
well-known text (WKT), 554–55, 598

798 WGS 84 (World Geodetic System of 1984) coordinate system

WGS 84 (World Geodetic System of 1984)
coordinate system, 548

WHERE clause
in filters, 84
in spatial indexes, 603–04
to return schema only, 499

where clause, in FLOWR statement, 516–17
wildcards, 511, 739
Windows authentication protocols, 733
Windows Communications Foundation (WCF), 702, 750
Windows form application, creating, 662–65
WITH CHECK option, 22–23
WITH NAMESPACES clause, 496
WITHOUT LOGIN, 727
WKB (well-known binary), 554–55, 598
WKT (well-known text), 554–55, 598
working days, calculating, 405–06
World Geodetic System of 1984 (WGS 84) coordinate

system, 548
World Wide Web Consortium (W3C), 491

X
XACT_ABORT option, 194, 234
XACT_STATE function, 234–35
XDR (XML Data Reduced) standard, 495
xdt namespace, 507
XML

Data Reduced (XDR) standard, 495
DML, 505
DOM (Document Object Model), 495
Explicit mode, 499–500
fixed, plan guide, 125–27
overview, 491–95
Path mode, 499, 501

Schema Description (XSD) standard, 494–95, 499
for Visio documents, 525

serialization, 524
values, 172–73

logon triggers, 180
xml namespace, 507
XMLDATA directive, 499
XmlIgnore attribute, 419
XMLSCHEMA directive, 499
xp_cmdshell, 365, 370
XPath expressions, 499–500

navigation, 510
rowpattern, 503

XQuery
data modification in, 531
data types, 508–09
expressions, 527
functions, 509–10
navigation, 510–16
overview, 491, 505–06
querying event information, 173
sequences, 505–06
string functions, 509

xs namespace, 507
XSD (XML Schema Description) standard, 494–95, 499
xsi namespace, 507

Y
YEAR function, 379

Z
zipcodes, 605–07

About the Authors
itzik Ben-gan is a mentor and cofounder of Solid Quality
Mentors . A SQL Server Microsoft MVP (Most Valuable Professional)
since 1999, Itzik has delivered numerous training events around
the world focused on T-SQL querying, query tuning, and
programming . Itzik is the author of several books about T-SQL .
He has written many articles for SQL Server Magazine as well as
articles and white papers for MSDN . Itzik’s speaking engagements
include Tech Ed, DevWeek, PASS, SQL Server Magazine
Connections, various user groups around the world, and Solid
Quality Mentors events .

Dejan Sarka focuses on development of database and business
intelligence applications . Besides projects, he spends about half of
the time on training and mentoring . He is a frequent speaker on
some of the most important international conferences such as PASS,
TechEd, and SqlDevCon . He is also indispensable on regional MS
events, for example on the NT Conference, the biggest MS
conference in Central and Eastern Europe . He is the founder of the
Slovenian SQL Server and .NET Users Group . Dejan Sarka is the main
author, coauthor, or guest author of seven books about databases
and SQL Server . Dejan Sarka also developed two courses for Solid
Quality Learning—Data Modeling Essentials and Data Mining with
SQL Server 2008 .

Roger Wolter is an architect on the Microsoft IT MDM project
team . He has 30 years of experience in various aspects of the
computer industry including jobs at Unisys, Infospan, Fourth Shift,
and the last 10 years as a Program Manager at Microsoft . His
projects at Microsoft include SQLXML, the Soap Toolkit, the SQL
Server Service Broker, SQL Server Express, and Master Data
Services . He is currently working on a project to master all of
Microsoft’s customer and partner data .

greg Low is a consultant and trainer, best known for his
SQL Down Under podcast (www.sqldownunder.com) and
for his work as the director of global chapter operations
for PASS . Greg is the country lead for Solid Quality
Mentors in Australia (www.solidq.com.au), a SQL Server
MVP, and a Microsoft Regional Director . He holds a PhD
in computer science from QUT and has written a number
of books on SQL Server and on building technical
 communities . For Microsoft, he has written SQL Server
white papers and training materials and is one of
a handful of trainers chosen to deliver the Microsoft
Certified Masters program for SQL Server 2008 .

ed Katibah is a program manager on the Microsoft SQL
Server Strategy, Infrastructure and Architecture team .
Ed began his professional career over 34 years ago while
working in a University of California, Berkeley, research
group at the Space Sciences Laboratory . Ed has extensive
experience in the spatial industry with jobs ranging from
research, software development, consulting, application
programming, and large-scale spatial database
production systems . Since 1996, Ed has worked
exclusively on spatially enabled database systems for
Informix, IBM, and now Microsoft .

isaac Kunen is a program manager on the SQL Server
engine programmability team . Since joining Microsoft in
2005, he has worked on the type system, SQL CLR
integration, and database extensibility . His most
prominent project to date is the spatial data support in
SQL Server 2008 . Isaac is currently focusing on reducing
the complexity of database application development,
deployment, and management .

	Cover
	Table of Contents
	Chapter 3
	Chapter 7
	Index

