
CABINET GORGE & NOXON RAPIDS RESERVOIRS SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR)

Prepared By: CLEAN LAKES INC.

> <u>www.cleanlake.com</u> P. O. Box 3548 Coeur d'Alene, Idaho 83814

Prepared For: Sanders County 1111 Main Street Thompson Falls, MT 59873

October 2014

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 1 of 53

BACKGROUND INFORMATION: Clean Lakes, Inc. (CLI) was contracted by Sanders County, Montana to provide aquatic herbicide applications for the control of Aquatic Invasive Species (AIS) within specific areas of Cabinet Gorge and Noxon Rapids Reservoirs. Applications were conducted in compliance with the Montana Department of Environmental Quality, Montana Pollutant Discharge Elimination System (NPDES) Pesticide General Permit (PGP) for Pesticide Application (NOI Permit # MTG870000), as well as the Pesticide Discharge Management Plan (PDMP) developed as part of the PGP. The Permit related information is included in the Cabinet Gorge & Noxon Rapids Reservoirs, Sanders County, Montana, 2014 AIS Aquatic Pesticide Application Plan (APAP)¹.

SCOPE OF WORK: The scope of work was for the application of aquatic herbicides, alone or in combination, for the control of Eurasian watermilfoil and Curlyleaf pondweed in up to 200 acres within pre identified areas of Cabinet Gorge & Noxon Rapids Reservoirs.

PRE-TREATMENT SURVEYS: On July 3, 2014 Kim Bergstrom, Pinnacle Research, provided CLI with the shapefiles of the treatment areas along with the "Guidance for Selective Control of Eurasian watermilfoil and Curlyleaf Pondweed Using Herbicides in Noxon Rapids and Cabinet Gorge Reservoirs, MT, 2014 (KD Getsinger, PhD, USAE Research and Development Center, March 20, 2014)² that were used to finalize priority treatment areas. On July 10, 2014, CLI Staff (Moorhouse), Celestine Duncan, and Jason Badger (Chair, Sanders

County Aquatic Invasive Plants Task Force) surveyed the treatment plots designated for treatment on both reservoirs. Sanders County hired a third party consultant, Hansen Environmental, to perform the 2014 pre-treatment surveys.

¹ NOXON RAPIDS & CABINET GORGE RESERVOIRS SANDERS COUNTY, MONTANA, 2014 AIS Aquatic Pesticide Application Plan (APAP)

² "Guidance for Selective Control of Eurasian watermilfoil and Curlyleaf Pondweed Using Herbicides in Noxon Rapids and Cabinet Gorge Reservoirs, MT, 2014 (KD Getsinger, PhD, USAE Research and Development Center, 20 March 2014)

Hansen Environmental provided the "Preliminary Pre-treatment Assessment of Treatment Plots for Noxon and Cabinet Gorge Reservoirs 2014" on July 13, 2014 to support finalization of the treatment plan. On August 1, 2014 members of the Task Force along with Dr. Kurt Getsinger and Dr. John Madsen also surveyed the sites on both Cabinet Gorge Reservoir and Noxon Rapids Reservoir to review conditions.

SUMMARY OF ACRES TREATED: The final plan consisted of treating 181.4 acres in Cabinet Gorge Reservoir, and 18.6 acres in Noxon Rapids Reservoir, for a total of 200 acres. Based on the Pre Treatment Plot surveys, water depths were adjusted in the Plots due to water level conditions at the time of treatment. Treatment plots were named through an alphanumeric system to differentiate plots on Cabinet Gorge and Noxon Rapids Reservoirs that uses a three part naming system. A letter C or N designates the location, Cabinet Gorge or Noxon Rapids, respectively followed by numbers to designate the plot and the year the plot was identified for treatment. Therefore, a treatment area designated as C-2-14 is located in Cabinet Gorge Reservoir, is plot number 2, and was identified for treatment in 2014. A total acreage treatment cap of 200 acres encompassing both reservoirs prevented treatment of Plots C-6-14 and C-7-14

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR)

3 of 53

in Cabinet Gorge Reservoir. Plot C-1-14 through C-5-14 were treated. In Noxon Rapids Reservoir Plots N-1-14, N-2-14, and N-3-14 were not treated due to a lack of or low densities of EWM; Plot N-5-14 was converted from a diver dredge plot to an aquatic herbicide treatment plot; and Plot N-12-14 was created due to EWM growth along the Northshore community shoreline area.

TREATMENT SCHEDULE: The aquatic herbicide treatments were performed on August 18, 20, and 21, 2014. (See the Treatment Dates and Time-Table 1 below).

	2014 Cabinet Gorge Reservoir Treated Plots												
	Alternate												
Plot	Plot		Mean					Wind					
Number	Name	Acreage	Depth	Date	Start	Stop	Sky	(mph)					
Bed 1	C-1-14	70.5	5.10	8/20/2014	10:51	2:57	Pt Cloudy	3.7 E					
Bed 2	C-2-14	60.6	5.00	8/18/2014	10:26	2:10	Clear	<1					
Bed 3	C-3-14	21.7	6.50	8/18/2014	2:40	3:56	Clear	5.5 NW					
Bed 4	C-4-14	19.5	6.00	8/20/2014	12:06	2:47	Pt Cloudy	2.4 N					
Bed 5	C-5-14	9.0	5.70	8/20/2014	3:17	3:40	Pt Cloudy	<1					
Total													
CG		181.4											
2014 Noxon Rapids Reservoir Treated Plots													
	Alternate												
Plot	Plot		Mean										
Number	Name	Acreage	Depth	0/01/0014	10.00	10.14							
Bed 4	N-4-14	2.0	5.50	8/21/2014	10:00	10:14	Pt Cloudy	2.7 E					
Bed 6	N-6-14	2.3	7.60	8/21/2014	10:22	10:30	Pt Cloudy	4 SE					
Large Ple	ots Total	4.3											
Bed 5	N-5-14	0.16	3.00	8/21/2014	11:45	11:50	Pt Cloudy	2 E					
Bed 7	N-7-14	1.1	6.00	8/21/2014	10:45	10:52	Pt Cloudy	3.4 SW					
Bed 8	N-8-14	0.5	8.00	8/21/2014	10:55	11:05	Pt Cloudy	<1					
Bed 9	N-9-14	2.5	8.00	8/21/2014	11:10	11:20	Pt Cloudy	<1					
Bed 10	N-10-14	0.6	8.00	8/21/2014	11:25	11:32	Pt Cloudy	<1					
Bed 12	N-12-14	9.4	7.00	8/21/2014	9:47	10:11	Pt Cloudy	2.6 SE					
		112											
Strip Plo		14.3											
Sub Tota	al Noxon	18.6											
Total		200.0											

Table 1: Treatment Plots, Dates and Times

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR)

EQUIPMENT USED: Two of CLI's Littoral Zone Treatment vessels (LittLine[®]) were used to perform the aquatic herbicide applications. The herbicide applications were made to the lower portion of the water column to increase herbicide concentration and exposure time (CET) relationships for the control of the target species.

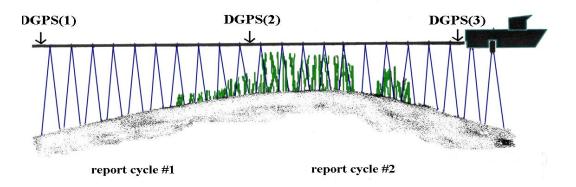
The AIS treatment area GIS shapefiles were loaded into the LittLine[®] computer system for vessel guidance and herbicide application data recording. The treatment tracks were automatically recorded via the LittLine vessel's GPS guidance system for the production of the

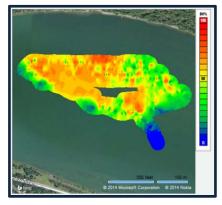
final treatment area maps to document the treatment areas.

The LittLine[®] can place herbicides at any depth within the water column (2 - 30 feet), as well as within the bottom 2 foot of the water column. Impacts from currents, wind and

wave action are reduced in deep water applications through the use of the LittLine[®] application system when compared to conventional subsurface applications. For the Noxon Rapids and Cabinet Gorge Reservoir applications, the application swath widths were approximately 50 foot, and the vessel speeds averaged 3 to 5 mph depending on water depths within the plots. The herbicide discharge in all of the plots was within the bottom portion of the water column. The

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 5 of 53


LittLine[®] hoses are electronically reeled in or reeled out based on the varying depths of the treatment Plots.


The LittLine system's computerized rate controllers regulate the aquatic herbicide applications through preset treatment rates. When the vessel speeds up and or slows down, the rate controllers adjust the herbicide application rate to match the preset rate in gallons of product per acre.

A Digital Echosounder System with a Structure Scan

Module was used to record data of the submerged aquatic vegetation (SAV) profile in the control plots during treatment and during the post treatment survey. Data was collected in both the .SLG (traditional sonar on HDS line) and the .SL2 (multi-channel structure scan) formats.

The sonar data collected was processed and analyzed for At Time of Treatment Submerged Aquatic Vegetation (SAV) in the treatment plots and at ~ 6 Weeks Post Treatment. Data was collected to compare At Time of Treatment and ~ 6 Weeks Post Treatment SAV coverage, height in the water column, and biovolume to support post-treatment efficacy evaluations. An example of SAV conditions at time of treatment for Plot C-3-14, Cabinet Gorge Reservoir, is pictured to the right.

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 6 of 53

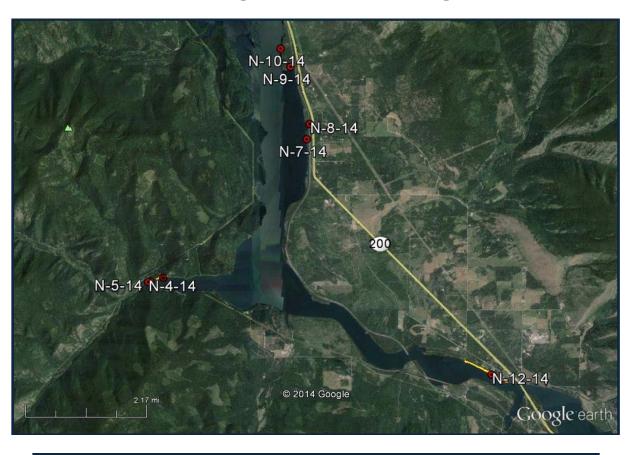
AQUATIC HERBICIDES: CLI provided the aquatic herbicides for the project, and they were delivered by IEDS of Spokane, WA in recyclable totes (Aquathol K - 250 gallon, Triclopyr 3[®] - 250 gallon) containers. CLI provided the required support equipment for material handling (herbicide transfer) as

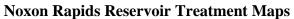
well as support vehicles for the vessels assigned to the project. The aquatic herbicides Aquathol $K^{\text{(B)}}$ (liquid endothall) and Triclopyr 3^(B) (liquid triclopyr) were applied to areas of Noxon Rapids

and Cabinet Gorge Reservoirs for the control of Eurasian watermilfoil and Curlyleaf pondweed as outlined in the Site Data Tables below (Herbicide Label's and Material Safety Data Sheets (MSDS's) are included in the APAP).

PERMIT COMPLIANCE: CLI supported the development of the Aquatic Pesticide Application Plan, and Sanders County provided the required permits and approvals for the herbicide treatments from the Montana Department of Environmental Quality. There were no adverse incidents to report.

SERVICES PROVIDED BY CLI: All manpower, materials, insurance, equipment and technical advice required to perform aquatic herbicide applications in the project areas. In addition, CLI hosts a webpage at <u>http://www.cleanlake.com/2014noxonrapidsais.html</u> to provide project related information to the public.


SERVICES PROVIDED BY THE SANDERS COUNTY: Sanders County provided the required permits, published legal notices in newspapers, provided notification to property owners, posting at public boat launch facilities, and provided the project area GIS shapefiles


through Kim Bergstrom (Pinnacle Research) that were used to generate the final 2014 Treatment Area Plots and Maps.

TREATMENT AREA PLOT MAPS Cabinet Gorge Reservoir Treatment Map

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 8 of 53

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 9 of 53

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 10 of 53

TREATMENT SITE DATA

Number Plot Name Acreage Depth ppm Site (gal) ppm Site (gal) Bed 1 C-1-14 70.5 5.10 1.00 325 2.0 460 Bed 2 C-2-14 60.6 5.00 1.00 274 2.0 388 Bed 3 C-3-14 21.7 6.50 1.00 128 2.0 181 Bed 4 C-4-14 19.5 6.00 1.00 106 2.0 150 Bed 5 C-5-14 9.0 5.70 1.00 46 2.0 66 Total 181.4 879.6 1244.0 7riclopyr Endothall Plot Alternate Mean Rate Qty Total Rate Qty Total Number Plot Name Acreage Depth pm Site (gal) ppm Site (gal) Plots 2.0 14 Bed 6 <	20	14 Cabinet Gor Treatment		•	Т	riclopyr	En	dothall
Bed 2 C-2-14 60.6 5.00 1.00 274 2.0 388 Bed 3 C-3-14 21.7 6.50 1.00 128 2.0 181 Bed 4 C-4-14 19.5 6.00 1.00 106 2.0 150 Bed 5 C-5-14 9.0 5.70 1.00 46 2.0 66 Total 181.4 879.6 1244.0 66 1244.0 Z014 Noxon Rapids Reservoir Treatment Plots Triclopyr Endothall Plot Alternate Mean Rate Qty Total Rate Qty Total Bed 6 N-6-14 2.3 7.60 1.00 10 2.0 14 Bed 6 N-6-14 2.3 7.60 1.00 16 2.0 22 Large 26 36 36 36 36 36 Bed 5 N-5-14 0.16 3.00 0.00 0 3.0 1 Bed 7			Acreage		Rate	Qty Total		Qty Total Site (gal)
Bed 3 C-3-14 21.7 6.50 1.00 128 2.0 181 Bed 4 C-4-14 19.5 6.00 1.00 106 2.0 150 Bed 5 C-5-14 9.0 5.70 1.00 46 2.0 66 Total 181.4 879.6 1244.0 1244.0 2014 Noxon Rapids Reservoir Treatment Plots Triclopyr Endothall Plot Alternate Mean Rate Qty Total Rate Qty Total Bed 6 N-6-14 2.3 7.60 1.00 10 2.0 14 Bed 6 N-6-14 2.3 7.60 1.00 16 2.0 22 Large 4.3 26 36 36 36 36 Bed 5 N-5-14 0.16 3.00 0.00 0 3.0 1 Bed 7 N-7-14 1.1 6.00 0.00 3.0 13 Bed 8 N-8-14 0.5 8.00<	Bed 1	C-1-14	70.5	5.10	1.00	325	2.0	460
Bed 4 C-4-14 19.5 6.00 1.00 106 2.0 150 Bed 5 C-5-14 9.0 5.70 1.00 46 2.0 66 Total 181.4 879.6 1244.0 2014 Noxon Rapids Reservoir Treatment Plots Triclopyr Endothall Plot Alternate Plot Name Mean Acreage Rate Depth Qty Total ppm Rate Site (gal) Qty Total ppm Site (gal)	Bed 2	C-2-14	60.6	5.00	1.00	274	2.0	388
Bed 5 C-5-14 9.0 5.70 1.00 46 2.0 66 Total 181.4 879.6 1244.0 2014 Noxon Rapids Reservoir Treatment Plots Triclopyr Endothall Plot Number Alternate Plot Name Mean Acreage Rate Depth Qty Total Site (gal) Rate ppm Qty Total Site (gal) Bed 6 N-6-14 2.3 7.60 1.00 16 2.0 22 Large Plots 26 36 30 1 30 1 Bed 5 N-5-14 0.16 3.00 0.00 3.0 1	Bed 3	C-3-14	21.7	6.50	1.00	128	2.0	181
Total 181.4 879.6 1244.0 2014 Noxon Rapids Reservoir Treatment Plots Triclopyr Endothall Plot Alternate Plot Name Mean Acreage Rate Depth Qty Total ppm Rate Site (gal) Qty Total PDM Rate Site (gal) Qty Total PDM Rate Site (gal) Qty Total Site (gal) Rate PDM Qty Total Site (gal) Rate	Bed 4	C-4-14	19.5	6.00	1.00	106	2.0	150
2014 Noxon Rapids Reservoir Treatment Plots Triclopyr Endothall Plot Number Alternate Plot Name Mean Acreage Rate Depth Qty Total Site (gal) Rate ppm Qty Total Site (gal) Rate ppm Qty Total Site (gal) Bed 4 N-4-14 2.0 5.50 1.00 10 2.0 14 Bed 6 N-6-14 2.3 7.60 1.00 16 2.0 22 Large Plots 4.3 26 36 36 Bed 5 N-5-14 0.16 3.00 0.00 0 3.0 1 Bed 7 N-7-14 1.1 6.00 0.00 0 3.0 13 Bed 8 N-8-14 0.5 8.00 0.00 0 3.0 38 Bed 9 N-9-14 2.5 8.00 0.00 0 3.0 9 Bed 10 N-10-14 0.6 8.00 0.00 0 3.0 9 Bed 12 N-12-14 9.4 7.00 </td <td>Bed 5</td> <td>C-5-14</td> <td>9.0</td> <td>5.70</td> <td>1.00</td> <td>46</td> <td>2.0</td> <td>66</td>	Bed 5	C-5-14	9.0	5.70	1.00	46	2.0	66
Treatment Plots Triclopyr Endothall Plot Alternate Plot Name Mean Acreage Rate Depth Qty Total ppm Rate Site (gal) Qty Total ppm Bed 4 N-4-14 2.0 5.50 1.00 10 2.0 14 Bed 6 N-6-14 2.3 7.60 1.00 16 2.0 22 Large Plots	Total		181.4			879.6		1244.0
Treatment Plots Triclopyr Endothall Plot Alternate Plot Name Mean Acreage Rate Depth Qty Total ppm Rate Site (gal) Qty Total ppm Bed 4 N-4-14 2.0 5.50 1.00 10 2.0 14 Bed 6 N-6-14 2.3 7.60 1.00 16 2.0 22 Large Plots Acreage Acreage <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Plot Number Alternate Plot Name Mean Acreage Rate Depth Qty Total ppm Rate Site (gal) Qty Total ppm Rate Site (gal) Qty Total ppm Bed 4 N-4-14 2.0 5.50 1.00 10 2.0 14 Bed 6 N-6-14 2.3 7.60 1.00 16 2.0 22 Large Plots <td>20</td> <td>-</td> <td></td> <td></td> <td>Т</td> <td>riclopyr</td> <td>En</td> <td>dothall</td>	20	-			Т	riclopyr	En	dothall
Number Plot Name Acreage Depth ppm Site (gal) ppm Site (gal) Bed 4 N-4-14 2.0 5.50 1.00 10 2.0 14 Bed 6 N-6-14 2.3 7.60 1.00 16 2.0 22 Large Plots	Plot	Alternate		Mean			Rate	Qty Total
Bed 4 N-4-14 2.0 5.50 1.00 10 2.0 14 Bed 6 N-6-14 2.3 7.60 1.00 16 2.0 22 Large Plots Total			Acreage			- •		Site (gal)
Large Plots Total 4.3 26 36 Bed 5 N-5-14 0.16 3.00 0.00 0 3.0 1 Bed 7 N-7-14 1.1 6.00 0.00 0 3.0 13 Bed 8 N-8-14 0.5 8.00 0.00 0 3.0 38 Bed 9 N-9-14 2.5 8.00 0.00 0 3.0 38 Bed 10 N-10-14 0.6 8.00 0.00 0 3.0 9 Bed 12 N-12-14 9.4 7.00 1.00 60 2.0 84	Bed 4	N-4-14		5.50		10	2.0	14
Plots Total 4.3 26 36 Bed 5 N-5-14 0.16 3.00 0.00 0 3.0 1 Bed 7 N-7-14 1.1 6.00 0.00 0 3.0 13 Bed 8 N-8-14 0.5 8.00 0.00 0 3.0 13 Bed 9 N-9-14 2.5 8.00 0.00 0 3.0 38 Bed 10 N-10-14 0.6 8.00 0.00 0 3.0 9 Bed 12 N-12-14 9.4 7.00 1.00 60 2.0 84	Bed 6	N-6-14	2.3	7.60	1.00	16	2.0	22
Total 4.3 26 36 Bed 5 N-5-14 0.16 3.00 0.00 0 3.0 1 Bed 7 N-7-14 1.1 6.00 0.00 0 3.0 13 Bed 8 N-8-14 0.5 8.00 0.00 0 3.0 8 Bed 9 N-9-14 2.5 8.00 0.00 0 3.0 38 Bed 10 N-10-14 0.6 8.00 0.00 0 3.0 9 Bed 12 N-12-14 9.4 7.00 1.00 60 2.0 84	Large							
Bed 5 N-5-14 0.16 3.00 0.00 0 3.0 1 Bed 7 N-7-14 1.1 6.00 0.00 0 3.0 1 Bed 7 N-7-14 1.1 6.00 0.00 0 3.0 13 Bed 8 N-8-14 0.5 8.00 0.00 0 3.0 8 Bed 9 N-9-14 2.5 8.00 0.00 0 3.0 38 Bed 10 N-10-14 0.6 8.00 0.00 0 3.0 9 Bed 12 N-12-14 9.4 7.00 1.00 60 2.0 84								
Bed 7 N-7-14 1.1 6.00 0.00 0 3.0 13 Bed 8 N-8-14 0.5 8.00 0.00 0 3.0 8 Bed 9 N-9-14 2.5 8.00 0.00 0 3.0 38 Bed 10 N-10-14 0.6 8.00 0.00 0 3.0 9 Bed 12 N-12-14 9.4 7.00 1.00 60 2.0 84	Total		4.3			26		36
Bed 7 N-7-14 1.1 6.00 0.00 0 3.0 13 Bed 8 N-8-14 0.5 8.00 0.00 0 3.0 8 Bed 9 N-9-14 2.5 8.00 0.00 0 3.0 38 Bed 10 N-10-14 0.6 8.00 0.00 0 3.0 9 Bed 12 N-12-14 9.4 7.00 1.00 60 2.0 84								
Bed 8 N-8-14 0.5 8.00 0.00 0 3.0 8 Bed 9 N-9-14 2.5 8.00 0.00 0 3.0 38 Bed 10 N-10-14 0.6 8.00 0.00 0 3.0 9 Bed 12 N-12-14 9.4 7.00 1.00 60 2.0 84			0.16			0		
Bed 9 N-9-14 2.5 8.00 0.00 0 3.0 38 Bed 10 N-10-14 0.6 8.00 0.00 0 3.0 9 Bed 12 N-12-14 9.4 7.00 1.00 60 2.0 84								
Bed 10 N-10-14 0.6 8.00 0.00 0 3.0 9 Bed 12 N-12-14 9.4 7.00 1.00 60 2.0 84	Bed 8	N-8-14	0.5	8.00	0.00	0	3.0	8
Bed 12 N-12-14 9.4 7.00 1.00 60 2.0 84	Bed 9	N-9-14	2.5	8.00	0.00	0	3.0	38
	Bed 10	N-10-14	0.6	8.00	0.00	0	3.0	9
Strip		N-12-14	9.4	7.00	1.00	60	2.0	84
	Strip							
Plots 14.2			14.2			50 5		152.1
Total 14.3 59.5 153.1			14.3			59.5		153.1
Sub 18.6 85 190			18.6			85		100
			10.0			0.0		170
Total 200.0 965 1434	Total		200.0			965		1434

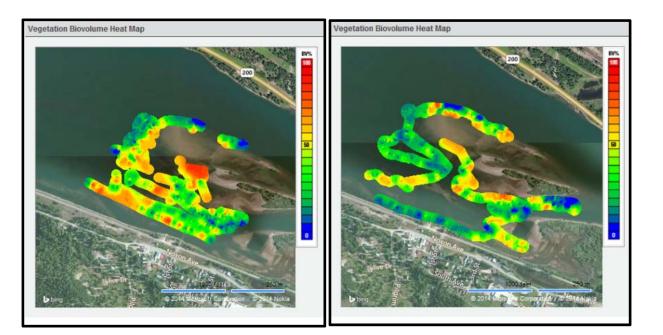
Table 2: Plots Treated on Cabinet Gorge & Noxon Rapids Reservoir, Treatment Site Data, Aquatic Herbicides Used:

Table 2 Notes:

- Acreage, average depth and acre feet values were adjusted in some of the Plots based on field conditions at the time of treatment.
- The 2014 Treatment priority was based on treatment progressing in an upstream to downstream direction.

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 12 of 53

Plot Percent SAV Cover and SAV Bio-Volume Present At Time of Application and ~ Six (6) Weeks Post Treatment in the Treatment Plots


	2014 Cabinet Gorge and Noxon Rapids Reservoir's AIS Treatment Plots: At Time of and ~ Six (6) Week Post Plot SAV % Cover and SAV BioVolume Data (Grid Data)														
	At Ti	me of and -	<mark>~ Six (6) Weel</mark>	<mark>x Post Plot SA</mark>	<mark>V % Cover a</mark>	nd SAV BioVo	o <mark>lume Data</mark>	(Grid Data)							
						Date Data		Post							
	SAV	SAV		SAV		Collected-	SAV %	Treatment							
Plot	Percent	Bio-	Date Data	Percent	SAV Bio-	Post	BV	EWM	Herbicides						
Number	Cover	Volume	Collected	Cover	Volume	Treatment	Change	Injury Rank	Used						
	Cabinet Gorge														
C-1-14	C-1-14 98.50 44.20 8/20/2014 97.10 35.20 9/26/2014 -20% 75% +/- End/Tri														
C-2-14	99.10	54.20	8/18/2014	97.30	51.60	9/26/2014	-5%	50% +/-	End/Tri						
C-3-14	96.90	50.70	8/18/2014	100.00	37.8	9/26/2014	-25%	70% +/-	End/Tri						
C-4-14	92.40	36.60	7/10/2014	82.10	19.9	9/26/2014	-46%	95% +/-	End/Tri						
C-5-14	94.20	74.90	7/10/2014	89.30	23.0	9/26/2014	-69%	95% +/-	End/Tri						
				Noz	kon Rapids			-							
N-4-14	100.00	55.50	8/21/2014	100.00	52.7	9/26/2014	-5%	50% +/-	End/Tri						
N-5-14	86.80	33.70	8/21/2014	n/a	n/a	n/a	n/a	70% +/-	Endothall						
N-6-14	84.00	45.70	8/21/2014	80.40	32.7	9/26/2014	-28%	55% +/-	End/Tri						
N-7-14	91.00	35.40	8/21/2014	62.00	9.4	9/26/2014	-73%	95% +/-	Endothall						
N-8-14	100.00	44.10	8/21/2014	100.00	33.5	9/26/2014	-24%	50% +/-	Endothall						
N-9-14	92.60	42.90	8/21/2014	79.60	31.0	9/26/2014	-28%	65% +/-	Endothall						
N-10-14	100.00	53.30	8/21/2014	67.40	13.3	9/26/2014	-75%	90% +/-	Endothall						
N-12-14	94.30	36.90	8/21/2014	85.00	17.5	9/26/2014	-53%	85% +/-	End/Tri						

Note: Herbicides used End/Tri = Combination of Endothall and Triclopyr. Post Treatment Injury Rank is the observers (Moorhouse, McNabb) visual estimates of herbicide injury to EWM on September 26, 2014, approximately 6 weeks after treatment during a survey with Kim Bergstrom and Tanner Mitchell.

A 52 week Post Treatment Survey to determine efficacy will be performed in 2015. The observations contained in this report are general six (6) week Post Treatment observations, and should not be used for control efficacy evaluations. In addition, it should be noted that a Post Treatment increase in Submerged Aquatic Vegetation (SAV) Percent Area Coverage, height in the water column, and bio-volume can result, and can be attributed to an increase in native vegetation in response to selectively controlling the target species.

PRE AND POST TREATMENT SAV DATA SAV PERCENT COVER AND BIO-VOLUME DATA SETS

Plot C-1-14: At Time of Treatment (August 20, 2014 Left), ~ Six (6) Weeks Post (September 26, 2014 Right)

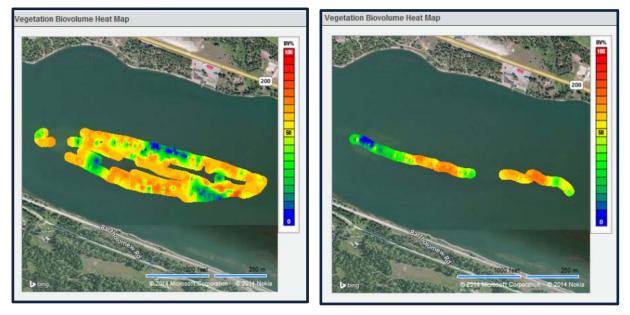
	2014 Cabinet Gorge and Noxon Rapids Reservoir's AIS Treatment Plots: At Time of and ~ Six (6) Week Post Plot SAV % Cover and SAV BioVolume Data (Grid Data)												
Plot	SAV Bio- Date Data Percent SAV Bio- Post BV Post Post												
Number	Cover	Volume	Collected	Cover	Volume	Treatment	Change	Injury Rank	Used				
	Cabinet Gorge												
C-1-14	C-1-14 98.50 44.20 8/20/2014 97.10 35.20 9/26/2014 -20% 75% +/- End/Tri												

Observations/Notes C-1-14: Treated with 1.0 ppm triclopyr, 2 ppm endothall, control estimated at 75%. This Plot was reduced from 72.5 to 70.5 acres due to a sandbar on the upper end of the Plot with no vegetation present. East side of plot looks very good for control, Elodea and Sago abundant. Islands of EWM damaged looking amongst area of good control containing elodea and coontail. Longest finger of plot to north contains EWM with abundant filamentous algae. Some plants look healthier than other plants in that area. The level of control looks good for the challenging nature of the plot, shallow and very irregular shape. Observed black stems and leaves via visual observations and rake throws. Vast majority of plants look damaged with observed epinasty. At six (6) weeks post treatment, the herbicides could still be working through plants.

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 14 of 53

Plot C-1-14: At Time of Treatment (August 20, 2014)

Image: Survey Summary Avg BVp ? SD BVp ? Avg BVw ? SD BVw ? Depth Range Avg Depth Distance No. Image: Survey Summary Fig. 2 Avg BVp ? SD BVp ? Avg BVw ? SD BVw ? Depth Range Avg Depth Distance No. Image: Survey Summary Fig. 2 Avg BVp ? SD BVp ? Avg BVw ? SD BVw ? Depth Range Avg Depth Distance No. Image: Survey Summary Fig. 2 SS Survey Summary SUVEY Depth Range Avg Depth Distance No. Image: Survey Summary Full 95.1% 37.8% ±23.5% 35.9% ±24.4% 0.76-4.44 m 1.65 m 9.66 km 3.00 Image: Survey Summary Full 95.5% 44.2% ±19.6% 43.6% ±20.2% 0.4-4.85 m 1.75 m - 6.80 Image: Survey Summary Full 99.5% 59.6% ±19.3% 59.3% ±19.7% 0.76-3.08 m 1.14 m 1.67 km 212 Image: Survey Survey Survey Survey	Y Track Buffer: 25 m Grid Cell Size: 5 m Win. BV Detect: 5% Min. BV Detect: 5% Min. Veg Depth Detect: 0.73152 n ange Avg Depth Distance No. Points 4 m 1.65 m 9.66 km 3,004 m 1.75 m - 6,806 ange Avg Depth Distance No. Points ange 1.26 m - 1.576 No. Points ange 1.63 m 2.83 km 823 No. Points an 1.99 m 2.65 km </th
Toms Molece Area 25 2 2 As (DS G e Size) Toms Molece Tom Molece Tom Molece Tom Molece Tom Molece Tom Molece Tom Molece Mo	Y Track Buffer: 25 m Grid Cell Size: 5 m Win. BV Detect: 5% Min. BV Detect: 5% Min. Veg Depth Detect: 0.73152 n ange Avg Depth Distance No. Points 4 m 1.65 m 9.66 km 3,004 m 1.75 m - 6,806 ange Avg Depth Distance No. Points ange 1.26 m - 1.576 No. Points ange 1.63 m 2.83 km 823 No. Points an 1.99 m 2.65 km </th
Type 7 PAC 7 Ang BVp 7 SD BVp 7 Avg BVp 7 SD BVp 7 Depth Range Avg Depth Distance No. Image: Start S	Y Track Buffer: 25 m Grid Cell Size: 5 m Win. BV Detect: 5% Min. BV Detect: 5% Min. Veg Depth Detect: 0.73152 n ange Avg Depth Distance No. Points 4 m 1.65 m 9.66 km 3,004 m 1.75 m - 6,806 ange Avg Depth Distance No. Points ange 1.26 m - 1.576 No. Points ange 1.63 m 2.83 km 823 No. Points an 1.99 m 2.65 km </th
Image: Solution Date Solution Date Solution Date Solution Date Solution Date Solution Date Solution Soluti	Grid Cell Size: 5 m Min. BV Detect: 5% Min. BV Detect: 5% Min. Veg Depth Detect: 0.73152 m ange Avg Depth Distance No. Points 4 m 1.65 m 9.66 km 3.004 m 1.75 m - 6.806 ange Avg Depth Distance No. Points a m 1.65 m 9.66 km 3.004 m 1.75 m - 6.806 ange Avg Depth Distance No. Points ange 1.26 m - 3.0
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Avg Depth Distance No. Points 4 m 1.65 m 9.66 km 3,004 m 1.75 m - 6,806 ange Avg Depth Distance No. Points ange 1.26 m - 1.576 m 1.63 m 2.83 km 823 6 m 1.81 m 2.65 km 903 m 1.92 m - 2.538 Uspate 2.538 <
Average Water Temperature 21 or (1983 # r) (073.36 aver h) (073.36 aver h)<	ange Avg Depth Distance No. Points 4 m 1.65 m 9.66 km 3,004 m 1.75 m - 6,806 m 1.75 m - 6,806 ange Avg Depth Distance No. Points ange 1.26 m 1.67 km 2.12 m 1.63 m 2.83 km 823 6 m 1.68 m - 3.097 3 m 1.81 m 2.65 km 903 m 1.92 m -
Image: Second	4 m 1.65 m 9.66 km 3,004 m 1.75 m - 6,806 ange Avg Depth Distance No. Points 8 m 1.14 m 1.67 km 212 m 1.26 m - 1,576 m 1.63 m 2.83 km 823 6 m 1.68 m - 3,097 3 m 1.81 m 2.51 km 1,066 5 m 1.7 m - 2,239 4 m 1.99 m 2.65 km 903 m 1.92 m - 2,538
Start: 47.9995588, -115.78450012 End End 47.9995438, -115.78450012 End Type ? PAC ? Avg B/p ? SD B/p ? Avg B/w ? SD B/w ? Depth Range Avg Depth Distance Mo. Print 95.1% 37.8% 923.5% 35.9% 224.4% 0.76-4.44 1.65 m 9.05 m 3.00 Area of Interest Summary Avg B/p ? SD B/p ? Avg B/w ? SD B/w ? Depth Range Avg Depth Distance Mo. Print 99.5% 94.42% 19.0% 43.0% 220.2% 0.4-4.85 m 1.75 m - 0.80 Ol ? Type ? PAC ? Avg B/p ? SD B/v ? SD B/v ? Depth Range Avg Depth Distance Mo. Ol ? Type ? PAC ? Avg B/p ? SD B/v ? SD B/v ? Depth Range Avg Depth Distance Mo. Ol ? Type ? PAC ? Avg B/p ? SD B/v ? SD B/v ? Depth Range Avg Depth Distance Mo.	4 m 1.65 m 9.66 km 3,004 m 1.75 m - 6,806 ange Avg Depth Distance No. Points 8 m 1.14 m 1.67 km 212 m 1.26 m - 1,576 m 1.63 m 2.83 km 823 6 m 1.68 m - 3,097 3 m 1.81 m 2.51 km 1,066 5 m 1.7 m - 2,239 4 m 1.99 m 2.65 km 903 m 1.92 m - 2,538
Image: Part Part Part Part Part Part Part Part	4 m 1.65 m 9.66 km 3,004 m 1.75 m - 6,806 ange Avg Depth Distance No. Points 8 m 1.14 m 1.67 km 212 m 1.26 m - 1,576 m 1.63 m 2.83 km 823 6 m 1.68 m - 3,097 3 m 1.81 m 2.51 km 1,066 5 m 1.7 m - 2,239 4 m 1.99 m 2.65 km 903 m 1.92 m - 2,538
Survey Summary Type 7 PAC 7 Avg BVp 7 SD BVp 7 Avg BVw 7 SD BVw 7 Depth Range Avg Depth Distance No. Future Print 95.1% 37.8% ±23.5% 35.9% ±24.4% 0.76-4.44 m 1.65 m 9.66 km 3.00 Circl 98.5% 44.2% ±19.6% 43.6% ±20.2% 0.4-4.85 m 1.75 m - 6.69 Area of Interest Summary Avg BVp 7 SD BVp 7 Avg BVp 7 SD BVv 7 Depth Range Avg Depth Distance No. 1 Point 99.5% 59.6% ±19.3% 59.3% ±19.7% 0.76-3.08 m 1.14 m 1.67 m 21.7 2 Point 99.9% 59.6% ±19.3% 59.3% ±19.7% 0.76-3.08 m 1.14 m 1.67 m 22.7 2 Point 99.9% 59.6% ±19.3% 0.22.1 M 0.24.05 m 1.63 m 2.83 km 82.3 3 Point 96.7% 41.5%	4 m 1.65 m 9.66 km 3,004 m 1.75 m - 6,806 ange Avg Depth Distance No. Points 8 m 1.14 m 1.67 km 212 m 1.26 m - 1,576 m 1.63 m 2.83 km 823 6 m 1.68 m - 3,097 3 m 1.81 m 2.51 km 1,066 5 m 1.7 m - 2,239 4 m 1.99 m 2.65 km 903 m 1.92 m - 2,538
Type ? PAC ? Avg BVp ? SD BVp ? Avg BVw ? SD BVw ? Depth Range Avg Depth Distance No. Full Point 95.1% 37.8% ±23.5% 55.9% ±24.4% 0.764.44 m 1.65 m 9.65 km 3.00 Circl 98.5% 44.2% ±19.6% 43.6% ±20.2% 0.44.85 m 1.75 m - 6.80 Avg of Interest Summary Avg BVp ? SD BVp ? Avg BVw ? SD BVw ? Depth Range Avg Depth Distance No. 1 Point 99.5% 59.6% ±19.3% 59.3% ±19.7% 0.74.26 m 1.4 m 1.67 km 1.57 2 Point 99.5% 59.6% ±17.7% 42% ±19.% 0.44.42 m 1.83 m 2.83 km 82.30 2 Point 99.7% 42.3% ±17.7% 42% ±18% 0.44.42 m 1.81 m 2.51 km 1.06 3 Grid 99.3% 42.3% <	4 m 1.65 m 9.66 km 3,004 m 1.75 m - 6,806 ange Avg Depth Distance No. Points 8 m 1.14 m 1.67 km 212 m 1.26 m - 1,576 m 1.63 m 2.83 km 823 6 m 1.68 m - 3,097 3 m 1.81 m 2.51 km 1,066 5 m 1.7 m - 2,239 4 m 1.99 m 2.65 km 903 m 1.92 m - 2,538
Mint Grid 98.5% 44.2% ±19.6% 43.8% ±20.2% 0.4-4.85 m 1.75 m - 6.80 Area of Interest Summary Avg BVp 7 SD BVp 7 Avg BVp 7 <th>m 1.75 m - 6,806 ange Avg Depth Distance No. Points 8 m 1.14 m 1.67 km 212 m 1.26 m - 1,576 m 1.63 m 2.83 km 823 6 m 1.68 m - 3,097 3 m 1.81 m 2.51 km 1,066 5 m 1.7 m - 2,239 4 m 1.99 m 2.65 km 903 m 1.92 m - 2,538 tion Scatter Chart</th>	m 1.75 m - 6,806 ange Avg Depth Distance No. Points 8 m 1.14 m 1.67 km 212 m 1.26 m - 1,576 m 1.63 m 2.83 km 823 6 m 1.68 m - 3,097 3 m 1.81 m 2.51 km 1,066 5 m 1.7 m - 2,239 4 m 1.99 m 2.65 km 903 m 1.92 m - 2,538 tion Scatter Chart
Oil Outs FLS Disk FLS Disk FLS Disk Dis	ange Avg Depth Distance No. Points 8 m 1.14 m 1.67 km 212 m 1.26 m - 1,576 m 1.63 m 2.83 km 823 6 m 1.68 m - 3,097 3 m 1.81 m 2.51 km 1,066 5 m 1.7 m - 2,239 4 m 1.99 m 2.65 km 903 m 1.92 m - 2,538
OI ? Type ? PAC ? Avg BVp ? SD BVp ? Avg BVw ? SD BVw ? Depth Range Avg Depth Distance No. 1 Point 99.5% 59.6% ±19.3% 59.3% ±19.7% 0.76-3.08 m 1.14 m 1.67 km 212 2 Point 99.5% 59.5% ±15.3% 59.5% ±15.5% 0.7-4.26 m 1.26 m - 1.57 2 Point 96.7% 41.5% ±22.1% 40.2% ±22.9% 0.84.05 m 1.63 m 2.83 km 823 3 Point 93.3% 42.3% ±77.7% 425.1% 0.74-4.43 m 1.81 m 2.51 km 1.00 3 Point 93.1% 38.7% ±23.3% 26.4% ±20.7% 0.59-4.85 m 1.81 m 2.51 km 1.01 1.02 2.23 4 Point 95% 27.8% ±20.3% 26.4% ±20.7% 0.76-4.44 m 1.99 m 2.65 km 903 Grid 99.4%	8 m 1.14 m 1.67 km 212 m 1.26 m - 1.576 m 1.63 m 2.83 km 823 6 m 1.68 m - 3.097 3 m 1.81 m 2.51 km 1,066 5 m 1.7 m - 2,239 4 m 1.99 m 2.65 km 903 m 1.92 m - 2,538
Grid 99.3% 42.3% ±17.7% 42% ±18% 0.44-4.26 m 1.68 m - 3.09 3 Point 93.1% 38.7% ±23.9% 36% ±25.1% 0.77-4.43 m 1.81 m 2.51 km 1.06 Grid 96.6% 47.6% ±21.4% 45.9% ±22.7% 0.59-4.85 m 1.7 m - 2.23 4 Point 95% 27.8% ±20.3% 26.4% ±20.7% 0.76-4.44 m 1.99 m 2.65 km 903 Grid 99.4% 37% ±18.4% 36.8% ±18.6% 0.4-4.26 m 1.92 m - 2.53	6 m 1.68 m - 3.097 3 m 1.81 m 2.51 km 1.066 5 m 1.7 m - 2.239 4 m 1.99 m 2.65 km 903 m 1.92 m 2.638 903
3 Point 93.1% 38.7% ±23.9% 36% ±25.1% 0.77-4.43 m 1.81 m 2.51 km 1.06 4 Point 96.6% 47.6% ±21.4% 45.9% ±22.7% 0.59-4.85 m 1.7 m - 2.23 4 Point 95% 27.8% ±20.3% 26.4% ±20.7% 0.76-4.44 m 1.99 m 2.65 km 903 6 rid 99.4% 37% ±18.4% 36.8% ±18.6% 0.4-4.26 m 1.92 m - 2.53	3 m 1.81 m 2.51 km 1,066 5 m 1.7 m - 2,239 4 m 1.99 m 2.65 km 903 m 1.92 m - 2,538
Grid 96.8% 47.6% ±21.4% 45.9% ±22.7% 0.59-4.85 m 1.7 m - 2.23 4 Point 95% 27.8% ±20.3% 26.4% ±20.7% 0.76-4.44 m 1.99 m 2.65 km 903 Grid 99.4% 37% ±18.4% 36.8% ±18.6% 0.4-4.26 m 1.92 m - 2.53 egetation Biovolume Heat Map Biovolume Distribution Scatter Chart - Biovolume Distribution Scatter Chart - Biovolume Distribution Scatter Chart 0 <td>4 m 1.99 m 2.65 km 903 m 1.92 m - 2,538 tion Scatter Chart Biovolume Distribution Scatter Chart</td>	4 m 1.99 m 2.65 km 903 m 1.92 m - 2,538 tion Scatter Chart Biovolume Distribution Scatter Chart
Grid 99.4% 37% ±18.4% 36.8% ±18.6% 0.44.26 m 1.92 m 2,53	m 1.92 m - 2,538 tion Scatter Chart Biovolume Distribution Scatter Chart
egetation Biovolume Heat Map	iion Scatter Chart Biovolume Distribution Scatter Chart
Biovolume Distribution Scatter Chart	Biovolume Distribution Scatter Chart
Biovolume Distribution Scatter Chart	Biovolume Distribution Scatter Chart
Doromono Scales Chart	
	A CALCULAR AN ANY STA
	1 2 3 4


CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR)

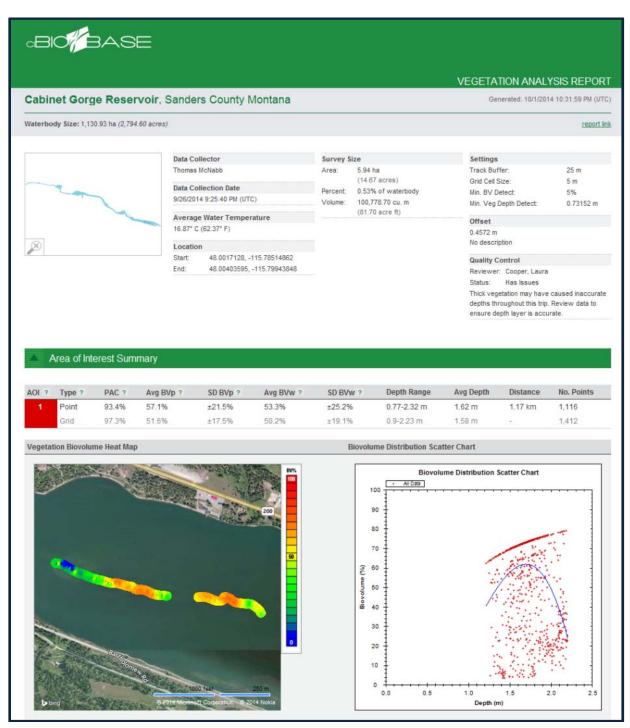
Plot C-1-14: ~ Six (6) Weeks Post (September 26, 2014)

abine	et Gorg	je Resei	rvoir, Sande	rs County N	Montana					TION ANAL	
		10.93 ha (2,794									repo
			Data C	ollector		Survey S	ize		Settings		
				McNabb		Area:	25.14 h	a	Track Buf		25 m
-			Data C	ollection Date			(62.12)		Grid Cell S		5 m
	- at	-		14 8:14:45 PM (UTI	C)	Volume:		of waterbody 1.10 cu. m	Min. BV D		5%
		1				volume.		acre ft)	Min. Veg I	Depth Detect:	0.73152 m
			A CONTRACTOR OF A CONTRACTOR O	e Water Temper C (62.76° F)	ature						
×			Locatio								
			Start: End:		-115.77666473 -115.78555298						
Ar	rea of Int	erest Sum	nmary								
	Type ?	PAC ?	Avg BVp ?	SD BVp ?	Avg BVw ?	SD BVv	W ?	Depth Range	Avg Depth	Distance	No. Points
01 ?			00.50/	±18.6%	27.5%	±19.1%	6	0.76-4.71 m	4.7	0.46 luna	
1	Point	96.3%	28.5%						1.7 m	2.16 km	1,139
1	Grid	98.3%	32.1%	±16.6%	31.5%	±17%		0.72-4.86 m	1.78 m	-	3,044
1											
1 2	Grid	98.3%	32.1%	±16.6%	31.5%	±17%	6	0.72-4.86 m	1.78 m	-	3,044
2	Grid Point Grid	98.3% 90.5%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6	0.72-4.86 m 0.76-4.79 m	1.78 m 1.56 m 1.58 m	-	3,044 1,216
1 2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 6 Biovolum	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca Biovolu	1.78 m 1.56 m 1.58 m	- 4.14 km -	3,044 1,216
1 2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 Biovolum	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca Biovolu	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216
1 2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 6 Biovolum	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca Biovolu	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216
1 2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 Biovolum	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca Biovolu	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216
1 2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 5 3iovolum 100 90 80	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca Biovolu	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216
1 2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 6 3iovolum 100 90 80 70	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca Biovolu	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216
2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 6 3iovolum 100 90 80 70	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca Biovolu	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216
2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 6 3iovolum 100 90 80 70	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca Biovolu	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216
2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 Biovolum 100 90 80 70 (%) empoo	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca Biovolu	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216
2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 Biovolum 100 90 80 70 (2) 60 8	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca Biovolu	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216
1 2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 Biovolum 100 90 80 70 (%) empoo	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca Biovolu	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216
1 2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 3iovolum 100 90 80 70 (%) 60 90 50 50 40	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca Biovolu	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216
1 2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 6 3iovolum 100 90 80 70 (%) eun 50 60 30 20	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216
1 2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 3iovolum 100 90 80 70 80 80 70 80 80 70 80 80 70 80 80 80 80 80 80 80 80 80 8	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216
1 2	Grid Point Grid	98.3% 90.5% 96.3%	32.1% 38% 38.1%	±16.6% ±22.5%	31.5% 34.4%	±17% ±24.1% ±20.5%	6 6 3iovolum 100 90 80 70 (%) eun 50 60 30 20	0.72-4.86 m 0.76-4.79 m 0.05-4.8 m e Distribution Sca	1.78 m 1.56 m 1.58 m tter Chart	- 4.14 km -	3,044 1,216

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 16 of 53

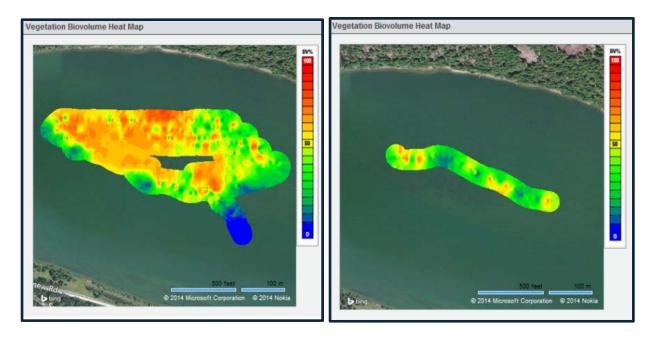
Plot C-2-14: At Time of Treatment (August 18, 2014 Left), ~ Six (6) Weeks Post (September 26, 2014 Right)

	At Ti					oir's AIS Trea nd SAV BioVo							
Plot Number													
	Cabinet Gorge												
C-2-14													


Observations/Notes C-2-14: Treated with 1.0 ppm triclopyr, 2.0 ppm endothall, control estimated at 50%. Upstream end of plot not showing much control, more control and damage downstream. Control at 50%, re-evaluate efficacy in 2015.

Plot C-2-14: At Time of Treatment (August 18, 2014)

		0.37 ha (2,793	3.20 acres)	lers County I						
										report
	Lon		10000							
	Lan			Collector		Survey Size		Settings		
	lon			as McNabb			22.80 ha (56.34 acres)	Track Buf Grid Cell S		25 m 5 m
		_		Collection Date 2014 4:26:34 PM (UT	C)		2.02% of waterbody	Min. BV D		5%
		~					341,086.00 cu. m (276.52 acre ft)	Min. Veg I	Depth Detect:	0.73152 m
		-	Seguri 200	age Water Tempe " C (71.14" F)	rature					
9										
\mathbb{E}			Loca		-115.78900146					
			End:		-115.79901886					
	Type ?	PAC ?	Avg BVp ?	SD BVp ?	Avg BVw ?	SD BVw		Avg Depth	Distance	No. Points
	Point	96.9%	55.2%	±19.9%	53.5%	±21.8%	0.76-4.53 m	1.39 m	8.72 km	2,469
urvey	Grid	99.1%	54.2%	±15.4%	53.7%	±16.2%	0.69-4.41 m	1.41 m	0.25	5,913
2	Grid Point Grid	100% 97.7% 99.9%	58.5% 58.2% 56.3%	±10.7% ±19.9% ±13.7%	58.5% 56.8% 56.2%	±10.7% ±21.5% ±13.9%	0.73-4.41 m 0.77-4.53 m 0.69-4.41 m	1.31 m 1.57 m 1.4 m	- 1.59 km -	2,022 824 2,311
	Point	99.5%	49.2%	±21.7%	49%	±21.9%	0.76-4.4 m	1.34 m	1.88 km	444
	Grid Point	99.7% 94.1%	54.1% 51.9%	±17.7% ±20.5%	53.9% 48.9%	±18% ±23.4%	0.72-4.34 m 0.76-4.09 m	1.56 m 1.4 m	3.46 km	1,768 711
	Grid	94.1%	52.7%	±16.2%	40.9%	±17.2%	0.72-4.41 m	1.4 m	3.40 MH	3,893
-	Giru	30.179	U.L.1 79	± 10.2.79	512, 179	111.270	0.72-4,41111	1.40 11		2,092
egetatio	n Biovolur	me Heat Map	p			Bio	volume Distribution Sca	tter Chart		
	1-10-20	and a star		A State of the sta	BY's	Γ	Biovolu	ume Distribution S	Scatter Chart	
-			Card and a state	and the second second			100			
				A AND	200		90		-	1
					_		80	-	•	1
							70	Les as		1
0					50			16		1
	1		C C C C C C C C C C C C C C C C C C C				(v) e			
							(%) 901	3	•	
			10.00				A 40		and is	
Contraction of the local division of the loc				A COMPANY			30		1	· 1
	in an						1		·	·]
1 a	- Ale	BACH					20			
And the		form	eng		and the second se		10			
if the	5.5%	- Halling Con	and the second second	ACCESS AND A	280.00			z, .	• • • • •	++++++
ELSE.	No the	Station .	a martin	and the second	Ind Nokia		0 1	2 Depth (r	3	4 5

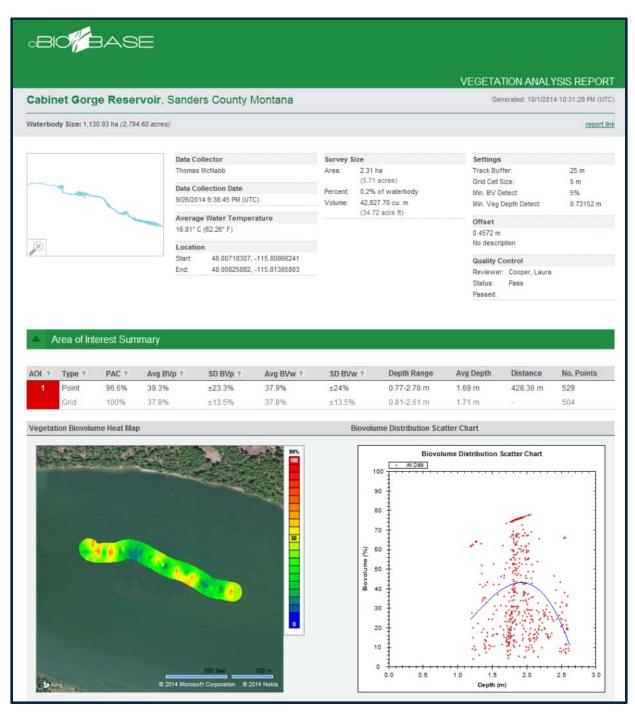

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 18 of 53

Plot C-2-14: ~ Six (6) Weeks Post (September 26, 2014)

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 19 of 53

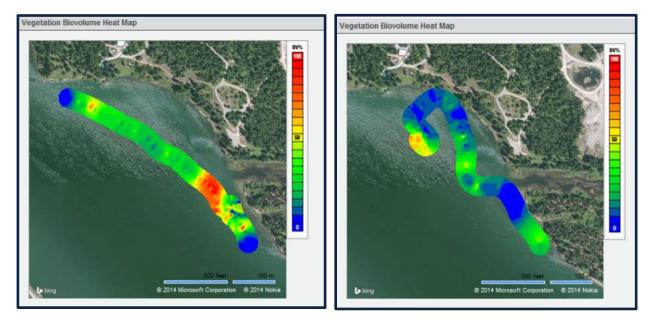
Plot C-3-14: At Time of Treatment (August 18, 2014 Left), ~ Six (6) Weeks Post (September 26, 2014 Right)

	2014 Cabinet Gorge and Noxon Rapids Reservoir's AIS Treatment Plots: At Time of and ~ Six (6) Week Post Plot SAV % Cover and SAV BioVolume Data (Grid Data)													
SAV PlotSAV Bio-Date DataSAV PercentDate DataDate DataPost 														
Number	Cover	Volume	Collected	Cover	Volume	Treatment	Change	Injury Rank	Used					
Cabinet Gorge														
C-3-14														


Observations/Notes C-3-14: Treated with 1.0 ppm triclopyr, 2.0 ppm endothall, control estimated at 70% +/-. Plot at downstream end looks more controlled than upstream.

Plot C-3-14: At Time of Treatment (August 18, 2014)

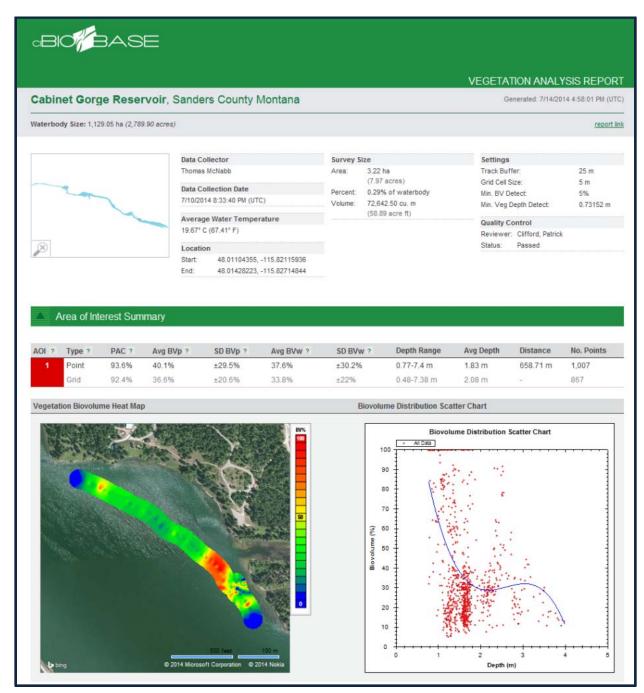
Cabir	net Gorg	je Resei	rvoir, Sande	ers County I	Montana					the second second	YSIS REPO
		10.37 ha (2,79.									report
	2.00	~	Thomas Data C	ollector s McNabb ollection Date 14 8;40:22 PM (UT)	c)	Survey S Area: Percent: Volume:	10.54 ha (26.03 a 0.93% o 207,454	icres) f waterbody .50 cu. m	Settings Track But Grid Cell S Min. BV D Min. Veg	ffer: Size:	25 m 5 m 5% 0.73152 m
8		~	August August	48.00815964,	-115.81587219 -115.81278992		(168.19	acre ft)			
	Survey Su	mmary									
	Type ?	PAC ?	Avg BVp ?	SD BVp ?	Avg BVw ?	SD BV	N ?	Depth Range	Avg Depth	Distance	No. Points
Full Survey	Point Grid	89.3% 96.9%	49.8% 50.7%	±22.7% ±17%	44.4% 49.1%	±26.4%		0.77-8.44 m 0.81-8.42 m	1.91 m 1.82 m	4.2 km	2,492 2,860
1 2	Point Grid Point	99.9% 100% 76%	56.6% 55.6% 38.3%	±19.3% ±14.7% ±23.2%	56.5% 55.6% 29.1%	±19.4% ±14.7% ±26%	6	0.81-4.28 m 0.86-4.03 m 0.77-8.44 m	1.72 m 1.74 m 2.06 m	2.06 km - 2.02 km	1,393 1,611 1,099
/egeta	Grid	94.7% me Heat Mag	47.6%	±17.2%	45.1%	±19.9%		0.81-8.42 m e Distribution Sca	1.78 m	-	1,682
199913					BV%				ume Distribution	Scatter Chart	
					9		100 90 80 70 (%) 60 50 60 40 30			•	


CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 21 of 53

Plot C-3-14: ~ Six (6) Weeks Post (September 26, 2014)

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 22 of 53

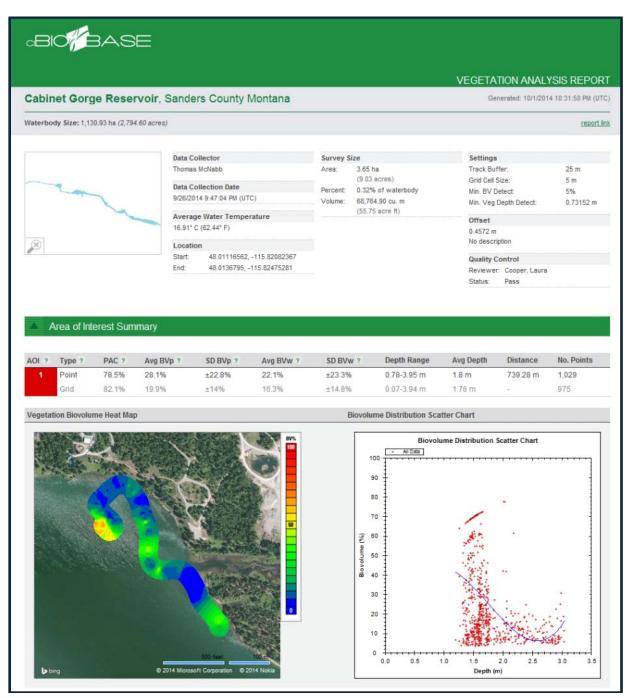
Plot C-4-14: Pre Treatment* (July 10, 2014 Left), ~ Six (6) Weeks Post (September 26, 2014 Right)



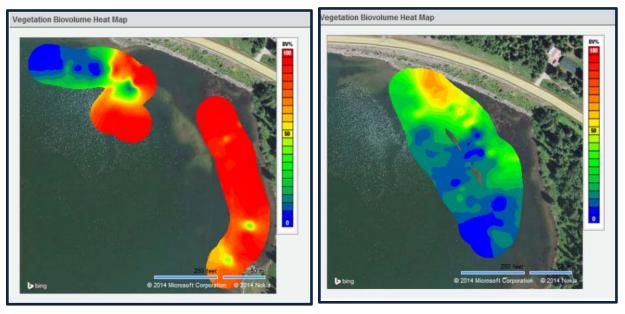
	At Ti		8		1	oir's AIS Treand SAV BioVo							
Plot Number	SAV Percent Cover	SAV Bio- Volume	Date Data Collected	SAV Percent Cover	SAV Bio- Volume	Date Data Collected- Post Treatment	SAV % BV Change	Post Treatment EWM Injury Rank	Herbicides Used				
	Cabinet Gorge												
C-4-14													

*No At Time of Treatment Data Available, data used from 7/10/14 survey.

Observations/Notes C-4-14: Treated with 1.0 ppm triclopyr, 2.0 ppm endothall, good widespread control estimated at 95%.


Plot C-4-14: Pre Treatment (July 10, 2014)

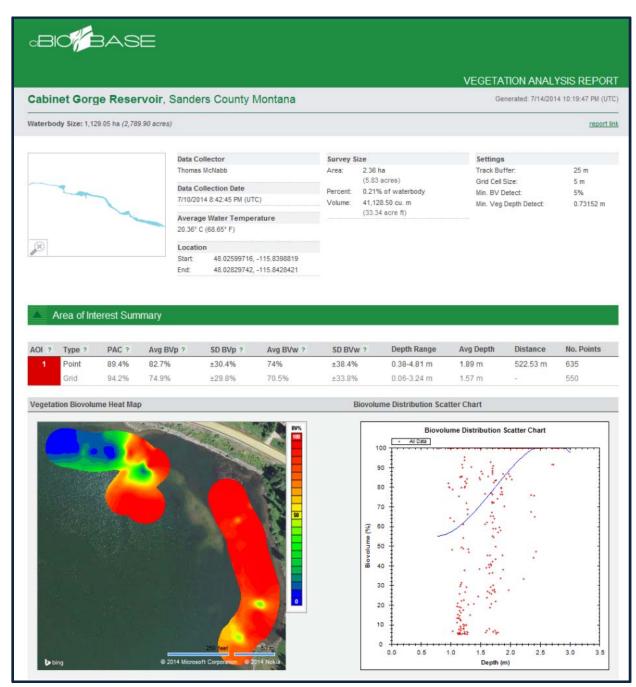
CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR)


24 of 53

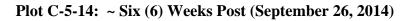
Plot C-4-14: ~ Six (6) Weeks Post (September 26, 2014)

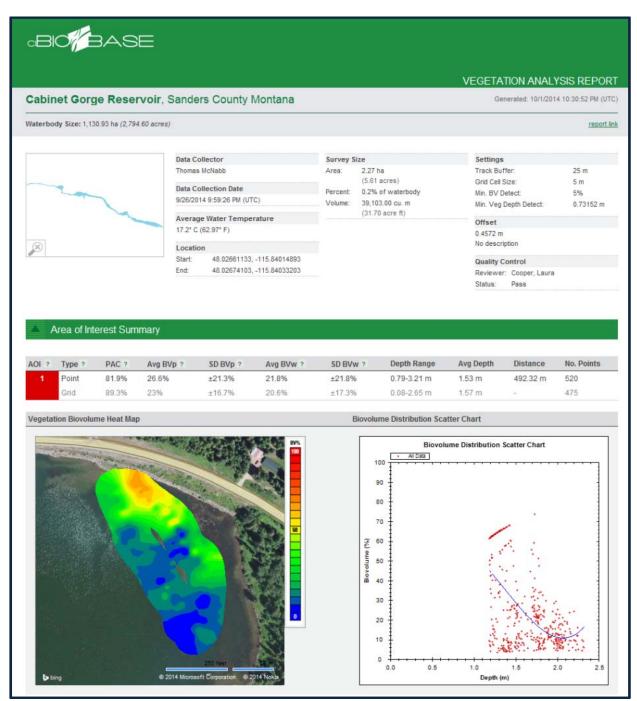
CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 25 of 53

Plot C-5-14: Pre Treatment* (July 10, 2014 Left), ~ Six (6) Weeks Post (September 26, 2014 Right)

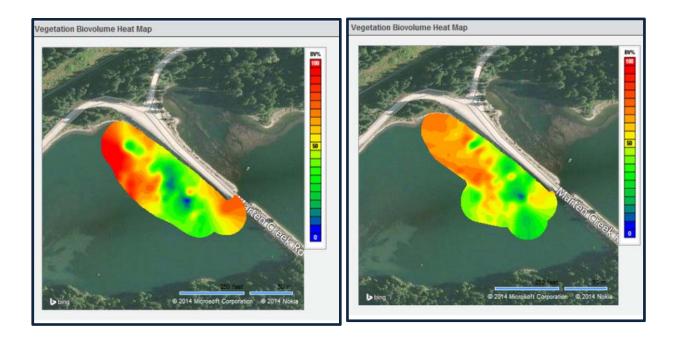


*No At Time of Treatment Data Available, data used from 7/10/14 survey.


	2014 Cabinet Gorge and Noxon Rapids Reservoir's AIS Treatment Plots: At Time of and ~ Six (6) Week Post Plot SAV % Cover and SAV BioVolume Data (Grid Data)													
SAV														
Plot	Percent	Bio-	Date Data	Percent	SAV Bio-	Post	BV	EWM	Herbicides					
Number	Cover	Volume	Collected	Cover	Volume	Treatment	Change	Injury Rank	Used					
				Cat	oinet Gorge									
C-5-14														

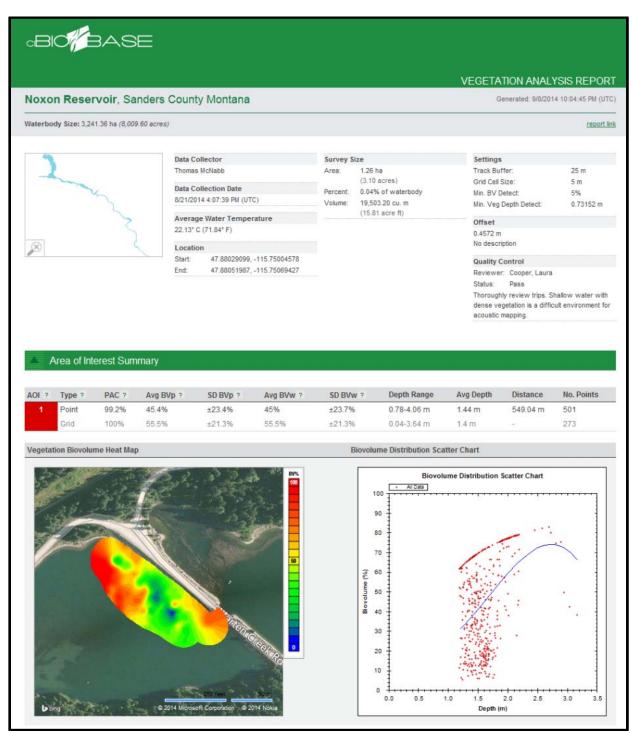

Observations/Notes C-5-14: Treated with 1.0 ppm triclopyr, 2.0 ppm endothall, good widespread control estimated at 95%.

Plot C-5-14: Pre Treatment (July 10, 2014)



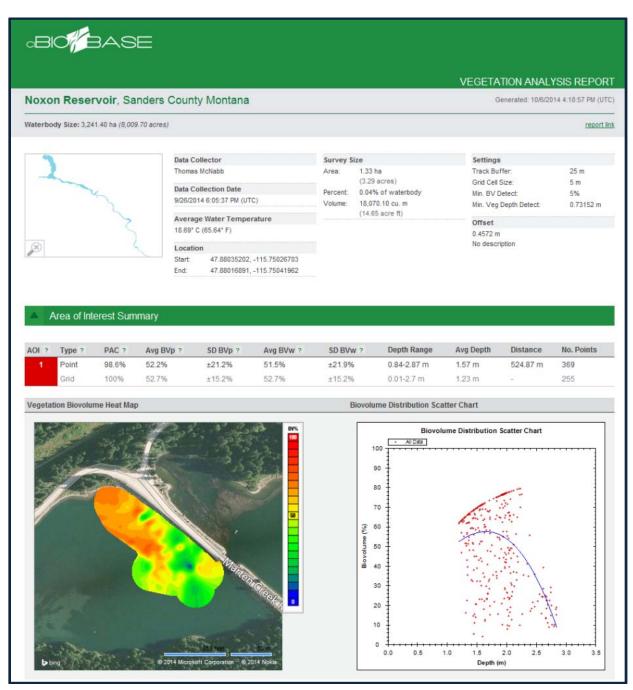
CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 27 of 53

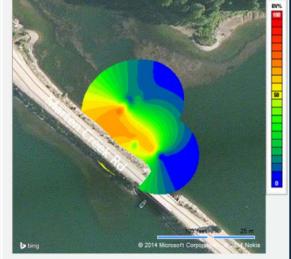
CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 28 of 53



Plot N-4-14: At Time of Treatment (August 21, 2014 Left), ~ Six (6) Weeks Post (September 26, 2014 Right)

2014 Cabinet Gorge and Noxon Rapids Reservoir's AIS Treatment Plots: At Time of and ~ Six (6) Week Post Plot SAV % Cover and SAV BioVolume Data (Grid Data)										
Plot	SAV Percent	SAV Bio-	Date Data	SAV Percent	SAV Bio-	Date Data Collected- Post	SAV % BV	Post Treatment EWM	Herbicides	
Number	Cover	Volume	Collected	Cover	Volume	Treatment	Change	Injury Rank	Used	
Noxon Rapids										
N-4-14	100.00	55.50	8/21/2014	100.00	52.7	9/26/2014	-5%	50% +/-	End/Tri	

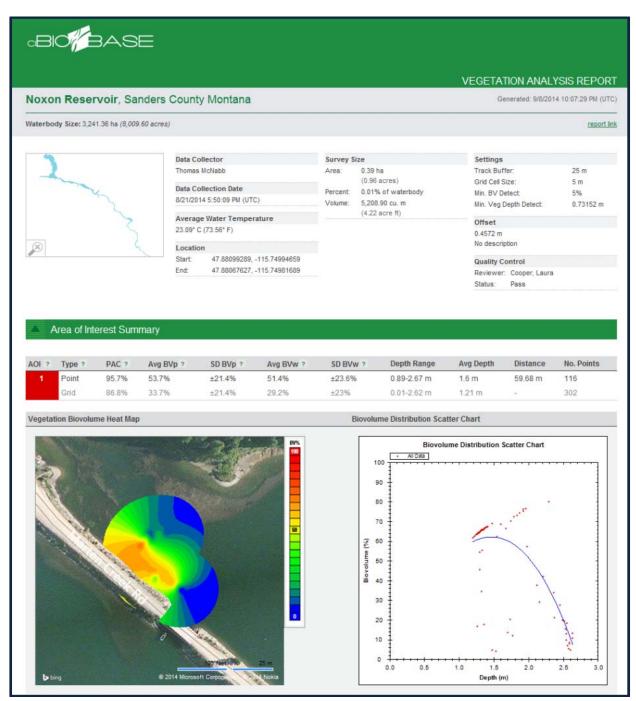

Observations/Notes N-4-14: Treated with 1.0 ppm triclopyr, 2.0 ppm endothall, estimated at 50% control. Part of plot looks good, other parts of plot not so good and dominated by EWM. Plants have short stubby kind of growth. Part of plot mixed with Sago pondweed and Elodea. Reevaluate efficacy in 2015.


CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 30 of 53

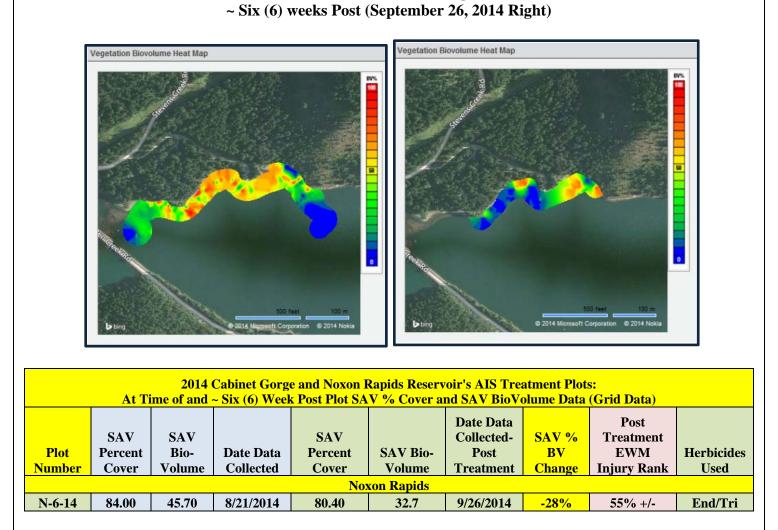
Plot N-4-14: ~ Six (6) Weeks Post (September 26, 2014)

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 31 of 53

Plot N-5-14: At Time of Treatment (August 21, 2014 Left), ~ Six (6) Weeks Post (September 26, 2014 Right)

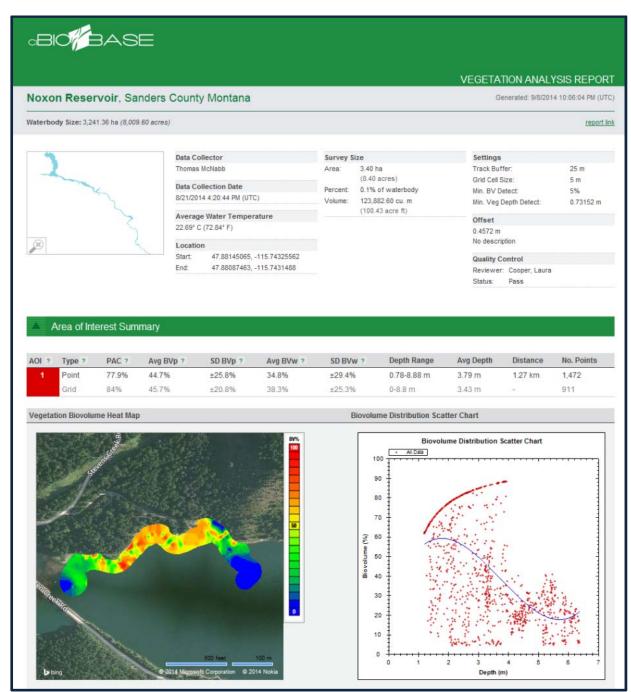


No ~ Six (6) Weeks Post Treatment Data Available


2014 Cabinet Gorge and Noxon Rapids Reservoir's AIS Treatment Plots: At Time of and ~ Six (6) Week Post Plot SAV % Cover and SAV BioVolume Data (Grid Data)										
Plot Number	SAV Percent Cover	SAV Bio- Volume	Date Data Collected	SAV Percent Cover	SAV Bio- Volume	Date Data Collected- Post Treatment	SAV % BV Change	Post Treatment EWM Injury Rank	Herbicides Used	
Noxon Rapids										
N-5-14	86.80	33.70	8/21/2014	n/a	n/a	n/a	n/a	70% +/-	Endothall	

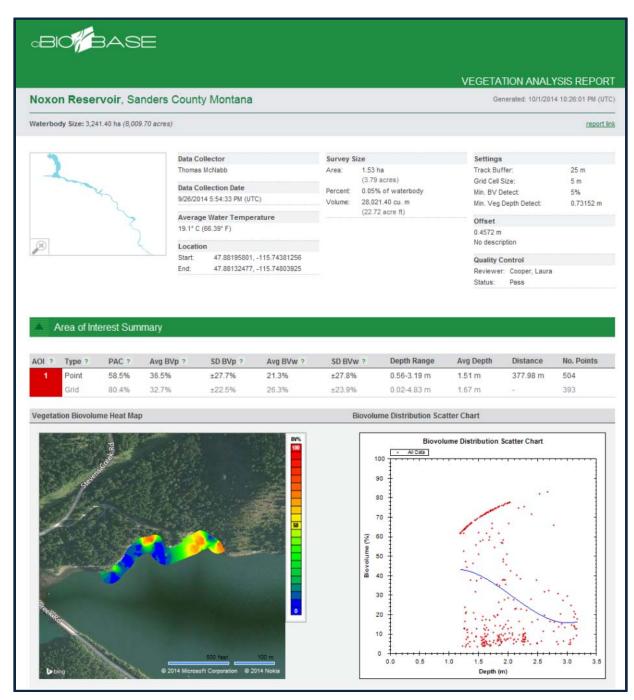
Observations/Notes N-5-14: Treated with 3.0 ppm endothall, control estimated at 70%. Mixed results, some dead EWM, some sickly impacted EWM on surface.

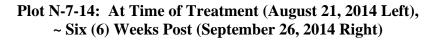
CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 33 of 53

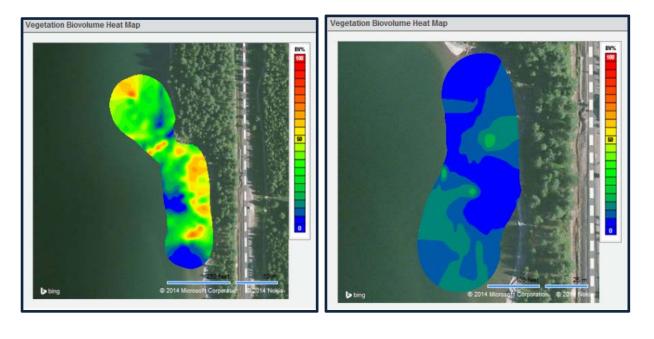


Plot N-6-14: At Time of Treatment (August 21, 2014 Left),

Observations/Notes N-6-14: Treated with 1.0 ppm triclopyr, 2.0 ppm endothall, control estimated at 55%. Some topped out EWM, damaged, but roots growing from nodes, has been treated several times over the years, lots of buttercup, plants look weak, some EWM looks beat up. West end of plot looks better in terms of control, plants in the middle of plot don't seem to get impacted from the control efforts. Reevaluate efficacy in 2015.

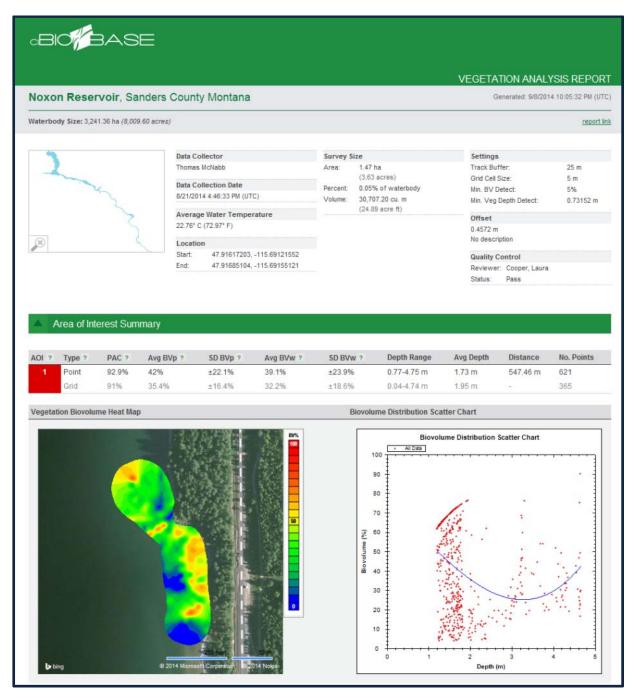

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 34 of 53



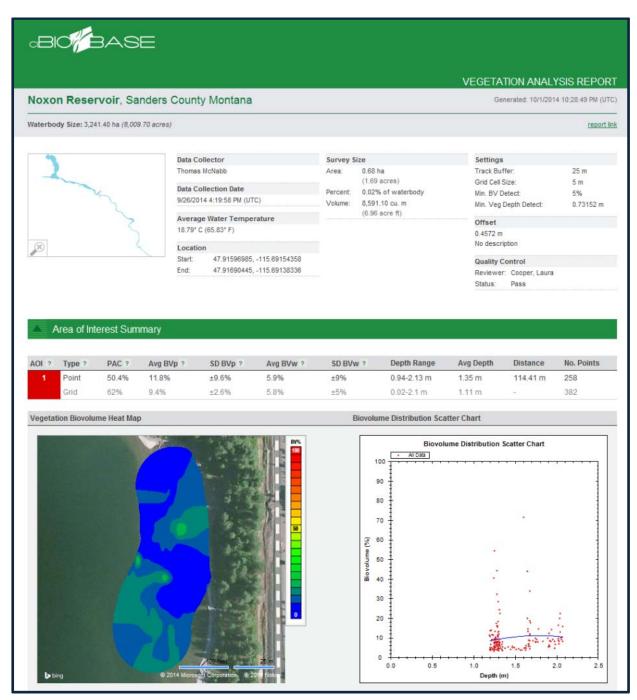

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 35 of 53

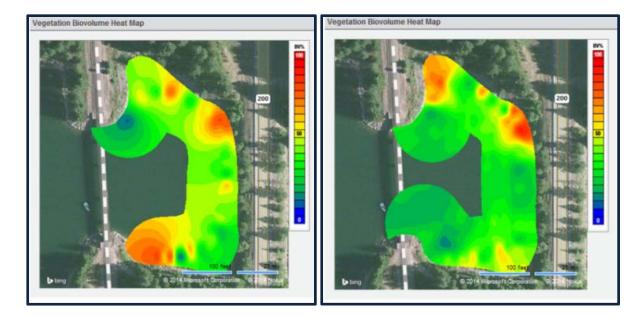
Plot N-6-14: ~ Six (6) Weeks Post (September 26, 2014)

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 36 of 53



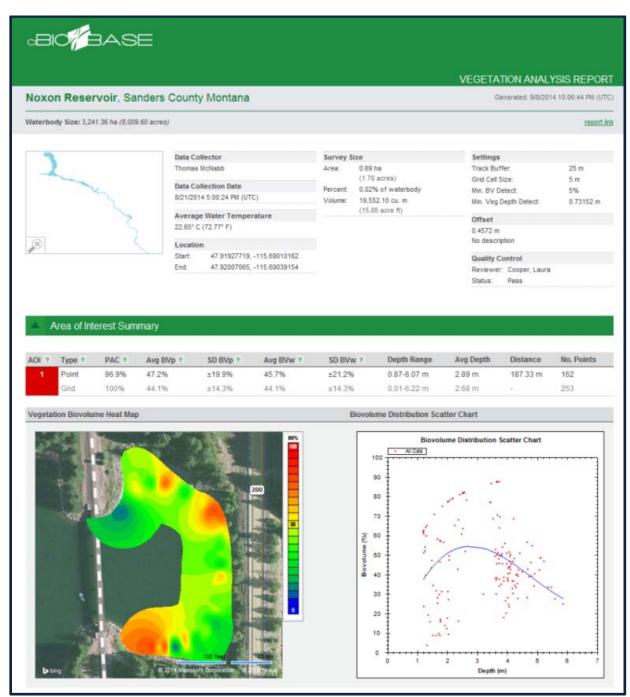
2014 Cabinet Gorge and Noxon Rapids Reservoir's AIS Treatment Plots: At Time of and ~ Six (6) Week Post Plot SAV % Cover and SAV BioVolume Data (Grid Data)									
	SAV	SAV		SAV		Date Data Collected-	SAV %	Post Treatment	
Plot	Percent	Bio-	Date Data	Percent	SAV Bio-	Post	BV	EWM	Herbicides
Number	Cover	Volume	Collected	Cover	Volume	Treatment	Change	Injury Rank	Used
Noxon Rapids									
N-7-14	91.00	35.40	8/21/2014	62.00	9.4	9/26/2014	-73%	95% +/-	Endothall


Observations/Notes N-7-14: Treated with 3.0 ppm endothall, control estimated at 95%. Dead Flowering Rush (FR) lying on bottom.

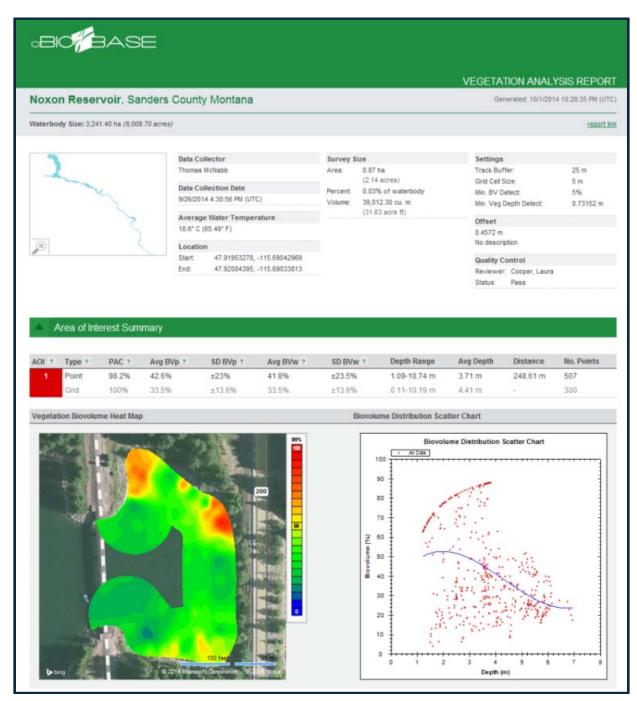

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 38 of 53

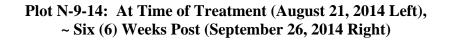
Plot N-7-14: ~ Six (6) Weeks Post (September 26, 2014)

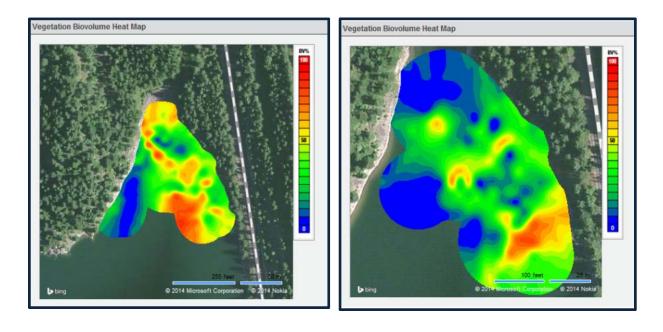
CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 39 of 53


Plot N-8-14: At Time of Treatment (August 21, 2014 Left), ~ Six (6) Weeks Post (September 26, 2014 Right)

	2014 Cabinet Gorge and Noxon Rapids Reservoir's AIS Treatment Plots: At Time of and ~ Six (6) Week Post Plot SAV % Cover and SAV BioVolume Data (Grid Data)									
Plot Number	SAV Percent Cover	SAV Bio- Volume	Date Data Collected	SAV Percent Cover	SAV Bio- Volume	Date Data Collected- Post Treatment	SAV % BV Change	Post Treatment EWM Injury Rank	Herbicides Used	
	Noxon Rapids									
N-8-14	100.00	44.10	8/21/2014	100.00	33.5	9/26/2014	-24%	50% +/-	Endothall	

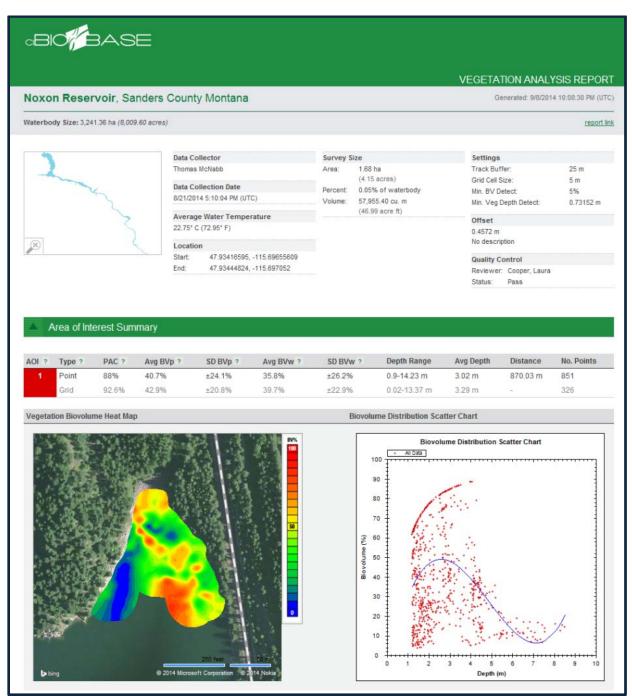

Observations/Notes N-8-14: Treated with 3.0 ppm endothall, control estimated at 50%. EWM mixed with native milfoil. EWM topped and flowering in corners of plot.



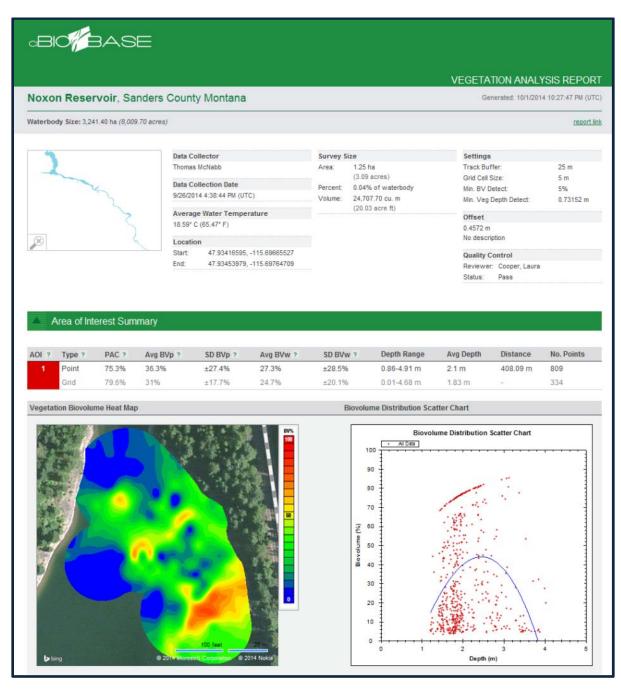

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 41 of 53

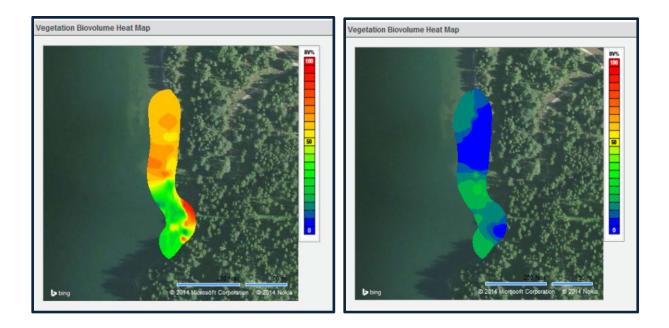
Plot N-8-14: ~ Six (6) Weeks Post (September 26, 2014)

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 42 of 53



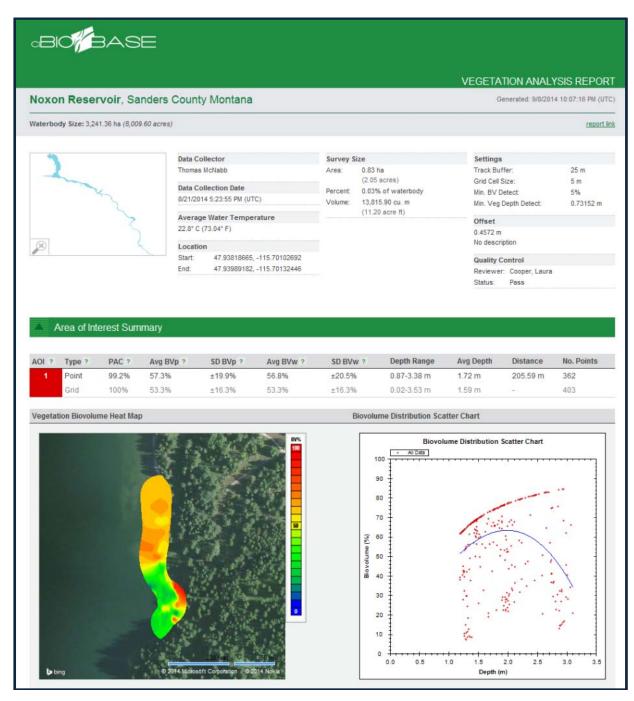
2014 Cabinet Gorge and Noxon Rapids Reservoir's AIS Treatment Plots: At Time of and ~ Six (6) Week Post Plot SAV % Cover and SAV BioVolume Data (Grid Data)									
	SAV	SAV		SAV		Date Data Collected-	SAV %	Post Treatment	
Plot	Percent	Bio-	Date Data	Percent	SAV Bio-	Post	BV	EWM	Herbicides
Number	Cover	Volume	Collected	Cover	Volume	Treatment	Change	Injury Rank	Used
Noxon Rapids									
N-9-14	92.60	42.90	8/21/2014	79.60	31.0	9/26/2014	-28%	65% +/-	Endothall

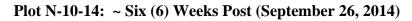

Observations/Notes N-9-14: Treated with 3.0 ppm endothall, control estimated at 65%. Plants in various degrees of control in some spots. Plot also has native milfoil present.

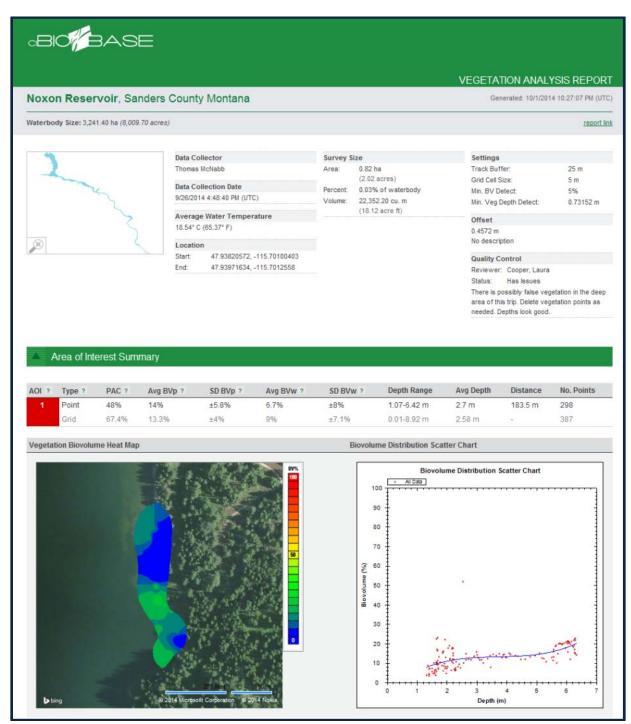

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 44 of 53

Plot N-9-14: ~ Six (6) Weeks Post (September 26, 2014)

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 45 of 53



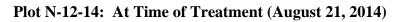

	2014 Cabinet Gorge and Noxon Rapids Reservoir's AIS Treatment Plots: At Time of and ~ Six (6) Week Post Plot SAV % Cover and SAV BioVolume Data (Grid Data)									
	SAV	SAV		SAV		Date Data Collected-	SAV %	Post Treatment		
Plot	Percent	Bio-	Date Data	Percent	SAV Bio-	Post	BV	EWM	Herbicides	
Number	Cover	Volume	Collected	Cover	Volume	Treatment	Change	Injury Rank	Used	
	Noxon Rapids									
N-10-14	100.00	53.30	8/21/2014	67.40	13.3	9/26/2014	-75%	90% +/-	Endothall	

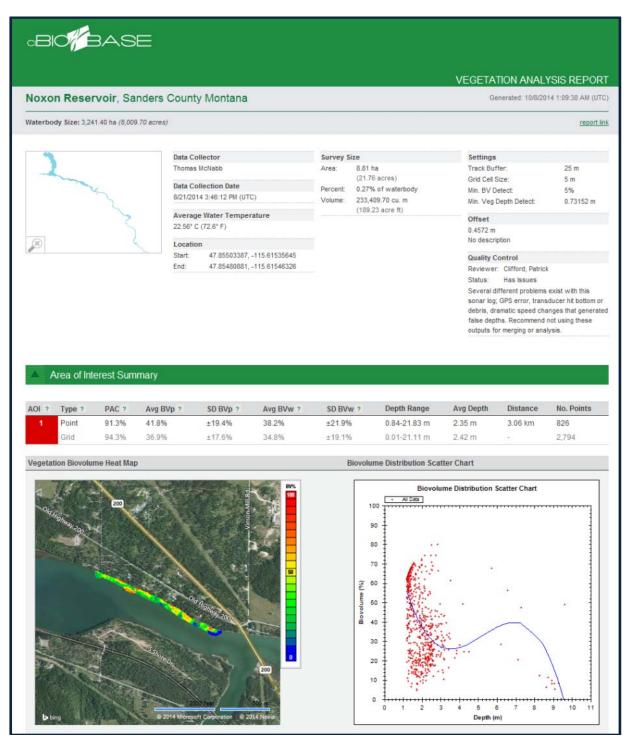

Observations/Notes N-10-14: Treated with 3.0 ppm endothall, control estimated at 90%+. EWM well controlled, Flowering Rush didn't take as big a hit in this plot as other plots, but in deeper water it is impacted or dead.

Plot N-10-14: At Time of Treatment (August 21, 2014)

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 47 of 53

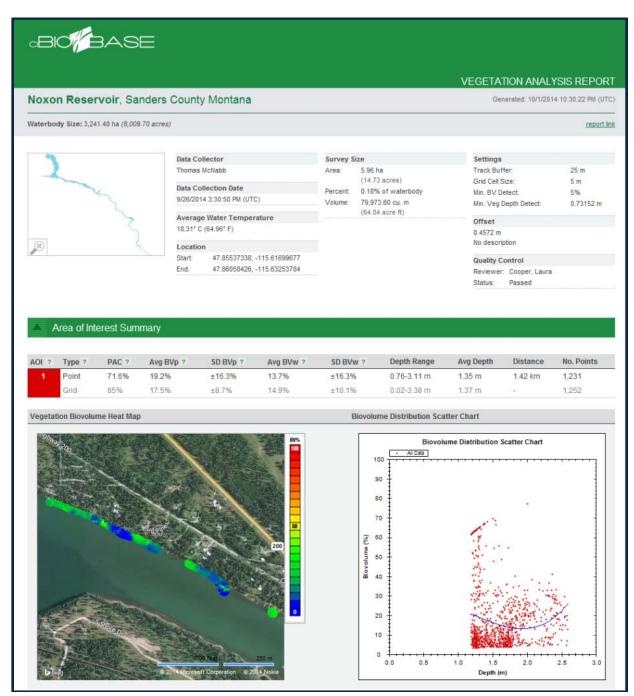
CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 48 of 53

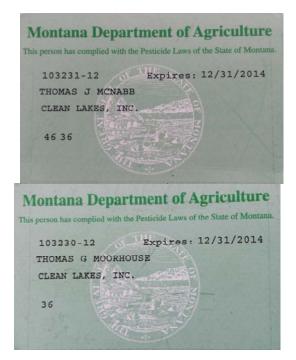

Plot N-12-14: At Time of Treatment (August 21, 2014 Left), ~ Six (6) Weeks Post (September 26, 2014 Right)



2014 Cabinet Gorge and Noxon Rapids Reservoir's AIS Treatment Plots: At Time of and ~ Six (6) Week Post Plot SAV % Cover and SAV BioVolume Data (Grid Data)									
Plot	SAV Percent	SAV Bio-	Date Data	SAV Percent	SAV Bio-	Date Data Collected- Post	SAV % BV	Post Treatment EWM	Herbicides
Number	Cover	Volume	Collected	Cover	Volume	Treatment	Change	Injury Rank	Used
Noxon Rapids									
N-12-14	94.30	36.90	8/21/2014	85.00	17.5	9/26/2014	-53%	85% +/-	End/Tri

Observations/Notes N-12-14: Treated with 1.0 ppm triclopyr, 2.0 ppm endothall, control estimated at 85%. Narrow band of EWM remains along shore side of plot, native milfoil present, deeper side of plot contains elodea and coontail.


CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 49 of 53


CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 50 of 53

Plot N-12-14: ~ Six (6) Weeks Post (September 26, 2014)

CABINET GORGE & NOXON RAPIDS RESERVOIRS, SANDERS COUNTY, MONTANA 2014 AIS Aquatic Pesticide Application Report (APAR) 51 of 53

LIST OF PROJECT PERSONNEL

PROJECT DIRECTOR:

Thomas J. McNabb Montana Licensed Applicator Applicators License No. 103231-12 Cell Phone: 208-929-2748 Email: <u>tmcnabb@cleanlake.com</u>

PROJECT MANAGER

Thomas G. Moorhouse Montana Licensed Applicator Applicators License No. 103230-12 Cell Phone: 208-929-2757 Email: <u>tmoorhouse@cleanlake.com</u>

SITE SAFETY AND HEALTH OFFICER:

ALTERNATE SITE SAFETY OFFICER:

EMERGENCY RESPONSE COORDINATOR:

ALTERNATE EMERGENCY COORDINATOR:

CLI SUPPORT STAFF:

TASK FORCE COORDINATOR

Thomas G. Moorhouse Cell Phone: 208-929-2757

Thomas J. McNabb Cell Phone: 208-929-2748

Thomas J. McNabb Cell Phone: 208-929-2748

Thomas G. Moorhouse Cell Phone: 208-929-2757

Jack McNabb

Kim Bergstrom Phone: 406-546-2447 Email: pinnacle@blackfoot.net

Moose observed on Noxon Rapids Reservoir during July 10, 2014 survey (photo courtesy of Celestine Duncan)

END OF AQUATIC PESTICIDE APPLICATION REPORT