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ABSTRACT The theory of fluctuations is extended to
nonlinear systems far from equilibrium. Systems whose
evolution involves two separate time scales, e.g., chemi-
cally reacting mixtures near a local equilibrium regime,
are studied in detail. It is shown that the usual stochastic
description of chemical kinetics based on a "birth and
death" model is inadequate and has to be replaced by a
more detailed phase-space description. This enables one
to develop for such systems a plausible mechanism for the
emergence of instabilities, in which the departure from
the steady state is governed by large fluctuations of macro-
scopic size, while small thermal fluctuations are still
described by a generalization of Einstein's equilibrium
theory. On the other hand, far from a local equilibrium
regime, infinitesimal fluctuations may increase and attain
macroscopic values. In this case the system evolves to a
state of "generalized turbulence", in which the distinc-
tion between macroscopic averages and fluctuations be-
comes meaningless.

Certain types of nonlinear systems maintained beyond a
critical distance from thermodynamic equilibrium may
undergo instabilities in their steady-state solutions.
Hydrodynamic transitions such as thermal convection
are well known examples of this behavior. Purely dis-
sipative systems such as chemically reacting mixtures
may also present instabilities and evolve subsequently
to new regimes showing spatial, temporal, or functional
organization (1).

It is important to distinguish between "macroscopic"
transitions and phenomena such as plasma instabilities
(2) or laser thresholds (3). The origin of the latter is
"molecular" in the sense that the momentum distribu-
tion function has a highly non-Maxwellian form. As a
result, the system becomes unstable with respect to
infinitesimal thermal fluctuations and may exhibit a
critical fluctuation behavior in the neighborhood of the
onset of the instability. In contrast, macroscopic
transitions in chemical kinetics and fluid dynamics
occur, as a rule, under conditions that are close to a
local equilibrium state. Yet these systems, which
locally remain dissipative, and thus tend to damp
thermal fluctuations, undergo large-scale transitions
that change their macroscopic state (appearance of
convection cells, spatial dissipative structures, and
limit cycles in chemical autocatalytic systems, etc.).

An understanding of the molecular origin of such orga-
nization phenomena requires a detailed study of fluc-
tuations around the nonequilibrium state that is going
to become unstable. The present paper outlines an
approach to this problem based on the theory of sto-
chastic processes (4).
The theory of fluctuations has been developed ex-

tensively for systems near thermodynamic equilibrium.
The classical approach is based on a combination of the
ideas of linear thermodynamics of irreversible processes
and of equilibrium considerations (5). Equivalent to
this formulation is the Langevin method (6), which
amounts to introducing a priori the fluctuations in the
equations of evolution through suitably correlated
stochastic force terms. A potentially more powerful
method consists in the derivation of stochastic master
equations based on the assumption that the kinetic
equations define a markovian process. As a rule, these
equations represent a birth and death process (7)t. A
still more general approach is based on statistical
mechanics, with a kinetic equation such as the Boltz-
mann equation as a starting point (8).
An important result, recently proved in full general-

ity (9), establishes that around equilibrium all the
methods lead to equivalent results. In particular, the
one-time fluctuations around equilibrium are shown to
satisfy in the limit of small fluctuations the well-known
Einstein distribution (5, 9). Thus, in an ideal reacting
mixture, the relative mean quadratic fluctuations
(5X2/Xe2) 1/2, Xe being the equilibrium average, are
very small, of the order of X -l/2. In other terms for
such systems there exist clearcut distinctions between
macroscopic averages and fluctuations.
The behavior of fluctuations around steady non-

equilibrium states is much less known (10). It is only in
the domain of linear systems that general conclusions
have been derived. Most of the models studied ex-
plicitly refer to current fluctuations (11) or to com-

t The first application of stochastic theory to nonlinear chemical
kinetics seems to be due to Delbruck (1940). Eigen has applied
stochastic theory to the problem of self-organization and evolu-
tion of biological macromolecules [Eigen, M., Naturwissen-
schaften, in press].
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position fluctuations in open, chemically reacting mix-
tures (12). In all cases, the equivalence of the Langevin,
birth and death, and kinetic equation approach is
confirmed. Moreover, small fluctuations are described
by the following generalization of Einstein's formula
(12):

P({aX}) c exp [WS2W]

with
5X2 = X = XO. (1.1)

=6X X - Xo} denotes the fluctuation of a set of
state variables around the steady state, k is Boltz-
mann's constant, and 1/2(62s)o is the second-order excess
entropy evaluated around the nonequilibrium state.
As we saw above, in order to understand the onset of

a macroscopic transition, it is necessary to study
fluctuations in nonlinear systems very far from thermo-
dynamic equilibrium. In this domain the validity of the
Langevin type of approach is no longer guaranteed (7).
This leaves us with the master equations based on birth
and death processes and with the more general kinetic
equation approach. In Sec. 2 the birth and death process
approach is applied to a simple nonlinear chemical
kinetic model. § It is found that this formulation leads to
results which, far from equilibrium, are different from
(1.1). On the other hand, a number of general argu-
ments (see Sec. 2) indicate that in the whole range of
local equilibrium theory in which local thermodynamic
variables may be used to describe irreversible processes
(1, 4), Eq. (1.1) should remain valid for small fluctu-
ations. In Sec. 3, we show that in order to express con-
sistently the local equilibrium condition it is necessary
to adopt a phase-space description based on a Boltz-
mann-type kinetic equation. Assuming that this equa-
tion defines a markovian process in the complete phase
space, we then show that Eq. (1.1) is recovered in the
limit of small fluctuations. This unexpected result im-
plies that for nonlinear systems far from equilibrium,
the usual birth and death stochastic approach is
generally inadequate. Sec. 4-6 are devoted to the study
of oscillatory systems without asymptotic stability.
In Sec. 4, the Volterra-Lotka model is considered in its
chemical kinetic and ecological versions. We show that
the usual stochastic analysis predicts that the steady
state is unstable with respect to infinitesimal fluctu-
ations. On the other hand, the phase-space approach,
outlined in Sec. 5, predicts that small thermal fluctu-
ations are stable and obey Eq. (1.1). In Sec. 6, the
implications of these results in chemical kinetics and
ecology are discussed. An analogy is drawn between the

behavior of fluctuations, which in the Volterra-Lotka
model attain a macroscopic level, and the well-known
phenomenon of turbulence in fluid dynamics. A plausi-
ble mechanism of setting up a macroscopic instability
in a dissipative system is also outlined.

2. A SIMPLE NONLINEAR MODEL

The main ideas of this Section will be illustrated on the
simple bimolecular scheme

ki
A+M - X+M

2X-2
2X -*E+D. (2.1)

A slightly different version of this scheme was consid-
ered by Babloyantz and Nicolis (12). A comparison
between their results and the conclusions of this section
is given in ref. 4. The system is open to large reservoirs
of A, M, D, E. The inverse reaction rates are neglected:
the system thus operates automatically far from ther-
modynamic equilibrium.
Assuming the reaction occurs in ideal mixture con-

ditions and that the system remains spatially homo-
genous, one can write the usual conservation of mass
equations which determine the time evolution of X.
These equations admit a single steady-state

Xo = (k1AM/2k2) 1/2 (2.2)

that is asymptotically stable with respect to arbitrary
perturbations.

In order to study the fluctuations around state (2.2),
we make the usual assumption that the state of the
system is described in terms of a probability function
P(A ,M,D,E,X,t). The evolution of this function is
given in terms of a birth and death type of master
equation (4, 12), which in reduced form (summed over
all reservoir variables) reads:

dP(Xjt) = kAMP(X - 1,t) - k1AMP(X,t)
dt

+ k2(X + 1)(X + 2)P(X + 2,t)
- k2X(X - 1)P(Xt). (2.3)

AM are averages over the reservoir states (i.e., known
quantities) and are seen to appear as parameters.
Eq. (2.3) admits a steady-state solution, which can be

computed exactly in the thermodynamic limit

X0-) a, V- a, (X0/V) = finite (2.4)

where V is the volume of the system. The mean quad-
ratic fluctuation corresponding to this distribution can
easily be computed (4). The result is a value different
from the Poisson variance:

+ The models treated in refs. 10-12 are all stable with respect
to arbitrary perturbations.
§ Chemical kinetic models are chosen due to the simplicity of the
formalism (the stochastic variables are integers) and since these
models may give rise to oscillatory behavior and to instabilities
far from equilibrium.

bX2 = 4 X, Xo. (2.5)

The steady-state solution is thus incompatible with the
generalized Einstein form (1,1), even in the limit of
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small fluctuations. The factor 3/4 in front of XO in Eq.
(2.5) is model-dependent. It appears, therefore, that for
nonlinear systems the stochastic master equations do
not admit solutions of a universal form, but rather they
predict a behavior for the fluctuations that depends
strongly on the detailed kinetic properties of the reac-
tion.

This conclusion cannot be valid in gen:ral. Let us
recall that in chemical kinetics one usually deals with
systems described by a local equilibrium theory (1, 4),
in which the state functions (entropy, density, etc.)
are described, locally, by the same independent vari-
ables as in equilibrium. It is natural to expect that in
this case Eq. (1.1) should also apply. A sufficient con-
dition for the validity of this theory is that the distribu-
tion of momenta deviates only slightly from a local
Maxwellian form (1). ¶ However, this implies the ex-
istence of two largely separated time scales (4): a short
relaxation time between frequent elastic collisions,
which restore continuously an average Maxwellian
distribution, and a longer, macroscopic scale over
which the chemical composition changes as a result of
reactive collisions that tend to perturb the Maxwellian
distribution. The effects related to the relaxation time
cannot be accounted for in a description of the type
outlined in this section, where the internal states (e.g.,
the values of the momenta) of the molecules are dis-
carded. Thus, fluctuations must be discussed on the
basis of a kinetic equation, such as the Boltzmann
equation, containing the effect of both reactive and
elastic collisions.

3. PHASE-SPACE DESCRIPTION

Let us now illustrate briefly the phase-space theory of
fluctuations in the simple example considered in Sec. 2.
As we deal with dilute mixtures, the starting point of
the average description will be the Boltzmann equation.
We adopt the notation F for the Boltzmann prob-
ability density of component y corresponding to an in-
ternal state a, and assume for simplicity that the spec-
trum of a is discrete. The bar over Fat indicates that in
the Boltzmann equation, Fa7 represents an average
quantity.
The Boltzmann equation corresponding to model

(2.1) reads (13)

dP,,X
J k

fdpx\a = ELBjk-lFJAFkM- 2EAajkl aXFjX + ( dtIa)dt jkl d
(3.1)

In the right of this equation, (dFaX/dt)ei describes the
effect of elastic collisions; the remaining two terms refer
to reactive collisions. BIpkz and Aijk, are the transition
probabilities per unit time for scattering between 2

molecules in states (kl) into 2 molecules in states (ij)
for the reactions corresponding to the two steps in (2.1).
They satisfy the well-known conditions:

Aijkk = 0

Ajki = Aji,kl = A iik > 0 for (kl) $ (ij)

(3.2)E Ajiki = 0-
kl

According to the remarks made in the previous sec-
tion, at the limit of very frequent elastic collisions we
obtain:

PI_x° = local Maxwellian (3.3a)

and similarly for A, B, D, E, i.e.

(dtPaX)el - 0. (3.3b)

We may thus neglect the explicit effect of elastic colli-
sions in the Boltzmann equation. Of course, the influ-
ence of these collisions remains implicitly in the reactive
terms through the fact that the molecular speed dis-
tributions are now Maxwellian and that distinction is
made between molecules occupying different momen-
tum states.

Let us set FaArAp = fa, f being the average number
of molecules in the phase-space volume ArAp. To
describe the fluctuations around this average occupa-
tion number, we assume that Eq. (3.1) defines a Mar-
kovian process in the complete phase space. It is then
easy to derive, by a method due to Siegert (14), a
master equation for the probability function P({f}, t).
The reduced form of this equation, summed over all
reservoir variables, reads (4):

dP({fx} X t) - Z BiJkfM
dt ijkl

X [P(fkX - 1 {If'}, t) - P(fkX, {f'}, t) ]

+ EAijkI[(fix + 1)(fX + 1)P(f x + 1f4 + 1,
ijkd

fkX lfx - 1, Iff}, t)
- fiXfiXP(fiXfjXfkXf X, {f'}, t). (3.4)

{f'} denotes the occupation numbers of the states not
implied in the reaction steps. When Eq. (3.4) is multi-
plied by fosx and averaged over all fs, it yields Eq.
(3.1), provided a factorization assumption is made on P.
The difficulty in solving Eq. (3.4) arises from the in-

finite number of coupled terms contained in the sums
over internal states on the right side. For this reason,
we study this equation in the limit of small fluctuations.
One obtains a Fokker-Planck-type equation satisfied by
the reduced probability functions for individual level
occupations.

¶ This does not exclude the existence of large overall con-
straints such as chemical affinities that may drive the system
very far from thermodynamic equilibrium.
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The final result reads (4):

at) -2(Z A~jklfjX) X XaPl(Xat)

+ ap( ) 2fax Z Aajk fjX.
bXa2 jkl

We have set

faX = faX + Xa-

(3.5)

(3.6)

At the steady state, this equation reduces to a form that
no longer contains explicitly the transition probabilities
A ijkl and Bijkl, and which admits the solution:

Pi(x.) = (2rjaX) 1/2 exp [- (3.7)

for which
X= = X (3.8)

Integrating this relation over positions and momenta
and recalling that Fx remains locally Maxwellian, we
recover the extended Einstein relation (1.1). We see,
therefore, that the phase-space description gives rise to
results that for small thermal fluctuations assume a
universal form compatible with the extended Einstein
formula, substantiating the qualitative arguments ad-
vanced in the previous section. Comparing the two
master Eq. (2.3) and (3.4), one can see that the inade-
quacies of the usual birth and death type stochastic
formulation are due to the fact that in this method the
internal states of the system are treated incorrectly.
For instance, Eq. (2.3) implies that there is a finite
probability that two molecules of X [see term contain-
ing P(X + 2,t) ] be at the same state. In the more com-
plete phase-space description, the first of the conditions
(3.2) implies that, in the thermodynamic limit, the
probability of this event is vanishingly small. Neces-
sarily then, a bimolecular step introduces in the general
master equation (3.4) 2 molecules of X belonging to
two different internal states.

In the more general case of systems far from local
equilibrium, although Eq. (3.8) is not expected to be
valid, there is no reason to believe that the birth and
death process description will again become adequate.
It is only for systems that do not admit a statistical
mechanical formulation (e.g. social or ecological prob-
lems) that this description can be applied, although
again there can be no objective criteria assuring that
the process is Markovian.

4. THE VOLTERRA-LOTKA MODEL

In the model discussed in the previous two sections,
the macroscopic steady, stateXo or AX was asymptoti-
cally stable with respect to arbitrary perturbations. As a
preliminary to the problem of fluctuations around non-
equilibrium states in the neighborhood of instabilities,
we now study a system whose steady state lacks asymp-
totic stability. The particular model we choose is the

Volterra-Lotka model, which originally was conceived
to describe the competition between a number of
predator and prey biological species (15).

Let X, Y denote the populations of two interacting
predator-prey species. The Volterra-Lotka equations
read:

dt

dY
= k2XY 63Y

dt

where el, E3, k2 are positive. Let us set

el= k1A

E3 = k3D

(4.1)

(4.2)

Eq. (4.1) are then the conservation of mass equations
of the following set of irreversible autocatalytic chem-
ical reactions (in the limit of an ideal mixture):

ki
A + X 2X

k2

X + Y -> 2Y
ka

Y+ D-E + D. (4.3)

This chemical analog of the Volterra-Lotka model is
very useful in understanding the mechanism of fluctu-
ations in the vicinity of the onset of oscillations and in-
stabilities.
The macroscopic behavior of system (4.1) to (4.3) has

been analyzed by Volterra (15). The main results are as
follows:

(i) The system admits one nontrivial steady-state
solution

k3D k1A
Xo= , O =k2 k2

(4.4)

(ii) Small perturbations around (X0, Y0) exhibit
undamped oscillations with a universal frequency

Co = (kik3AD) /2 (4.5)

(iii) For arbitrary perturbations, Eq. (4.1) admit a
constant of motion (15, 16). Thus, finite perturbations
are also periodic in time with periods depending on the
initial conditions. The trajectories of the system in the
space (X, Y) consist of a dense net of closed curves that
are all orbitally stable (but not asymptotically stable).

(iv) Oscillations can only occur in the limit when
the system is displaced far from the state of thermo-
dynamic equilibrium (1, 17).
We now study fluctuations around state (4.4) or

around a periodic trajectory. We first assume, as in Sec.
2, that the macroscopic equations (4.1) define a birth and
death process in (X, Y) space. The master equation
for the reduced probability distribution
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P(X, Y, t) reads (4):

dP(X, Y, ) A(X 1)P(X-1, Y t)
dt

-AXP(X, Y, t) + (X + 1)(Y- 1)P(X + 1, Y-1,t)

-XYP(X, Y, t) + D(Y + 1) P(X, Y + 1, t)

- DYP(X, Y, t). (4.6)

A detailed analysis of this equation (4) shows that, as
for the model examined in Sec. 2, the distribution of
fluctuations is not given by the Poisson law. Thus, small
fluctuations contradict Eq. (1.1). Moreover, the dis-
tribution function is always time-dependent and the
mean square correlations 5X2, 6y2 are slowly-increasing
functions of time, even for infinitesimal fluctuations.
Stochastically, therefore, the steady state (4.4) is un-
stable and the system exhibits, for long times, abnormal
critical fluctuations. Ecologically, this situation has a
clear interpretation: the steady-state prey distribution
is never stable because there is no internal mechanism
that reestablishes equilibrium, once the latter is per-
turbed by the predator.

5. PHASE-SPACE DESCRIPTION OF THE
VOLTERRA-LOTKA MODEL

The chemical analog (4.3) of the Volterra-Lotka model
admits a phase-space description which, according to
the results of Secs. 2 and 3, is the only correct descrip-
tion to be adopted for chemical kinetics in the local
equilibrium regime. Assuming again that the system is
maintained uniform in space, one obtains, for a dilute
mixture, two coupled Boltzmann equations for the
average number densities of constituents X and Y in a
given internal state (4, 13):

= -E AajkZ aXPJ + 2 E Ajka. jXFkdt Akl jkl

- E BaJklaXFjY (5.1a)
Akl

dPr - E BjjkLFIXF7 + 2 E BjkilFjXFkydt kl Al

- ZCfjklFoYFgJ. (5.1b)
ilk

The transition probabilities per unit time for reactive
collisions A jkl, Bikl, Cikl satisfy conditions (3.2).
Elastic collisions terms have not been written ex-
plicitly, on the assumption that the system has attained
a local equilibrium regime.
We observe that the structure of Eq. (5.1) is quite

different from Eq. (4.1) or their generalization to
many components (15, 16) in spite of the fact that, on
averaging Eq. (5.1) over internal states, one obtains
(4.1). In particular, (5.1) cannot give rise to a constant
of motion as in the Volterra (15) or Kerner (16) analysis.

Before we proceed to the study of fluctuations, we
wish to emphasize that the two levels of description

given by Eq. (4.1) and (5.1) correspond to two largely
different, but interesting, ecological situations. In the
system described by Eq. (4.1), it is assumed that the
individuals of the prey population are consumed in-
differently by the predator. When the predator popula-
tion is comparable to or larger than the prey, it is
reasonable to expect that this is indeed the most proba-
ble situation. However, in the more realistic case of
small predator versus prey ratio, the most natural
competition consumes preferentially those prey indi-
viduals having small values of some "fitness" parameter
that measures the ability to resist to or escape from the
predator. It is then natural to expect that in such sys-
tems, in addition to the effect of the predators, the
internal processes determining the fitness distribution
within the prey species should play an important role.
This situation is well described by a set of equations of
the type (5.1), provided one reinterprets suitably the
parameter a determining the internal state. One of the
consequences of these processes is to permit an evolution
of the prey species in which the unfit individuals are
eliminated continuously.

Let us now study the fluctuations around the steady-
state solution of Eq. (5.1), and assume that the latter
define a Markovian process in the complete phase space.
Using the same method as in Sec. 3, one can derive a
master equation for the reduced probability distribu-
tion P({fx}, {fy}, t). In the limit of small fluctuations
this gives rise to two Fokker-Planck equations of the
form (4):

aPi (Xa,t) -Xa XPi (X., t)

XF[2 f-) EZAi.J2iXJ.A~_ __btn] + a Pi(Xa" t)
jlX2E jaf

-)X
2 2t

Lf Xijil Jt (Xa2

E<[AjafXjA (5.2)

and a similar equation for PI(yp, t). The fluctuations xa,
ye have been defined as in Eq. (3.6). Strictly speaking,
Eq. (5.2) is coupled to the equation for PI(yp, t) through
the average values fX, fy, which must satisfy the self-
consistency conditions

faX = E faXP({fX}X {fY} X t)
[fX},IVY)

(5.3)Gar = E f,3Yp({fX}I {fY}, I).
UX) I IfY)

To a first approximation (consistent with the Fokker-
Planck limit), one is allowed to identify the fs with the
macroscopic averages appearing in the Botzmann Eq.
(5.1). It follows that Eq. (5.2) admit steady-state solu-
tions of the form (3.7) and that the steady reference
state fanx, f,,y is always stable with respect to small thermal
fluctuations. Similarly, the extended Einstein relation
(3.8) is valid in the domain of small fluctuations (4).
One has, therefore, an a posteriori justification, in the
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domain of small fluctuations, of the results obtained by
Kerner (16) and Montroll et al. (18) who postulated
relations implying the validity of a canonical distribu-
tion of fluctuations.

In conclusion, we see that in the Volterra-Lotka
model the analysis based on the birth and death type of
formalism is not compatible with the more complete
phase-space description. By comparing the two master
equations, we see that the inadequacy of the usual
stochastic treatment is due to an incorrect account of
the internal states.
We have not yet analyzed completely the behavior of

large fluctuations of macroscopic size. It appears from a
preliminary study (4) that such fluctuations are always
time-dependent and may drive the system, for suffi-
ciently long times, to a new regime far from the initial
reference state.

6. CONCLUDING REMARKS. "GENERALIZED
TURBULENCE"

We have shown that in nonlinear systems far from
equilibrium, it is generally necessary to adopt a phase-
space stochastic description in order to describe cor-
rectly the distribution of thermal fluctuations around
steady nonequilibrium states. As a consequence, for
systems in a local equilibrium regime, small fluctuations
always behave according to the generalized Einstein
relations (1.1) or (3.7), (3.8).
While this result is quite natural for models of the

type discussed in Secs. 2 and 3, it may appear contra-
dictory when applied to the Volterra--Lotka model or
to any system which is at or slightly beyond a state of
marginal stability. We believe that the resolution of this
apparent paradox, which is related to the very nature
of the onset of oscillations and instabilities, may be the
following. The lack of asymptotic stability observed in
nonlinear dissipative systems (chemical instabilities,
etc.) is a purely macroscopic phenomenon that has no
molecular counterpart as long as the system (including
fluctuations) is maintained in a local equilibrium regime.
Thus, it is reasonable to expect that systems under-
going such macroscopic instabilities cannot evolve from
a given macroscopic reference state by a mechanism of
thermal fluctuations of usual size (i.e., very small).
This explains why in the phase-space description of
Secs. 3 and 5 small fluctuations are damped. Again, the
difference with instabilities in the velocity distribution
mentioned in the introduction should be emphasized.
A change in the macroscopic state of a system in a

local equilibrium regime can therefore arise only from a
mechanism of large thermal fluctuations of macroscopic
size. Macroscopic instabilities seem, thus, to bear some
analogies with first-order phase transitions.

In order to substantiate this conjecture, it would be
necessary to solve the complete master equations in
phase space for model (4.3) in a way that takes into
account, self-consistently, the simultaneous evolution

must study the time-dependent solutions of the master
equation for arbitrary fluctuations, imposing at each
stage the self-consistency conditions (5.3) for any
macroscopic state. This study, which should provide
such information as, e.g., the critical size of fluctuations
beyond which the system starts to evolve, and the time
required for the formation of this evolving mode, is
presently in progress.

In conclusion, the separation between macroscopic
behavior and fluctuations is related to the distance
from thermodynamic equilibrium. In a far from equi-
librium regime, corresponding to the onset of oscilla-
tions or instabilities, this separation is not possible in
general and the evolution of the average values depends
explicitly on the fluctuations. The situation brings to
mind the familiar phenomenon of fluid dynamics
arising beyond instability of the laminar flow and may
be appropriately called "generalized turbulence".
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