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Section 1: Foundational Approaches to Stand-Level Volume 

Estimation 

The primary objective of a forest inventory is to describe the quantity and quality of forest 

resources, providing the foundational data for sound forest management, timber sales, and 

operational planning.1 At the stand level—a group of trees sufficiently uniform in composition, 

age, or condition to be a manageable unit—the central task is to obtain reliable estimates of 

merchantable wood volume, often disaggregated by tree species and size class.2 This information 

is critical for determining the financial value of timber resources and making informed 

silvicultural decisions.4 Historically, this process was dominated by direct field measurements, 

but it has evolved into a sophisticated discipline that integrates statistical sampling theory, 

advanced modeling, and remote sensing technologies to balance cost, accuracy, and reliability.1 

 

1.1 Principles of Stand Characterization and Sampling 

The immense scale of forest landscapes makes a 100-percent inventory of every tree both 

economically prohibitive and, for most management purposes, unnecessary. Complete 

inventories are not only expensive and tedious but also prone to increased non-sampling errors, 

such as incorrect data recording, as fatigue sets in.1 Consequently, forest inventory relies on the 

principles of statistical sampling, whereby measurements from a representative subset of the 

forest are used to infer the characteristics of the entire population. The design of this sampling 

effort is a critical decision influenced by the inventory's objectives, the variability of the forest, 

and budgetary constraints.1 

 

Ground-Based Estimation Methods 

The traditional approach to estimating stand volume begins with direct measurements of 

individual trees within sample plots. The fundamental theory is to establish robust relationships 
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between merchantable volume—a variable that cannot be measured directly on a standing tree 

without destructive harvesting—and dimensions that are easily and cost-effectively measured, 

such as diameter at breast height (DBH) and total tree height.4 

One of the simplest conceptual methods is the mean tree method. In this approach, the tree of 

mean volume within a stand is identified and its volume is carefully measured (or estimated from 

a detailed function). This single volume is then multiplied by the total number of trees in the 

stand to derive an estimate of total stand volume. A more refined variant involves calculating the 

volume per unit of basal area for the mean tree and multiplying this ratio by the total stand basal 

area (G), a quantity that can be efficiently measured through enumeration or angle-count 

sampling.6 To improve precision, this method can be applied independently to different strata 

within the stand, such as diameter or basal area classes. By summing the volumes of these 

individual strata, a more accurate total stand volume is obtained.6 

However, the most common and robust ground-based methods rely on developing explicit 

mathematical relationships. This is achieved by creating volume tables or volume equations 

through regression analysis. The process involves felling a set of sample trees, carefully 

measuring their volume, and then using the method of least squares to fit a regression model that 

predicts volume from easily measured variables.6 These models can vary in complexity: 

● 1-Way Volume Tables: Predict volume using only DBH. 

● 2-Way Volume Tables: Predict volume using both DBH and height, which is generally 

more accurate as it accounts for variation in tree form. 

● 3-Way or 4-Way Volume Tables: May incorporate additional variables like a form factor 

or taper measurement to further refine the estimate.6 

A powerful stand-specific application of this principle is the volume line. This is a linear 

regression of individual tree volume (v) against its basal area (g), typically of the form v=a+bg. 

Once the regression constants 'a' and 'b' are determined for a particular stand from a subsample of 

trees, the volume of any tree in that stand can be estimated from its measured basal area. The 

total stand volume (V) can then be calculated efficiently by summing the individual tree volumes 

or, more simply, by using the formula V=N⋅a+b⋅G, where N is the total number of trees and G is 

the total stand basal area.6 This approach effectively creates a custom, 1-way volume table for 

that specific stand at that point in time. 

Large-scale inventory programs, such as the USDA's Forest Inventory and Analysis (FIA), 

operationalize this concept by developing regionally specific volume models for different species 

and species groups. These models are a core component of comprehensive estimation systems 

like the Component Ratio Method (CRM), which is used to estimate not just merchantable 

volume but also other components like biomass in the tree top, limbs, and stump.7 
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Statistical Sampling Designs 

The choice of sampling design is crucial for ensuring that the collected data is representative and 

that the resulting estimates are statistically defensible. While numerous designs exist, a few are 

foundational to forest inventory.1 

Systematic sampling is the most frequently used technique in forest inventory. In this design, 

sampling units (plots) are spaced at fixed intervals throughout the population, often on a grid.1 Its 

popularity stems from several advantages: it is easy to implement in the field, its logic is 

straightforward to explain to field crews and stakeholders, and by spreading the sample evenly 

across the entire population, it often yields more precise results for the population mean than 

simple random sampling with the same number of plots.1 This mechanical and uniform 

placement of plots generally makes inventories based on systematic sampling faster and less 

expensive to execute.1 

Simple random sampling, where every possible combination of sampling units has an equal 

chance of being selected, is the theoretical basis for much of statistical inference but is less 

commonly used in practice due to logistical challenges and potential for inefficiency if sample 

plots cluster by chance.1 

Stratified random sampling offers a significant improvement in efficiency over simple random 

sampling. In this method, the forest population is first divided into homogeneous subgroups, or 

strata, based on some characteristic like forest type, age class, or stand density. Each stratum is 

then sampled independently, typically with a random or systematic design.1 This approach has 

two main advantages. First, it provides separate estimates and measures of precision for each 

stratum, which can be valuable for management. Second, because the variation within each 

homogeneous stratum is typically less than the variation across the population as a whole, 

stratification often yields a more precise estimate for the overall population mean for a given 

sampling intensity.1 The delineation of these strata is increasingly accomplished using remotely 

sensed data, such as aerial photographs or satellite images, which provide a synoptic view of the 

landscape and allow for efficient classification of forest conditions prior to fieldwork.1 

 

1.2 Modeling Stand Structure through Diameter Distributions 

While estimates of total stand volume are useful, they provide an incomplete picture for 

management and economic planning. A stand composed of many small-diameter trees may have 

the same total volume as a stand with fewer large-diameter, high-value sawtimber trees. To 

address this, modern forest inventory focuses on characterizing the entire diameter 

distribution—the number of trees per unit area in each diameter class.8 The diameter of a tree is 

strongly correlated with other critical variables like height, volume, and biomass, making the 
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diameter distribution a powerful descriptor of stand structure and a direct indicator of the types 

of wood products that can be harvested.8 

 

Probability Density Functions (PDFs) 

Estimating the diameter distribution empirically by measuring every tree in a stand is 

impractical. Instead, statistical models known as probability density functions (PDFs) are used to 

describe and predict the shape of the distribution from a few key stand variables (e.g., mean 

diameter, basal area). This modeling approach significantly reduces the cost of forest inventories 

and improves the predictive power of growth models.8 Several PDFs have proven effective in 

forestry due to their flexibility in fitting the wide variety of distribution shapes found in nature, 

from the bell-shaped curves of even-aged plantations to the reverse-J shapes of uneven-aged, 

old-growth forests.10 

The Weibull function is arguably the most popular and widely used PDF for modeling diameter 

distributions. Its introduction to forestry by Bailey and Dell (1973) was a significant 

advancement, as its mathematical properties make it both highly flexible and straightforward to 

integrate for calculating the proportion of trees within any given diameter class.10 It can be 

specified with two or three parameters: a location parameter ( 

a) defining the minimum diameter, a scale parameter (b), and a shape parameter (c). The two-

parameter version is often sufficient and preferred for its parsimony.8 Studies consistently show 

that the Weibull function provides excellent fits across diverse forest types and conditions.8 

Other commonly used PDFs include: 

● Johnson's SB function: A highly flexible four-parameter distribution that can model a 

very wide range of shapes, including bimodal distributions, which can occur in complex, 

multi-cohort stands.8 Its parameters relate to location ( 

ϵ), scale (λ), and shape (γ, δ), which express skewness and kurtosis.8 

● Beta function: Another flexible distribution defined on a finite interval, making it suitable 

for diameter data which has a natural minimum and maximum.8 

● Gamma, Normal, and Logit-Logistic functions have also been applied successfully in 

specific contexts.8 

 

Parameter Estimation Methods 

The utility of a PDF depends on the ability to accurately estimate its parameters for a given stand 

at a specific point in time. Two primary methods have been developed for this purpose: 

parameter prediction and parameter recovery.8 
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The parameter prediction approach involves developing regression models that directly predict 

the PDF parameters (e.g., the Weibull 'b' and 'c' parameters) from stand-level variables like age, 

site index, or dominant height.10 While conceptually simple, this method has been found to be 

less robust than the alternative. 

The parameter recovery approach, introduced by Hyink and Moser (1983), is now the preferred 

method.10 Instead of predicting the abstract PDF parameters directly, this technique first predicts 

tangible, biologically meaningful stand attributes and then "recovers" the PDF parameters from 

them. This ensures that the resulting distribution is consistent with the predicted aggregate 

properties of the stand. The stand attributes used for recovery are typically moments of the 

diameter distribution (e.g., arithmetic mean diameter, quadratic mean diameter ( 

dg), variance) or percentiles of the distribution (e.g., the 25th, 50th, or 95th diameter 

percentiles).10 

The process for predicting a future diameter distribution using this method involves several 

steps: 

1. Project Stand Attributes: Using current inventory data for a stand (e.g., number of trees 

N0, dominant height Hd0, quadratic mean diameter dq0 at age A0), a system of regression 

equations is used to predict these attributes at a future age A. For example, future survival 

(N) might be predicted from initial stocking and the time interval, while future dq might be 

predicted from initial stand conditions.10 

2. Recover PDF Parameters: The predicted future stand attributes (e.g., predicted future dq 

and diameter variance) are then used as inputs to a system of equations that is solved to 

find the PDF parameters that would produce those exact attributes. For the two-parameter 

Weibull function, for instance, the shape parameter 'c' and scale parameter 'b' can be 

recovered from the predicted mean diameter and variance.10 

This approach has been shown to be more accurate and stable than direct parameter prediction. 

Research evaluating different combinations of moments and percentiles for recovery has found 

that methods involving the predicted quadratic mean diameter tend to perform best.10 This focus 

on accurately modeling the full diameter distribution provides a critical link between ecological 

inventory and economic valuation, as it allows managers to directly estimate the volume 

available by specific size classes, which is essential for timber appraisal and harvest planning.8 

 

1.3 The Role of Auxiliary Data in Modern Inventories 

The evolution of forest inventory has been profoundly shaped by the increasing availability of 

spatially comprehensive auxiliary data, primarily from remote sensing platforms. This has 

catalyzed a shift from purely design-based inventory frameworks, which rely solely on field plots 
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for estimates, to model-assisted and model-based frameworks. These modern approaches use the 

statistical relationship between accurate, but sparse, field measurements and dense, but less 

direct, remote sensing measurements to produce more precise estimates and spatially explicit 

maps of forest attributes.12 

 

Airborne Laser Scanning (LiDAR) 

Airborne Laser Scanning, or LiDAR, has revolutionized forest inventory by providing highly 

accurate, three-dimensional information about the physical structure of the forest canopy.14 A 

LiDAR sensor mounted on an aircraft emits laser pulses and measures the time it takes for them 

to reflect off objects and return. By differencing the returns from the canopy and the ground, a 

precise measurement of vegetation height can be obtained for vast areas.16 

The dominant operational method for integrating LiDAR with field data is the area-based 

approach (ABA).16 In this two-stage process: 

1. Model Fitting: Statistical models are developed that link forest attributes measured on 

ground plots (e.g., merchantable volume, basal area, biomass) to metrics derived from the 

LiDAR point cloud within the plot footprint. LiDAR metrics typically include statistics 

describing the height distribution of laser returns, such as height percentiles (e.g., 95th 

percentile), mean height, and measures of canopy density.16 

2. Prediction and Mapping: The fitted models are then applied to a wall-to-wall grid of 

LiDAR metrics covering the entire inventory area. This produces a continuous map of the 

predicted forest attribute for every pixel (e.g., a 30 m x 30 m grid cell) in the landscape.16 

When used within a design-based sampling framework, LiDAR data serves as a powerful 

auxiliary variable. For instance, a ratio estimator can be used where the LiDAR-derived canopy 

height is measured for the whole study area. This wall-to-wall information is then coupled with 

the standing volume measured on a much smaller sample of ground plots. The resulting estimate 

for total volume is substantially more precise than an estimate derived from the ground plots 

alone. In one case study, this LiDAR-assisted method produced a 95% confidence interval for 

total volume that was approximately two-thirds smaller than that from the ground-only survey, 

representing a dramatic gain in precision.15 

 

Digital Photogrammetry (DP) 

While LiDAR is highly accurate, its acquisition can be expensive. An increasingly popular and 

cost-effective alternative is Digital Photogrammetry (DP), which generates 3D point clouds 

from overlapping stereo aerial photographs.18 Using Structure from Motion (SfM) algorithms, 
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modern photogrammetric software can match features across multiple images to reconstruct the 

3D structure of the forest canopy, producing a point cloud similar in nature to that from 

LiDAR.19 

This technology, especially when deployed on Unmanned Aerial Systems (UAS), offers a 

flexible and affordable means to acquire high-resolution 3D data.20 The resulting point clouds 

can be used in an area-based approach, just like LiDAR data, to estimate key stand parameters 

such as timber volume, biomass, basal area, and height.18 While DP point clouds primarily 

capture the outer canopy envelope and lack the ground-penetrating capability of LiDAR, studies 

have shown their accuracy to be comparable to LiDAR for many inventory applications, 

particularly when a high-quality Digital Elevation Model (DEM) is available from a previous 

LiDAR flight.18 The higher frequency of aerial photo acquisition compared to LiDAR scans in 

many regions makes DP a compelling tool for updating inventories more regularly.18 

 

Satellite Imagery 

Satellite imagery has long been used in forest inventory, primarily as a tool for stratification. By 

classifying a landscape into broad categories (e.g., coniferous forest, deciduous forest, non-

forest) using Landsat or similar satellite data, inventory plots can be allocated more efficiently, 

reducing the overall variance of estimates for attributes like forest area or total volume.22 

With advancements in sensor technology and analytical methods, satellite data is now being used 

in more direct prediction roles. Multi-spectral data from sensors like Landsat, Sentinel-2, and 

MODIS can be used as predictor variables in both parametric regression models and non-

parametric methods to create maps of forest attributes.23 The unique spectral bands of modern 

sensors, such as the red-edge bands on Sentinel-2, are particularly sensitive to vegetation 

characteristics and can improve model performance.24 Furthermore, very high-resolution satellite 

imagery (e.g., 30-50 cm from Maxar's WorldView satellites) combined with machine learning 

algorithms can now be used for tasks previously thought to require aerial data, such as individual 

tree crown delineation, tree counting for stocking assessments, and even stand health analysis.25 

While optical satellite data can suffer from signal saturation in dense forests and is limited by 

cloud cover, its broad-area coverage and frequent revisit times make it an indispensable tool for 

large-area monitoring and estimation.24 

 

Section 2: Temporal Updating of Stand Inventories: Modeling 

Forest Dynamics 
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Forests are dynamic ecosystems, constantly changing due to growth, mortality, and disturbances. 

A static forest inventory, representing a single snapshot in time, quickly becomes outdated, 

diminishing its value for management planning.18 Consequently, a central challenge in forest 

science is to accurately update stand-level estimates over time. This involves moving beyond 

simple remeasurement to the application of mathematical models that describe and project the 

processes of stand development. The state-of-the-art in this domain has evolved from 

deterministic growth projections to sophisticated data assimilation frameworks that continuously 

integrate new observations with model forecasts to maintain a current and precise understanding 

of the forest's state. 

 

2.1 Projecting Stand Development with Growth and Yield Models 

Growth and yield modeling is the discipline of using mathematical equations to predict the future 

condition of a forest based on its current state and site characteristics.4 These models are the 

workhorses of long-term forest management, allowing planners to simulate the outcomes of 

different silvicultural strategies (e.g., thinning, fertilization, final harvest) and determine the 

optimal path to achieve desired future conditions.4 

 

Modeling Philosophies and Resolution 

Growth and yield models can be broadly categorized based on their underlying philosophy and 

level of detail.28 

Empirical models are the most common type. They are built by fitting statistical relationships to 

long-term data from permanent sample plots. These models, such as traditional stand table 

projection systems, capture the observed patterns of growth in a specific region for specific 

species but may be unreliable when extrapolating to conditions outside of those represented in 

the fitting data (e.g., predicting the response to a novel thinning regime).28 In contrast, 

mechanistic models (or process-based models) attempt to simulate the fundamental biological 

processes of tree growth, such as photosynthesis, respiration, and nutrient cycling. Models like 

JABOWA, TREGRO, and SORTIE use ecological principles to predict how an individual tree 

responds to environmental factors like light, water, and temperature.28 While theoretically more 

robust for predicting responses to novel conditions like climate change, they are often more 

complex and data-intensive than empirical models.29 

Models also differ in their resolution, or the fundamental unit of simulation 26: 

● Whole-Stand Models: These are the simplest, predicting aggregate stand-level variables 

like total basal area, number of trees per acre, or total volume as a function of stand age, 
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site index, and density.26 They provide a broad overview of stand development but offer no 

detail on the size distribution of trees. 

● Diameter-Class Models: These models disaggregate the stand into diameter classes and 

project the number of trees in each class over time. This provides more detailed 

information about stand structure and potential products than whole-stand models.26 

● Individual-Tree Models: This is the most detailed and flexible approach. These models 

simulate the growth and survival of each individual tree within a sample plot, with stand-

level dynamics emerging as the aggregate result of these individual processes.30 

 

Individual-Tree Models in Practice 

Individual-tree models represent the state-of-the-art for detailed stand projection. They typically 

consist of submodels that predict diameter growth, height growth, and the probability of 

mortality for each tree, often as a function of the tree's size, species, and the level of competition 

it faces from its neighbors.30 

A key distinction is between distance-dependent and distance-independent models. Distance-

dependent models require the spatial coordinates of every tree and calculate a competition index 

for each tree based on the size and proximity of its neighbors. While more biologically realistic, 

they are also more data-intensive. Distance-independent models, which are more common in 

operational settings, do not require tree locations and use a plot-level measure of competition, 

such as total stand basal area, to modify individual tree growth rates.30 

The Forest Vegetation Simulator (FVS) is a premier example of a distance-independent, 

individual-tree growth modeling system widely used by the USDA Forest Service and other land 

managers.31 FVS is not a single model but a family of geographically specific "variants," each 

calibrated for the tree species, forest types, and growth patterns of a particular region (e.g., the 

Inland Empire variant, the Southern variant). This structure allows it to simulate a wide range of 

silvicultural treatments—from commercial thinning to prescribed burning—for most major forest 

types across the United States.31 

Another influential model is the Prognosis Model for Stand Development. A key feature of 

this model is its "self-calibration" process. It uses past growth data from increment cores taken 

from a specific stand to adjust its internal growth functions. This allows the model to adapt its 

predictions to the unique local site quality, genetic characteristics, and vigor of the trees in that 

particular stand, rather than relying solely on regional average growth rates. This makes it a 

powerful tool for creating a customized "prognosis" of how a specific stand will respond to 

alternative management prescriptions.32 

The application of these models represents a significant leap from static inventory. They 
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transform a snapshot of the forest into a trajectory, allowing managers to play out "what-if" 

scenarios over decades. However, these projections are inherently uncertain; they are forecasts, 

not facts, and their accuracy degrades over time as small errors in the growth models accumulate 

and unforeseen events occur.11 This limitation sets the stage for a more dynamic approach to 

inventory updating. 

 

2.2 State-of-the-Art: Data Assimilation Frameworks 

The advent of frequent, low-cost remote sensing has created an opportunity to move beyond 

simple projection and toward a system of continuous inventory updating. Data Assimilation is 

the formal statistical framework for achieving this. Originating in fields like meteorology for 

weather forecasting, data assimilation provides a procedure for dynamically merging information 

from a forecasting model with new observations to produce an improved estimate of a system's 

current state.14 Rather than discarding old inventory data when new data becomes available, data 

assimilation uses the old data, projected forward in time, as a valuable piece of prior 

information.33 

This represents a fundamental paradigm shift. The forest stand is no longer viewed as a static 

object to be measured periodically, but as a dynamic system whose state trajectory is 

continuously tracked and corrected. The inventory is not a report, but a live, evolving estimate. 

 

Core Components of a Data Assimilation System 

A generic data assimilation system for a forest stand consists of a repeating cycle with four key 

components 14: 

1. Initial State Estimate: The process begins with an estimate of a stand parameter (e.g., 

growing stock volume) at time t0. Crucially, this is not just a point estimate but is 

characterized by a probability distribution, including a mean and a measure of its 

uncertainty (variance). 

2. Forecasting Model: A growth and yield model is used to project the state estimate 

forward from time t0 to a future time t1. The model must also propagate the uncertainty, 

predicting not only the expected volume at t1 but also the variance of that prediction, 

which will typically increase over the forecast interval. 

3. New Observation: At time t1, a new measurement of the stand parameter is obtained, 

typically from a remote sensing source like LiDAR or DP. This new observation also has 

its own estimate of uncertainty. 

4. Assimilation (or Update) Step: A statistical algorithm combines the forecasted state (the 

"prior") with the new observation. This produces a new, updated estimate of the state at 
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time t1 (the "posterior"). This posterior estimate is more precise (i.e., has a smaller 

variance) than either the forecast or the new observation alone, as it optimally incorporates 

the information from both sources.14 This posterior then becomes the initial state for the 

next cycle, which repeats when another observation becomes available at time 

t2. 

The central insight of data assimilation is that the combination of the forecast and the new 

observation is weighted by their respective uncertainties. A very precise forecast will be adjusted 

only slightly by a noisy new measurement, whereas a very uncertain forecast will be heavily 

corrected by a precise new measurement.35 This elevates the role of uncertainty from a simple 

metric for reporting final precision to a critical, operational input that governs the entire 

estimation system. This rigorous accounting for uncertainty is what enables more advanced, risk-

aware forest planning, such as stochastic optimization, which can explicitly consider the 

probability of different outcomes.11 

 

Statistical Engines for Data Assimilation 

Two main classes of statistical methods are used to perform the assimilation step 35: 

The Kalman Filter is a standard and computationally efficient algorithm for data assimilation, 

widely used in many engineering and scientific fields.37 It assumes that the errors in both the 

forecasting model and the new observations are normally distributed. In its basic form, it applies 

to linear systems. Since forest growth is non-linear, a variant called the 

Extended Kalman Filter (EKF) is typically used. The EKF linearizes the non-linear growth 

model at each time step using a Taylor series approximation.35 The "Kalman Gain" is the 

weighting factor calculated at each step that determines how much the forecast is adjusted based 

on the new data; it is a function of the relative uncertainties of the two information sources.36 

While powerful, studies have shown that the EKF can sometimes underestimate the true variance 

of the estimates.34 

Bayesian Methods provide a more general and flexible approach to data assimilation. In the 

Bayesian framework, the true state of the system is conceived of as a probability distribution. 

The forecast from the growth model provides the "prior distribution" for the state at time t1. The 

new observation is used to define a "likelihood function." Bayes' Theorem is then used to 

combine the prior and the likelihood to produce the "posterior distribution," which represents the 

updated state of knowledge.14 This posterior distribution then serves as the prior for the next time 

step. Bayesian methods are advantageous because they are not restricted to assumptions of 

normality and can handle any form of error distribution.35 They provide a unified and 

philosophically coherent manner for updating beliefs in the light of new evidence.29 
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Challenges in Implementation 

While data assimilation holds immense promise, its operational implementation in forestry faces 

several significant challenges 14: 

● Data Frequency and Quality: data assimilation is most advantageous when new, low-

precision (and thus low-cost) data becomes available at short intervals to correct an 

accurate growth model.34 The increasing availability of data from sources like digital 

photogrammetry and satellites is now making this feasible.18 

● Temporally Correlated Errors: A critical assumption of simple data assimilation 

algorithms is that the errors of the observations at different time points are independent. 

However, in practice, errors from remote sensing-based predictions are often strongly and 

positively correlated over time. For example, a specific sensor is likely to respond similarly 

to particular forest conditions (e.g., underestimating volume in very dense stands) at every 

acquisition. This correlation violates the model assumptions and can severely limit the gain 

in precision from assimilation, as the new data provides less "new" information than 

assumed. Accounting for these correlated error structures is a major area of ongoing 

research.14 

● Model and Uncertainty Characterization: Effective data assimilation requires not only a 

growth model that can make predictions but one that can also accurately quantify the 

uncertainty of those predictions. Developing such models is a non-trivial task.35 Similarly, 

the uncertainty of each remote sensing-based estimate must be well-characterized. 

● Handling Disturbances: The continuous, gradual change described by a growth model is 

abruptly broken by events like thinning, clear-cutting, fire, or windthrow. A practical data 

assimilation system must include a mechanism to detect these major disturbances, at which 

point the assimilation algorithm must be broken and re-initialized with a new starting 

state.14 

 

Section 3: Improving Local Precision by Leveraging Regional Data 

A persistent challenge in forest inventory is the mismatch between the scale of data collection 

and the scale of management decision-making. Large-scale programs, such as national forest 

inventories (NFIs), are designed to provide statistically robust estimates of forest resources over 

broad geographic areas like states or regions. However, operational forest management occurs at 

the local level—the stand or a small group of stands. At this fine scale, NFI data is often too 

sparse to yield estimates with acceptable precision, creating a critical information gap.13 

Small Area Estimation (SAE) is a suite of statistical techniques designed specifically to bridge 

this scale gap by combining information from the broad-scale survey with auxiliary data to 
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produce reliable estimates for small domains where sample data is limited or even non-existent.13 

 

3.1 The Small Area Problem in Forest Inventory 

The USDA Forest Service's Forest Inventory and Analysis (FIA) program is a prime example of 

a large-scale inventory system. It is built on a systematic sample of permanent plots distributed 

across the entire United States, providing essential information on the nation's forest resources.40 

Due to the sampling intensity, estimates derived from FIA data are most accurate for large 

geographic units, such as multi-county regions or entire states.40 

When a forest manager or planner needs an estimate for a much smaller "domain of interest"—

such as a single county, a specific ownership type within that county, or an individual forest 

stand—the number of FIA plots falling within that domain is typically very small.41 Attempting 

to calculate an estimate using only the one or two plots that happen to be in the area (a "direct" 

estimate) will result in an estimate with an extremely large standard error, rendering it too 

imprecise to be useful for making high-stakes management decisions.13 In many small areas, 

there may be no sample plots at all, making direct estimation impossible. This is the "small area 

problem": the need for precise local information is high, but the availability of direct local data is 

low.41 SAE methods were developed to solve this problem by "borrowing strength" from other 

data sources to augment the limited local information.13 

This process makes large, publicly funded regional datasets directly relevant and useful for local, 

operational problems. It takes a strategic-level resource and transforms it into a tactical-level 

tool. The development and application of SAE in forestry is a direct response to this fundamental 

mismatch in scales, providing a statistically rigorous bridge between regional data collection and 

stand-level management. 

 

3.2 Small Area Estimation (SAE) Methodologies 

The core principle of SAE is to use a statistical model to link the variable of interest (e.g., stand 

volume), which is measured on a sparse sample of plots, to auxiliary variables that are available 

for every unit in the entire population, including the small areas of interest.13 This model, fit 

using data from a larger region, allows information from data-rich areas to inform the estimates 

in data-sparse areas. SAE methods can be categorized into three main types of estimators.13 

 

Direct Estimators 
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A direct estimator uses only the sample observations (y) that fall within the small area domain of 

interest (d). For example, the Horvitz-Thompson estimator, which weights each observation by 

the inverse of its inclusion probability, is a common design-based direct estimator.13 The primary 

advantage of direct estimators is that they are design-unbiased, meaning they do not rely on 

model assumptions. Their major disadvantage, which defines the small area problem, is their 

high variance and instability when the sample size within the domain is small.13 

 

Indirect (Synthetic) Estimators 

An indirect, or synthetic, estimator relies entirely on the linking model and the auxiliary data (x). 

It does not use the direct sample observations from within the small area, even if they are 

available. The process involves fitting a model, such as y=f(x), using data from a large area, and 

then applying that model to the auxiliary data for the small area to produce a "synthetic" 

prediction.13 The stand-level predictions commonly generated in an area-based LiDAR 

inventory—where a model is fit using plots from across a landscape and then applied to predict 

the mean value for every pixel within a stand—are functionally equivalent to synthetic 

estimates.16 Synthetic estimators have low variance because they are based on a stable model fit 

with a large amount of data, but they can be biased if the model does not fit the specific 

conditions of the small area well.13 

 

Composite Estimators 

Composite estimators represent the most common and powerful SAE approach. They seek to 

strike an optimal balance between the low bias of a direct estimator and the low variance of an 

indirect estimator by taking a weighted average of the two.13 The weight assigned to each 

component is typically inversely proportional to its variance, so that more weight is given to the 

more precise component.13 

The Fay-Herriot (FH) model is a foundational and widely used area-level composite 

estimator.42 It is called an "area-level" model because it works with aggregated data: a direct 

estimate for each small area and the mean of the auxiliary variables for each small area. The 

model links these two sets of data and includes a random area effect that accounts for variability 

between the small areas that is not explained by the auxiliary variables.42 The final FH estimate 

for a given area is a weighted combination of its direct estimate and its model-based synthetic 

prediction. As the sample size in an area increases, the direct estimate becomes more precise, and 

the FH model automatically gives it more weight. Conversely, for an area with very few samples, 

the model gives more weight to the more stable synthetic prediction.13 

Other advanced composite estimators, such as the Empirical Best Linear Unbiased Predictor 
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(EBLUP), are "unit-level" models that work with individual plot data rather than area 

aggregates. These models, often formulated as linear mixed-effects models, can provide more 

efficient estimates if a strong relationship exists at the plot level.13 

 

3.3 The Synergy of SAE and Remote Sensing 

The practical implementation and success of modern SAE in forestry are inextricably linked to 

the availability of high-quality, wall-to-wall remote sensing data. The statistical models at the 

heart of SAE require auxiliary variables that are not only strongly correlated with the forest 

attributes of interest but are also available for the entire landscape, covering both sampled and 

unsampled locations.13 Remote sensing technologies are uniquely capable of providing this 

critical data layer.13 

Data from LiDAR, digital photogrammetry, and multispectral or hyperspectral satellite sensors 

serve as the ideal auxiliary information for SAE models.13 For example, LiDAR-derived metrics 

like canopy height and cover can be used in an FH or EBLUP model to predict stand volume or 

biomass. The remote sensing data provides the spatial fabric that connects the sparsely located 

field plots, allowing the model to "interpolate" or predict forest attributes in the spaces between 

plots with statistical rigor.46 

This synergy fundamentally increases the economic value and utility of both NFI field data and 

remote sensing acquisitions. By themselves, NFI plots are often too sparse for local management, 

and uncalibrated remote sensing data lacks ground-truthed accuracy. When fused through an 

SAE framework, they create a high-resolution, spatially explicit, and statistically defensible 

information product that is far more valuable than the sum of its parts.11 This powerful 

combination allows forest managers to leverage the investment in national-scale inventory 

programs to support local, operational decisions, effectively democratizing access to high-quality 

forest information. 

 

Section 4: Integrated Statistical Paradigms for Modern Forest 

Inventory 

The increasing complexity and richness of forest inventory data—characterized by hierarchical 

structures, spatial and temporal correlations, and the fusion of multiple data sources—demand 

statistical paradigms that are more sophisticated than standard regression techniques. Modern 

forest biometrics relies on integrated frameworks that can properly account for these data 

structures to produce accurate and defensible estimates. Mixed-effects models provide the tools 

to handle hierarchical data, the Hierarchical Bayesian paradigm offers a unifying framework for 
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integrating information across scales, and non-parametric methods provide flexible, data-driven 

alternatives for mapping and imputation. 

 

4.1 Accounting for Data Structure with Mixed-Effects Models 

orest inventory data are rarely simple, independent observations. Instead, they possess a nested 

or hierarchical structure: multiple trees are measured within a single plot, multiple plots may be 

located within a stand, and the same plot is often remeasured over time (longitudinal data).38 

Observations within the same group (e.g., trees on the same plot) tend to be more similar to each 

other than to observations from different groups, violating the critical assumption of 

independence that underlies standard regression models.38 

Mixed-effects models are the standard statistical approach for analyzing such structured data.38 

They address this challenge by partitioning the variation in the data into two components 47: 

● Fixed Effects: These are the conventional regression parameters that represent population-

level average relationships. For example, in a height-diameter model, the fixed effects 

would describe the average relationship between a tree's height and its diameter for all 

trees in the population. 

● Random Effects: These parameters capture the idiosyncratic deviations of individual 

subjects or groups (e.g., plots) from the population average. For instance, a random effect 

for a plot could account for the fact that all trees on that particular plot are, on average, 

taller for their diameter than the population mean, perhaps due to superior site quality. 

By explicitly modeling this group-level variation, mixed-effects models produce more accurate 

and efficient estimates of the fixed-effect parameters and provide a mechanism for making 

subject-specific predictions.43 In forestry, they are widely used to develop generalized height-

diameter models that can be calibrated to local stand conditions, to model longitudinal data in 

growth and yield studies, and to build the unit-level models used in Small Area Estimation.38 The 

inclusion of random effects correctly accounts for the sources of variation in the data, preventing 

the underestimation of parameter variance that can occur when these correlations are ignored.43 

 

4.2 The Power of Hierarchical Bayesian (HB) Modeling 

The Hierarchical Bayesian (HB) paradigm offers a comprehensive and philosophically coherent 

framework that can naturally integrate the solutions to both the temporal updating problem (Data 

Assimilation) and the spatial scaling problem (Small Area Estimation). It extends the principles 

of Bayesian inference to models with the kind of nested data structures common in forestry.46 
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The Bayesian Philosophy 

In contrast to the classical (frequentist) approach where model parameters are considered fixed, 

unknown constants, Bayesian inference treats parameters as random variables that have 

probability distributions.29 The process begins by specifying a 

prior probability distribution for each parameter, which quantifies existing knowledge or 

belief about its value before observing the current data. This prior information is then formally 

combined with the information contained in the data, which is expressed through a likelihood 

function, using Bayes' Theorem. The result is a posterior probability distribution, which 

represents the updated state of knowledge about the parameter after accounting for the new 

data.29 This posterior distribution provides a complete characterization of uncertainty, from 

which not only a point estimate (like the mean or median) but also credible intervals (the 

Bayesian equivalent of confidence intervals) can be derived.29 

 

Integrated Applications in Forest Inventory 

The hierarchical structure of HB models makes them perfectly suited for forestry applications. A 

model can be built with multiple levels that mirror the data's structure—for example, a level for 

individual trees, nested within a level for plots, which are in turn nested within a level for stands 

or ecological regions.46 This allows the model to "share strength" or "borrow information" across 

the levels in a natural, probabilistic way. 

This framework provides a powerful and unified approach to the key challenges in modern 

inventory: 

● Hierarchical Bayesian SAE: The Bayesian framework is a natural fit for Small Area 

Estimation. Area-level models like the Fay-Herriot and unit-level mixed models have 

direct Bayesian analogues.46 The HB approach offers several advantages, including the 

ability to incorporate prior information about the degree of similarity between areas, more 

flexible modeling of the random effects, and the production of a full posterior distribution 

for the estimate in each small area, providing a richer quantification of uncertainty than a 

simple point estimate and standard error.45 

● Bayesian Data Assimilation: As noted previously, Bayesian methods are one of the two 

primary engines for Data Assimilation. The sequential nature of Bayesian updating—

where the posterior from one time step becomes the prior for the next—is the very 

definition of a data assimilation system. This provides a unified way to handle estimation 

and prediction over time.14 

● Bayesian Model Calibration: For complex, mechanistic growth models with many 
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parameters, Bayesian calibration is an extremely powerful tool. It can estimate the full joint 

posterior distribution of all model parameters simultaneously, revealing correlations and 

uncertainties that are difficult to assess with classical methods. This allows for a robust 

propagation of parameter uncertainty through the model to quantify the predictive 

uncertainty of its outputs.29 

The HB paradigm is not merely another tool in the toolbox; it is emerging as a comprehensive 

statistical "language" that can express and solve the interconnected spatial and temporal 

problems at the heart of modern forest inventory within a single, coherent probabilistic 

framework. 

 

4.3 The Application of Non-Parametric and Imputation Techniques 

Alongside the sophisticated parametric models described above, a suite of flexible, data-driven 

non-parametric methods plays a crucial role in operational forest inventory, particularly for 

creating spatially explicit maps and filling in missing data. These methods make fewer 

assumptions about the underlying statistical distributions and functional forms of relationships in 

the data. 

 

k-Nearest Neighbors (k-NN) Imputation 

The k-Nearest Neighbors (k-NN) method is one of the most widely used non-parametric 

techniques in forestry.52 It is an imputation method, meaning its primary purpose is to fill in 

missing values. In a typical forest inventory application, the goal is to predict a suite of forest 

attributes (Y-variables, e.g., volume, biomass, basal area), which are measured on field plots, for 

every pixel in a landscape where they are unobserved.54 

The k-NN process works as follows 52: 

1. Feature Space: A "feature space" is defined by a set of auxiliary variables (X-variables) 

that are available for both the field plots (the "reference" set) and all the pixels in the 

landscape (the "target" set). These X-variables are typically derived from remote sensing 

data, such as the spectral bands of a satellite image or topographic variables from a DEM. 

2. Distance Calculation: For a given target pixel, the algorithm calculates the "distance" in 

the multi-dimensional feature space between that pixel and every reference plot. This 

distance measures the similarity of the target and reference units based on their auxiliary 

variables. Various distance metrics can be used, from simple Euclidean distance to more 

complex metrics derived from machine learning algorithms like Random Forest.52 

3. Imputation: The algorithm identifies the k reference plots that are closest (most similar) to 
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the target pixel. The predicted values for the Y-variables at the target pixel are then 

calculated as the (possibly weighted) average of the values from those k nearest neighbors. 

The primary application of k-NN is to create wall-to-wall maps of multiple forest attributes 

simultaneously.52 A key strength of the method is that, because it imputes the full vector of 

attributes from the donor plots, it tends to preserve the natural variance and covariance structure 

of the original data better than methods that predict each variable with a separate regression 

model.54 

The choice between a parametric, model-based approach like SAE and a non-parametric 

approach like k-NN involves a critical trade-off. Model-based methods provide a rigorous 

inferential framework, allowing for the calculation of statistically defensible estimates of 

uncertainty (e.g., the variance of the estimate for a specific county).42 Non-parametric methods 

like k-NN are highly flexible and often easier to implement for generating predictive maps, but 

they struggle to produce reliable, statistically sound variance estimates for their predictions.54 

The choice of method therefore depends heavily on the end goal: if the objective is a visually 

appealing map for general planning, k-NN may be sufficient; if the objective is a legally or 

financially defensible estimate with a known level of precision for a specific area, a model-based 

SAE approach is superior. 

 

Section 5: Synthesis and Future Directions 

The science of forest inventory has undergone a profound transformation, evolving from a 

discipline reliant on manual field measurements and simple stand averages into a highly 

quantitative field that integrates data across multiple spatial and temporal scales using 

sophisticated statistical frameworks. The modern stand-level inventory system is not a single 

method but a cohesive, multi-faceted process designed to provide accurate, up-to-date, and 

spatially explicit information to support sustainable forest management in an increasingly 

complex world. This synthesis has detailed the foundational principles, the methods for temporal 

updating, the techniques for improving local precision, and the integrated statistical paradigms 

that underpin the state-of-the-art. 

 

5.1 An Integrated View of the Modern Inventory System 

A comprehensive, modern system for stand-level forest inventory can be conceptualized as a 

workflow that seamlessly integrates the key methodologies discussed throughout this report. This 

integrated system addresses the core challenges of cost, precision, temporal relevance, and 

spatial scale. 
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The process begins with Data Fusion and Initial State Characterization. The foundation is 

still a network of high-quality field plots, but these are no longer the sole source of information. 

They serve as the "ground truth" for calibrating and validating models that leverage wall-to-wall 

auxiliary data from remote sensing platforms like LiDAR and Digital Photogrammetry. An area-

based approach is used to build robust predictive models linking field-measured attributes (e.g., 

volume, biomass) to 3D structural metrics from the remote sensing data. To provide detailed 

information for product assortment and economic valuation, the initial stand state is often 

characterized not just by total volume but by its full diameter distribution, modeled using flexible 

probability density functions like the Weibull. 

Next, the system addresses the Spatial Scaling and Localization problem. The models 

developed in the first stage are often built using data from a large regional survey, such as the 

FIA. To produce precise estimates for specific, small management units (stands or counties), 

Small Area Estimation techniques are employed. Using the remote sensing data as the critical 

linking auxiliary information, SAE models "borrow strength" from the regional dataset to refine 

the local estimates, effectively bridging the gap between the scale of data collection and the scale 

of management. This step transforms a strategic, regional inventory into an operational, local 

one. 

Simultaneously, the system must maintain Temporal Relevance through dynamic updating. The 

static, localized inventory is projected forward in time using individual-tree or stand-level 

growth and yield models like FVS. This provides a forecast of future conditions. However, to 

avoid the accumulation of model error, this forecast is continuously corrected within a Data 

Assimilation framework. As new remote sensing data becomes available at regular intervals 

(e.g., every 1-3 years), it is assimilated with the model forecast to produce a new, more precise 

estimate of the current stand state. 

The entire integrated system is held together by an Overarching Statistical Paradigm. 

Increasingly, Hierarchical Bayesian modeling is recognized as the ideal framework for this task. 

Its structure naturally accommodates the nested nature of forest data (trees in plots in stands), 

and its probabilistic approach provides a coherent way to implement both SAE (borrowing 

strength across space) and data assimilation (updating beliefs over time), all while providing a 

comprehensive quantification of uncertainty at every stage of the process. The table below 

summarizes the distinct roles and characteristics of the three most advanced frameworks that 

form the core of this modern system. 

Table 1: Comparison of Major Stand Updating and Estimation Frameworks. 

Feature Data Assimilation Small Area 

Estimation (SAE) 

Hierarchical 

Bayesian (HB) 
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Modeling 

Primary Goal To provide the most 

precise estimate of a 

system's current 

state by 

sequentially 

integrating new 

observations with 

model forecasts 

over time. 

To provide precise 

estimates for small 

spatial domains 

(areas) where direct 

sampling is 

insufficient, by 

"borrowing 

strength" from other 

areas and auxiliary 

data. 

To provide a 

flexible and 

coherent 

probabilistic 

framework for 

inference that can 

unify complex 

spatial, temporal, 

and hierarchical 

data structures 

while robustly 

quantifying 

uncertainty. 

Core Problem 

Addressed 

Temporal data 

fusion; keeping 

estimates up-to-

date. 

Spatial scaling; 

improving local 

precision from 

regional data. 

Integrating complex 

data structures; 

comprehensive 

uncertainty 

accounting. 

Key Data 

Requirements 

A time-series of 

observations (e.g., 

remote sensing), a 

dynamic forecasting 

model (e.g., growth 

model), and 

estimates of 

uncertainty for both. 

A sample survey 

covering a large 

area (e.g., FIA), 

wall-to-wall 

auxiliary data 

correlated with the 

variable of interest 

(e.g., LiDAR), and a 

linking model. 

Data with 

hierarchical 

structure (spatial or 

temporal), prior 

information on 

parameters, and a 

fully specified 

probabilistic model 

(likelihood and 

priors). 

Handling of 

Uncertainty 

Uncertainty is an 

operational input; 

the relative variance 

of the forecast and 

Primarily focused 

on reducing the 

Mean Squared Error 

(MSE) of the final 

Provides a full 

posterior probability 

distribution for 

every parameter and 
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new observation 

determines the 

update (Kalman 

Gain). 

estimate by 

optimally balancing 

the bias of an 

indirect estimator 

with the variance of 

a direct one. 

prediction, offering 

the most complete 

characterization of 

uncertainty. 

Key Strengths Dynamically 

updates inventories; 

improves precision 

over time; formally 

combines models 

and data. 

Makes large-scale 

inventories relevant 

at the 

local/management 

scale; significantly 

improves precision 

in data-sparse areas. 

Unifying framework 

for SAE and data 

assimilation; 

flexible model 

specification; 

formal 

incorporation of 

prior knowledge; 

robust uncertainty 

propagation. 

Major Limitations Sensitive to model 

misspecification and 

correlated errors in 

observation time-

series; requires 

good estimates of 

uncertainty for all 

components. 

Relies on the 

strength of the 

linking model; can 

be biased if the 

relationship 

between auxiliary 

and response 

variables is weak or 

inconsistent across 

domains. 

Can be 

computationally 

intensive (MCMC); 

specification of 

prior distributions 

can be challenging 

and influential. 

 

5.2 Emerging Research and Operational Challenges 

While the statistical frameworks described represent a mature and powerful suite of tools, the 

field of forest inventory continues to advance, driven by new technologies, evolving 

management needs, and persistent scientific challenges. Several key areas represent the frontiers 

of research and the primary hurdles to full operational implementation. 

● Advanced Data Fusion: The proliferation of new remote sensing platforms offers 
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unprecedented opportunities but also new challenges. Future inventory systems will need 

to fuse data from an even more diverse array of sensors, including spaceborne LiDAR 

(e.g., NASA's GEDI), Synthetic Aperture Radar (SAR), which can penetrate clouds, and 

hyperspectral sensors that provide detailed information on species and forest health. 

Developing statistical models that can optimally integrate these multi-modal data sources is 

a key research priority. 

● Dynamic Models for a Changing World: Forest growth and yield models are the engines 

of temporal projection. There is a critical need to improve these models to better account 

for the effects of climate change, which may alter growth rates and species suitability, and 

to more accurately simulate the impacts of both natural disturbances (fire, insects, disease) 

and novel silvicultural practices.11 The value of information provided by an inventory 

system is directly tied to the quality of its predictive models; inaccurate forecasts can lead 

to sub-optimal decisions and significant economic losses.11 

● Computational and Big Data Hurdles: The methods described, particularly Hierarchical 

Bayesian models fit with Markov Chain Monte Carlo (MCMC) simulation and the 

processing of massive, wall-to-wall remote sensing datasets, are computationally 

intensive.29 Developing more efficient algorithms and leveraging high-performance 

computing infrastructure are essential for making these advanced techniques operationally 

feasible for routine, large-scale inventory updates. 

● Comprehensive Uncertainty Propagation: A recurring theme is the central importance 

of uncertainty. While individual methods provide estimates of uncertainty for their specific 

outputs, a major ongoing challenge is to fully propagate uncertainty through the entire, 

multi-stage modeling chain. This includes accounting for measurement error in field plots, 

positioning errors, sampling error, error in remote sensing data, and error from every 

statistical model used in the process. Providing decision-makers with a final estimate that 

reflects this total, cascaded uncertainty is the ultimate goal for enabling truly risk-informed 

forest management.11 

● Operationalization and Knowledge Transfer: Finally, there remains a gap between the 

cutting-edge methods developed in the research community and the tools used by many on-

the-ground forest managers. Bridging this gap requires the development of user-friendly 

software, accessible training materials, and clear demonstrations of the value proposition—

in terms of improved decision-making and economic outcomes—of adopting these more 

complex but powerful statistical frameworks.11 
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