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Abstract

This white paper details a procedure for discovering specific information-theoretical algebraic
groups in financial time series data, with a focus on uncovering a structure analogous to the group
Zy X Zsy. We present the methodology in general terms, including threshold-based screening of
mutual information (MI) values.

1 Introduction

Financial time series often exhibit intricate dependencies. One way to capture potential rela-
tionships among different instruments is via mutual information (MI). By computing MI on two
fronts—within the same time step (MlIyithin) and across a one-step lag (Mllagged)—we can observe
both synchronous and directional interactions between instruments.

In particular, we seek to isolate small subsets of instruments whose pairwise interactions align
with an algebraic group structure, specifically a Z, x Zy pattern:

e Two directed 4-cycles in Mlj,gecq, for instance:

Sl—>SQ—>Sg—>S4—>Sl and S5—>SG—>S7—>58—)S5.

e Four 2-cycles in Ml;inin that connect the two 4-cycles in order. Specifically, each stock in
the first 4-cycle has a corresponding stock in the second 4-cycle, linked by a 2-cycle:

Sl <~ 55, SQ <~ SG, Sg <~ 57, 54 <~ Sg.

The presence of such an 8-instrument arrangement hints at a deeper organizational feature akin
to a group of symmetries, but in an information-theoretic sense.

2 Method Overview

2.1 Data Preprocessing

We begin with a dataset of stock market time series, each column representing one instrument’s
daily (or periodic) price. The procedure is:

1. Sort all rows by ascending date.



2. Convert each instrument’s price vector into a discrete movement vector in {0,1}, with “1”
for upward movement from one day to the next, and “0” otherwise.

This yields binary sequences for each instrument over a common time horizon.

2.2 Computing Mutual Information

We then compute two matrices of pairwise MI:
o MIyithin(X,Y): Both sequences X and Y are aligned to the same time step indices.

® Mljagged (X, Y): Sequence X is shifted by one time step relative to Y, thus capturing potential
directional relationships.

Given two binary sequences X and Y of length n,
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where p(-) and p(-, -) are empirical frequencies over the observed data.

2.3 Information-Theoretical Z, x Z, Groups

The crux of our pipeline is a systematic search for 8-instrument combinations satisfying a structure
analogous to Z4 X Zsy. Specifically, each valid combination:

1. Lagged 4-cycles:
S1—>S2—>S3—>S4—>S1, S5—>56—>S7—>Ss—>55,

wherein every directed edge has Mlj,g5eq above a certain lagged threshold.

2. Within 2-cycles:
(S1 4> S5), (S2. 4> S6), (S3 <> S7), (S1 > Ss),

with each direction’s Ml;hin €xceeding a chosen within threshold.

We interpret these cycles collectively as an “algebraic group” in the sense that the 4-cycles corre-
spond to a cyclic factor (akin to Z4), and the 2-cycles pair up instruments in a manner reminiscent
of a Zs factor.

2.4 Thresholds and Screening

To decide whether a given edge in Mlyithin or Mljaggeq is “strong enough,” we apply thresholds:
o thresholdjageeq for all directed edges in the 4-cycles.
o thresholdy;thin for both directions in each 2-cycle pair.

Only if an edge’s mutual information exceeds these thresholds do we consider it present in the
group structure. By adjusting the thresholds, we can tune the stringency of group detection. If the
thresholds are too high, fewer (or no) groups appear; if too low, the structure might become trivial
or abundant.



2.5 Implementation Outline

1. Parse Data: Load CSV data (dates vs. instruments), sorting chronologically.
2. Preprocess Movements: Convert each price series into a 0/1 sequence.
3. Compute MI: Create two symmetric matrices:

® Mlyithin for same-step pairs.

® Mljagpeq for pairs offset by one time step.

4. Generate Combinations: Enumerate all 8-instrument subsets (or a practical sample if N
is large).

5. Check Z4 x Zy Pattern: For each subset, verify:

e Two distinct 4-cycles in Mljagged-
e Four cross 2-cycles in MIyithin-

e All edges above respective thresholds.

6. Output: Save the discovered groups, listing each edge’s MI value. If none satisfy the pattern,
the result is empty.

Notes on Simplifications

While this paper focuses on a binary (0/1) encoding of price movements (“up” vs. “otherwise”)
and on identifying a Z4 x Zs structure, the framework can be readily extended in two ways:

1. Multi-State Movements. Instead of reducing each daily price change to a 0/1 label, one
could use a 3-state (or larger) discrete variable to capture more nuanced movement categories (e.g.,
“up,” “down,” “flat”). The mutual information calculation then proceeds analogously over the
resulting discrete probability distributions.

2. Different Algebraic Groups. Although we have illustrated the detection of an 8-instrument
group with two 4-cycles (lagged MI) and four cross 2-cycles (within MI), one could target alternative
group structures by introducing additional or different “generators.” For example, one could look
for a Zy, X Z,, pattern by defining more or differently lagged MIs. The core procedure of threshold-
based screening across various MI matrices remains the same, but would allow for richer symmetry
and group-theoretic patterns.

3. Application to Other Time-Series Domains. The same information-theoretic algebraic
approach applies to any time-series data beyond finance. Whether analyzing operational metrics
within a business, or other categories of sequential data (e.g. biological signals, sensor readings,
etc.), one can compute within-step and lagged mutual information, define suitable thresholds or
additional “generators” of interaction, and detect analogous group structures following the same
procedure.



3 Conclusion

In this white paper, we have demonstrated how information-theoretical algebraic groups of type
Z4 X Zo can be unveiled in stock market time series data through a threshold-based analysis of
both within-time-step and lagged mutual information (MI).

More broadly, our approach involves:

1. Discretizing time-series data to capture relevant features (such as binary movement in-
dicators or higher-order states).

2. Computing mutual information in multiple configurations (e.g. same-step vs. lagged) to
quantify both synchronous and directional relationships.

3. Searching for group-like patterns, such as the Z, x Zy structure, by imposing algebraic
constraints on how time series must interconnect via MI.

4. Applying thresholds to ensure that only sufficiently strong interactions qualify as edges
within these prospective group structures.

These techniques need not be limited to financial data; they can be employed wherever dis-
crete time-series observations are available and one wishes to identify structured interaction pat-
terns—whether in biology, operational metrics, or other domains. By leveraging the powerful
framework of mutual information and linking it to algebraic group constructs, researchers can gain
a novel lens into complex, multi-way dependencies within evolving systems.



