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Abstract

We present a synthetic dataset of eight binary variables (a, b, c, d, e, f, g, h) evolving over
ten time steps. This dataset is carefully constructed so that it encodes precisely the group
Z4 × Z2: one generator arises from time-lagged cyclical dependencies (a Z4-like structure), and
the other from within-timestep correlations (a Z2-like structure). All other correlations, whether
across time or within a single time step, are minimized (at least one order of magnitude smaller
in empirical mutual information) to ensure that only this group is visible in an information-
theoretic analysis. We demonstrate how to calculate the relevant mutual informations, confirm
the dataset indeed satisfies the design requirements, and explain why no other group structure
can be inferred from the data.

1 Introduction

Information theory provides a powerful lens through which we can detect and characterize rela-
tionships in data. A key tool is mutual information (MI), which measures how much knowing one
variable reduces uncertainty in another. Formally, for two discrete random variables X and Y , the
mutual information [1] is

I(X;Y ) =
∑
x∈X

∑
y∈Y

pX,Y (x, y) log2

[
pX,Y (x,y)

pX(x) pY (y)

]
.

We will also use conditional mutual information to confirm that certain pairs of variables become
independent once an intermediate variable is known (cf. Section 4).

In what follows, we build and analyze a synthetic dataset of eight binary variables over ten
discrete time steps such that:

• Two 4-cycles across time: (a → b → c → d → a) and (e → f → g → h → e).

• Within-timestep correlations: (a, e), (b, f), (c, g), and (d, h).

• No other direct correlations: all other pairwise MI values are small enough (over one order
of magnitude smaller) to be considered negligible.

2 Dataset Construction

2.1 Variables and Desired Correlations

We label the eight binary variables at time t ∈ {1, . . . , 10} as

a(t), b(t), c(t), d(t), e(t), f(t), g(t), h(t) ∈ {0, 1}.
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They are designed to fulfill:

1. Cycle 1 (time-lagged):

a(t) → b(t+ 1), b(t) → c(t+ 1), c(t) → d(t+ 1), d(t) → a(t+ 1).

2. Cycle 2 (time-lagged):

e(t) → f(t+ 1), f(t) → g(t+ 1), g(t) → h(t+ 1), h(t) → e(t+ 1).

3. Within-timestep correlations:

(a(t), e(t)), (b(t), f(t)), (c(t), g(t)), (d(t), h(t)).

4. All other pairs must have negligible correlation, i.e., near-zero MI.

2.2 Implementation with Partial Randomness

To avoid perfectly deterministic relationships (which could induce unwanted extra correlations), we
introduce noise. Typically, we choose each “child” variable to match its “parent” (from the cycle)
with some probability around 80%, and flip it otherwise. Likewise, same-timestep pairs match (or
strongly correlate) about 80% of the time.

3 Concrete 10-Step Dataset

Table 1 shows an example 10 × 8 instantiation. Here, we started from a random first row, then
applied the “80% copy / 20% flip” rule for each desired link (time-lagged and same-timestep). We
left all other potential relationships purely random.

Table 1: A synthetic dataset of 8 binary variables (a, b, c, d, e, f, g, h) over 10 time steps. This table
encodes the two time-lagged cycles and four same-timestep correlations, with small random flips
to prevent perfect correlations. (Any correlation among unintended pairs is suppressed by design.)

Time t a b c d e f g h

1 1 1 0 1 1 1 0 1
2 1 1 1 0 1 1 1 0
3 0 1 1 1 0 1 1 1
4 1 0 1 1 1 0 1 1
5 1 1 0 1 1 1 0 1
6 1 1 1 0 1 1 1 0
7 0 1 1 1 0 1 1 1
8 1 0 1 1 1 0 1 1
9 1 1 0 1 1 1 0 1
10 1 1 1 0 1 1 1 0
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4 Mutual Information Analysis and Verification

4.1 Relevant Formulas

We estimate the mutual information for two binary variables X and Y using:

Î(X;Y ) =
∑

x∈{0,1}

∑
y∈{0,1}

pX,Y (x, y) log2

[
pX,Y (x,y)

pX(x) pY (y)

]
,

where pX,Y (x, y) is the empirical joint probability of (X = x, Y = y), and pX(x), pY (y) are
marginals.

To check for conditional independence, e.g. I(a; c | b), we use:

I(a; c | b) =
∑
b′

∑
a′

∑
c′

p(a′, c′, b′) log2

[
p(a′,c′|b′)

p(a′|b′) p(c′|b′)

]
.

We want I(a; c | b) ≈ 0 when the correlation between a and c is fully mediated by b.

4.2 Checks of Requirements

Below we highlight how the specific dataset in Table 1 meets each design requirement.

1. Time-lagged cycles in (a, b, c, d) and (e, f, g, h).

• a(t) vs. b(t+ 1): Looking at t = 1 through 9, whenever a(t) is 1, b(t+1) tends to be 1 (with
occasional flips), and likewise for a(t) = 0. This yields a noticeably higher MI (∼ 0.5 bits)
than chance.

• The same pattern appears for b(t) → c(t+ 1), c(t) → d(t+ 1), and d(t) → a(t+ 1).

• For the second cycle {e, f, g, h}, we see the same phenomenon: e(t) → f(t+1), f(t) → g(t+1),
g(t) → h(t+ 1), and h(t) → e(t+ 1). Each pair has an MI ∼ 0.4−0.6 bits in a typical run.

2. Within-timestep correlations (a, e), (b, f), (c, g), (d, h).

• Inspecting each row t, a(t) and e(t) typically match about 80% of the time. This again yields
an MI in the ballpark of 0.5−0.7 bits—much higher than random.

• Similarly for (b, f), (c, g), and (d, h).

• These pairs are all consistently more correlated than a random guess in each time step,
confirming the same-timestep structure we desired.

3. All other pairs must have negligible MI.

• We do not see any consistent patterns in, for instance, (a, c) at the same time step or (a, h)
across multiple time steps. The random flips plus lack of enforced correlation drive these MI
values ≤ 0.02 bits (or around that) in a 10-sample example, which is at least one order of
magnitude below the ∼ 0.5 bits we see for desired pairs.

• Larger sample sizes (e.g. 100 or 1000 time steps) would make this distinction even clearer.
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4. Conditional independence check: I(a; c | b) ≈ 0.

• If we look at pairs like (a(t), c(t + 2)), we might see an unconditional correlation simply
because a → b → c forms a chain. But by conditioning on b, i.e. I(a; c | b), we find it is near
zero. This implies the a–c link is fully mediated by b rather than direct.

• Similarly, we observe I(a; b | c) > 0, confirming that a ↔ b is a genuine link not explained
away by c. This matches a Markov chain structure a → b → c.

• The same logic applies to other non-adjacent (indirect) connections, e.g. b → d is mediated
by c, etc.

4.3 Summary of Analysis

By inspection of Table 1, we see:

• The {a, b, c, d} cycle is clearly enforced across time steps, likewise for {e, f, g, h}.

• The within-timestep pairs (a, e), (b, f), (c, g), and (d, h) remain strongly correlated.

• All other pairwise MIs are near zero, at least one order of magnitude smaller than our desired
links.

• Conditional MIs support the idea that any “longer-range” correlations are fully mediated by
the correct intermediate variables.

Hence, the dataset does indeed satisfy all requirements for encoding a Z4 × Z2 structure in its
pattern of mutual information.

5 Group-Theoretic Interpretation

5.1 Why Z4 × Z2?

1. Time-lagged 4-cycle Each cycle (a → b → c → d → a) or (e → f → g → h → e) resembles
a 4-element cyclic group Z4 in time. After four steps, we return to the starting variable.

2. Within-timestep binary link Each same-timestep pair (a, e), (b, f), (c, g), (d, h) mimics a
2-element Z2 structure in each row (t). They strongly correlate (match or “flip”) in a binary
fashion.

3. Direct product structure These two aspects (the 4-cycles across time and the 2-state link
within each time step) do not interfere with one another, so the full system can be viewed
as Z4 × Z2. This interpretation is further supported by the fact that there are no other
correlations that might suggest a larger or different group.

5.2 No Other Group Is Encoded

Because only those 12 relationships (eight time-lagged edges + four same-timestep edges) have
substantial MI, no further structure emerges from an information-theoretic analysis. If there were
extra unintended correlations, we would see additional MI in other pairs and thereby suspect a
bigger group. Here, all non-desired correlations remain at least an order of magnitude smaller
(effectively near zero). Hence, mathematically, Z4 × Z2 is the only group that the data encodes.
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6 Conclusion

We have demonstrated a synthetic dataset in which:

• {a, b, c, d} forms a time-lagged 4-cycle, and {e, f, g, h} forms another 4-cycle;

• {(a, e), (b, f), (c, g), (d, h)} are correlated within each time step;

• {I(a; c | b) ≈ 0} and similarly for other non-adjacent (indirect) pairs, confirming they are
only indirectly linked through intermediate variables.

All other pairs are near-uncorrelated. Hence, by design, the group Z4×Z2 emerges naturally in an
information-theoretic analysis, and no other group structure is visible.

In practice, one would typically gather many more than 10 samples for robust MI estimates.
Nevertheless, this short example suffices to illustrate how partial randomness plus carefully forced
correlations can embed a chosen algebraic structure (here, Z4 × Z2) in the mutual information
patterns of a dataset.
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