Proactive Maintenance Supervisor

A Daily Planner for Effective Maintenance Supervision

A Day in the Life of a Proactive Maintenance Supervisor

Maintenance supervisor visits job sites to ensure no problems exist that will cause problems with the execution of the maintenance schedule. (Change the time you execute this function day to day so your staff does not know your schedule.)

The maintenance supervisor makes his/her rounds to ensure all work has started on time and no problems exist. If personnel are at a remote location, a call on the radio or text on the cell at a specific time validates that either everything is on schedule, or “we have a problem.”

While the supervisor is making his/her rounds they should be performing QA/QC checks on the work being executed. Is the maintenance tech following a repeatable procedure? Is he/she using the right tool for the job? etc.

If a maintenance tech is working on a critical job, then he/she should call or text at a specific time to update whether everything is OK, or if there is a problem. This is key to the success of a critical job, otherwise maintenance techs get involved in the problem and think they have it resolved, however it continues on until it is too late and production or operations is impacted. It is important to always know in advance of a problem so it can be resolved quickly, possibly with more resources or coordination from production or operations.

Meeting with maintenance planner/scheduler, or both if they are different people.

It is best for this meeting to be held after the maintenance supervisor walks around checking on the work. It is best for this meeting to be held after the maintenance supervisor walks around checking on the work. Meeting with maintenance planner/scheduler (or both if they are different people) is key to the success of a critical job, otherwise maintenance techs get involved in the problem and think they have it resolved, however it continues on until it is too late and production or operations is impacted. It is important to always know in advance of a problem so it can be resolved quickly, possibly with more resources or coordination from production or operations.

Validating work order close out.

Sometime during the day, the maintenance supervisor should validate that all work from the previous day is accounted for by a work order and ensure the work order codes are accurate before any work order is closed. If a problem exists with the work order codes and information, the maintenance tech or techs should hold a meeting a few minutes before the end of the shift to ensure the codes are corrected and that the maintenance tech knows why they need to be changed.

Metrics / KPIs or Dashboard for the maintenance team.

A few KPI ideas are Mean Time Between Failure of critical assets, systems, etc., Mean Time Between Repair, and Equipment Availability. These should be posted in a line graph so trends can be seen. A correlation analysis should be completed monthly of these KPIs to validate if they impact production. Key Performance Indicators (KPIs) should be posted in the shop for all to see. If a KPI is not showing positive results, a maintenance team meeting may be scheduled for the next day. A maintenance supervisor wants the maintenance techs to identify the problem and identify a solution to improve the KPI. This requires patience and leadership.

A few KPI ideas are Mean Time Between Failure of critical assets, systems, etc., Mean Time Between Repair, and Equipment Availability. These should be posted in a line graph so trends can be seen. A correlation analysis should be completed monthly of these KPIs to validate if they impact production. Key Performance Indicators (KPIs) should be posted in the shop for all to see. If a KPI is not showing positive results, a maintenance team meeting may be scheduled for the next day. A maintenance supervisor wants the maintenance techs to identify the problem and identify a solution to improve the KPI. This requires patience and leadership.

Visit www.gpallied.com for more information, videos, training, articles, and research on maintenance and reliability. For more information, training, articles, and research on maintenance and reliability, visit www.gpallied.com.

Change the time you execute this function day to day so your staff does not know your schedule.

Visit www.gpallied.com
1. Work Orders should have at the minimum: the correct code (breakdown (1), urgent (2), etc.); the correct equipment number, at the right level; the main code (breakdown (1), urgent (2), etc.); the correct equipment; the correct component code, failure code, and cause code. Without this information one cannot determine:

- Dominant Failure Thread—which component has the most specific failure modes with a specific cause across multiple assets.
- Dominant Failure Pattern—which failure pattern is the most dominant, and what are the major causes of failures for this pattern are. This allows one to develop strategies to eliminate unacceptable failures which impact the organization.

2. Repair or Corrective Work orders must have everything as stated above, plus component code, failure code, and cause code. Without this information one cannot determine:

- Dominant Failure Thread—which component has the most specific failure modes with a specific cause across multiple assets.

3. What should a Work Order have on it for Preventive Maintenance or Predictive Maintenance?

- The method to prevent or predict known failure modes. (Failure mode—how something fails)
- On a PM procedure, it should have specific steps and specifications on what is to be done to known best practices.

Example: Lubricate Bearing:

Step 1: Clean the grease fitting.
Step 2: Clean the end of the grease gun.
Step 3: Insert 4 grams of lithium grease (two shots).
- Comments on the procedure as to what work was performed, job; comments from the maintenance person as to what work was performed, or any recommendation to changes to maintenance strategy or plan; any parts used whether from the storeroom or not; and the maintenance signature.

Without this information one cannot determine:

- Actual maintenance cost for specific assets.
- Mean Time Between Failure
- Mean Time To Repair
- Mean Time Between Repairs
- Rework
- If a PM Procedure is effective.
- If a specific type repair is effective.
- If a maintenance strategy meets the intent of maintenance.

Through the year’s Baker Instrument has been known for developing test instruments that hold up and save money in the harshest environments. We pride ourselves in continually following that tradition and developing analyzers to provide maintenance professionals with the right tool to efficiently keep rotating electrical machinery operating without downtime. As we transition to SKF durability, reliability and longevity will continue to be our focus. To obtain more information on these instruments contact us at 800/752-8272 or at our website at www.bakerinst.com.