"How to Embed a Root Cause Analysis Culture in Your Maintenance Group"

By Ricky Smith CMRP

				TH	E PRO	BLEM	1	
	THE CAUSES	Valve fails to open	Valve fails to close	Leakage through valve	Leakage around stem	Excessive pressure drop	Opens/closes too fast	Opens/doses too slow
	Dirt/debris trapped in valve seat	•	•	•				
ated	Galling	•	•					
actu	Mechanical damage (seals, seat)	•	•	•				
Pilot actuated	Pilot port blocked/plugged	•	•	•				
-	Pilot pressure too high		•				•	
-	Pilot pressure too low	•		•				•
	Corrosion	•	•	•				
-	Dirt/debris trapped in valve seat	•	•	•				
-	Galling	•	•					
Solenoid actuated	Line pressure too high	•	•	•	•			•
actu	Mechanical damage	•	•	•				
piou	Solenoid failure	•	•					
Sole	Solenoid wiring defective	•	•					
-	Wrong type of valve (N-O, N-C)	•	•					
-	Wrong type of valve (N-O, N-C)	•	•					$ \ge$
Soler	Solenoid wring defective Wenne Prine of Arthure (N.O. N.C.)							
Ť.	C. C							

The Root Cause of a Specific Problem in most Causes are Known

True or False

- The Roots of Most Failures are Known and Can be identified
- Take this Hydraulic Valve for Example
- Would you agree or disagree most causes of component or parts failures are known? <u>Text in your answer</u>

				TH	E PRC	BLEN	1	
	Hydraulic Valve	Valve fails to open	Valve fails to close	Leakage through valve	Leakage around stem	Excessive pressure drop	Opens/closes too fast	Opens/closes too slow
	THE CAUSES	Val	Val	Lee	Lec	Exc	Op	Op
	Dirt/debris trapped in valve seat	٠	•	•				
ated	Galling	٠	•					
Pilot actuated	Mechanical damage (seals, seat)	٠	•	•				
pilot	Pilot port blocked/plugged	٠	•	•				
H	Pilot pressure too high		•				•	
	Pilot pressure too low	٠		•				•
	Corrosion	٠	•	•				
	Dirt/debris trapped in valve seat	٠	•	•				
	Galling	٠	•					
lated	Line pressure too high	•	•	•	•			•
actu	Mechanical damage	٠	•	•				
Solenoid actuated	Solenoid failure	٠	•					
Sole	Solenoid wiring defective	٠	•					
	Wrong type of valve (N-O, N-C)	٠	•					

Wrong type of valve (N-O, N-C)

What is RCA and What is an RCA Culture?

Root cause analysis (RCA) is the process of discovering the root causes of problems in order to identify appropriate solutions.

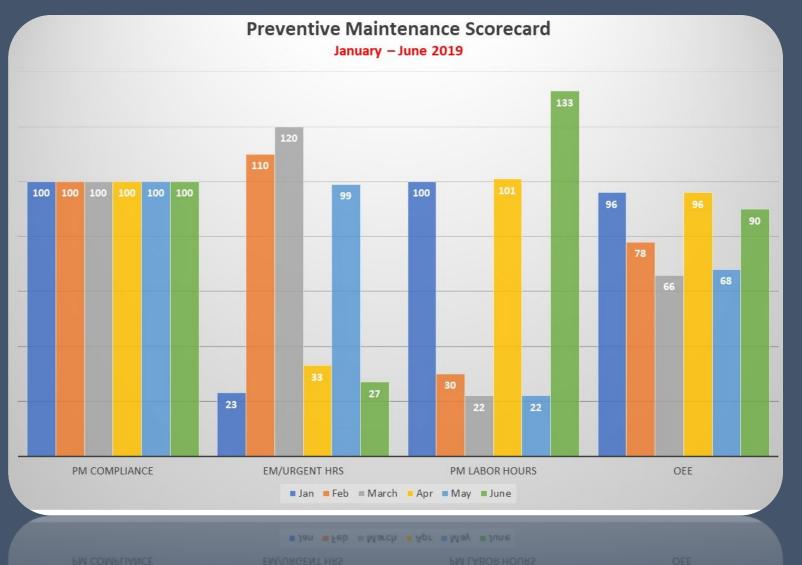
RCA assumes that it is <u>much more effective to systematically prevent and solve for underlying issues rather</u> than just treating ad hoc symptoms and putting out fires.

An <u>RCA Culture</u> is the characteristics and knowledge embedded into a Plant or Site where everyone is aligned with a focus on Failure Mitigation and Elimination.

How to Conduct a Root Cause Analysis?

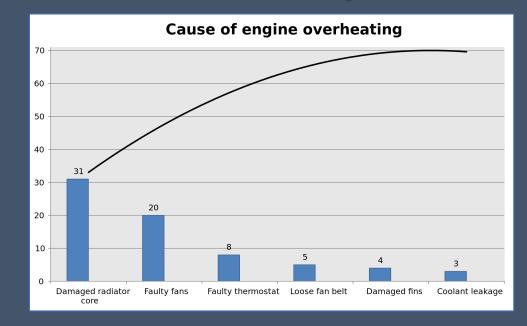
- 1. Define the problem. Ensure you identify the problem and align with a customer need. ...
- 2. Collect data relating to the problem. ...
- 3. Identify what is causing the problem. ...
- 4. Prioritize the causes. ...
- 5. Identify solutions to the underlying problem and implement the change. ...
- 6. Monitor and sustain.

If an Organization has Multiple Assets which are Not Meeting Expectations, where do you start?


	CRITICALITY ANALYSIS of HVAC SYSTEM																												
А	В		С				С			D E			F		G	Н	1	J	Κ	L	М	Ν	0	P	QI	R 3			
														_		e e				act	re	e History	e History		9	Value	5		5
Asset	Equipment		G	Η	I	J	Κ	L	М	Ν	0	Ρ	Q	R	S	tion Value		Mission Impact	Safety Impact	ental Imp	Single Point Failure	intenance	intenance	Reliability	Spares Lead Time	acement /	Planned Utilization	Visibility	Maximum
					Impact	allure	History	History		0	/alue	8		6		Acq		Missio	Safet	Environmental Impact	Single P	Preventive Maintenance History	Corrective Maintenance History	æ	Spares	Asset Replacement Value	Planned	Visibili	60000 % M
4300301	10005137	CHILLER, CENTRIF	1 75	-	0	n,	Maintenance	Maintenance		Time	\sim			Criticality Rating		7	3,500	5	5	5	1	4	з	2	0	4	4	0	62.0
4300303	10005138	CHILLER, CENTRIF	ĬŎ	2	L .	60	S	ŝ	-	F	<u> </u>			2	ε	7	3,500	5	5	5	1	4	1	1	0	4	4	0	56.0
4300311	10005292	HEAT EXCHANGER	Mission Impact	Safety Impact			č	2	Reliability		eplacement	Utilizati	Visibility	Ĕ	Maximum	- 19	9,200	5	0	0	5	5		0	2	2	5	T.	•
4300320	10006883	PUMP, POND WAT		E	nvironmental	Point	9	•	0	Lead	ō	Ξ		34			6,800	5	0	0	2	5	0	1	0	1	5	1~	- <u>-</u>
4300319	10007043	STRAINER, DUPLE		>	O	Ø	5			Ľ	2				a		2,675	5	0	0	4	5	0	0	2	1	5	1	.0
4300344	10007017	PUMP, CONDENSE	-2	6	Ξ.	α_					÷	8	2		5		7,925	5	0	0	1	5	0	0	0	1	з	1 8	.0
4300351	10007018	PUMP, CONDENSE	8	To l	5				Œ	2		Ē	-		8		7,925	5	0	0	1	5	0	1	0	1	3	13	.0
4300352	10003796	PUMP, CHILLED W	5	Ś	≚.	Single	Preventive	Corrective		Spares	Ω.	Planned		Ē	<u>6</u> 5		B,500	5	0	0	1	4	0	1	0	1	3	Criticality Pating	
4300360	10003797	PUMP, CHILLED W AIR HANDLER, AH			2	素	ц.	4		ι Ο	8	ā		0			B,500	5	0	0	1 5	4	0	2	0	2	3 5	2	.0
4400355 4300378	10005410 10005411	AIR HANDLER, AH			Ш.	- M	5	8			00						2,900 0.025	5	0	0	5	4	0	0	_	2	5	13	
4300378	10007028	AIR HANDLER, AH					ŝ.	£.,			As I						1.350	5	0	0	5	4	0	0	_		5		.0
4300334	10007029	AIR HANDLER, AH					<u></u>	8									9.825	5	0	0	5	4	0	1	i	1	5	1	.0
4300326	10007030	BOILER, HOT WATE						<u> </u>									1,750	5	5	5	5	3	1	1	1	3	4	3	
4300396	10007031	PUMP, HEATING HO		UER.	HEW	-					00-B	A	EUUE	SEMIER	11 \$		6,500	5	0	0	1	5	0	0	_	0	3	2	
4300396	10007032	PUMP, HEATING HO	of w	ATER.	HHW	P-2		0		1	00-B	A	100-	B-MEF	1 \$		6,500	5	0	0	1	5	0	1		_	3	2	0 4 0
VALUAT	ON CRITERIA						5	6																			-	2	0 4
G	Mission Impact: Relative criticality of system or asset on the ability to meet mission or production demands											1	_																
н		failure of this asset or				-		-																				1	
		nmental: Could a failure of this asset or system result in a potential reportable incident?										1	_																
J	-	gle Point Failure: Relative value of asset that considers work-around and ability to by-pass failure in the short-term									1																		
K L		entive Maintenance History: Average annual cost of preventive maintenance for each asset. Absence of effective PM reduces the reliability of assets									2	_																	
м		rective Maintenance History: Average annual cost for each asset. Level of expenditures is indicative of reliability ability: From maintenance history, this is a relative ranking based on the number of breakdowns/corrective maintenance tasks required for the asset									2																		
N	*	are Parts Lead Time: Relative measure of time required to obtain spare parts or asset replacement should a failure occur.										2	_																
o	Asset Replacement Value: Relative cost to replace the asset should total failure occur											3	_																
Р	Planned Utilizati	ion: Relative value of	the pla	anned	asset	utiliza	tion. /	Assets	that a	are ne	eded	more	than 7	75% ar	re rated h	nighes	t (5)											1	_
Q		nportant is the visibility																										1	1 2
R	Criticality Rating: Relative number that is the sum of the eleven evaluation criteria.																												

44

Common Types of Root Cause Analysis Techniques

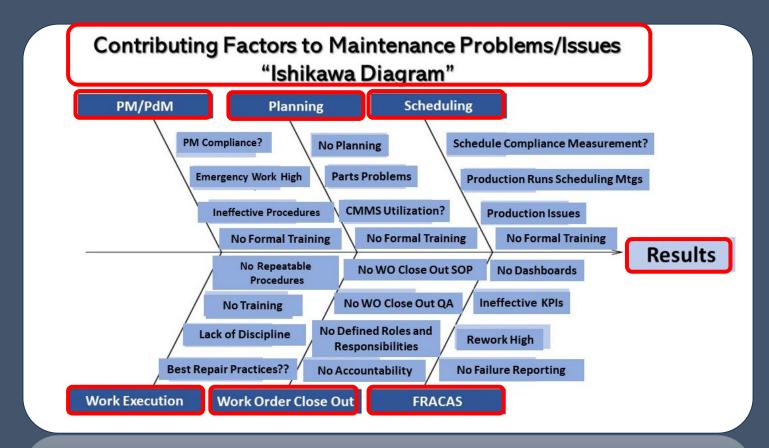

- Pareto Analysis
- Fishbone Diagram (Ishikawa Diagram)
- The 5 Whys
- Failure Mode and Effects Analysis (FMEA)
- JDI Just Do It

Which RCA Technique would you use if your PM Program is Meeting Expectations? (Text in your answer)

- Pareto Analysis
- Fishbone Diagram (Ishikawa Diagram)
- The 5 Whys
- Failure Mode and Effects Analysis (FMEA)
- JDI Just Do It

Pareto Analysis

This technique helps to identify the top portion of causes that need to be addressed to resolve the majority of problems.

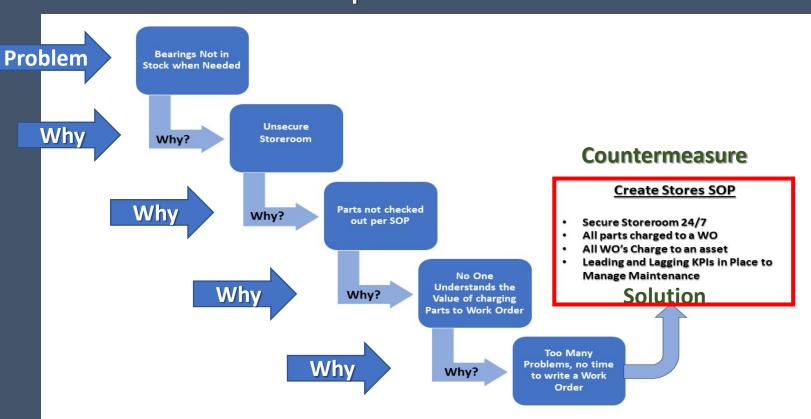

Once the predominant causes are identified, then tools like the Ishikawa diagram or Fishbone Analysis can be used to identify the root causes of the problems.

While it is common to refer to pareto as "80/20" rule, under the assumption that, in all situations, <u>20% of causes determine 80% of problems</u>, this ratio is merely a convenient rule of thumb and is not nor should it be considered an immutable law of nature.

Fishbone – Ishikawa Diagram

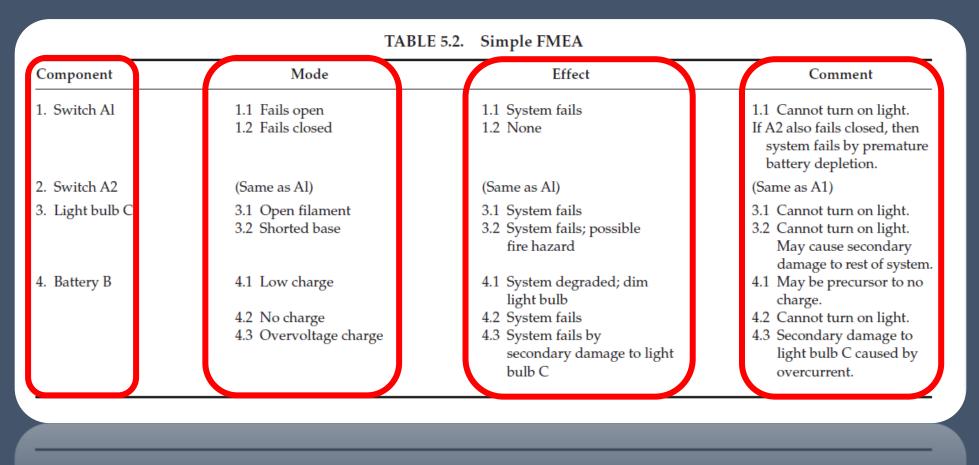
Ishikawa diagrams are causal diagrams created by Kaoru Ishikawa that show the potential causes of a specific event.

Common uses of the Ishikawa diagram are maintenance design and quality defect prevention to identify potential factors causing an overall effect.



The 5 Whys

An iterative interrogative technique used to explore the cause-and-effect relationships underlying a particular problem.


The primary goal of the technique is to determine the root cause of a defect or problem by repeating the question "Why?".

Each answer forms the basis of the next question.

Failure Modes and Effective Analysis

Failure mode and effects analysis is the process of reviewing as many components, assemblies, and subsystems as possible to identify potential failure modes in a system and their causes and effects.

secondary damage to li bulb C light bulb C caused b overcurrent.

JDI – Just Do It

- JDI is A simple approach to solving simple problems
- Many problems are simple to solve and does not require analysis
- Look at the data below and text in which area would you focus on first and identify a possible Root Cause and what would be your first step

Line Assets	# of Failures	Production Losses	EM/Urgent Labor Hrs.	PM Compliance		
Board Infeed	127	1123	346	100%		
Conveyor	21	489	469	100%		
Press Unit	2	2312	18	98%		
Hydraulics	47	324	110	95%		
PLC / DCS	8	978	943	100%		
DocArm Lift	64	1934	86	98%		
Total	269	7160	1,999	99.8%		

Lack of Knowledge is "1" Root Cause of Equipment Failure "Answer these questions"

- 1. Best Practices are practices that are defined and applied by an organization to improve their operation. These practices may or may not be proven, but results are found to be acceptable.
 - a. True
 - b. b. False
- 2. Maintainability is measured by PM schedule compliance.
 - a. True
 - b. b. False
- 3. All maintenance personnel's time should be covered by work orders.
 - a. True
 - b. False
- 4. Operations and Maintenance must work as a team to achieve improved OEE.
 - a. True
 - b. False
- 5. Best practices would indicate that 90% or more of all maintenance work is planned.
 - a. True
 - b. False
- 6. 100% of PM and PdM tasks should be developed using FMEA / RCM methodology.
 - a. True
 - b. False
- 7. Utilization of assets in a world-class facility should be about 85%.
 - a. True
 - b. False
- 8. 100% of maintenance personnel's (craft) time should be scheduled.
 - a. True
 - b. False
- 9. Time-based PMs should be less than 20% of all PMs.
 - a. True
 - b. False
- 10. The 10% rule of PM is applied on critical assets.
 - a. True
 - b. False

- 158. The two basic categories of bearings are:
 - a. Plain and anti-friction
 - b. Ball and roller
 - c. Journal and ball
 - d. Pillow-block and roller

159. When cooling an overheated bearing, what should you do first?

- a. Wrap the bearing housing in hot, wet rags
- b. Spray cool water on the bearing
- c. Inject cool oil in the bearing
- d. Wrap the bearing housing in cool, wet rags

160. What is the most undesirable by-product of oil misting?

- a. Bearing failure
- b. Shaft damage
- c. Explosion potential
- d. Oil breakdown
- 161. Which of the following is not a factor affecting the selection of a lubricant?
 - a. Machine speed
 - b. Environmental humidity
 - c. Operating temperature
 - d. Environmental temperatures
- 162. When conducting power factor (pf) testing of an in-service oil filled transformer, test results indicate a pf of 1.8%. Is this:
 - a. Within spec
 - b. Out of spec
 - c. Inconclusive
 - d. Power factor testing of in-service oil filled transformers is not required
- 163. When using the force deflection method to measure belt tension, standard belt deflection distance is _____ per inch.
 - a. 1/16
 - b. 1/32
 c. 1/64 Questions from Industrial Machinery Repair / Ricky Smith
 d. 1/128 and Keith Mobley

Industrial

Steps to Embed an RCA Culture in Your Organization

- 1. Key Influencers Gain Knowledge in Root Cause Analysis and Maintenance Best Practices through Training and experience (Production and Maintenance Leadership)
- 2. Ensure Work Orders are written for all work and closed out to specifications
- 3. Create Triggers based on specific criteria
 - Level 1 Accidents/Incidents
 - More than 3 near misses = 1 Senior Operator / 1 Maintenance Tech / Safety Manager
 - More that 6 near misses = 2 Maintenance Techs / 1 Reliability Engineer / 1 Senior Operator / Safety Manager
 - Level 2 Loss Production
 - Losses of more than "X" in capacity or OEE = 1 Senior Maintenance Tech / 1 Production Operator
 - Losses of more than "X" in capacity or OEE = 1 Senior Maintenance Tech / 1 Production Supervisor / 1 Reliability Engineer
- 4. Post a Scorecard for Asset and Process Reliability

Steps to Embed an RCA Culture in Your Organization, Cont.

- 4. RCA Teams Require the following:
 - Project Charter
 - Targets and Goals
 - Roles and Responsibilities
 - Training in RCA Techniques
- 5. RCA Event Effectiveness Reviewed by stakeholders

Level 1 Project Charter – Optimize Production (OEE) "Example"

			•					
		OEE OPTIM	IZATION PROJECT					
Project Title – Increa	ase/Stabilize OEE	Project L	.eader – Jim Franks	Project Sponsor – Jill Langine				
Steps	Start / End Date Team Leader Team Members (Accountable) (Responsible)		Objective	Measurements				
ID Best Demonstrated Rate Production and Maintenance Data in past 365 Days	March 1 - March 15	Jim Franks	Sam Odis, Cindy Tolt, Manny Tie, Ricky Smith	Stabilize and increase OEE by 5%	 OEE EM Lb. Hrs. PM Compliance Maint. Schedule Compliance 			
Educate Team in RCA Tools	March 1 — March 30	Sam Odis	4 Maintenance Techs 4 Operators 1 Maintenance Supervisor 1 Production Leader	Prepare to implement OEE Optimization Plan	 % Attendee complete training with score above 90% 			
Create a Master Plan using Crawl/Walk/Run Methodology	March 31 — April 7	Cindy Tolt	Production Manager Maintenance Manager 2 Techs Maintenance Planner	Create a Plan that is successful	Completed by April			
Implement the Plan	April 10 – Sept 14	Jim Franks	All Plant Personnel	Measure and Manage the plan	OEE, EM Lb. Hrs., P Compliance, Schedu Compliance, Rewo			

	Erratic Production OEE Root Cause Analysis Action Plan "Roles and Responsibilities"									
Tasks Positio Decisio	ns 🔿	Maintenance Manager	Maintenance Supervisor	Maintenance Planner	Plant Manager	Production Leadership				
ID Problem/Incident		R	с	с	A	R				
Gather all Data and Information		с	с	R	A	R				
Follow Steps in RCA Process		R	R		A	R				
Create a Master Plan		с	R	R	А	R				
Create RACI Chart		с	с	R	A	с				
Create a Metric Dashboard		с	с	R	A	с				
	Responsibility Accountable Consulted Informed	"in the Lo	k stops here"	(Could be m (One person (Two-way c (One-way c	1)					

Responsibility	"the Doer"	(Could be more than 1 person)
Accountable	"the Buck stops here"	(One person only)
Consulted	"in the Loop"	(Two-way communication)
Informed	"kept in the picture"	(One-way communication)

QUESTIONS / COMMENTS

Upcoming Workshops for 2021

WORLD CLASS MAINTENANCE Inc.

www.worldclassmaintenance.org

Maintenance Planning and Scheduling ---- January 19-21 (completed) Maintenance Best Technician Practices ---- February 23-25 (completed) Preventive Maintenance Best Practices plus PM Optimization ---- March 23-25 (next week) Maintenance Best Practices / SMRP Body of Knowledge ---- April 27-29 Maintenance Planning and Scheduling ---- May 4-6

Root Cause Analysis --- June 15-17

Maintenance Best Technician Practices --- July 20-21

MRO - Storeroom Best Practices ----- August 16-18

Maintenance Planning and Scheduling --- September 21-23

Maintenance Leadership Best Practices ---- October 19-21

Root Cause Analysis - November 9-11

For more information or request a private session send your request to: rsmith@worldclassmaintenance.org

For more information or request a private session send your request to: rsmith@worldclassmaintenance.org

Root Cause Analysis – November 9-11

Maintenance Leadership Best Practices ---- October 19-2

