
Distributed backup scheme for non-custodial wallets

using Shamir Secret Sharing

Anant Tapadia and the BitHyve team
Varunram Ganesh, Arpan Jain, Meer Ali, Parshva Jain

April 2019

Abstract

Shamir Secret Sharing (SSS) is a well-studied threshold signature scheme to store
parts of a secret in a distributed way. In this paper, we propose a solution that uses
SSS for a distributed backup scheme for non-custodial bitcoin wallets. It offers differ-
ent security guarantees and protection against attack vectors as compared with other
backup schemes. It uses a multi-platform, multi-device, and multi-contact approach
that minimizes the trust that needs to be placed in a single entity. The solution also
considers specific concerns with such a scheme and includes ways to address them in its
construction. Which includes a robust health-check mechanism, introduction of check-
sum for verifying individual shares, and use of memorable encryption key. The paper
further explores how such a distributed trusted network can be used to back up wallet
meta-data securely. A model implementation of the same is done with Hexa Wallet.

1 Introduction

The real value of Bitcoin and other such crypto-currencies is that it allows network par-
ticipants to exchange value with peers without involving a third party making the system
censorship resistant, permission-less, immutable and border-less. It is also the reason a hard
and deterministic monetary policy can be enforced as there is no central controller.

Users access bitcoins through their private keys held in pieces of software called wallets.
A seed is used to derive these keys acting as a backup mechanism. Non-custodial wallets
allow users to have full control over their money. But with such ownership comes the
responsibility of managing these keys and the backup to guard them against both loss and
theft. A study by Chainalysis in 2017 [3] estimated that twice the amount of bitcoins were
lost as compared to the amount stolen (4 million and 2 million BTCs respectively. Funds
are considered ’lost’ when the user has no way to access them, i.e. the backup seed is also
inaccessible or unusable. Since there is no way to get back the funds once they are lost, this is
a significant deterrent when it comes to mass adoption. In the last ten years, advances have
been made for the backup mechanism of wallets with existing solutions offering a specific set
of security guarantees. This paper describes a backup scheme that offers security guarantees
that are different from the existing solutions. It increases the resiliency of the backup scheme
making it much more resistant to loss. Concepts discussed in this paper may apply to other
crypto-currencies but have been explicitly tested for Bitcoin wallets supporting BIP 32, BIP
39, and BIP 44 [2].

1



2 Preliminaries

2.1 Bitcoin Wallets

A bitcoin wallet is a collection of bitcoin private keys that can be used to prove ownership
of Unspent Transaction Outputs (UTXOs) on the Bitcoin network [4]. Classified based on
custody, these are of two types of wallets - custodial and non-custodial. Custodial wallets
are ones where a third party holds private keys and the user has no access to them. While
easy to handle and create, these create a central point of failure, which can be exploited
by malicious parties to gain access to users’ bitcoins. Non-custodial wallets give the user
control over his private keys, requiring that she maintain and store them in a safe and secure
location. While this provides increased autonomy over bitcoins for users, it carries the risk
of loss and theft. The proposed solution aims to develop a non-custodial wallet solution
that merges the best of both worlds.

2.2 Seed

A seed is a byte sequence of length 128-512 bytes from which multiple Bitcoin public keys
can be derived using the deterministic wallet [5] generation standard as proposed in BIP 32.
This standard is widely adopted by all popular Bitcoin wallets as of writing and provides a
set of 12 / 24 words (referred to as a ”seed phrase”) as a backup.

2.3 Seed Phrase

A seed phrase (or mnemonic code) is a set of 12 or 24 human-readable words which can be
used to recover a user’s seed in case the user loses access to his bitcoin wallet [1]. BIP 39
defines a common standard for Seed Phrases and ensures interoperability between different
mnemonic based wallets.

2.4 BIP 39

BIP 39 describes the implementation of a mnemonic sequence and defines a simple word list
for the generation of deterministic Bitcoin wallets. To get a binary Bitcoin seed from the
mnemonic, the PBKDF2 function is used with a mnemonic sentence as the password and
the string ”mnemonic” + passphrase as the salt. The length of the derived key is 512 bits.

2.5 Restoring Seed Phrases

To restore a Bitcoin seed from the seed phrase, the seed phrase is converted back into the
integer used as the seed to the deterministic wallet generator. Most bitcoin wallets provide a
user-friendly UI for the input of a seed phrase and users are shown their balances if successful
at seed recovery.

2.6 Backup Schemes

A backup scheme is a method that can be used to retrieve user access to their bitcoin
wallets. This may include physical action like retrieving different parts of the private key or
may involve mental action like remembering a password. [6] explores the different means of
securing private keys.

2



2.7 Threshold recovery schemes

Shamir’s Secret Sharing used in this paper is a type of Threshold Recovery Scheme. Adi
Shamir created the cryptography algorithm.

It is essentially a form of secret sharing, where a secret is divided into parts, giving each
participant their unique part. To reconstruct the original secret, a minimum number of
parts is required. As an example, a secret can be split in 5, and each part is given to 5
different people in such a way that 4 of them have to come together to recreate the secret.
This can be any 4 of the 5 people.

2.7.1 Definition

Let m and n be positive integers, m ≤ n and X be a secret. An (m,n)-threshold scheme
is a method of sharing a secret X among a set of n participants in such a way that any
m participants can reconstruct X, but no group of m − 1 or fewer can do so and it is
computationally infeasible to generate a secret s given any other secret s′

There are multiple threshold recovery schemes such as Shamir’s scheme, Blakley’s scheme,
Mignotte’s scheme, and Asmuth Bloom’s scheme. Of these, we focus on Shamir’s scheme.

2.7.2 Shamir Secret Sharing

The idea of Shamir’s scheme is that you need m+1 points to define a curve of degree m
(i.e.) to uniquely define a line, we need two points, to define a parabola we need three points
and so on. Lets assume we want to share a secret m in a finite field Zp where p is a prime
number. We assume the distributor of shares calculates

f(x) = a0 + a1x + · · · + at−1x
t−1(modp) (1)

and let a0 = m. The distributor chooses a random xi and computes yi = f (xi). Each of
the participants is given a point (a pair of xi and the output yi) and given any subset of t
of those pairs, we can compute the coefficients of the polynomial. The secret a0 = m can
be computed as:

a0 = a(0) =

∞∑
j=1

yj
∏

1≤k≤t
k 6=j

xk

xk − xj
(2)

Several k of n threshold schemes have been proposed after Shamir’s initial construction,
each with its own set of optimizations, particularly in the field of verifiable secret sharing
schemes. (ref. [26], [27], [28])

3 Security Guarantees of a backup scheme

While building a robust system for backup, it is essential to map out the security guarantees
of a system that manages access to funds. [7], [8], [9], [10], [11] explore backup mechanisms
in various scenarios. Taking reference from the above, we conclude that there are four de-
sirable characteristics:

1. Ease of Use - The ease with which a user can use the proposed solution

2. Resistance Against Loss - Resistance against loss of access to funds

3



3. Resistance to Theft - Resistance against physical or cyber theft resulting in an unin-
tended transfer of funds

4. Ease of Inheritance* - The ease with which a user can pass on control of funds to
future generations

*Though inheritance is an important consideration, the ownership of an asset is defined
by law and merely having access to it does not make one the owner (For more, see [12] for a
formal definition of Asset Ownership). As such traditional methods like writing a will along
with a private way to pass on the access are required. This is outside the purview of the
discussion here but can be used alongside the scheme defined.

Ease of Use and Resistance to Loss have a proportional relation with the frequency of
use:

• Something that is used less frequently (e.g., a bar of gold in a bank) is difficult to lose

• Something that is used more frequently (e.g., car keys) will be easy to lose

The best way to arrive at a common ground is to separate both mechanisms - One
mechanism which is accessed frequently (wallets) and one which is accessed rarely (backup
schemes). This distinction is essential to make since it would be impossible to construct a
system addressing all four security guarantee requirements simultaneously.

From our argument above, it is quite clear that for a regular access solution, the desirable
characteristics are

1. Resistance to Theft and

2. Ease of Use

Similarly, it also becomes clear that for a backup scheme, the desirable characteristics
are

1. Resistance to Theft and

2. Resistance to Loss

Note that we do not focus on Resistance to Loss for regular access since there is a backup
scheme in place which can be used in case the regular access to funds is lost (not stolen).
Also, note that we do not focus on Ease of Use for backup solutions, we assume it is used
infrequently and only in the case when regular access is inaccessible.

The topic of this paper is backup schemes and how SSS can be used to offer different
security guarantees. There are many advancements in the wallet space (like multisig) which
provide additional security for operational use (use of keys). Other than being able to
support them, they are outside the remit of the solution proposed herein.

4 Evaluating existing schemes

The below section explores some constructions that have been proposed and used in the
past as a backup scheme for Bitcoin wallets.

4



4.1 Backing up keys in a Digital File

A file involves creating a digital backup file with keys on it and storing it securely on a
computer or a digital device.
This was the first backup scheme for bitcoin [13] where users were required to store their
wallet file on a hard disk or similar hardware. Restoring access to a person’s account is easy
since this only involved placing the backup in a specific directory. This ranks slightly better
than a paper wallet since its a bit more difficult to lose a hard disk than a piece of paper
and its less likely for someone not to notice a hard disk’s theft.

4.2 Paper Wallet

A paper wallet involves taking a printed representation of a private key on a piece of paper
[14].

Users can restore their accounts by simply scanning their private keys with the help of
a smartphone / dedicated hardware. This ranks low on both scales since it is easy to steal
(physical theft) and easy to lose (fire hazard, water hazards, misplacement, among others).

4.3 Brain Wallet

A brain wallet [15] is a phrase that is remembered by the user of the wallet. Several schemes
have been introduced to improve the brain wallet like in [16], but none of them caught on
popularly, and hence we take the standard implementation of the brain wallet into consider-
ation while mapping advantages and disadvantages. More work into exploring brain wallets
has been done in [17].

4.4 Multi-signature scheme

A multi-signature wallet (theorized in [19]) involves an m of n signature scheme where a total
of m signatures are required from n parties in order to be able to move funds from the wallet.

Multi-signature schemes are beneficial as they can be used for both operational and backup
purposes (by allowing the threshold to be tweaked). However, this does not give the flexi-
bility of using any other mechanism at the wallet level like a single signature scheme, which
limits the ways a wallet can be used.

4.5 Mnemonics

A mnemonic (first introduced by Electrum [18] as ”brain wallet”, this later came on to be
improved as ”mnemonic” by BIP 32) is an easily memorable set of alphabetic daily use
words which can be used to retrieve the seed from a wallet. Different wallets implement-
ing mnemonics can be inter-operable as long as they follow the standards defined by BIP 39.

This scheme is backward compatible and can be easily stored since the words can be written
down and stored safely in a secure location. However, if mnemonics are lost, there is no
recourse, so they do not offer any resiliency.

5



4.6 Using Salt

A mnemonic can optionally be combined with a user-provided salt or passphrase as de-
scribed in BIP 39.

Using salt is more resistant to theft than using just mnemonics, but it is less resilient
as losing either of the two would mean a permanent loss of access to funds.

4.7 Using encryption

Any backup method, e.g., Seed can be additionally encrypted (e.g., the scheme described
by [20]). Though this gives an additional layer of security, the encryption key used needs to
be stored and backed up.

This is more resistant to theft than using just a seed but less resilient as losing the en-
cryption key would mean permanently losing access to funds.

4.8 Summary

We plot the relative effectiveness of these backup schemes for Resistance to Loss and Re-
sistance to Theft. These can be used in different ways changing their properties somewhat,
but for mapping them, some assumptions have been made about how they have been used.

Brain Wallet

Paper Wallet

Digital File

Digitally Encrypted Seed

Mnemonic w/ memorised Salt

Written down Mnemonic

Resistance to Loss

R
es

is
ta

n
ce

to
T

h
ef

t

Comparison of backup schemes (Fig 3.3A)

From the above, we conclude that Mnemonics (with and without Salt) offer the best trade-
offs.

6



5 The Hexa Backup Scheme

5.1 Solution Brief

It is important to note that the solution described herein is to be implemented on a local
device, e.g. a mobile phone which is in total control of the user and not on a remote server.
The server does not even know where the parts of the secret are stored.

The solution involves using SSS for splitting the seed phrase of a wallet into n parts for
an m of n scheme. A checksum is then applied to these parts to ensure they are verifiable
independently. This is now encrypted with a key that the user will remember easily. These
encrypted parts are then enriched with additional data that help identify the type of data
it is and the wallet it is associated with. This is particularly helpful when sharing different
types of data across a network of wallets. Additional information from the wallet (other
than the primary seed phrase) can also be added to these parts which will ensure complete
restoration of the wallet as it was.

The solution ensures that these parts are kept in diverse sources, which makes it very
difficult to collude or hack. It uses a multi-platform, multi-device, and multi-contact ap-
proach. A regular health check of these parts is performed to ensure that the access to these
is not lost. It is imperative as the need to restore may not arise for a while, even for a few
years, and it is very easy for the parts to have become inaccessible in the meanwhile.

When there is a need to restore, the user will collect the minimum number of parts,
decrypt them with the key and combine them to get back the seed phrase and any other
data stored along with them.

The solution design goals of the solution and the construction have been described in
detail in the following sections.

5.2 Design Goals

5.2.1 Privacy

The privacy of the user regarding PII (Personally Identifiable Information) should not be
in a position of compromise. Any third party server should be avoided to avoid information
leakage (also to avoid hacks like described in [21]).

5.2.2 Security

The proposed solution must be resilient against an individual or a colluding group of in-
dividuals (collusion to retrieve the wallet, not to collude against the consensus mechanism
itself like described in [22], [23] and [24])and nobody should be capable of stealing funds or
related metadata (not to be confused with transaction metadata described in [25]).

5.2.3 Self-sovereignty

The proposed solution should support the non-custodial nature of wallets.

5.2.4 Standardisation

All standards adopted by the majority of the community in the form of BIPs should be
supported. The proposed solution must be defined as an easily implementable standard to
enable all wallet providers to adopt it.

7



5.2.5 Operational flexibility

The backup scheme should not impose restrictions on the way a wallet can be used while
following high security and usability standards. This specifically applies to signature schemes
- it should support single signature and multi-signature wallets.

5.2.6 Open-source

Any code used to demonstrate the solution or as a reference should be made publicly avail-
able unless in some way it compromises the security of the product.

5.3 Construction

5.3.1 Splitting Shares

The Seed of the wallet is split into n shares for an m of n SSS scheme as described below:

Figure 1: Multi-platform, Multi-device and Multi-contact approach

5.3.2 Selecting m and n

1. 3 of 5 scheme: A good trade-off between usability and security will be with m = 3 and
n=5.

2. 2 of 3 scheme: 2 of 3 scheme: Other schemes could also be used if the required level
of collusion protection is lower.

5.3.3 Encrypting Shares

The encryption key is a single point of failure if the user forgets what it is or is a natural point
of attack if it is noted down. Therefore for encrypting the shares, a set of secret questions
are used instead of a password. A password has more entropy and is less vulnerable to
enumeration/dictionary attacks but is not memorable over a longer time frame ([29], [30]).
Therefore, choosing the right question set is very important:

1. Safe: cannot be guessed or researched

2. Stable: does not change over time

3. Memorable: easy to recall and remember

8



4. Simple: is precise, easy, consistent

5. Many: has many possible answers making it difficult for someone to guess a specific
answer

6. Unrelated: when more than one question is asked, they need to be unrelated or of a
different category.

5.3.4 Adding meta-data to shares

The shares are then enriched with additional meta-data to help them be identifiable without
any PII information. If shared over the air, an additional level of encryption with an OTP
(One Time Password) is done.

5.3.5 Distributing Shares

Successfully distributing the shares to independent and unrelated sources is the key to the
security of this scheme. Several commonly available sources have been proposed, and the
user has to choose a subset of them. Limitations for each have also been identified in order
to reduce potential attack vectors and to educate the user about the benefits and drawbacks.

1. Social Contacts - Contacts are trusted by people to hold certain information. In
this context, a set of social contacts (¡ m) can be chosen to store shares. This can be
implemented by the receivers wallet app, which can also act as a way to receive shares.

2. On Email - Emails are readily accessible and reasonably secure if used with the right
authentication. As such, one share per email provider can be stored safely. This can be
done in the form of a PDF file locked with the answer(s) of the first security questions.

3. Other Devices - Secondary devices are used frequently as an authentication mechanism,
e.g. for 2FA. Similar to social contacts, an app on these other devices can be used to
store secrets. These should be limited to one share per device.

4. Local Storage - People also prefer manual storage of secrets such as keys to their
apartment, official documents. This provides the highest degree of privacy among all
proposed solutions since the user does not have to trust anybody but himself in the
process. This includes keeping a local print or a digital pdf file.

5. On Personal Drive - People store various items such as photos and documents on the
cloud provided by services like iCloud and Dropbox. Similar to emails, these can be
used to store one share of the secret per service provider. This can be done in the
form of a PDF file locked with the answer(s) of the first security questions.

All these sources have different properties and different attack surfaces. So if combined
such that no specific attack vector has a chance to gain the minimum shares needed, then
we make the system highly resistant against all attack types. Specific scenarios may best
illustrate the use of sources.
Example 1: Alice distributes the shares of her wallet seed to the below 5 sources

1. Her mom (social contact)

2. A close friend (social contact)

3. The tablet at home (Other devices)

4. On her Google email (Email)

9



5. On Dropbox (Cloud)

Example 2: Bob distributes the shares of his wallet seed to the below 5 sources

1. His wife (social contact)

2. A local print copy (local storage)

3. The second phone (Other devices)

4. On his home mac (local storage)

5. On proton email (Email)

5.3.6 Verifying a share

As we split the secret into multiple parts, it becomes necessary to verify the validity of each
share when we send them out, and when we receive them from a remote peer. For this, we
define a checksum that we append to the end of the share.
Checksum: Shamir’s secret sharing in its natural form does not do any form of data
verification (also has other disadvantages described in [31]), meaning that it is trivially easy
for an attacker to pass on a fake share as a regular one. We can add a checksum [32] in
order to prevent this and provide an easy way of ensuring the variability of data provided
to the sender of shares.

5.3.7 Assimilating Shares

A total of m of the n shares are brought together through the same channel as it was
distributed out. For example, using a link from a contact or a scan of the QR code locally
stored. These are verified with the checksum and wallet ID before combining it back using
SSS to create the secret (Seed).

5.3.8 Health Indicator

One of the issues with backup schemes is their infrequency of use. It may be years before
the backup is needed and so it is possible that the user does not remember how to access the
backup when needed. This becomes more important when the backup is based on shares
kept in a distributed way. Any of these shares may become corrupt or lost or damaged
without the user realizing it. This is the reason a health indicator is critical. There may be
different ways of achieving this based on the type of share.

10



Figure 2: Health check

• For social contacts and app-based shares, it can be automated using a simple ping test
to check if the app is live and functioning.

• For manually kept shares it can be something that the user has to confirm once in a
specific period.

• The same can be applied to the questions to make sure the user remembers them.

• Zero Knowledge Confirmations:To increase security and privacy, Zero-Knowledge
techniques can be used when confirming the shares or questions.

• Anonymous Pull Confirmations: For automated checks, a simple flag can be
placed on the server every time the share receiving app goes online. This can be
pulled by the share originating app without revealing anything to the server. The
mapping between the apps (Wallet IDs) is maintained locally within the individual
apps.

5.3.9 Independent recovery

Finally, it is essential to construct a solution that is not dependent on the app platform,
and the funds are not lost if the app cannot be used anymore for any reason. For this,
an open-source tool with code that can be readily executed on any platform is available.
This code will mainly assimilate the shares to produce a mnemonic which can be used to
reproduce the wallet and get access to the funds. Alternatively, the user can decide to hold
the mnemonic along with using the SSS scheme, which will give her a standard way to
recover funds without needing such a tool.

11



5.4 Security against attack vectors

Let us consider some potential attack vectors and how secure the system is against them.

• Social collusion: No number of social contacts can collude to generate the seed as
social contacts together also hold less than the minimum number of shares needed.

• Hacking a platform: No single platform (email or cloud or otherwise) should hold more
than one share, preventing any chance of them being able to get hold of the minimum
number of shares.

• App provider going rogue: If the app provider goes rouge, the system should be
designed in such a way that even temporarily the minimum number of shares don’t
touch the back-end. This can be achieved by ensuring that most of the shares are sent
through a private mechanism like using QR code.

• Malicious developer: If every upgrade to the app goes through the open source route,
a malicious piece of code will be caught in the review process.

• Device stolen: Funds on the device are accessed through keys in the app. The app is
generally protected by the device pin and/ or bio-metrics. Additional mechanism like
2 of 3 multisig accounts help secure funds even when the device is stolen and the app
is somehow accessed.

• Physical theft: Local copies of shares do not form the minimum number of shares
needed.

• Network sniffing: sharing of shares in an encrypted manner (with OTPs) or using QR
codes guards against this kind of attack.

• App platform blacklisting: If the app gets blacklisted and removed from the platform
providing the app, their may be a potential issue in reconstructing the secret using
shares. It should be noted here that even when an app is no longer available for install,
old apps still function as intended and so can put the shares back together. Also an
open source tool which is platform independent can be used in case the app is no
longer usable.

• Multi platform attack: The solution might not be immune to conditions where coor-
dination between different companies or platforms is warranted. E.g., a court order to
different companies enforced by law. Though this is possible but very hard to pull off.
It would mean identification of most of the sources needed, then hacking into all these
sources or collusion across them and finally guessing the secret answer which only the
user knows. All this without user realising the attack and not moving all the funds to
a new wallet.

• IP tracking and privacy: Chain analysis done on the Bitcoin chain or advanced IP
tracking is outside the purview of this solution.

6 Comparison with existing solutions

If we compare this distributed backup scheme with the existing solutions (described in [33],
we can see that we get a different set of security guarantees which may be better suited for
people with different requirements. It adds resiliency to the backup with minimal increase

12



in the attack surface.

One could also have two backups by combining:

1. Distributed S4 Backup scheme (In App - used as the first level of backup)

2. Written down Mnemonic (Stored in a bank vault - used as a second level of backup)

This gives the whole combined backup scheme a different set of security guarantees. Making
it even more Resistant to Loss while increasing the attack surface a little and so reducing
the Resistance to Theft by a little.

Mnemonic w/ memorised Salt

Written down Mnemonic

Distributed S4 Backup

Using both

Resistance to Loss

R
es

is
ta

n
ce

to
T

h
ef

t

Distributed backup scheme vs. Mnemonic based scheme (Fig 3.4)

7 Additional Benefits

The solution here establishes a trust minimized distributed network of sources for backing
up a wallet seed. The network not only offers high resiliency but can also help backup other
data the wallet may need. This can enable many features in a wallet that were not possible
previously with only the seed. Example:

1. Different accounts (address groupings) within the wallet

2. Joint accounts between wallets

3. Backing up latest payment channel state (Lightning Network)

4. Trusted contacts (in-app address book) and their PayNyms

5. Other preferences or settings

13



8 Conclusion

The solution proposed here if implemented with the design goals (like privacy) offers security
guarantees with much more resiliency without too much increase in the potential attack
surface. Losing one of the shares is not the same as losing the whole backup meaning there
is much more resiliency and resistance to loss as compared to storing mnemonic. Also, as
the trusted sources are:

1. not known by anyone other than the user,

2. highly distributed across platforms and geographies and

3. not associated with the user wallet even on the server

any attack trying to steal the seed/ mnemonic is highly unlikely.
Different user may use this scheme with slightly different configurations. With their feedback
and further research, the system can be further improved.

9 References

1. https://en.bitcoin.it/wiki/Seed_phrase

2. https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki,https://

github.com/bitcoin/bips/blob/master/bip-0039.mediawiki,https://github.com/

bitcoin/bips/blob/master/bip-0039.mediawiki

3. http://fortune.com/2017/11/25/lost-bitcoins/

4. https://en.bitcoin.it/wiki/Wallet

5. https://bitcointalk.org/index.php?topic=19137.0

6. https://bitcoin.org/en/secure-your-wallet

7. https://eprint.iacr.org/2017/704.pdf

8. http://www.icommercecentral.com/open-access/blockchain-bitcoin-wallet-cryptography-security-challenges-and-countermeasures.

php?aid=86561

9. http://ijns.jalaxy.com.tw/contents/ijns-v21-n4/ijns-2019-v21-n4-p852-0.

pdf

10. https://eprint.iacr.org/2014/998.pdf

11. http://www.scitepress.org/Papers/2017/62700/62700.pdf

12. https://www.investopedia.com/terms/a/actual-owner.asp

13. https://bitcointalk.org/index.php?topic=921

14. https://bitcointalk.org/index.php?topic=74978.

15. https://en.bitcoin.it/wiki/Brainwallet#Low_Entropy_from_Human-Generated_

Passphrases

16. https://bitcointalk.org/index.php?topic=311000.0

17. http://www.jbonneau.com/doc/VBCKM16-FC-bitcoin_brain_wallets.pdf

14

https://en.bitcoin.it/wiki/Seed_phrase
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki, https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki, https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki, https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki, https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki, https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki, https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
http://fortune.com/2017/11/25/lost-bitcoins/
https://en.bitcoin.it/wiki/Wallet
https://bitcointalk.org/index.php?topic=19137.0
https://bitcoin.org/en/secure-your-wallet
https://eprint.iacr.org/2017/704.pdf
http://www.icommercecentral.com/open-access/blockchain-bitcoin-wallet-cryptography-security-challenges-and-countermeasures.php?aid=86561
http://www.icommercecentral.com/open-access/blockchain-bitcoin-wallet-cryptography-security-challenges-and-countermeasures.php?aid=86561
http://ijns.jalaxy.com.tw/contents/ijns-v21-n4/ijns-2019-v21-n4-p852-0.pdf
http://ijns.jalaxy.com.tw/contents/ijns-v21-n4/ijns-2019-v21-n4-p852-0.pdf
https://eprint.iacr.org/2014/998.pdf
http://www.scitepress.org/Papers/2017/62700/62700.pdf
https://www.investopedia.com/terms/a/actual-owner.asp
https://bitcointalk.org/index.php?topic=921
https://bitcointalk.org/index.php?topic=74978.
https://en.bitcoin.it/wiki/Brainwallet#Low_Entropy_from_Human-Generated_Passphrases
https://en.bitcoin.it/wiki/Brainwallet#Low_Entropy_from_Human-Generated_Passphrases
https://bitcointalk.org/index.php?topic=311000.0
http://www.jbonneau.com/doc/VBCKM16-FC-bitcoin_brain_wallets.pdf


18. https://bitcointalk.org/index.php?topic=51397.0

19. https://bitcointalk.org/index.php?topic=75481.0,https://gist.github.com/

gavinandresen/830ca16758fb9ad496d7

20. https://bitcointalk.org/index.php?topic=17240.0

21. https://bitcointalk.org/index.php?topic=576337#post_toc_21

22. https://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf

23. https://btc-hijack.ethz.ch/files/btc_hijack.pdf

24. https://arxiv.org/abs/1805.08281

25. metadata

26. https://www.eit.lth.se/fileadmin/eit/courses/edi051/lecture_notes/LN8.pdf

27. https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing#Mathematical_definition

28. http://www.cs.columbia.edu/~tal/4261/F16/secretsharing.pdf

29. https://ieeexplore.ieee.org/document/1341406

30. https://pdfs.semanticscholar.org/242e/0eb5e161ef1e3722a613b5bd3d6a32ba8c83.

pdf

31. https://ethresear.ch/t/security-considerations-for-shamirs-secret-sharing/

4294

32. checksum

33. https://blog.keys.casa/the-evolution-of-bitcoin-key-management/

15

https://bitcointalk.org/index.php?topic=51397.0
https://bitcointalk.org/index.php?topic=75481.0, https://gist.github.com/gavinandresen/830ca16758fb9ad496d7
https://bitcointalk.org/index.php?topic=75481.0, https://gist.github.com/gavinandresen/830ca16758fb9ad496d7
https://bitcointalk.org/index.php?topic=17240.0
https://bitcointalk.org/index.php?topic=576337#post_toc_21
https://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf
https://btc-hijack.ethz.ch/files/btc_hijack.pdf
https://arxiv.org/abs/1805.08281
metadata 
https://www.eit.lth.se/fileadmin/eit/courses/edi051/lecture_notes/LN8.pdf
https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing#Mathematical_definition
http://www.cs.columbia.edu/~tal/4261/F16/secretsharing.pdf
https://ieeexplore.ieee.org/document/1341406
https://pdfs.semanticscholar.org/242e/0eb5e161ef1e3722a613b5bd3d6a32ba8c83.pdf
https://pdfs.semanticscholar.org/242e/0eb5e161ef1e3722a613b5bd3d6a32ba8c83.pdf
https://ethresear.ch/t/security-considerations-for-shamirs-secret-sharing/4294
https://ethresear.ch/t/security-considerations-for-shamirs-secret-sharing/4294
checksum
https://blog.keys.casa/the-evolution-of-bitcoin-key-management/

	Introduction
	Preliminaries
	Bitcoin Wallets
	Seed
	Seed Phrase
	BIP 39
	Restoring Seed Phrases
	Backup Schemes
	Threshold recovery schemes
	Definition
	Shamir Secret Sharing


	Security Guarantees of a backup scheme
	Evaluating existing schemes
	Backing up keys in a Digital File
	Paper Wallet
	Brain Wallet
	Multi-signature scheme
	Mnemonics
	Using Salt
	Using encryption
	Summary

	The Hexa Backup Scheme
	Solution Brief
	Design Goals
	Privacy
	Security
	Self-sovereignty
	Standardisation
	Operational flexibility
	Open-source

	Construction
	Splitting Shares
	Selecting m and n
	Encrypting Shares
	Adding meta-data to shares
	Distributing Shares
	Verifying a share
	Assimilating Shares
	Health Indicator
	Independent recovery

	Security against attack vectors

	Comparison with existing solutions
	Additional Benefits
	Conclusion
	References

