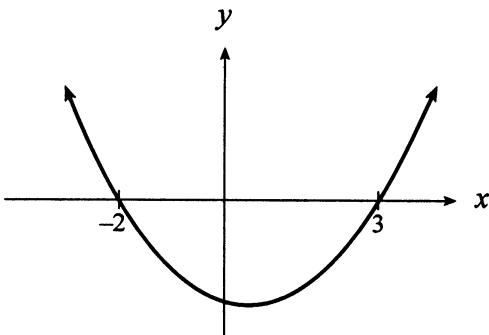


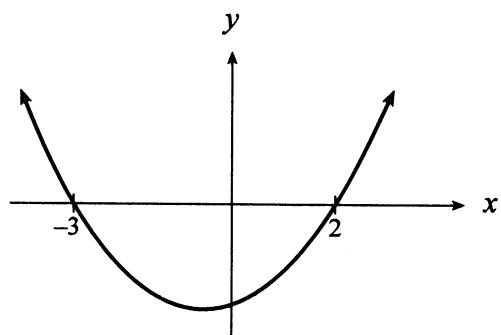
POLYNOMIALS

A

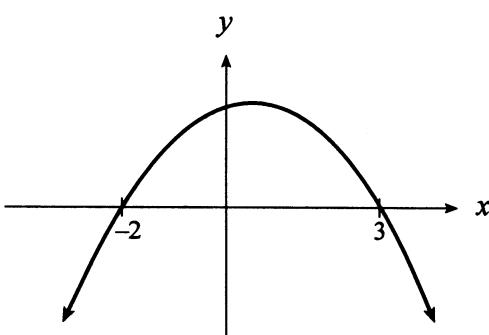
1. According to the Rational Root Theorem, list all possible rational roots of $3x^2 + 2x + 7 = 0$.

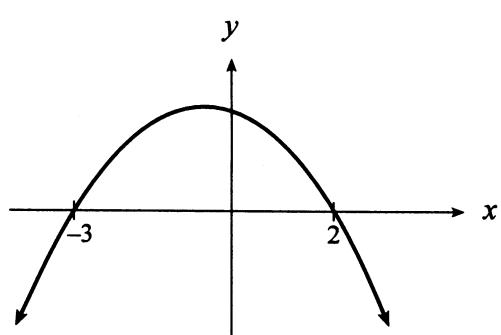

A. $\pm 1, \pm 3$ $\frac{\pm 7}{3} \pm \frac{1}{3} \pm 7 \pm 1$ $\frac{\pm 1}{\pm 3} \frac{\pm 1}{\pm 7}$
 B. $\pm 1, \pm 7$
 C. $\pm 1, \pm 3, \pm \frac{1}{7}, \pm \frac{3}{7}$
 D. $\pm 1, \pm 7, \pm \frac{1}{3}, \pm \frac{7}{3}$

*factors of 7 $\pm 1, \pm 7$
 // // 1 $\pm 1, \pm 3$*


$+2 -3$
 $-(x-2)(x+3)$

2. Which sketch best represents the graph of $y = (2-x)(x+3)$?


A.


B.

C.

D.

3. Given that $(x-2)$ is a factor of $p(x)$, what must be true for the graph of $y = p(x)$?

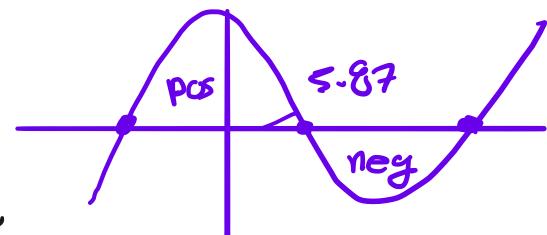
*

A. y -intercept of -2
 B. y -intercept of 2
 C. x -intercept of -2
 D. x -intercept of 2

If $x-2$ is a factor
 $P(2) = 0$

$P(2) = 0$

y


4. Given the following table of values for the polynomial function $f(x)$, between which two consecutive x -values must a zero be located?

x	y
-1	8
0	3
1	1
2	-4
3	-7

y value changes from pos to neg -

A. between -1 and 0
 B. between 0 and 1
 C. between 1 and 2
 D. between 2 and 3

large than zero

5. Solve: $x^3 - 14x^2 - 17x + 380 > 0$

A. $-4.95 < x < 5.87$ or $x > 13.08$
 B. $x < -4.95$ or $5.87 < x < 13.08$
 C. $x > 14.62$
 D. $x > -8.82$

-10 20

-400 400

-2000 $\underset{-4.95}{\cancel{2000}}$

$\underset{5.87}{\cancel{-4.95}}$

6. If the polynomial $p(x) = ax^2 + bx - 6$ is divided by $(x-1)$, the remainder is -9. When $p(x)$ is divided by $(x+2)$, the remainder is 12. Find the value of b .

13.07

A. -5
 B. -2
 C. 2
 D. 5

$$P(1) = A(1)^2 + b(1) - 6$$

$$-9 = A(1)^2 + b(1) - 6$$

$$P(-2) = A(-2)^2 + b(-2) - 6$$

$$12 = A(-2)^2 + b(-2) - 6$$

$$-9 = A + b - 6$$

$$-9 + 6 - b = A$$

$$-3 - b = A$$

$$-3 = 1 + B$$

$$12 = 4A - 2B - 6$$

$$18 = 4A - 2B$$

$$9 = 2A - B$$

$$12 = 4A - 2B - 6$$

$$-3 - b = 2$$

$$-b = 5$$

$$\underline{\underline{b = -5}}$$

$$12 = 4(-3 - b) - 2b - 6$$

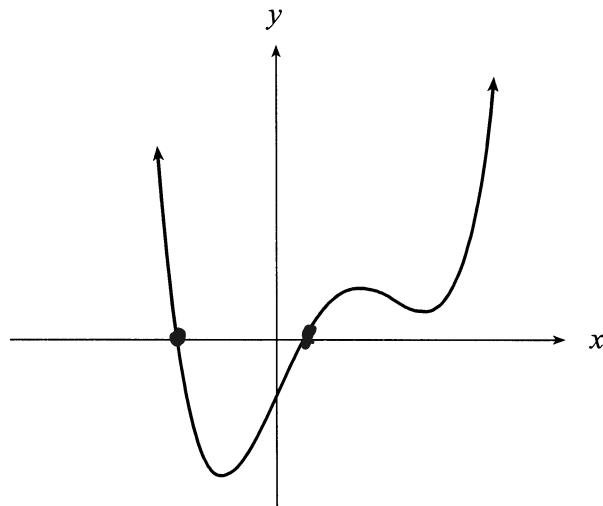
$$12 = -12 - 4b - 2b - 6$$

$$12 + 12 + 6 = -6b$$

$$30 = -6b$$

$$-6 = 6$$

$$a+b = -3$$


$$2a-b = 9$$

$$3a = 6$$

$$a = 2$$

7. Determine the number of real zeros of the function graphed below.

$$b = -5$$

- A. 1
- (B)** 2
- C. 3
- D. 4

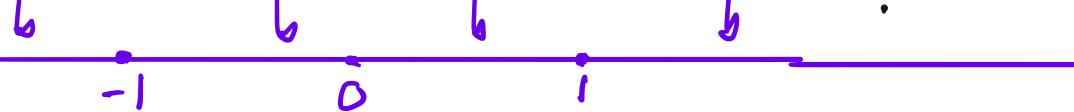
8. Find the quotient when $2x^3 - 3x^2 + 2x - 8$ is divided by $x + 1$.

- A. $x^2 - 2x$
- B. $x^2 - 4x + 6$
- C. $2x^2 - x + 1$
- (D)** $2x^2 - 5x + 7$

$$\begin{array}{r} 2x^2 - 5x + 7 \\ x+1 \overline{)2x^3 - 3x^2 + 2x - 8} \\ \underline{- (2x^3 + 2x^2)} \\ \underline{-5x^2 + 2x} \\ \underline{- (-5x^2 - 5x)} \\ \underline{+ 7x - 8} \end{array}$$

Rem. Thm

$$P(-1) = -2 - 3 - 2 - 8 = -15$$

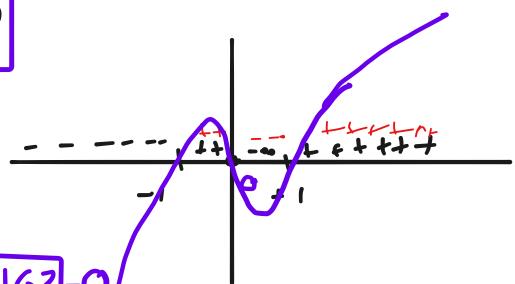

9. The polynomial equation $mx^3 + 7x^2 - 3x + n = 0$, where m and n are integers, has a root of $\frac{4}{9}$. According to the Rational Root Theorem, which of the following could be a value for m ?

- A. 2 3
- B. 4 1
- C. 6 6
- (D)** 18 18

$$1, 3, 18, \quad P\left(\frac{4}{9}\right) \Rightarrow \left(x - \frac{4}{9}\right)$$

$$\frac{\text{factors of } n}{\text{factors of } m} = \frac{4}{9}$$

$$m = 9, 18, 27, 36 \quad \underline{\text{mult. of } 9}$$


10. Solve: $x^3 < x$

$$x^3 - x < 0$$

A. $x < 0, x > 1$
 B. $-1 < x < 1$
 C. $-1 < x < 0, x > 1$
 D. $x < -1, 0 < x < 1$

$$x(x^2 - 1) < 0$$

$$x(x-1)(x+1) < 0$$

11. Solve: $x^3 + 2x^2 - 104x + 192 = 30$

A. ~~1.65, 8.24~~
 B. ~~2.37, 7.73~~
 C. ~~-12.11, 2.37, 7.73~~
 D. ~~-11.89, 1.65, 8.24~~

$$x^3 + 2x^2 - 104x + 192 = 30$$

$$-15 < x < 15$$

$$-400 < y < 800$$

12. The points $(-2, 0)$, $(0, 5)$, and $(2, -4)$ are on the graph of a third degree polynomial function, $y = p(x)$. If $p(x)$ is divided by $x-2$, determine the remainder.

A. -4
 B. 0
 C. 4
 D. 5

$$x-2 \overline{)P(x)}$$

$$\text{Rem} = P(2)$$

-4
 My 19ptep

13. According to the Rational Root Theorem, list the possible rational roots of the equation $5x^3 + mx^2 + nx + 2 = 0$, where m and n are integers.

disc

A. $\pm 1, \pm 2$
 B. $\pm 1, \pm 5$
 C. $\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}$
 D. $\pm 1, \pm 2, \pm \frac{1}{5}, \pm \frac{2}{5}$

even though

it is plugged
in

14. If $x+7$ is a factor of $p(x)$, then which of the following must be true?

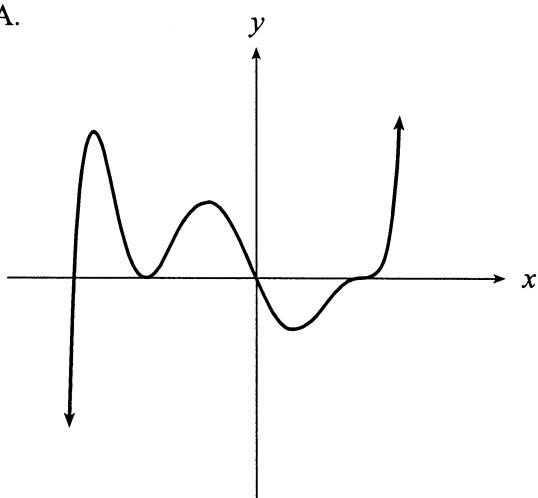
A. $p(-7) = 0$
 B. $p(7) = 0$
 C. $p(0) = -7$
 D. $p(0) = 7$

15. Determine the number of real roots of $x^3 - 12x^2 - x - 3.2 = 0$

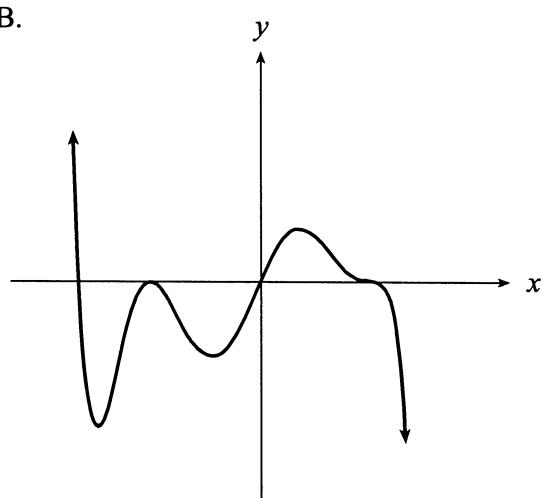
- A. 0
- B. 1
- C. 2
- D. 3

16. Determine the remainder:

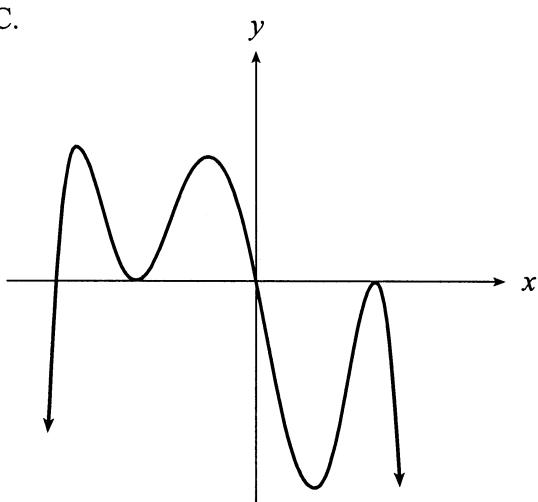
$$x^2 + x + 1 \overline{)2x^4 + 2x^3 - x^2 + 3x - 1}$$

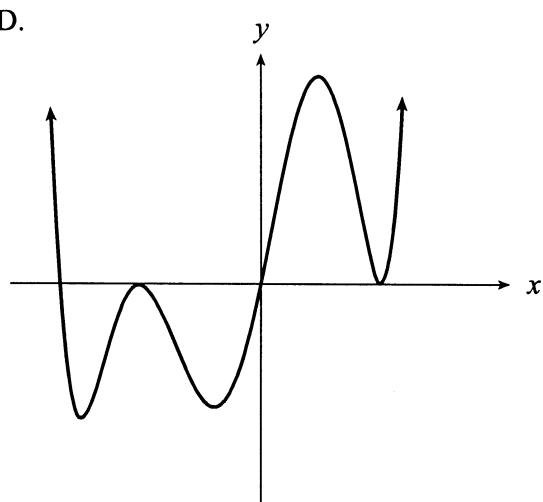

- A. 2
- B. $2x$
- C. $2x - 2$
- D. $6x + 2$

17. The function $h(x)$ is the product of a 3rd degree polynomial function and a 2nd degree polynomial function. What is the maximum number of zeros of $h(x)$?


- A. 2
- B. 3
- C. 5
- D. 6

18. Which graph could represent $f(x) = x(a-x)(x-b)^2(x-c)^3$, where a , b , and c are constants?


A.


B.

C.

D.

19. Which expression represents the remainder when the polynomial $p(x)$ is divided by $x-9$?

- A. $p(9)$
- B. $p(-9)$
- C. $p(0)$
- D. $p(x-9)$

20. According to the Rational Root Theorem, which of the following is a possible root of the equation $5x^3 + mx^2 + nx + 20 = 0$, where m and n are integers?

A. $\frac{1}{10}$
B. $\frac{1}{5}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$

21. Determine the quotient when $x^4 - 8x^2 + 2x - 7$ is divided by $x + 3$.

A. $x^2 - 5x - 13$
B. $x^2 - 11x + 35$
C. $x^3 - 3x^2 + x - 1$
D. $x^3 + 3x^2 + x + 5$

22. Determine the value of k if $x - 2$ is a factor of the polynomial $x^3 - 4x^2 + kx + 6$.

A. -9
B. -1
C. 1
D. 9

23. Solve $(x+a)^2(x+b)(x+c) < 0$ where a, b, c are real number constants and $0 < a < b < c$.

A. $b < x < c$
B. $-b < x < -c$
C. $-c < x < -b$
D. $-b < x < -a, x < -c$

POLYNOMIALS

A

1. D
2. D
3. D
4. C
5. A
6. A
7. B
8. D
9. D
10. D
11. D
12. A
13. D
14. A
15. B
16. D
17. C
18. B
19. A
20. B
21. C
22. C
23. C

$$3(2a + 4b = 5)$$

$$4(a - 3b = 3)$$

Cancel b out

$$a - 3b = 3$$

$$\frac{27}{10} - 3b = 3$$

$$6a + 12b = 15$$

$$4a - 12b = 12$$

$$\underline{10a = 27}$$

$$a = \frac{27}{10}$$