5)

$$
\begin{aligned}
& m_{1} x_{1}^{\prime \prime}+c x_{1}^{\prime}=-k_{1} x_{1}+k_{2}\left(x_{2}-x_{1}\right) \\
& m_{2} x_{2}^{\prime \prime}+c x_{2}^{\prime}=-k_{2}\left(x_{2}-x_{1}\right)-k_{3} x_{2}
\end{aligned}
$$

C_{i}, m_{i}, k_{i} are positive

$$
\begin{aligned}
& y_{1}=x_{1} \quad y_{2}=x_{2} \quad y_{3}=x_{1}^{\prime} \quad y_{4}=x_{2}{ }^{\prime} \\
& m_{1} y_{3}^{2}+c y_{3}=-k_{1} y_{1}+k_{2}\left(y_{2}-y_{1}\right) \\
& m_{2} y_{4}^{\prime}+c y_{4}=-k_{2}\left(y_{2}-y_{1}\right)-k_{3} y_{2} \\
& m_{1} y_{3}^{\prime}=-k_{1} y_{1}-k_{2} y_{1}+k_{2} y_{2} \\
& m_{2} y_{4}^{\prime}=k_{2} y_{1}-k_{2} y_{2}-k_{3} y_{2} \\
& y_{1}^{\prime}=y_{3} \\
& y_{2}^{\prime}=y_{4} \\
& y_{3}^{\prime}=\frac{y_{1}\left(-k_{1}-k_{2}\right)+k_{2} y_{2}}{m_{1}} \\
& y_{4}^{\prime}=\frac{k_{2} y_{1}+y_{2}\left(-k_{2}-k_{3}\right)}{m_{2}} \\
& y_{1}^{\prime}=O y_{1}+O y_{2}+1 y_{3}+O y_{4} \\
& y_{2}^{\prime}=O y_{1}+O y_{2}+O y_{3}+1 y_{4} \\
& y_{3}^{\prime}=-\frac{\left(k_{1}-k_{2}\right)}{m_{1}} y_{1}+\frac{k_{2} y_{2}}{m_{1}}+O y_{3}+O y_{4} \\
& y_{4}^{\prime}=\frac{k_{2}}{m_{2}} y_{1}+\left(-\frac{\left.k_{2}-k_{3}\right) y_{2}+O y_{3}+O y_{4}}{m_{2}}\right.
\end{aligned}
$$

$$
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{\left(k_{1}-k_{2}\right)}{m_{1}} & \frac{k_{2}}{m_{1}} & 0 & 0 \\
\frac{k_{2}}{m_{2}} & \frac{-\frac{k_{2}-k_{3}}{m 2}}{m_{2}} & 0
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]
$$

2)

$$
\begin{aligned}
& x^{\prime \prime}+4 x^{2}+s x=\delta(t-\pi) \\
& x(0)=0 \quad x^{\prime}(0)=2 \\
& s^{2} x-s^{\prime}(0)-2+4 s x-0+s x=e^{-\pi s} \\
& x\left[s^{2}+4 s+s\right]=e^{-\pi s}+2 \\
& x(s)=\frac{e^{-\pi s}+2}{s^{2}+4 s+s} \\
& x(s)=\frac{e^{-\pi s}}{s^{2}+4 s+5}+\frac{2}{s^{2}+4 s^{\prime}+5} \\
& x(s)=e^{-\pi s} \cdot \frac{1}{s^{2}+4 s+s}+2 \cdot \frac{1}{s^{2}+4 s+s} \\
& x(s)=e^{-\pi s} \cdot \frac{1}{(s+2)^{2}+1}+2 \frac{1}{(s+2)^{2}+1}
\end{aligned}
$$

$$
\begin{gathered}
x(t)=u(t-\pi) f(t-\pi)+2 f(t) \\
f(s)=\frac{1}{(s+2)^{2}+1} \\
f(t)=e^{-2 t} \sin -t \\
x(t)=u(t-\pi) e^{-2(t-\pi)} \sin (t-\pi)+2 e^{-2 t} \sin t
\end{gathered}
$$

3)

$$
\begin{aligned}
& x^{\prime \prime}+4 x^{2}+3 x=2 \delta(t-\pi) \\
& x(0)=2 \quad x^{\prime}(0)=0 \\
& s^{2} x-2 s+4 s x-\underline{2}=2 e^{-\pi s} \\
& x\left(s^{2}+4 s\right)=2 e^{-\pi s}+2 s+2 \\
& x(s)=\frac{2 e^{-\pi s}+2 s+2}{s^{2}+4 s} \\
& x(s)=\frac{2}{s^{2}+4 s} e^{-\pi s}+\frac{2 s+2}{s^{2}+4 s} \\
& x(s)=F(s) e^{-\pi s}+G(s) \\
& x(t)=u(t-\pi) f(t-\pi)+g(t)
\end{aligned}
$$

$$
\begin{aligned}
& F(s)=\frac{2}{s^{2}+4 s}=\frac{2}{s(s+4)} \\
& \frac{A}{s}+\frac{B}{s+4}=\frac{A(s+4)+B S}{s(s+4)}=\frac{2}{s(s+4)} \\
& A(s+4)+B s=2 \\
& s=0 \quad 4 A=2 \quad A=1 / 2 \\
& S=-4 \quad B(-4)=2 \quad B=-1 / 2 \\
& F(s)=\frac{1 / 2}{s}+\frac{-1 / 2}{s+4} \\
& f(t)=1 / 2-\frac{1}{2} e^{-4 t} \\
& x(s)=\frac{\partial}{s^{2}+4 s} e^{-H s}+\frac{2 s+2}{s^{2}+4 s} \\
& x(s)=F(s) e^{-\pi s}+G(s) \\
& x(t)=u(t-\pi) f(t-\pi)+g(t) \\
& \frac{2 s+2}{s^{2}+4 s} \\
& G(s)=\frac{2 s+2}{s(s+4)} \\
& \frac{A}{s}+\frac{B}{s+4}=\frac{A(s+4)+B s}{s(s+4)}=\frac{2 s+2}{s(s+4)} \\
& A(s+4)+B S=2 S+2 \\
& S=0 \quad 4 A=2 \quad A=1 / 2 \\
& s=-4 \quad B(-4)=-8+2 \quad-4 B=-6 \\
& B=3 / 2
\end{aligned}
$$

$$
\begin{aligned}
& G(s)=\frac{1 / 2}{s}+\frac{3 / 2}{s+4} \\
& g(t)=1 / 2+\frac{3}{2} e^{-41} \\
& f(t)=\frac{1}{2}-\frac{1}{2} e^{-4 t}
\end{aligned}
$$

$$
\begin{aligned}
& x(s)=F(s) e^{-\pi s}+G(s) \\
& x(t)=u(t-\pi) f(t-\pi)+g(t) \\
& x(t)=u(t-\pi)\left[\frac{1}{2}-\frac{1}{2} e^{-4(t-\pi)}\right]+\frac{1}{2}+\frac{3}{2} e^{-4-6}
\end{aligned}
$$

