BREED ANCESTRY Australian Shepherd : 100.0% ## **GENETIC STATS** Predicted adult weight: **68 lbs** Life stage: **Mature adult** Based on your dog's date of birth provided. ## **TEST DETAILS** Kit number: EM-19270018 Swab number: 31210351405474 ## **BREED ANCESTRY BY CHROMOSOME** Our advanced test identifies from where Dreamer inherited every part of the chromosome pairs in his genome. #### Breed colors: ### **Australian Shepherd** **DNA Test Report** Test Date: September 29th, 2021 embk.me/dovehawksillbeyourfantasy ### **Fun Fact** Australian Shepherds rose to popularity and fame as rodeo stars. After the first World War, people flocked to the west and to watch exhibitions that showcased these very talented canines. ## **AUSTRALIAN SHEPHERD** The Australian Shepherd, or Aussie, is the 17th most popular dog in the United States, and given their intelligence and temperament, it's no wonder they're so well-loved. Despite their name, the Australian Shepherd actually originated from the ranches of the United States around the 1800s. They are praised by stockmen and breeders for their trainability and intelligence. They have a medium build and a wide variation of different coat colors. Australian Shepherds have considerable energy and they usually need a job to do to keep themselves entertained, though they're also happy to spend time with the family and settle down at the end of the day. Australian Shepherds are often employed as guide dogs, rescue dogs, and therapy dogs. In addition to exercising an Aussie, it's equally important to keep their mind occupied, as if an an Australian Shepherd gets bored they do have the tendency to invent their own games or activities, which sometimes involve destructive behaviors. This is a breed that thrives on close companionship. Aussies are at times called "Velcro Dogs" for their tendency to stay close to their owner. **DNA Test Report** Test Date: September 29th, 2021 embk.me/dovehawksillbeyourfantasy ## **MATERNAL LINE** Through Dreamer's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map. ### **HAPLOGROUP: B1** B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America. ### **HAPLOTYPE: B84** Part of the large B1 haplogroup, this haplotype occurs most frequently in Golden Retrievers, Beagles, and Staffordshire Terriers. **DNA Test Report** Test Date: September 29th, 2021 embk.me/dovehawksillbeyourfantasy ## **PATERNAL LINE** Through Dreamer's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map. ### HAPLOGROUP: A1a Some of the wolves that became the original dogs in Central Asia around 15,000 years ago came from this long and distinguished line of male dogs. After domestication, they followed their humans from Asia to Europe and then didn't stop there. They took root in Europe, eventually becoming the dogs that founded the Vizsla breed 1,000 years ago. The Vizsla is a Central European hunting dog, and all male Vizslas descend from this line. During the Age of Exploration, like their owners, these pooches went by the philosophy, "Have sail, will travel!" From the windy plains of Patagonia to the snug and homey towns of the American Midwest, the beaches of a Pacific paradise, and the broad expanse of the Australian outback, these dogs followed their masters to the outposts of empires. Whether through good fortune or superior genetics, dogs from the A1a lineage traveled the globe and took root across the world. Now you find village dogs from this line frolicking on Polynesian beaches, hanging out in villages across the ### HAPLOTYPE: H1a.46 Part of the A1a haplogroup, this haplotype occurs most frequently in mixed breed dogs. ## **TRAITS: COAT COLOR** TRAIT RESULT ### E Locus (MC1R) The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** variant do not produce dark hairs and will express a red pigment called pheomelanin over their entire body. The shade of red, which can range from a deep copper to white, depends on other genetic factors, including the Intensity loci. In addition to determining if a dog can develop dark hairs, the E Locus can give a dog a black "mask" or "widow's peak" unless the dog has overriding coat color genetic factors. Can have a melanistic mask (E^mE) Dogs with one or two copies of the E^m variant may have a melanistic mask (dark facial hair as commonly seen in the German Shepherd Dog and Pug). In the absence of E^m, dogs with the E^g variant can have a "grizzle" phenotype (darker color on the head and top with a melanistic "widow's peak" and a lighter underside, commonly seen in the Afghan Hound and Borzoi and also referred to as "domino"). In the absence of both E^m and E variants, dogs with the E^a or E^h variants can express the grizzle phenotype. Additionally, a dog with any combination of two of the E^g, E^a, or E^h variants (example: E^gE^a) is also expected to express the grizzle phenotype. ### K Locus (CBD103) The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are ee at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $k^y k^y$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as $K^B k^y$ may be brindle rather than black or brown. More likely to have a patterned haircoat $(k^{y}k^{y})$ # TRAITS: COAT COLOR (CONTINUED) TRAIT RESULT ### Intensity Loci Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of Intense Red Pigmentation will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of Intermediate Red Pigmentation will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with Dilute Red Pigmentation will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test. Any light hair likely yellow or tan (Intermediate Red Pigmentation) ### A Locus (ASIP) The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats. Black/Brown and tan coat color pattern (a^ta^t) ### D Locus (MLPH) The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies. Dark areas of hair and skin are not lightened (DD) # TRAITS: COAT COLOR (CONTINUED) TRAIT RESULT ### Cocoa (HPS3) Dogs with the **coco** genotype will produce dark brown pigment instead of black in both their hair and skin. Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. Dogs that have the **coco** genotype as well as the **bb** genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. No co alleles, not expressed (NN) ### **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. E Locus **ee** dogs that carry two **b** alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate"
is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Black or gray hair and skin (BB) ### Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus at allele, so dogs that do not express at are not influenced by this gene. Not saddle tan patterned (II) ### S Locus (MITF) The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype. Likely to have little to no white in coat (SS) Registration: # TRAITS: COAT COLOR (CONTINUED) TRAIT RESULT ### M Locus (PMEL) Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an M*m result are likely to be phenotypically merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an M*M* result are likely to be phenotypically merle or double merle. Dogs with an mm result have no merle alleles and are unlikely to have a merle coat pattern. Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions. Two merle alleles; may express merle or double merle (M*M*) Note: This locus includes several alleles. At the time this dog was genotyped Embark we could not distinguish all of the possible alleles. ### R Locus (USH2A) The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking. Likely no impact on coat pattern (rr) ### H Locus (Harlequin) This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found. No harlequin alleles (hh) Registration: ## TRAITS: OTHER COAT TRAITS TRAIT RESULT ### Furnishings (RSPO2) Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion. Likely unfurnished (no mustache, beard, and/or eyebrows) (II) # TRAITS: OTHER COAT TRAITS (CONTINUED) TRAIT RESULT ### Coat Length (FGF5) The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair. The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog. Likely long coat (LhLh) The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers. Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this. Registration: # TRAITS: OTHER COAT TRAITS (CONTINUED) TRAIT RESULT ### Shedding (MC5R) Dogs with at least one copy of the ancestral **C** allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the **T** allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene. Likely heavy/seasonal shedding (CC) ### Coat Texture (KRT71) Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats. Likely straight coat (CC) ### Hairlessness (FOXI3) A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Chinese Crested (other hairless breeds have different mutations). Dogs with the **NDup** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat. The **DupDup** genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines. Very unlikely to be hairless (NN) ### Hairlessness (SGK3) Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring. Very unlikely to be hairless (NN) Registration: # TRAITS: OTHER COAT TRAITS (CONTINUED) TRAIT RESULT ### Oculocutaneous Albinism Type 2 (SLC45A2) Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines. Likely not albino (NN) ## TRAITS: OTHER BODY FEATURES TRAIT RESULT ### Muzzle Length (BMP3) Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire
Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral \mathbf{C} allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived \mathbf{A} allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science. Likely medium or long muzzle (CC) ### Tail Length (T) Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail. Likely normal-length tail (CC) ### Hind Dewclaws (LMBR1) Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws. Unlikely to have hind dew claws (CC) Registration: DNA Test Report Test Date: September 29th, 2021 embk.me/dovehawksillbeyourfantasy # TRAITS: OTHER BODY FEATURES (CONTINUED) TRAIT RESULT ### **Blue Eye Color (ALX4)** Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines. Less likely to have blue eyes (NN) ### Back Muscling & Bulk, Large Breed (ACSL4) The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" large-breed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog. Likely normal muscling (CC) Registration: **TRAITS: BODY SIZE** | TRAIT | RESULT | |---|-------------------| | Body Size (IGF1) The I allele is associated with smaller body size. | Larger (NN) | | Body Size (IGFR1) The A allele is associated with smaller body size. | Larger (GG) | | Body Size (STC2) The A allele is associated with smaller body size. | Intermediate (TA) | | Body Size (GHR - E191K) The A allele is associated with smaller body size. | Larger (GG) | | Body Size (GHR - P177L) The T allele is associated with smaller body size. | Larger (CC) | ## **TRAITS: PERFORMANCE** TRAIT RESULT ### Altitude Adaptation (EPAS1) This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those found at high elevations. Dogs with at least one $\bf A$ allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff. Normal altitude tolerance (GG) ### Appetite (POMC) This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to dogs with no copies of the mutation (NN), dogs with one (ND) or two (DD) copies of the mutation are more likely to have high food motivation, which can cause them to eat excessively, have higher body fat percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We measure this result using a linkage test. Normal food motivation (NN) ### **HEALTH REPORT** ### How to interpret Dreamer's genetic health results: If Dreamer inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Dreamer for that we did not detect the risk variant for. ### A genetic test is not a diagnosis This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease. ### **Summary** Of the 215 genetic health risks we analyzed, we found 2 results that you should learn about. Notable results (2) **ALT Activity** **Urate Kidney & Bladder Stones** Clear results Breed-relevant (9) Other (204) ## **BREED-RELEVANT RESULTS** Research studies indicate that these results are more relevant to dogs like Dreamer, and may influence his chances of developing certain health conditions. | Urate Kidney & Bladder Stones (SLC2A9) | Notable | |--|---------| | Oanine Multifocal Retinopathy, cmr1 (BEST1 Exon 2) | Clear | | ○ Collie Eye Anomaly (NHEJ1) | Clear | | | Clear | | O Degenerative Myelopathy, DM (SOD1A) | Clear | | Hereditary Cataracts (HSF4 Exon 9, Australian Shepherd Variant) | Clear | | Multiple Drug Sensitivity (ABCB1) | Clear | | Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant) | Clear | | Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant) | Clear | | Progressive Retinal Atrophy, prcd (PRCD Exon 1) | Clear | ## **OTHER RESULTS** Research has not yet linked these conditions to dogs with similar breeds to Dreamer. Review any increased risk or notable results to understand his potential risk and recommendations. | ALT Activity (GPT) | Notable | |---|---------| | ② 2-DHA Kidney & Bladder Stones (APRT) | Clear | | Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant) | Clear | | Adult-Onset Neuronal Ceroid Lipofuscinosis, NCL A, NCL 12 (ATP13A2, Tibetan Terrier Variant) | Clear | | Alaskan Husky Encephalopathy (SLC19A3) | Clear | | Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP) | Clear | | | Clear | | Anhidrotic Ectodermal Dysplasia (EDA Intron 8) | Clear | | Autosomal Dominant Progressive Retinal Atrophy (RHO) | Clear | | Bald Thigh Syndrome (IGFBP5) | Clear | | Bully Whippet Syndrome (MSTN) | Clear | | | Clear | | | Clear | | | Clear | | Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant) | Clear | | Oanine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant) | Clear | | Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund,
Lapponian Herder Variant) | Clear | | Canine Multiple System Degeneration (SERAC1 Exon 4, Chinese Crested Variant) | Clear | # **OTHER RESULTS** | ⊘ Canine Multiple System Degeneration (SERACI Exon 15, Kerry Blue Terrier Variant) Clear ⊘ Cardiomyopathy and Juvenile Mortality (YARS2) Clear ⊘ Centronuclear Myopathy, CNM (PTPLA) Clear ⊘ Cerebellar Hypoplasia (VLDLR, Eurasier Variant) Clear ⊘ Chondrodysplasia (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant) Clear ⊘ Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant) Clear ⊘ Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant) Clear ⊘ Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant) Clear ⊘ Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant) Clear ⊘ Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant) Clear ⊘ Congenital Myaothenic Syndrome, CMS (COLQ, Labrador Retriever Variant) Clear ⊘ Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant) Clear ⊘ Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) Clear ⊘ Congenital Myasthenic Syndrome, CMS (CHARNE, Jack Russell Terrier Variant) Clear ⊘ Congenital Stationary Night Blindness (LRIT3, Beagle Variant) Clear ⊘ Congenital Stationary Night Blindness (RPE65, Briard Variant) Clear | | |
--|--|-------| | ✓ Centronuclear Myopathy, CNM (PTPLA) Clear ✓ Cerebellar Hypoplasia (VLDLR, Eurasier Variant) Clear ✓ Chondrodysplasia (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant) Clear ✓ Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant) Clear ✓ Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant) Clear ✓ Complement 3 Deficiency, C3 Deficiency (C3) Clear ✓ Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant) Clear ✓ Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant) Clear ✓ Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant) Clear ✓ Congenital Stationary Night Blindness (LRIT3, Beagle Variant) Clear | Canine Multiple System Degeneration (SERAC1 Exon 15, Kerry Blue Terrier Variant) | Clear | | ✓ Cerebellar Hypoplasia (VLDLR, Eurasier Variant) Clear ✓ Chondrodysplasia (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant) Clear ✓ Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant) Clear ✓ Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant) Clear ✓ Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant) Clear ✓ Complement 3 Deficiency, C3 Deficiency (C3) Clear ✓ Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant) Clear ✓ Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant) Clear ✓ Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant) Clear ✓ Congenital Stationary Night Blindness (LRIT3, Beagle Variant) Clear | Cardiomyopathy and Juvenile Mortality (YARS2) | Clear | | ⊘ Chondrodysplasia (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant) Clear ⊘ Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant) Clear ⊘ Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant) Clear ⊘ Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant) Clear ⊘ Complement 3 Deficiency, C3 Deficiency (C3) Clear ⊘ Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant) Clear ⊘ Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant) Clear ⊘ Congenital Myaothyroidism (TPO, Tenterfield Terrier Variant) Clear ⊘ Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant) Clear ⊘ Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant) Clear ⊘ Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) Clear ⊘ Congenital Stationary Night Blindness (LRIT3, Beagle Variant) Clear | Centronuclear Myopathy, CNM (PTPLA) | Clear | | ○ Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant) Clear ○ Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant) Clear ○ Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant) Clear ○ Complement 3 Deficiency, C3 Deficiency (C3) Clear ○ Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant) Clear ○ Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant) Clear ○ Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant) Clear ○ Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant) Clear ○ Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant) Clear ○ Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) Clear ○ Congenital Stationary Night Blindness (LRIT3, Beagle Variant) Clear | Cerebellar Hypoplasia (VLDLR, Eurasier Variant) | Clear | | ✓ Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant) Clear ✓ Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant) Clear ✓ Complement 3 Deficiency, C3 Deficiency (C3) Clear ✓ Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant) Clear ✓ Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant) Clear ✓ Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant) Clear ✓ Congenital Stationary Night Blindness (LRIT3, Beagle Variant) Clear | Chondrodysplasia (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant) | Clear | | | Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant) | Clear | | ✓ Complement 3 Deficiency, C3 Deficiency (C3) Clear ✓ Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant) Clear ✓ Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant) Clear ✓ Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant) Clear ✓ Congenital Stationary Night Blindness (LRIT3, Beagle Variant) Clear | Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant) | Clear | | Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant) Clear Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant) Clear Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant) Clear Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant) Clear Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant) Clear Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) Clear Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant) Clear Congenital Stationary Night Blindness (LRIT3, Beagle Variant) Clear | Obalamin Malabsorption (CUBN Exon 53, Border Collie Variant) | Clear | | ✓ Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant) Clear ✓ Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) Clear ✓ Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant) Clear ✓ Congenital Stationary Night Blindness (LRIT3, Beagle Variant) Clear | Omplement 3 Deficiency, C3 Deficiency (C3) | Clear | | ✓ Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant) ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant) ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant) ✓ Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) ✓ Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant) ✓ Congenital Stationary Night Blindness (LRIT3, Beagle Variant) ✓ Clear | Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant) | Clear | | ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant) ✓ Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant) ✓ Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) ✓ Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant) ✓ Congenital Stationary Night Blindness (LRIT3, Beagle Variant) ✓ Clear | Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant) | Clear | | Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant) Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog
Variant) Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant) Clear Congenital Stationary Night Blindness (LRIT3, Beagle Variant) Clear | Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant) | Clear | | ✓ Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) ✓ Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant) ✓ Congenital Stationary Night Blindness (LRIT3, Beagle Variant) ✓ Clear | Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant) | Clear | | ✓ Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant) ✓ Congenital Stationary Night Blindness (LRIT3, Beagle Variant) Clear | Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant) | Clear | | ✓ Congenital Stationary Night Blindness (LRIT3, Beagle Variant) | Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) | Clear | | | Ongenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant) | Clear | | Congenital Stationary Night Blindness (RPE65, Briard Variant) Clear | Congenital Stationary Night Blindness (LRIT3, Beagle Variant) | Clear | | | Ongenital Stationary Night Blindness (RPE65, Briard Variant) | Clear | # **OTHER RESULTS** | ○ Cystinuria Type II-A (SLC3A1, Newfoundland Variant) Clear ○ Cystinuria Type II-A (SLC3A1, Australian Cattle Dog Variant) Clear ○ Cystinuria Type II-B (SLC7A9, Miniature Pinscher Variant) Clear ○ Day Blindness (CNGA3 Exon 7, German Shepherd Variant) Clear ○ Day Blindness (CNGB3 Exon 6, German Shorthaired Pointer Variant) Clear ○ Day Blindness (CNGB3 Exon 6, German Shorthaired Pointer Variant) Clear ○ Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MY07A) Clear ○ Demyelinating Polyneuropathy (SBF2/MTRM13) Clear ○ Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant) Clear ○ Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1) Clear ○ Diy Eye Curly Coat Syndrome (FAM83H Exon 5) Clear ○ Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) Clear ○ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) Clear ○ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) Clear ○ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) Clear ○ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) Clear ○ Enamel Hypoplasia (ENAM SNP, Parson Russell Terrier Variant) Clear <th></th> <th></th> | | | |---|--|-------| | ✓ Cystinuria Type II-B (SLC7A9, Miniature Pinscher Variant) Clear ✓ Day Blindness (CNGA3 Exon 7, German Shepherd Variant) Clear ✓ Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant) Clear ✓ Day Blindness (CNGB3 Exon 6, German Shorthaired Pointer Variant) Clear ✓ Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MY07A) Clear ✓ Demyelinating Polyneuropathy (SBF2/MTRM13) Clear ✓ Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant) Clear ✓ Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1) Clear ✓ Dry Eye Curly Coat Syndrome (FAM83H Exon 5) Clear ✓ Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) Clear ✓ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) Clear ✓ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) Clear ✓ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) Clear ✓ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) Clear | Cystinuria Type I-A (SLC3A1, Newfoundland Variant) | Clear | | ☑ Day Blindness (CNGA3 Exon 7, German Shepherd Variant) Clear ☑ Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant) Clear ☑ Day Blindness (CNGB3 Exon 6, German Shorthaired Pointer Variant) Clear ☑ Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A) Clear ☑ Demyelinating Polyneuropathy (SBF2/MTRM13) Clear ☑ Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant) Clear ☑ Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1) Clear ☑ Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2) Clear ☑ Dry Eye Curly Coat Syndrome (FAM83H Exon 5) Clear ☑ Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) Clear ☑ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) Clear ☑ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) Clear ☑ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) Clear ☑ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) Clear | Cystinuria Type II-A (SLC3A1, Australian Cattle Dog Variant) | Clear | | ☑ Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant) Clear ☑ Day Blindness (CNGB3 Exon 6, German Shorthaired Pointer Variant) Clear ☑ Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A) Clear ☑ Demyelinating Polyneuropathy (SBF2/MTRM13) Clear ☑ Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant) Clear ☑ Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1) Clear ☑ Diy Eye Curly Coat Syndrome (FAM83H Exon 5) Clear ☑ Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) Clear ☑ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) Clear ☑ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) Clear ☑ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) Clear ☑ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) Clear | Cystinuria Type II-B (SLC7A9, Miniature Pinscher Variant) | Clear | | ☑ Day Blindness (CNGB3 Exon 6, German Shorthaired Pointer Variant) Clear ☑ Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A) Clear ☑ Demyelinating Polyneuropathy (SBF2/MTRM13) Clear ☑ Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant) Clear ☑ Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1) Clear ☑ Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2) Clear ☑ Dry Eye Curly Coat Syndrome (FAM83H Exon 5) Clear ☑ Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) Clear ☑ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) Clear ☑ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) Clear ☑ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) Clear ☑ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) Clear | Oay Blindness (CNGA3 Exon 7, German Shepherd Variant) | Clear | | ☑ Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A) Clear ☑ Demyelinating Polyneuropathy (SBF2/MTRM13) Clear ☑ Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant) Clear ☑ Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1) Clear ☑ Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2) Clear ☑ Dry Eye Curly Coat Syndrome (FAM83H Exon 5) Clear ☑ Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) Clear ☑ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) Clear ☑ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) Clear ☑ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) Clear ☑ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) Clear | Oay Blindness (CNGA3 Exon 7, Labrador Retriever Variant) | Clear | | ☑ Demyelinating Polyneuropathy (SBF2/MTRM13) Clear ☑ Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant) Clear ☑ Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1) Clear ☑ Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2) Clear ☑ Dry Eye Curly Coat Syndrome (FAM83H Exon 5) Clear ☑ Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) Clear ☑ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) Clear ☑ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) Clear ☑ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) Clear ☑ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) Clear | Day Blindness (CNGB3 Exon 6, German Shorthaired Pointer Variant) | Clear | | ○ Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant) ○ Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1) ○ Dilated Cardiomyopathy,
DCM2 (TTN, Doberman Pinscher Variant 2) ○ Dry Eye Curly Coat Syndrome (FAM83H Exon 5) ○ Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) ○ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) ○ Clear ○ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) ○ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) ○ Clear ○ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) ○ Clear | Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A) | Clear | | ✓ Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1) ✓ Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2) ✓ Dry Eye Curly Coat Syndrome (FAM83H Exon 5) ✓ Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) ✓ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) ✓ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) ✓ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) ✓ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) ✓ Clear | Demyelinating Polyneuropathy (SBF2/MTRM13) | Clear | | ✓ Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2) Clear ✓ Dry Eye Curly Coat Syndrome (FAM83H Exon 5) Clear ✓ Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) Clear ✓ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) Clear ✓ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) Clear ✓ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) Clear ✓ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) Clear | Oiffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant) | Clear | | ✓ Dry Eye Curly Coat Syndrome (FAM83H Exon 5) Clear ✓ Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) Clear ✓ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) Clear ✓ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) Clear ✓ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) Clear ✓ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) Clear | Oilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1) | Clear | | ✓ Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) Clear ✓ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) Clear ✓ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) Clear ✓ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) Clear ✓ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) Clear | Oilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2) | Clear | | ✓ Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) ✓ Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) ✓ Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) ✓ Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) ✓ Clear | Ory Eye Curly Coat Syndrome (FAM83H Exon 5) | Clear | | Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) Clear | Opstrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) | Clear | | Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) Clear | Opstrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) | Clear | | Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) Clear | Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) | Clear | | | Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) | Clear | | Enamel Hypoplasia (ENAM SNP, Parson Russell Terrier Variant) | Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) | Clear | | | Enamel Hypoplasia (ENAM SNP, Parson Russell Terrier Variant) | Clear | # **OTHER RESULTS** | Episodic Falling Syndrome (BCAN) | Clear | |---|-------| | Exercise-Induced Collapse, EIC (DNM1) | Clear | | Factor VII Deficiency (F7 Exon 5) | Clear | | Familial Nephropathy (COL4A4 Exon 3, Cocker Spaniel Variant) | Clear | | Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2, Giant Schnauzer Variant) | Clear | | Glanzmann's Thrombasthenia Type I (ITGA2B Exon 13, Great Pyrenees Variant) | Clear | | Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12, Otterhound Variant) | Clear | | Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5, Terrier Variant) | Clear | | Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant) | Clear | | Glycogen Storage Disease Type IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant) | Clear | | Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whippet
and English Springer Spaniel Variant) | Clear | | Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Wachtelhund Variant) | Clear | | GM1 Gangliosidosis (GLB1 Exon 2, Portuguese Water Dog Variant) | Clear | | | Clear | # **OTHER RESULTS** | | Clear | |--|-------| | Goniodysgenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD (OLFM3) | Clear | | → Hemophilia A (F8 Exon 11, German Shepherd Variant 1) | Clear | | → Hemophilia A (F8 Exon 1, German Shepherd Variant 2) | Clear | | Hemophilia A (F8 Exon 10, Boxer Variant) | Clear | | Hemophilia B (F9 Exon 7, Terrier Variant) | Clear | | Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant) | Clear | | Hereditary Ataxia, Cerebellar Degeneration (RAB24, Old English Sheepdog and Gordon Setter Variant) | Clear | | Hereditary Footpad Hyperkeratosis (FAM83G, Terrier and Kromfohrlander Variant) | Clear | | Hereditary Footpad Hyperkeratosis (DSG1, Rottweiler Variant) | Clear | | Hereditary Nasal Parakeratosis (SUV39H2 Intron 4, Greyhound Variant) | Clear | | Hereditary Nasal Parakeratosis, HNPK (SUV39H2) | Clear | | Hereditary Vitamin D-Resistant Rickets (VDR) | Clear | | Hypocatalasia, Acatalasemia (CAT) | Clear | | Hypomyelination and Tremors (FNIP2, Weimaraner Variant) | Clear | | Hypophosphatasia (ALPL Exon 9, Karelian Bear Dog Variant) | Clear | | O Ichthyosis (NIPAL4, American Bulldog Variant) | Clear | | O Ichthyosis (SLC27A4, Great Dane Variant) | Clear | | | | # **OTHER RESULTS** | ⊘ Ichthyosis, Epidermolytic Hyperkeratosis (KRT10, Terrier Variant) Clear ⊘ Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant) Clear ⊘ Inflammatory Myopathy (SLC25A12) Clear ⊘ Inherited Myopathy of Great Danes (BIN1) Clear ⊘ Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant) Clear ⊘ Intervertebral Disc Disease (Type I) (FGF4 retrogene - OFA12) Clear ⊘ Juvenile Epilepsy (LGI2) Clear ⊘ Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant) Clear ⊘ Juvenile Myoclonic Epilepsy (DIRAS1) Clear ⊘ L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant) Clear ⊘ Late Onset Spinocerebellar Ataxia (CAPN1) Clear ⊘ Late Onset Spinocerebellar Ataxia (CAPN1) Clear ⊘ Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) Clear ⊘ Leonberger Polyneuropathy 2 (GJA9) Clear ⊘ Lethal Acrodermatitis, LAD (MKLN1) Clear ⊘ Ligneous Membranitis, LM (PLG) Clear ⊘ Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant) Clear | | | |---|--|-------| | ☑ Inflammatory Myopathy (SLC25A12) ☑ Inherited Myopathy of Great Danes (BIN1) ☑ Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant) ☑ Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12) ☑ Juvenile Epilepsy (LGI2) ☑ Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant) ☑ Juvenile Myoclonic Epilepsy (DIRAS1) ☑ Lagotto Storage Disease (ATG4D) ☑ Late Onset Spinocerebellar Ataxia (CAPN1) ☑ Late Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant) ☑ Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) ☑ Leonberger Polyneuropathy 2 (GJA9) ☑ Lethal Acrodermatitis, LAD (MKLN1) ☑ Letthal Acrodermatitis, LAD (MKLN1) ☑ Ligneous Membranitis, LM (PLG) | Olichthyosis, Epidermolytic Hyperkeratosis
(KRT10, Terrier Variant) | Clear | | ☑ Inherited Myopathy of Great Danes (BIN1) Clear ☑ Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant) Clear ☑ Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12) Clear ☑ Juvenile Epilepsy (LGI2) Clear ☑ Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant) Clear ☑ Juvenile Myoclonic Epilepsy (DIRAS1) Clear ☑ L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant) Clear ☑ Lagotto Storage Disease (ATG4D) Clear ☑ Late Onset Spinocerebellar Ataxia (CAPN1) Clear ☑ Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant) Clear ☑ Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) Clear ☑ Leonberger Polyneuropathy 2 (GJA9) Clear ☑ Lethal Acrodermatitis, LAD (MKLN1) Clear ☑ Ligneous Membranitis, LM (PLG) Clear | O Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant) | Clear | | ☑ Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant) Clear ☑ Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12) Clear ☑ Juvenile Epilepsy (LGI2) Clear ☑ Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant) Clear ☑ Juvenile Myoclonic Epilepsy (DIRAS1) Clear ☑ L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant) Clear ☑ Lagotto Storage Disease (ATG4D) Clear ☑ Late Onset Spinocerebellar Ataxia (CAPN1) Clear ☑ Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant) Clear ☑ Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) Clear ☑ Leonberger Polyneuropathy 2 (GJA9) Clear ☑ Lethal Acrodermatitis, LAD (MKLN1) Clear ☑ Ligneous Membranitis, LM (PLG) Clear | ✓ Inflammatory Myopathy (SLC25A12) | Clear | | ☑ Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12) Clear ☑ Juvenile Epilepsy (LGI2) Clear ☑ Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant) Clear ☑ Juvenile Myoclonic Epilepsy (DIRAS1) Clear ☑ L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant) Clear ☑ Lagotto Storage Disease (ATG4D) Clear ☑ Late Onset Spinocerebellar Ataxia (CAPN1) Clear ☑ Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant) Clear ☑ Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) Clear ☑ Leonberger Polyneuropathy 2 (GJA9) Clear ☑ Lethal Acrodermatitis, LAD (MKLN1) Clear ☑ Ligneous Membranitis, LM (PLG) Clear | Inherited Myopathy of Great Danes (BIN1) | Clear | | ☑ Juvenile Epilepsy (LGI2) Clear ☑ Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant) Clear ☑ Juvenile Myoclonic Epilepsy (DIRAS1) Clear ☑ L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant) Clear ☑ Lagotto Storage Disease (ATG4D) Clear ☑ Late Onset Spinocerebellar Ataxia (CAPN1) Clear ☑ Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant) Clear ☑ Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) Clear ☑ Leonberger Polyneuropathy 2 (GJA9) Clear ☑ Lethal Acrodermatitis, LAD (MKLN1) Clear ☑ Ligneous Membranitis, LM (PLG) Clear | Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant) | Clear | | ☑ Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant) ☑ Juvenile Myoclonic Epilepsy (DIRAS1) ☑ L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant) ☑ Lagotto Storage Disease (ATG4D) ☑ Late Onset Spinocerebellar Ataxia (CAPN1) ☑ Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant) ☑ Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) ☑ Leonberger Polyneuropathy 2 (GJA9) ☑ Lethal Acrodermatitis, LAD (MKLN1) ☑ Ligneous Membranitis, LM (PLG) | ✓ Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12) | Clear | | ✓ Juvenile Myoclonic Epilepsy (DIRAS1) Clear ✓ L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant) Clear ✓ Lagotto Storage Disease (ATG4D) Clear ✓ Late Onset Spinocerebellar Ataxia (CAPN1) Clear ✓ Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant) Clear ✓ Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) Clear ✓ Leonberger Polyneuropathy 2 (GJA9) Clear ✓ Lethal Acrodermatitis, LAD (MKLN1) Clear ✓ Ligneous Membranitis, LM (PLG) Clear | | Clear | | ✓ L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant) Clear ✓ Lagotto Storage Disease (ATG4D) Clear ✓ Late Onset Spinocerebellar Ataxia (CAPN1) Clear ✓ Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant) Clear ✓ Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) Clear ✓ Leonberger Polyneuropathy 2 (GJA9) Clear ✓ Lethal Acrodermatitis, LAD (MKLN1) Clear ✓ Ligneous Membranitis, LM (PLG) Clear | Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant) | Clear | | ✓ Lagotto Storage Disease (ATG4D) Clear ✓ Late Onset Spinocerebellar Ataxia (CAPN1) Clear ✓ Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant) Clear ✓ Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) Clear ✓ Leonberger Polyneuropathy 2 (GJA9) Clear ✓ Lethal Acrodermatitis, LAD (MKLN1) Clear ✓ Ligneous Membranitis, LM (PLG) Clear | | Clear | | ✓ Late Onset Spinocerebellar Ataxia (CAPN1) Clear ✓ Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant) Clear ✓ Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) Clear ✓ Leonberger Polyneuropathy 2 (GJA9) Clear ✓ Lethal Acrodermatitis, LAD (MKLN1) Clear ✓ Ligneous Membranitis, LM (PLG) Clear | | Clear | | ✓ Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant) Clear ✓ Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) Clear ✓ Leonberger Polyneuropathy 2 (GJA9) Clear ✓ Lethal Acrodermatitis, LAD (MKLN1) Clear ✓ Ligneous Membranitis, LM (PLG) Clear | | Clear | | ✓ Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) ✓ Leonberger Polyneuropathy 2 (GJA9) ✓ Lethal Acrodermatitis, LAD (MKLN1) ✓ Ligneous Membranitis, LM (PLG) | Late Onset Spinocerebellar Ataxia (CAPN1) | Clear | | ✓ Leonberger Polyneuropathy 2 (GJA9) ✓ Lethal Acrodermatitis, LAD (MKLN1) ✓ Ligneous Membranitis, LM (PLG) Clear | | Clear | | ✓ Lethal Acrodermatitis, LAD (MKLN1) ✓ Ligneous Membranitis, LM (PLG) Clear | | Clear | | ✓ Ligneous Membranitis, LM (PLG) | | Clear | | | | Clear | | Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant) | | Clear | | | Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant) | Clear | # **OTHER RESULTS** | | Clear | |--|-------| | Lundehund Syndrome (LEPREL1) | Clear | | Macular Corneal Dystrophy, MCD (CHST6) | Clear | | Malignant Hyperthermia (RYR1) | Clear | | May-Hegglin Anomaly (MYH9) | Clear | | Methemoglobinemia (CYB5R3) | Clear | | Microphthalmia (RBP4 Exon 2, Soft Coated Wheaten Terrier Variant) | Clear | | Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund Variant) | Clear | | Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand
Huntaway Variant) | Clear | | Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant) | Clear | | Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant) | Clear | | Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1) | Clear | | Muscular Dystrophy (DMD, Golden Retriever Variant) | Clear | | Musladin-Lueke Syndrome, MLS (ADAMTSL2) | Clear | | Myasthenia Gravis-Like Syndrome (CHRNE, Heideterrier Variant) | Clear | | Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant) | Clear | | Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant) | Clear | | Narcolepsy (HCRTR2 Exon 1, Dachshund Variant) | Clear | # **OTHER RESULTS** | Narcolepsy (HCRTR2 Intron 4, Doberman Pinscher Variant) | Clear | |--|-------| | Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant) | Clear | | Neonatal Cerebellar Cortical Degeneration (SPTBN2, Beagle Variant) | Clear | | Neonatal Encephalopathy with Seizures, NEWS (ATF2) | Clear | | Neonatal Interstitial Lung Disease (LAMP3) | Clear | | Neuroaxonal Dystrophy, NAD (VPS11, Rottweiler Variant) | Clear | | Neuroaxonal Dystrophy, NAD (TECPR2, Spanish Water Dog Variant) | Clear | | Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1) | Clear | | Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant) | Clear | | Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2) | Clear | | Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant) | Clear | | Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant) | Clear | | Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant) | Clear | | Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Exon 2, English Setter Variant) | Clear | | Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terrier Variant) | Clear | | Oculocutaneous Albinism, OCA (SLC45A2, Small Breed Variant) | Clear | | Oculoskeletal Dysplasia 2 (COL9A2, Samoyed Variant) | Clear | | Osteochondrodysplasia (SLC13A1, Poodle Variant) | Clear | # **OTHER RESULTS** | Osteogenesis Imperfecta (COL1A2, Beagle Variant) | Clear | |---|-------| |
Osteogenesis Imperfecta (SERPINH1, Dachshund Variant) | Clear | | Osteogenesis Imperfecta (COL1A1, Golden Retriever Variant) | Clear | | P2Y12 Receptor Platelet Disorder (P2Y12) | Clear | | Paroxysmal Dyskinesia, PxD (PIGN) | Clear | | Persistent Mullerian Duct Syndrome, PMDS (AMHR2) | Clear | | Platelet Factor X Receptor Deficiency, Scott Syndrome (TMEM16F) | Clear | | O Polycystic Kidney Disease, PKD (PKD1) | Clear | | Pompe's Disease (GAA, Finnish and Swedish Lapphund, Lapponian Herder Variant) | Clear | | Prekallikrein Deficiency (KLKB1 Exon 8) | Clear | | Primary Ciliary Dyskinesia, PCD (NME5, Alaskan Malamute Variant) | Clear | | Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3, Old English Sheepdog Variant) | Clear | | Primary Hyperoxaluria (AGXT) | Clear | | Primary Lens Luxation (ADAMTS17) | Clear | | Primary Open Angle Glaucoma (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant) | Clear | | Primary Open Angle Glaucoma (ADAMTS10 Exon 17, Beagle Variant) | Clear | | Primary Open Angle Glaucoma (ADAMTS10 Exon 9, Norwegian Elkhound Variant) | Clear | | Primary Open Angle Glaucoma and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei Variant) | Clear | # **OTHER RESULTS** | Progressive Retinal Atrophy (SAG) | Clear | |---|-------| | Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9) | Clear | | Progressive Retinal Atrophy, crd1 (PDE6B, American Staffordshire Terrier Variant) | Clear | | Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1) | Clear | | Progressive Retinal Atrophy, PRA1 (CNGB1) | Clear | | Progressive Retinal Atrophy, PRA3 (FAM161A) | Clear | | Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant) | Clear | | Progressive Retinal Atrophy, rcd3 (PDE6A) | Clear | | Protein Losing Nephropathy, PLN (NPHS1) | Clear | | Pyruvate Dehydrogenase Deficiency (PDP1, Spaniel Variant) | Clear | | Pyruvate Kinase Deficiency (PKLR Exon 5, Basenji Variant) | Clear | | Pyruvate Kinase Deficiency (PKLR Exon 7, Beagle Variant) | Clear | | Pyruvate Kinase Deficiency (PKLR Exon 10, Terrier Variant) | Clear | | Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant) | Clear | | Pyruvate Kinase Deficiency (PKLR Exon 7, Pug Variant) | Clear | | Raine Syndrome (FAM20C) | Clear | | Renal Cystadenocarcinoma and Nodular Dermatofibrosis (FLCN Exon 7) | Clear | | Sensory Neuropathy (FAM134B, Border Collie Variant) | Clear | # **OTHER RESULTS** | Severe Combined Immunodeficiency, SCID (PRKDC, Terrier Variant) Clear Severe Combined Immunodeficiency, SCID (RAG1, Wetterhoun Variant) Clear Shaking Puppy Syndrome (PLP1, English Springer Spaniel Variant) Clear Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP) Clear Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant) Clear Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant) Clear Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10) Clear Spongy Degeneration with Cerebellar Ataxia 1 (KCNJ10) Clear Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant) Clear Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant) Clear Trapped Neutrophil Syndrome, TNS (VPS13B) Clear Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) Clear Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) Clear Von Willebrand Disease Type I, Type I vWD (VWF) Clear Von Willebrand Disease Type III, Type III vWD (VWF, Pointer Variant) Clear Von Willebrand Disease Type III, Type III vWD (VWF Exon 4, Terrier Variant) Clear | | | |---|---|-------| | Shaking Puppy Syndrome (PLP1, English Springer Spaniel Variant) Clear Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP) Clear Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant) Clear Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant) Clear Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10) Clear Spongy Degeneration with Cerebellar Ataxia 1 (KCNJ10) Clear Spongy Degeneration with Cerebellar Ataxia 2 (ATP1B2) Clear Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant) Clear Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant) Clear Trapped Neutrophil Syndrome, TNS (VPS13B) Clear Ullirich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) Clear Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) Clear Von Willebrand Disease Type I, Type I vWD (VWF) Clear Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) Clear | Severe Combined Immunodeficiency, SCID (PRKDC, Terrier Variant) | Clear | | Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP) Clear Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant) Clear Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant) Clear Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10) Clear Spongy Degeneration with Cerebellar Ataxia 1 (KCNJ10) Clear Spongy Degeneration with Cerebellar Ataxia 2 (ATP1B2) Clear Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant) Clear Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant) Clear Trapped Neutrophil Syndrome, TNS (VPS13B) Clear Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) Clear Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) Clear Von Willebrand Disease Type I, Type I vWD (VWF) Clear Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) Clear | Severe Combined Immunodeficiency, SCID (RAG1, Wetterhoun Variant) | Clear | | Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant) Clear Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant) Clear Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10) Clear Spongy Degeneration with Cerebellar Ataxia 1 (KCNJ10) Clear Spongy Degeneration with Cerebellar Ataxia 2 (ATP1B2) Clear Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant) Clear Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant) Clear Thrombopathia (RASGRP1 Exon 8, Landseer Variant) Clear Trapped Neutrophil Syndrome, TNS (VPS13B) Clear Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) Clear Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) Clear Von Willebrand Disease Type I, Type I vWD (VWF) Clear Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) Clear | Shaking Puppy Syndrome (PLP1, English Springer Spaniel Variant) | Clear | | Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant) Clear | Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP) | Clear | | Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10) Clear Spongy Degeneration with Cerebellar Ataxia 1 (KCNJ10) Clear Spongy Degeneration with Cerebellar Ataxia 2 (ATP1B2) Clear Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant) Clear Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant) Clear Thrombopathia (RASGRP1 Exon 8, Landseer Variant) Clear Trapped Neutrophil Syndrome, TNS (VPS13B) Clear UllIrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) Clear Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) Clear Von Willebrand Disease Type I, Type I vWD (VWF) Clear Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) Clear | Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant) | Clear | | Spongy Degeneration with Cerebellar Ataxia 1 (KCNJ10) Clear Spongy Degeneration with Cerebellar Ataxia 2 (ATP1B2) Clear Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant) Clear Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant) Clear Thrombopathia (RASGRP1 Exon 8, Landseer Variant) Clear Trapped Neutrophil Syndrome, TNS (VPS13B) Clear Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) Clear Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) Von Willebrand Disease Type I, Type I vWD (VWF) Clear Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) Clear | Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant) | Clear | | ✓ Spongy Degeneration with Cerebellar Ataxia 2 (ATP1B2) ✓ Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant) ✓ Thrombopathia (RASGRP1
Exon 5, Basset Hound Variant) ✓ Clear ✓ Thrombopathia (RASGRP1 Exon 8, Landseer Variant) ✓ Clear ✓ Trapped Neutrophil Syndrome, TNS (VPS13B) ✓ Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) ✓ Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) ✓ Von Willebrand Disease Type I, Type I vWD (VWF) ✓ Clear ✓ Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) ✓ Clear | Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10) | Clear | | ✓ Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant) ✓ Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant) ✓ Clear ✓ Thrombopathia (RASGRP1 Exon 8, Landseer Variant) ✓ Clear ✓ Trapped Neutrophil Syndrome, TNS (VPS13B) ✓ Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) ✓ Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) ✓ Von Willebrand Disease Type I, Type I vWD (VWF) ✓ Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) ✓ Clear | Spongy Degeneration with Cerebellar Ataxia 1 (KCNJ10) | Clear | | ✓ Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant) ✓ Thrombopathia (RASGRP1 Exon 8, Landseer Variant) ✓ Trapped Neutrophil Syndrome, TNS (VPS13B) ✓ Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) ✓ Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) ✓ Von Willebrand Disease Type I, Type I vWD (VWF) ✓ Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) | Spongy Degeneration with Cerebellar Ataxia 2 (ATP1B2) | Clear | | ✓ Thrombopathia (RASGRP1 Exon 8, Landseer Variant) ✓ Trapped Neutrophil Syndrome, TNS (VPS13B) ✓ Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) ✓ Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) ✓ Von Willebrand Disease Type I, Type I vWD (VWF) ✓ Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) ✓ Clear | Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant) | Clear | | ✓ Trapped Neutrophil Syndrome, TNS (VPS13B) ✓ Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) ✓ Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) ✓ Von Willebrand Disease Type I, Type I vWD (VWF) ✓ Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) ✓ Clear | Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant) | Clear | | ✓ Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) ✓ Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) ✓ Von Willebrand Disease Type I, Type I vWD (VWF) ✓ Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) ✓ Clear | Thrombopathia (RASGRP1 Exon 8, Landseer Variant) | Clear | | ✓ Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) ✓ Von Willebrand Disease Type I, Type I vWD (VWF) ✓ Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) Clear | | Clear | | ✓ Von Willebrand Disease Type I, Type I vWD (VWF) ✓ Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) Clear | Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) | Clear | | ✓ Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) | Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) | Clear | | | | Clear | | ✓ Von Willebrand Disease Type III, Type III vWD (VWF Exon 4, Terrier Variant) Clear | ✓ Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) | Clear | | | ✓ Von Willebrand Disease Type III, Type III vWD (VWF Exon 4, Terrier Variant) | Clear | # **OTHER RESULTS** | Von Willebrand Disease Type III, Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje Variant) | Clear | |--|-------| | ✓ Von Willebrand Disease Type III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant) | Clear | | X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2) | Clear | | X-Linked Myotubular Myopathy (MTM1, Labrador Retriever Variant) | Clear | | X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR) | Clear | | X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant) | Clear | | X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG, Corgi Variant) | Clear | **DNA Test Report** Test Date: September 29th, 2021 embk.me/dovehawksillbeyourfantasy ### **HEALTH REPORT** Notable result ### **ALT Activity** Dovehawk's I'll Be Your Fantasy inherited one copy of the variant we tested for Alanine Aminotransferase Activity ### Why is this important to your vet? Dreamer has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Dreamer has this genotype, as ALT is often used as an indicator of liver health and Dreamer is likely to have a lower than average resting ALT activity. As such, an increase in Dreamer's ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges. ### What is Alanine Aminotransferase Activity? Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream. ### How vets diagnose this condition Genetic testing is the only way to provide your veterinarian with this clinical tool. ### How this condition is treated Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant. ### **HEALTH REPORT** Notable result ### **Urate Kidney & Bladder Stones** Dovehawk's I'll Be Your Fantasy inherited one copy of the variant we tested for Hyperuricosuria and Hyperuricemia or Urolithiasis, HUU ### What does this result mean? This variant should not impact Dreamer's health. This variant is inherited in an autosomal recessive manner, meaning that a dog needs two copies of the variant to show signs of this condition. Dreamer is unlikely to develop this condition due to this variant because he only has one copy of the variant. ### Impact on Breeding Your dog carries this variant and will pass it on to ~50% of his offspring. You can email breeders@embarkvet.com to discuss with a genetic counselor how the genotype results should be applied to a breeding program. ### What is Hyperuricosuria and Hyperuricemia or Urolithiasis, HUU? This condition causes kidney and bladder stones composed of urate. In most dogs, uric acid is converted to allantoin, an inert substance that is then excreted in the urine. Dogs with HUU have defects in the pathway that converts uric acid to allantoin. As such, uric acid builds up, crystallizes and forms urate stones in the kidney and bladder. Uric acid is an intermediate of purine metabolism. While hyperuricemia in other species (including humans) can lead to painful conditions such as gout, dogs do not develop systemic signs of hyperuricemia. ### When signs & symptoms develop in affected dogs Most dogs are adults before they show any signs of urinary issues (4-6 years on average). ### How vets diagnose this condition Urate stones are invisible on X-rays and must be diagnosed by a veterinarian via ultrasound or urine sediment analysis. If left undiagnosed, bladder stones can lead to urinary obstruction, which can be life-threatening. ### How this condition is treated If caught early, it is responsive to dietary management. Surgical intervention is often required when stones or an obstruction forms. ### Actions to take if your dog is affected · Closely monitoring your dog's urination habits, routine lab work, and following your veterinarian's nutritional advice are the best ways to keep your dog healthy. DNA Test Report Test Date: September 29th, 2021 embk.me/dovehawksillbeyourfantasy 19% ## INBREEDING AND DIVERSITY CATEGORY RESULT ### **Coefficient Of Inbreeding** Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side. ### MHC Class II - DLA DRB1 A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated. ### **Low Diversity** How common is this amount of diversity in purebreds: ### MHC Class II - DLA DQA1 and DQB1 DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated. ### No Diversity How common is this amount of diversity in purebreds: