Spacegate Station Season 4 Episode 20

Diving into DensityResource Content

- Guided Notes
- Basic Density Work Sheet
- Density Work Sheet (8th grade)
- Density Work Sheet Advanced
- Density Inquiry Lab

Spacegate Station Episode 20

Diving into Density

Word Bank

0.00018 grams	0.00125 grams	0.93 grams	1 gram
Archimedes	calculating	compactness	cubic centimeters
density	displacement	expands	float
grams	heavier	introduction	less
milliliters	mix	periodic table	separated
size	space	submerged	
		f how much an on that object or substance.	bject or substance
Concepts of Density			
	vo objects in their hand, ne other or whether they	they can normally judge w weigh about the same.	hether one object is
	he weights of two objectoughly the same		nine their relative
Mass is normally mea if it is a solid or		volume is measured in eith	ner
		is equal to e state of matter of the obj	
Equation for solving o	lensity:		
Equation for solving v	volume:		
Equation for solving r	nass:		

solid objects by r		accurately measure the volume of displaced when the object is subme	=
		in water, the amount of water displat, this is known as the	
atoms or molecu		" of a material. It refers to how cl means more than just "heaviness" b	
All substances ha	ve density including	, and	·
be found in vario		it using the density equanls. For example, the density for a sp	
Pure water has a standard because	density of per cue its density is easy for scientis	bic centimeter. For this reason, it is and lay persons to remember, an	
Pure water has a standard because very common an	density of per cue its density is easy for scientised plentiful compound on the e	abic centimeter. For this reason, it is its and lay persons to remember, an earth. meter which is less than that of wate	d water is
Pure water has a standard because very common an The density of oil does not dissolve	density of per cure its density is easy for scientised plentiful compound on the element is per cubic centing in water, it stays	abic centimeter. For this reason, it is its and lay persons to remember, an earth. meter which is less than that of wate	d water is er. Since o
Pure water has a standard because very common and The density of oil does not dissolve Another such exacts as vinegar is densitive is	density of per cure its density is easy for scientised plentiful compound on the end is per cubic centing in water, it stays maple can be seen in salad dresser than oil.	abic centimeter. For this reason, it is sts and lay persons to remember, an earth. meter which is less than that of wate from it.	d water is er. Since o do That same
Pure water has a standard because very common and The density of oil does not dissolve Another such exa as vinegar is densities is mass of water no	density of per cure its density is easy for scientised plentiful compound on the end is per cubic centing in water, it stays maple can be seen in salad dresser than oil.	abic centimeter. For this reason, it is sets and lay persons to remember, an earth. meter which is less than that of water from it. essing where oil and vinegar se when water freezes it se the water molecules are further a	d water is er. Since o do That same

DENSITY WORKSHEET (Basic)

Name:					

Directions: Solve the problem! Show your Work! This is the basic problem given for understanding DENSITY. Remember that the formula for density is...

Density= Mass/Volume Volume= Mass/Density Mass= Density × Volume

Solve for the unknown:

1. Mass = 40g	Volume = 20mL	What is the Density?
2. Mass = 35g	Density = $5 \text{g/}_{\text{cm}3}$	What is the Volume?
3. Density = 7g/_{mL}	Volume = 10mL	What is the Mass?
4. Mass = 22g	Volume = 2cm ³	What is the Density?
5. Mass = 16g	Density = 2g/_{cm3}	What is the Volume?
6. Density = $2 {\rm g/_{mL}}$	Volume = 20mL	What is the Mass?
7. Mass = 35g	Volume = 7cm ³	What is the Density?
8. Mass = 70g	Density = 7 g/mL	What is the Volume?
9. Density = $11 {\rm g/cm}$ 3	Volume = 2cm ³	What is the Mass?
10. Mass = 16g	Volume = 8mL	What is the Density?

SOLIDS & DENSITY USING L×W×H

Directions: Solve the problem! Show your work! You must solve the VOLUME before you can solve the density. for SOLIDS is L×W×H = Volume Density = Mass/Volume

11. Mass =	48g
------------	-----

Height = 4 cm

Width = 3 cm

Length = 2 cm

What is the volume? _____

What is Density? _____

12. Mass = 60g

Height = 6 cm

Width = 5 cm

Length = 4 cm

What is the volume? _____

What is Density? _____

13. Mass = 63g

Height = 3 cm

Width = 7 cm

Length = 1 cm

What is the volume? _____

What is Density? _____

SOLIDS & DENSITY USING WATER DISPLACEMENT

14. Mass = 25g

- What is the Volume?
- What is the Density?
- ,

15. Mass = 10 g

- What is the Volume?
- What is the Density?

16. Mass = 60g

Start: 75 mL Final: 90mL

What is the Volume?

What is the Density?

17. Mass = 60g

Start: 55 mL Final: mL

What is the Volume?

What is the Density?

ANSWERS

1.
$$2^{g}/_{cm}3$$

4.
$$11^{g}/_{cm}3$$

7.
$$5^{g}/_{cm}3$$

$$2 \, \text{g/}_{\text{cm}} 3$$

DENSITY CALCULATIONS WORKSHEET (8th grade)

NA	ME:
1)	A student measures the mass of an 8 cm³ block of brown sugar to be 12.9 g. What is the density of brown sugar?
2)	A chef fills a 50 mL container with 43.5 g of cooking oil. What is the density of the oil?
3)	Calculate the mass of a liquid with a density of 2.5 g/mL and a volume of 15 mL.
4)	Calculate the volume of a liquid with a density of 5.45 g/mL and a mass of 65 g.
5)	A machine shop worker records the mass of an aluminum cube as 176 g. If one side of the cube measures 4 cm, what is the density of the aluminum?
6)	A teacher performing a demonstration finds that a piece of cork displaces 23.5 mL of water. The piece of cork has a mass of 5.7 g. What is the density of the cork?
7)	A carver begins work on the following block of granite that weighs 2700 g. What is the density of granite? 10 cm

8) A piece of PVC plumbing pipe displaces 60 mL when placed into a container of water. If the pipe has a mass of 78 g, what is the density of PVC?

20 cm

- 9) A solid magnesium flare has a mass of 1300 g and a volume of 743 cm³. What is the density of magnesium?
- 10) A graduated cylinder has a mass of 50 g when empty. When 30 mL of water is added, the graduated cylinder has a mass of 120 g. If a rock is added to the graduated cylinder, the water level rises to 75 mL and the total mass is now 250 g. What is the density of the rock?
- 11) A student performs an experiment with three unknown fluids and obtains the following measurements:

Fluid A:
$$m = 2060 \text{ g, V} = 2000 \text{ mL}$$

Fluid B:
$$m = 672 \text{ g, V} = 850 \text{ mL}$$

Fluid C:
$$m = 990 \text{ g, V} = 1100 \text{ mL}$$

Draw how the fluids would be layered if they were combined in a beaker.

12) Use your density skills to find the identity of the following mystery objects.

	Table of	Densities	
Solids	Density g/cm ³	Solids	Density g/cm ³
Marble	2.56	Copper	8.92
Quartz	2.64	Gold	19.32
Diamond	3.52	Platinum	21.4

While digging in the backyard, you think you have found a find an old coin. Its mass is 26.76g and its volume is 3 cm.

What is the coin made of? _____

You think you have found a diamond. Its mass is 5.28 g and its volume is 2 cm³.

What did you find? _____

You find a ring with a mass of 107 g. You fill a graduated cylinder up with 10 mL of water and put the ring into the cylinder. The water rises to the 15 mL mark.

What is the ring made of? _____

There is a block on your desk that acts as a paperweight. Its measurements are 3 cm by 4 cm by 6 cm. The block has a mass of 184.32 g.

What is the block made of? _____

Advanced Density Practice Problem Worksheet

1.	A block of aluminum occupies a volume of 15.0 mL and a mass of 40.5 g. What is its density?
2.	Mercury metal is poured into a graduated cylinder that to exactly 22.5 mL. The mercury used to fill the cylinder weighs 305.4 g. From this information, calculate the density of mercury.
3.	What mass of the ethyl alcohol exactly fills a 200.0 mL container? The density of ethyl alcohol is 0.789 g/mL.
4.	A rectangular block of copper metal weighs 1896 g. The dimensions of the block are 8.4 cm by 5.5 cm by 4.6 cm. From this data, what is the density of copper?
5.	Calculate the density of sulfuric acid if 35.4 mL of the acid weighs 65.14 g.
6.	Find the mass of 250.0 mL of benzene. The density of benzene is 0.8765 g/mL.
7.	A block of lead has dimensions of 4.50 cm by 5.20 cm by 6.00 cm. The block weighs 1587 g. From this information, calculate the density of lead.
8.	28.5 g of iron shot is added to a graduated cylinder containing 45.50 mL of water. The water level rises to the 49.10 mL mark, from this information, calculate the density of iron.

Answers

- 1 Density = 2.70 g/mL
- 2. Density = 13.6 g/mL
- 3. Mass = 158 g
- 4. Volume = 212.52 cm^3
- 5. Density= 1.84 g/mL
- 6. Mass = 219.1 grams
- 7. Density = 11.3 g/cm^3
- 8. Density = 7.92 g/mL

Density Inquiry Lab

The density of pure water at room temperature is 1.0 g/mL. In this lab you can have students compare their findings with their classmates.

Encourage students to get a large enough piece of aluminum foil (the size of a sheet of notebook paper works well). If the foil sheet is too small, it will be difficult to get an accurate reading of its mass (depending on how sensitive your balances are).

Some students have tried to fold up their sample of aluminum foil and then calculate length x width x height. Discuss where errors can occur with this method.

Supplies

Station 1

- graduated cylinder
- plastic cup
- water
- plastic pipet
- balance

<u>Station 2</u> (in this lab you can replace the metal cubes with objects made of different materials)

- 6 metal cubes
- ruler
- balance

Station 3

- sheet of aluminum foil
- ruler
- balance

Density Inquiry Lab

Name:
In this lab, you will be working on three different stations that put the formula for density to work. If you recall, the formula for density is:
Density = Mass / Volume
You may complete these stations in any order. For full credit, describe the procedures you chose to follow to solve the problems, and answer the questions
Station 1: In this station, you are asked to determine the density of water at room temperature. You have the following materials at your disposal:
 graduated cylinder plastic cup water plastic pipet balance
The density of water at room temperature is:
Describe the procedures you followed to determine the density of water

<u>Station 2:</u> In this station, you are asked to determine the density of six metal cubes and to arrange them in order of increasing density. You have the following materials at your disposal:

- 6 metal cubes or objects
- ruler
- balance

The metals (or objects), in order of increasing density are:

Describe the procedures you followed to determine the density of the six cubes.

Station 3: In this station, you are asked to determine the thickness of a piece of aluminum foil. Remember that the volume of an object is equal to the product of its mass, its length, and its height. The density of aluminum is 2.70 g/mL. Remember that 1 mL = 1 cubic centimeter. You have the following materials at your disposal:

- sheet of aluminum foil
- ruler
- balance

What is the thickness of the aluminum foil?

Describe the procedures you followed to determine the thickness of the aluminum foil.