

Phantom Security Assessment

Phantom
07 May 2021
Version: 1.0

Presented by:
Kudelski Security Research Team
Kudelski Security – Nagravision SA

Corporate Headquarters
Kudelski Security – Nagravision SA
Route de Genève, 22-24
1033 Cheseaux sur Lausanne
Switzerland

For Public Release

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 2 of 33
For Public Release

Copyright Notice
Kudelski Security, a business unit of Nagravision SA is a member of the Kudelski Group of Companies.
This document is the intellectual property of Kudelski Security and contains confidential and privileged
information. The reproduction, modification, or communication to third parties (or to other than the addressee)
of any part of this document is strictly prohibited without the prior written consent from Nagravision SA.

DOCUMENT PROPERTIES

Version: 1.0

File Name: Phantom_Security_Review_v1.docx

Publication Date: 07 May 2021

Confidentiality Level: For Public Release

Document Owner: Scott Carlson

Document Recipient: Phantom Project

Document Status: Approved

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 3 of 33
For Public Release

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 6

1.1 Engagement Limitations .. 6

1.2 Engagement Analysis .. 6
1.3 Observations .. 7

1.4 General observations ... 8
1.5 Issue Summary List ... 9

2. METHODOLOGY .. 10

2.1 Kickoff .. 10
2.2 Ramp-up .. 10

2.3 Review ... 10

2.4 Reporting ... 11
2.5 Verify .. 12

2.6 Additional Note .. 12
3. TECHNICAL DETAILS .. 13

3.1 Public key saved in local storage ... 13

3.2 Type any instead of string on validation .. 15
3.3 Remove console log .. 16

3.4 Potential functionality description in TODOs ... 20
3.5 Code duplication .. 22

3.6 Libraries with known vulnerabilities ... 23

4. OTHER OBSERVATIONS ... 26
4.1 Avoid eslint disable .. 26

4.2 Unnecessary comment .. 26
4.3 Create a constant .. 27

4.4 Multiple initializations of the Sentry environment ... 27

4.5 Deprecated .. 28
4.6 Hardcoded public key .. 28

4.7 Unnecessary declaration ... 28
4.8 Validation of amount .. 29

4.9 Extract global constant .. 29

APPENDIX A: ABOUT KUDELSKI SECURITY ... 31

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 4 of 33
For Public Release

APPENDIX B: DOCUMENT HISTORY ... 32

APPENDIX C: SEVERITY RATING DEFINITIONS ... 33

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 5 of 33
For Public Release

TABLE OF FIGURES

Figure 1 Issue Severity Distribution ... 7

Figure 2 Methodology Flow ... 10

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 6 of 33
For Public Release

EXECUTIVE SUMMARY

Kudelski Security (“Kudelski”), the cybersecurity division of the Kudelski Group, was engaged
by Phantom to conduct an external security assessment in the form of a Security Assessment
of the Phantom Wallet application on the Solana blockchain.

The assessment was conducted remotely by the Kudelski Security. The tests took place from
March 15, 2021 to April 16, 2021, and focused on the following objectives:

1. To help the Client to better understand its security posture on the external perimeter
and identify risks in its infrastructure, if any is included with the wallet

2. To provide a professional opinion on the maturity, adequacy, and efficiency of the
security measures that are in place both in the wallet itself and on the connected
components

3. To identify potential issues and include improvement recommendations based on the
result of our tests

This report summarizes the tests performed and findings in terms of strengths and
weaknesses. It also contains detailed descriptions of the discovered vulnerabilities, steps the
Kudelski Security Teams took to exploit each vulnerability, and recommendations for
remediation.

1.1 Engagement Limitations
The architecture and code review are based on the documentation and code provided by
Phantom. The code resides in a private repository at https://github.com/phantom-
labs/phantom-wallet.

The reviews are based on the commit hash:

phantom-wallet: 008d3d47b9c4a88ff501f31854f2bd52165a2240

All third-party libraries were deemed out-of-scope for this review and are expected to work as
designed. We have when needed based on the criticality of the dependency looked at the
current state of the third-party libraries included.

1.2 Engagement Analysis
This engagement was comprised of a code review including reviewing how the architecture
has been implemented as well as any security issues. The architecture implementation review
was based on the documentation and the information retrieved through communication
between the Epsilon team and the Kudelski Security team. The implementation review
concluded that the team and code are mature, with no serious remaining issues.

The code review was conducted by the Kudelski Security team on the code provided by
Epsilon, in the form of a Github repository. The code review focused on the handling of secure
and private information handling in the code.

As a result of our work, we identified 0 High, 1 Medium, 13 Low, and 23 Informational
findings.

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 7 of 33
For Public Release

The only issues found in the code were either LOW or INFORMATIONAL findings. This shows
that the functional level of the application is good and that the risk profile of the application is
low. The Medium finding is related to the risk on the local machine on which the wallet resides.

The findings referred to in the Findings section are such as they would improve the
functionality and performance of the application and secure it further.

There is also a list of audited packages and dependencies at the end of the report that should
be handled swiftly. As these are 3rd party libraries, we have not reviewed them apart from
scanning them for known errors and/or vulnerabilities.

Figure 1 Issue Severity Distribution

1.3 Observations

0

1

2

3

4

5

6

High Medium Low Informational

Issue Severity Distribution

High Medium Low Informational

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 8 of 33
For Public Release

1.4 General observations
The code base is written in relatively consistent style with some exceptions. The component
structure should be improved as currently most of the components are in the same folder and
the generally recommended practice is to separate different components in folders putting the
related components in the same folder in individual files. Files with multiple component exports
should be separated so that each file exports a single component.

Multiple files export resources that are not used anywhere. Reduce the export statements to
the necessary amount of functionality and types to safeguard potential attack surface area.

When using environment variables, it is recommended to add declarations for NodeJS
ProecessEnv. Consider adding the following to src/globals.d.ts

declare namespace NodeJS {

 export interface ProcessEnv {

 NODE_ENV: string;

 POSTHOG_KEY: string;

 GIT_SHA: string;

 }

}

Console logging of errors and other information should be avoided and replaced with
information sent to the logging framework used in the solution (Sentry). Console log must not
be used in production as it could display potentially sensitive information. All error handling
should be done internally, and appropriate messages should be displayed to the users when
necessary. A list of the log code snippets is provided in the findings section.

It is recommended to use type import/export when possible, to improve performance and
security. “import type only imports declarations to be used for type annotations and
declarations. It always gets fully erased, so there’s no remnant of it at runtime. Similarly,
export type only provides an export that can be used for type contexts and is also erased from
TypeScript’s output.” Type-Only Imports and Export

There are multiple TODOs in the code with variable importance and impact. It is critical to
evaluate and implement the appropriate functionality for the more impactful notes and properly
describe the less critical issues as separate tasks to be planned as part of the future
development of the code. TODOs in the production code could lead to potential exploits and
vulnerabilities providing internal information for the workings of the solution to malicious
parties. List of the individual TODOs will follow in the list of individual findings <reference>.

For readability it is recommend adding a new line between variable declarations, function
declarations and functionality.

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 9 of 33
For Public Release

1.5 Issue Summary List

ID SEVERITY FINDING

KS-PHANTOM-01 Medium Public key saved in local storage

KS-PHANTOM-02 Low Type any instead of string on validation

KS-PHANTOM-03 Low Remove console log

KS-PHANTOM-04 Low Potential functionality description in TODO

KS-PHANTOM-05 Low Code duplication

KS-PHANTOM-06 Low Libraries with known weaknesses

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 10 of 33
For Public Release

2. METHODOLOGY

Kudelski Security uses the following high-level methodology when approaching engagements.
They are broken up into the following phases.

Figure 2 Methodology Flow

2.1 Kickoff
The project is kicked off when the sales process has concluded. We typically set up a kickoff
meeting where project stakeholders are gathered to discuss the project as well as the
responsibilities of participants. During this meeting we verify the scope of the engagement and
discuss the project activities. It is an opportunity for both sides to ask questions and get to
know each other. By the end of the kickoff there is an understanding of the following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artifacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

2.2 Ramp-up
Ramp-up consists of the activities necessary to gain proficiency on the project. This can
include the steps needed for familiarity with the codebase or technological innovation utilized.
This may include, but is not limited to:

• Reviewing previous work in the area including academic papers

• Reviewing programming language constructs for specific languages

• Researching common flaws and recent technological advancements

2.3 Review
The review phase is where most of the work on the engagement is completed. This is the
phase where we analyze the project for flaws and issues that impact the security posture.
Depending on the project this may include an analysis of the architecture, a review of the code,
and a specification matching to match the architecture to the implemented code.

In this code audit, we performed the following tasks:

1. Security analysis and architecture review

2. Review of the code written for the project.

Kickoff Ramp-up Review Report Verify

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 11 of 33
For Public Release

3. Compliance of the code with the provided technical documentation.

The review for this project was performed using manual methods and tools, utilizing the
experience of the reviewer. No dynamic testing was performed, only the use of custom-built
scripts and tools were used to assist the reviewer during the testing. We discuss our
methodology in more detail in the following sections.

Code Safety

We analyzed the provided code, checking for issues related to the following categories:

• General code safety and susceptibility to known issues
• Poor coding practices and unsafe behavior
• Leakage of secrets or other sensitive data through memory mismanagement
• Susceptibility to misuse and system errors
• Error management and logging

This list is general list and not comprehensive, meant only to give an understanding of the
issues we are looking for.

Cryptography

We analyzed the cryptographic primitives and components as well as their implementation.
We checked in particular:

• Matching of the proper cryptographic primitives to the desired cryptographic
functionality needed

• Security level of cryptographic primitives and their respective parameters (key lengths,
etc.)

• Safety of the randomness generation in general as well as in the case of failure
• Safety of key management
• Assessment of proper security definitions and compliance to use cases
• Checking for known vulnerabilities in the primitives used

Technical Specification Matching

We analyzed the provided documentation and checked that the code matches the
specification. We checked for things such as:

• Proper implementation of the documented protocol phases
• Proper error handling
• Adherence to the protocol logical description

2.4 Reporting
Kudelski Security delivers a preliminary report in PDF format that contains an executive
summary, technical details, and observations about the project.

The executive summary contains an overview of the engagement including the number of
findings as well as a statement about our general risk assessment of the project as a whole.

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 12 of 33
For Public Release

We may conclude that the overall risk is low but depending on what was assessed we may
conclude that more scrutiny of the project is needed.

We not only report security issues identified but also informational findings for improvement
categorized into several buckets:

• High

• Medium

• Low

• Informational

The technical details are aimed more at developers, describing the issues, the severity ranking
and recommendations for mitigation.

As we perform the audit, we may identify issues that aren’t security related, but are general
best practices and steps, that can be taken to lower the attack surface of the project. We will
call those out as we encounter them and as time permits.

As an optional step, we can agree on the creation of a public report that can be shared and
distributed with a larger audience.

2.5 Verify
After the preliminary findings have been delivered, this could be in the form of the approved
communication channel or delivery of the draft report, we will verify any fixes withing a window
of time specified in the project. After the fixes have been verified, we will change the status of
the finding in the report from open to remediated.

The output of this phase will be a final report with any mitigated findings noted.

2.6 Additional Note
It is important to note that, although we did our best in our analysis, no code audit or
assessment is a guarantee of the absence of flaws. Our effort was constrained by resource
and time limits along with the scope of the agreement.

While assessment the severity of the findings, we considered the impact, ease of exploitability,
and the probability of attack. These is a solid baseline for severity determination. Information
about the severity ratings can be found in Appendix C of this document.

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 13 of 33
For Public Release

3. TECHNICAL DETAILS

This section contains the technical details of our findings as well as recommendations for
improvement.

3.1 Public key saved in local storage
Finding ID: KS-PHANTOM-01

Severity: Medium

Status: Risk Accepted

Description

Tampering risk while reading persistence.

Proof of Issue

Filename: src/app/contexts/accounts.tsx

Storing of account information and index in the local storage

Row Code
45
46
47
48
49
50
51
52
53
54
55

export const AccountsProvider: React.FC = ({ children }) => {
 const [selectedAccountIndex, isLoadingSelectedAccountIndex,
setSelectedAccountIndexStorage] = useStorage<number>(
 StorageKeys.SelectedAccountIndex,
 0,
);
 const [accountMetas, isLoadingAccountMetas, setAccountMetas] =
useStorage<AccountMeta[]>(
 StorageKeys.AccountMetas,
 [],
);

Filename: src/app/contexts/accounts.tsx

Initialization of the component with the stored account meta index and array of account metas

Row Code
202
203
204
205
206
207
208
209
210
211
212

return (
 <AccountsContext.Provider
 value={{
 selectedAccountClient,
 selectedAccountIndex,
 accountMetas,
 setSelectedAccountIndex,
 addSeedAccount,
 addPrivateKeyAccount,
 setAccountMetas,
 setSelectedAccountName,

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 14 of 33
For Public Release

213
214
215
216
217
128

 removeSelectedAccount,
 }}
 >
 {children}
 </AccountsContext.Provider>
);

Loading of the selected account in the send funds popup modal

Filename: src/app/components/deposit_asset.tsx

Row Code
79
…
131
132
133
134
135
136

const { accountMeta, accountClient } = useSelectedAccount();
…
<AddressContainer>
 <AccountContainer>
 <Account {...accountMeta} showParens={true} />
 </AccountContainer>
 <Copy copyText={accountMeta.publicKey.toString() ?? ""} />
</AddressContainer>

Severity and Impact Summary

Wallet address/public key is persisted in local storage, and it’s read while interacting with the
application. The wallet address is available in storage even while the wallet is locked. This
makes it possible for a malicious user to replace the wallet address. This is particularly
dangerous while coping the address from the deposit UI. The user will have it difficult to notice
that its address has been tampered with and will use that address for SOL transfers resulting
in the loss of its SOL.

In general, this is a problem with many local wallet applications on local machines, making it
very important to consider compensating controls within the wallet that expose tampering.

Recommendation

The users public key should be validated every time is retrieved from local storage to make
sure it hasn’t been tampered with. This can be done by generating the public key from the
user’s private key and match it with the one in local storage. If there is a mismatch, displaying
a message or failing so that the user must take action with the mismatch.

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 15 of 33
For Public Release

3.2 Type any instead of string on validation
Finding ID: KS-PHANTOM-02

Severity: Low

Status: Open

Description

Validation of privateKey was any instead of string when passed to a decodeSecretKey which
was expecting string parameter.

Directly displaying a technical error message to the user instead of user friednly information
makes it difficult for the user to understand what is wrong with the validation.

Proof of Issue

Filename: src/app/components/add_account/import_account.tsx

Row Code
100
101
102
103
104
105
106
107

validate: (privateKey: any) => {
 try {
 decodeSecretKey(privateKey);
 return true;
 } catch (err) {
 return err.message;
 }
},

Severity and Impact Summary

If the passed privateKey is made to be something else than the expected String, the called
function could be made to not validate the key as a valid key.

If the error message contains any private data that has been passed on to the function, this
could be used as a way of information gathering for a more sophisticated attack.

Recommendation

Change the validation type to string and create a way to handle the error is such a way that it
is useful for the application. An example could be to provide GUI guidance based on the error
to the user.

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 16 of 33
For Public Release

3.3 Remove console log
Finding ID: KS-PHANTOM-03

Severity: Low

Status: Open

Description

Possible private information disclosure when using the console logging facility.

Proof of Issue

Filename: src/common/account_client/parse_instructions.ts

Row Code
90
91
92
…
135
136
137

} catch (err) {
 console.error(err);
}
…
} catch (e) {
 console.error("Error loading market: " + e.message);
}

Filename: src/app/onboarding.tsx

Row Code
164
165
166
…
390
391
392

} catch (err) {
 console.error(err);
}
…
} else {
 console.error(err);
}

Filename: src/background/content_script_connection_controller.ts
Row Code
65
66
67

if (err) {
 console.error(err);
}

Filename: src/app/components/change_lock_timer.tsx

Row Code
58
59
60

} catch (err) {
 console.error(err);
}

Filename: src/app/components/change_password.tsx
Row Code
54
55
56

} catch (err) {
 console.error(err);
 if (err.message && err.message.includes("Incorrect password")) {

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 17 of 33
For Public Release

Filename: src/app/components/deposit_asset.tsx
Row Code
92
93
94
95
96
97
98
…
107
108
109
110

} catch (err) {
 analytics.capture("tokenAccountCreateFailure", { asset });
 console.error(err);
 if (accountMeta.type === AccountType.Ledger) {
 onClose();
 }
}
…
} catch (err) {
 analytics.capture("tokenAccountCreateFailure", { asset });
 console.error(err);
}

Filename: src/app/components/export_secret.tsx

Row Code
98
99
100

} catch (err) {
 console.error(err);
 if (err.message && err.message.includes("Incorrect password")) {

Filename: src/app/components/unlock.tsx
Row Code
66
67
68

} catch (err) {
 console.error(err);
 if (err.message && err.message.includes("Incorrect password")) {

Filename: src/content_script/content_script.ts

Row Code
113
114
115
…
124
125

126
127
128
129
130

} catch (e) {
 console.error("PHANTOM: injection failed.", e);
}
…
function logStreamDisconnectWarning(remoteLabel: string, err?: Error) {
 let warningMsg = `PhantomContentscript - lost connection to
${remoteLabel}`;
 if (err) {
 warningMsg += `\n${err.stack}`;
 }
 console.warn(warningMsg);
}

Filename: src/content_script/rpc_inpage_provider.ts

Row Code
77
78
79
80
81
82
83

private _handleStreamDisconnect = (err?: Error) => {
 let warningMsg = `PhantomInpage - Lost connection to contentscript.`;
 if (err && err.stack) {
 warningMsg += `\n${err.stack}`;
 }
 console.warn(warningMsg);
};

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 18 of 33
For Public Release

Filename: src/app/contexts/accounts.tsx
Row Code
160
161
162
163

} catch (err) {
 console.error(err);
 addSeedAccount();
}

Filename: src/app/contexts/assets.tsx
Row Code
99
100
101
…
126
127
128
…
144
145
146

} catch (err) {
 console.error(err);
}
…
} catch (err) {
 console.error(err);
} finally {
…
} catch (err) {
 console.error(err);
} finally {

Filename: src/app/contexts/blockchain.tsx

Row Code
30
31
32

} catch (err) {
 console.error(err);
}

Filename: src/app/hooks/useStorage.ts

Row Code
24
25
26
…
37
38
39

} catch (err) {
 console.error(err);
} finally {
…
} catch (err) {
 console.error(err);
}

Filename: src/app/components/send_asset/send_confirmation.tsx
Row Code
119
120
121
122
123
124
…
158
159
160
161
162
163

} catch (err) {
 console.error(err);
 analytics.capture("sendAssetFailure", { asset });
 setSendTransferError(err);
 setStep(SendConfirmationStep.Confirmed);
} finally {
…
} catch (err) {
 console.error(err);
 analytics.capture("sendAssetFailure", { asset });
 setSendTransferError(err);
 setStep(SendConfirmationStep.Confirmed);
}

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 19 of 33
For Public Release

Filename: src/common/utils/analytics.ts

Row Code
128
129
130
131

capture: (event: AnalyticsEvent, payload?: AnalyticsPayload) => {
 // TODO(fragosti): Add debug levels.
 console.log("ANALYTICS:", event, parsePayload(payload));
},

Filename: src/common/utils/middleware.ts

Row Code
16
17
18
19
20
21
…
37
38
39
40
41

const { error } = res;
if (!error) {
 return done();
}
console.error(`Phantom - RPC Error: ${error.message}`, error);
return done();
…
if (res.error) {
 console.error("Error in RPC response:\n", res);
}
console.info(`RPC (${origin}):`, req, "->", res);
cb();

Filename: src/common/utils/storage_utils.ts

Row Code
65
66
67
68
69
70
71

} catch (err) {
 console.error(err);
 // Better to unset than to have it potentially be set forever.
 removeExtensionStorageValue(key);
 reject(err);
 return;
}

Severity and Impact Summary

By using the console logging facility, there is a real threat of private information leaks to parts
of the browser and therefore also to unsecure parts. As the logging also only is visible locally
there is no use when going in production as the developer have no visibility.

Recommendation

Logging on the client side may expose information that should be kept secure. If any error
information should be communicated to the user, it should be displayed as proper
error/warning messages not in console log. Console log should be removed and replaced with
Sentry logging for errors and messages that need to be looked over and there is no risk for
information disclosure.

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 20 of 33
For Public Release

3.4 Potential functionality description in TODOs
Finding ID: KS-PHANTOM-04

Severity: Low

Status: Open

Description

Multiple TODOs describing desired implementation logic and bug fixes should be transferred
to tasks or tickets for the development team to plan and implement according to their priorities.

Proof of Issue

Filename: src/common/account_client/index.ts

Row Code
91

…
150

…
186

…
293

// TODO(bmillman): when source is public key, be "smart" and reroute
instead of throwing
…
// TODO(bmillman): potentially move `additionalSignerAccounts` to be
returned by `initializeTokenAccount`
…
// TODO(bmillman): open up a PR against @solana/web3.js to add `until` as
an option for the getConfirmedSignaturesForAddress2 JSON RPC request
…
// TODO(bmillman): potentially move `additionalSignerAccounts` to be
returned by `mintToken`

Filename: src/background/background.ts

Row Code
38
39

// TODO(bmillman): figure out if we need to retain references to these
new ContentScriptConnectionController(remotePort, url, tabId);

Filename: src/app/components/asset_detail.tsx

Row Code
47 // TODO(bmillman): fix a bug where SOL tx history is equivalent to all

recent tx history

Filename: src/common/utils/solana_utils.ts

Row Code
115
116

// TODO: fix
throw new Error();

Filename: src/app/components/asset_detail.tsx

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 21 of 33
For Public Release

Row Code
47 // TODO(bmillman): fix a bug where SOL tx history is equivalent to all

recent tx history

Filename: src/app/contexts/transaction_history.tsx

Row Code
98 // TODO(bmillman): small edge case here, if there have been more than

100 txs in the last 10s, we may lose some history

Filename: src/app/components/ledger_action.tsx

Row Code
65
66
67
68
69
70

if (ledgerTransportState === LedgerTransportState.Connected) {
 // TODO(bmillman): handle error here
 if (transport) {
 ledgerAction(transport);
 }
}

Filename: src/app/contexts/background_connection.tsx

Row Code
30 // TODO(bmillman): add some hardening here to make sure we only get

messages we can handle

Filename: src/app/contexts/hardware_wallet.tsx

Row Code
63
64
65

// TODO(bmillman): do we need this delay?
await delayAsync(1500);
// TODO(bmillman): fix typing

Severity and Impact Summary

Describing missing logic could be used as a part of a sophisticated attack where missing
functionality could be used to crash or extract information from the application.

Recommendation

Move the comments about missing logic to the task management system to be tracked and
prioritized.

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 22 of 33
For Public Release

3.5 Code duplication
Finding ID: KS-PHANTOM-05

Severity: Low

Status: Open

Description

Duplication of the same code in the same file. Both methods are returning a promise which
results in async execution regardless of the definition.

Proof of Issue

Filename: src/common/utils/promise_utils.ts

Row Code
2
…
17

return new Promise(resolve => setTimeout(resolve, ms));
…
return new Promise(resolve => setTimeout(resolve, delayMs));

Severity and Impact Summary

Duplicated code is used as a code maturity metric in the industry to point out how maintainable
the code base is. It is also a possible entrypoint for new bugs as code duplication leads to
mistakes when updating/rewriting the codebase.

Recommendation

Replace the duplicated code with functions to provide the necessary functionality.

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 23 of 33
For Public Release

3.6 Libraries with known vulnerabilities
Finding ID: KS-PHANTOM-06

Severity: Low

Description

The result of a security audit of the 3rd party libraries used by the Phantom Wallet Application
is the following. It could be good to note that there are some dependencies that needs to be
updated to get the latest code with as many bug fixes as possible included.

Proof of Issue

=== npm audit security report ===
Run
npm update immer --depth 1

to resolve 1 vulnerability

High Prototype Pollution

Package immer

Dependency of immer

Path immer

More info https://npmjs.com/advisories/1603

Run
npm update elliptic --depth 6

to resolve 7 vulnerabilities

Moderate Use of a Broken or Risky Cryptographic Algorithm

Package elliptic

Dependency of @project-serum/serum

Path @project-serum/serum > @solana/web3.js > secp256k1 > elliptic

More info https://npmjs.com/advisories/1648

Moderate Use of a Broken or Risky Cryptographic Algorithm

Package elliptic

Dependency of @solana/web3.js

Path @solana/web3.js > secp256k1 > elliptic

More info https://npmjs.com/advisories/1648

Moderate Use of a Broken or Risky Cryptographic Algorithm

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 24 of 33
For Public Release

Package elliptic

Dependency of bip32

Path bip32 > tiny-secp256k1 > elliptic

More info https://npmjs.com/advisories/1648

Moderate Use of a Broken or Risky Cryptographic Algorithm

Package elliptic

Dependency of parcel-bundler [dev]

Path parcel-bundler > node-libs-browser > crypto-browserify > browserify-sign
> elliptic

More info https://npmjs.com/advisories/1648

Moderate Use of a Broken or Risky Cryptographic Algorithm

Package elliptic

Dependency of parcel-plugin-git-sha [dev]

Path parcel-plugin-git-sha > parcel-bundler > node-libs-browser >

crypto-browserify > browserify-sign > elliptic

More info https://npmjs.com/advisories/1648

Moderate Use of a Broken or Risky Cryptographic Algorithm

Package elliptic

Dependency of parcel-bundler [dev]

Path parcel-bundler > node-libs-browser > crypto-browserify >

create-ecdh > elliptic

More info https://npmjs.com/advisories/1648

Moderate Use of a Broken or Risky Cryptographic Algorithm

Package elliptic

Dependency of parcel-plugin-git-sha [dev]

Path

parcel-plugin-git-sha > parcel-bundler > node-libs-browser > crypto-
browserify > create-ecdh > elliptic

More info https://npmjs.com/advisories/1648

Manual Review

Some vulnerabilities require your attention to resolve
Visit https://go.npm.me/audit-guide for additional guidance

High Prototype Pollution in node-forge

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 25 of 33
For Public Release

Package node-forge

Patched in >= 0.10.0

Dependency of parcel-bundler [dev]

Path parcel-bundler > node-forge

More info https://npmjs.com/advisories/1561

High Prototype Pollution in node-forge

Package node-forge

Patched in >= 0.10.0

Dependency of parcel-plugin-git-sha [dev]

Path parcel-plugin-git-sha > parcel-bundler > node-forge

More info https://npmjs.com/advisories/1561

found 10 vulnerabilities (7 moderate, 3 high) in 1291 scanned packages

run `npm audit fix` to fix 8 of them.
2 vulnerabilities require manual review. See the full report for details.

Recommendation

Go through the list of findings and update the outdated versions. After this has been done, this
actions should be included in the CI/CD scripts for automated build management of the code.

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 26 of 33
For Public Release

4. OTHER OBSERVATIONS

4.1 Avoid eslint disable
Finding ID: KS-PHANTOM-26

Severity: Informational

Description

No need for eslint-disable-next-line.

Proof of Issue

Filename: src/common/utils/ledger_utils.ts

Row Code
67 // eslint-disable-next-line

Filename: src/app/onboarding.tsx

Row Code
256 // eslint-disable-next-line @typescript-eslint/no-unused-vars

Recommendation

Avoid disabling eslint/tslint.

4.2 Unnecessary comment
Finding ID: KS-PHANTOM-27

Severity: Informational

Description

The referenced issue is already fixed.

Proof of Issue

Filename: src/common/utils/wallet_provider_utils.ts

Row Code
76 // @FIXME: https://github.com/project-serum/spl-token-

wallet/issues/59

Recommendation

Remove the comment

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 27 of 33
For Public Release

4.3 Create a constant
Finding ID: KS-PHANTOM-29

Severity: Informational

Description

Export global constant in src/common/constants to be reused.

Proof of Issue

Filename: src/app/contexts/assets.tsx

Row Code
49 const SOLANA_ID = "solana";

4.4 Multiple initializations of the Sentry environment
Finding ID: KS-PHANTOM-30

Severity: Informational

Description

The initialization could be already done by onboarding.tsx, connect_hardware.tsx or popup.tsx

Proof of Issue

Filename: src/app/notification.tsx

Row Code
22 initSentry();

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 28 of 33
For Public Release

4.5 Deprecated
Finding ID: KS-PHANTOM-31

Severity: Informational

Description

The call is deprecated. Replace with the appropriate new version.

Proof of Issue

Filename: src/common/account_client/index.ts

Row Code
234 transaction.setSigners(

4.6 Hardcoded public key
Finding ID: KS-PHANTOM-32

Severity: Informational

Description

Public key is hardcoded here. It appears to be invalid and should perhaps be removed. If this
key is used, it seems like a weak occurrence.

Proof of Issue

Filename: src/common/account_client/instructions/createAssociatedTokenAccount.ts

Row Code
10 const systemProgramId = new

PublicKey("11111111111111111111111111111111");

4.7 Unnecessary declaration
Finding ID: KS-PHANTOM-33

Severity: Informational

Description

Unnecessary declaration and usage of type any. Use single => instead.

Proof of Issue

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 29 of 33
For Public Release

Filename: src/app/components/notification/application_approval.tsx

Row Code
73
74
75
…
89

const handleCheckboxChange = (event: any) => {
 setAutoApprove(event.target.checked);
};
...
 <Checkbox checked={autoApprove} onChange={handleCheckboxChange} />

Recommendation

Replace with this snippet

Row Code
89 <Checkbox checked={autoApprove} onChange={e =>

setAutoApprove(e.target.checked)} />

4.8 Validation of amount
Finding ID: KS-PHANTOM-34

Severity: Informational

Description

Replace any with string. Unclear behavior when the parse fails and when the amount is
higher. This could lead to problems and unexpected results when validating the amount.

Proof of Issue

Filename: src/app/components/send_asset/send_form.tsx

Row Code
149
150
151

validate: (amount: any) => {
 return parseFloat(amount) <= selectedAssetBalance;
},

4.9 Extract global constant
Finding ID: KS-PHANTOM-35

Severity: Informational

Description

Duplicate declaration of constant should be included in a global list of constants.

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 30 of 33
For Public Release

Proof of Issue

Filename: src/app/components/notification/connect_request.tsx

Row Code

14 const DEFAULT_TRUSTED_APPLICATIONS: TrustedApplications = {};

Filename: src/app/components/notification/sign_transaction_request.tsx

Row Code

24 const DEFAULT_TRUSTED_APPLICATIONS: TrustedApplications = {};

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 31 of 33
For Public Release

APPENDIX A: ABOUT KUDELSKI SECURITY

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and media
security solutions to enterprises and public sector institutions. Our team of security experts
delivers end-to-end consulting, technology, managed services, and threat intelligence to help
organizations build and run successful security programs. Our global reach and cyber
solutions focus is reinforced by key international partnerships.

Kudelski Security is a division of Kudelski Group. For more information, please visit
https://www.kudelskisecurity.com.

Kudelski Security

route de Genève, 22-24

1033 Cheseaux-sur-Lausanne

Switzerland

Kudelski Security

5090 North 40th Street

Suite 450

Phoenix, Arizona 85018

This report and its content is copyright (c) Nagravision SA, all rights reserved.

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 32 of 33
For Public Release

APPENDIX B: DOCUMENT HISTORY

VERSION STATUS DATE AUTHOR COMMENTS

0.1 Draft 22 April 2021 Krum Valkov First Draft

0.2 Draft 5 May 2021 Ken Toler Second Draft

1.0 Final 7 May 2021 Scott Carlson Final Draft

REVIEWER POSITION DATE VERSION COMMENTS

Mikael Björn Tech Lead 23 April 2021 0.1 Draft Internal QA

 Select the Date

 Select the Date

APPROVER POSITION DATE VERSION COMMENTS

 Select the Date

 Select the Date

 Select the Date

Phantom | Phantom Security Assessment
07 May 2021

© 2021 Nagravision SA / All Rights Reserved Page 33 of 33
For Public Release

APPENDIX C: SEVERITY RATING DEFINITIONS

Kudelski Security uses a custom approach when determining criticality of identified issues.
This is meant to be simple and fast, providing customers with a quick at a glance view of the
risk an issue poses to the system. As with anything risk related, these findings are situational.
We consider multiple factors when assigning a severity level to an identified vulnerability. A
few of these include:

• Impact of exploitation

• Ease of exploitation

• Likelihood of attack

• Exposure of attack surface

• Number of instances of identified vulnerability

• Availability of tools and exploits

SEVERITY DEFINITION

High The identified issue may be directly exploitable causing an immediate
negative impact on the users, data, and availability of the system for
multiple users.

Medium The identified issue is not directly exploitable but combined with other
vulnerabilities may allow for exploitation of the system or exploitation
may affect singular users. These findings may also increase in severity
in the future as techniques evolve.

Low The identified issue is not directly exploitable but raises the attack
surface of the system. This may be through leaking information that an
attacker can use to increase the accuracy of their attacks.

Informational Informational findings are best practice steps that can be used to harden
the application and improve processes.

