THE PHYSICS OF BRASSES

A trumpet produces musical tones when the vibrations of the player’s

lips interact with standing waves In the instrument. These waves are

generated when acoustic energy is sent back by the instrument’s bell

ments make the sounds they do.
When the strings are struck or
plucked, they vibrate at different natural
frequencies in accordance with their ten-
sion and their diameter. The energy of
vibration is then transferred to the air
by way of a vibrating plate of wood and
a resonating air chamber, with the sound
eventually dying away. The musician
can vary the pitch, or frequency, of in-
dividual strings by changing their vi-
brating length with the pressure of his
fingers on the frets or the fingerboard.
The principles underlying the acous-
tics of bowed-string instruments such as
the violin or wind instruments such as
the oboe are a good deal less obvious.
Here a vibration is maintained by a feed-
back mechanism that converts a steady
motion of the bow, or a steady applica-
tion of blowing pressure, into an oscil-
latory acoustical disturbance that we
can hear. On the violin and in the oboe
different tones are produced by altering
the effective length of the string or the
air column.
Like the oboe and other woodwinds,
the brass instruments can produce sus-

tained tones. The question arises, how-
ever, of how a bugle, which is hardly
more than a loop of brass tubing with a
mouthpiece at one end and a flaring bell
at the other, can produce a dozen or
more distinet notes. Homs were fash-
ioned and played for centuries before
physicists were able to work out good
explanations of how they worked, even
though scientific attention has been di-
rected to these questions from the
earliest days. For centuries the skilled
craftsman has usually been able to
identify what is wrong with faulty in-
struments and to fix them without re-
course to sophisticated knowledge of
horn acoustics.

It is easy to grasp why stringed instru-
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All brass instruments consist of a
mouthpiece (which has a cup and a
tapered back bore), a mouthpipe {(which
also has a carefully controlled taper), a
main bore (which is either cylindrical or
conical) and a flaring bell that forms the
exit from the interior of the horn into the
space around the instrument. Brass in-
struments are of two main . Those
in one family, which includes the trum-
pet, the trombone and the French horn,
have a considerable length of cylindrical
tubing in the middle section and an ab-
ruptly flaring bell. Those in the other
family, called conical, include the fliigel-
horn, the alto horn, the baritone horn
and the tuba. The generic term conical
refers to the fact that much of the tubing
increases in diameter from the mouth-
piece to the bell and the flare of the bell
is itself less pronounced than it is in the
first family. Actually all the horns called
conical incorporate a certain amount of
cylindrical tubing in their midsection.
Here I shall deal primarily with the
properties of instruments in the trumpet
and trombone family. The properties of
the conical instruments are very similar
except for being somewhat simpler
acoustically because overall they have
much less flare.

he acoustical study of waves in an

air column whose cross section varies
along its length (2 “horn”) goes back to
the middle of the 18th century. Daniel
Bernoulli, Leonhard Euler and Joseph
Louis Lagrange were the first to discuss
the equations for waves in such horns
during the decade following 1760. Their
activity was a part of the immensely
rapid blossoming of theoretical physics
that took place in the years after the
laws of motion had been formulated
by Newton and Leibniz. Theoretical in-
vestigations of fluid dynamics, acoustics,
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heat flow and the mechanics of solid
objects took their inspiration from the
workaday world outside the laboratory
and the mathematician’s study. The work
of Bernoulli Euler and Lagrange on
horns (and their similar researches on
strings) did not have much influence in
the long run on the science of acoustics
or the art of music. It was nonetheless
a part of the initial blooming of the the-
ory of partial differential equations un-
derlying nearly all physics.

The “horn equation,” as we call it to-
day, was neglected until 1838, when
George Green rediscovered it while in-
vestigating the erosion caused by waves
in the new canal systems of England.
Then the equation was buried again until
1876, when a German mathematician,
L. Pochhammer, independently derived
it for waves in a column of air and
learned the properties of its most im-
portant solutions. Neither Pochhammer
nor his equation was long remembered.
Finally in 1919 an American physicist,
A. G. Webster, published a report on the
horn equation, with the result that the
equation is commonly named for him.

Since Webster’s time interest in loud-
speakers on the part of the phonograph
and radio industries, to say nothing of
military demands for sonar gear to detect
submarines, has kept the subject of horn
acoustics in a lively state. A loudspeaker
horn must be designed to radiate sound
efficiently out into the air over a broad
range of frequencies from a small source.
A horn designed to serve as a musical
instrument has quite different require-
ments. In a musical horn the flare of the
bell must be designed to trap energy in-
side the horn, giving strongly marked
standing waves at precisely defined fre-
quencies.

It is obvious that as a wave travels into

the enlarging part of a hom its pressure



will decrease systematically, simply be-
cause the sound energy is being spread
over an ever wider front. If one extracts
this intuitively obvious part of the be-
havior of a wave in a horn from the
mathematics of the horn equation, one
is left with a much simpler equation that
is identical in form with the celebrat-
ed Schrodinger equation of quantum

mechanics. The Schrodinger equation
shows that a particle of energy E has as-
sociated with it a de Broglie wavelength
lambda (A) that depends on the square
root of the difference between the en-
ergy and the potential energy function
V at any point in space. The “reduced,”
or simplified, form of the horn equation
shows similarly that at any point in the

horn the acoustic wavelength depends
on the square root of the difference be-
tween the squared frequency and a
“horn function” U that depends in a
rather simple way on the nature of the
horn flare [see top illustration on next
pagel.

It is not difficult to show from the horn

equation that sounds propagate with dif-
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RESONANCE PEAKS OF A TRUMPETLIKE INSTRUMENT can
be plotted (top) in terms of the impedance measured at the mouth-
piece. Impedance is defined as the ratio of the pressure set up in
the mouthpiece to the excitatory flow that gives rise to it. The im-
pedance depends on whether the sound wave reflected from the bell
of the horn returns in step or out of step with the oscillatory pres-
sure wave produced in the mouthpiece. The shape of the air column
in the trumpetlike instrument is shown at the extreme left of the
bottom part of the diagram. The curves at the right are the stand-
ing-wave patterns that exist in the air column of the instrument at

frequencies that produce the maxima and minima in the impedance
curve. The first maximum is at about 100 hertz (cycles per second),
when the reflected wave is precisely in step with the entering wave.
The small irregularities in the standing-wave pattern are produced
by the abrupt changes in the cross section of the instrument. The
first minimum comes just above 125 hertz, where the returning
wave and the incoming wave are exactly out of step with each other
in the mouthpiece of the instrument. The subsequent maxima and
minima are similarly explained. The ber of des in the
standing-wave pattern increases by one at each impedance peak.
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GEOMETRY OF HORN FLARE largely governs the pitch and timbre of sounds produced
by horns of the trumpet and trombone family. As a sound wave travels into the flaring bell
of the horn its pressure falls steadily as the cross section of the instrament increases. A
“horn function,” U, determines how much of the acoustic energy leaves the horn and how
much is reflected back into the horn to produce standing waves inside the instrument. The
horn function (equation “a”) is approximately equal to 1 over the produet of the internal
radius (R;,;) of the horn and the external radins (R,,;) at any given point. The simplified
form of the horn equation (equation “b”) gives the acoustic wavelength (A) at any point in
the horn, where f is the sound frequency and c is the velocity of sound. This velocity varies
with U and f. The hom equation has the same form as the celebrated Schrodinger eqnation
(¢), which shows how the de Broglie wavelength () of a particle of energy E is related
to Planck’s constant (h) and the potential energy function ¥ at any point in space.

CYLINDRICAL SECTION | L

HORN FUNCTION (1)

TROMBONE BELL AND LOUDSPEAKER HORN are markedly different in geometry and
acoustic properties. The catenoidal shape (black curve at top) of the loudspeaker horn fa-
vors the efficient radiation of sound into the air. The flaring shape (colored curve at top)
of the trombone bell is designed to save energy inside the horn, thus generating strongly
marked standing waves at closely defined frequencies. Both the trombone bell and the lond-
speaker horn are shown attached to a short section of cylindrical pipe. The two curves at
the bottom show the horn function, U, for each hom. The catenoidal horn has a horn func-
tion (colored curve) that is low and nearly constant except for a slight falling off at the large
end, where the sound wave fronts begin to bulge appreciably. The horn function (black
curve) of the trombone bell rises steeply and falls. The higher the value of the fanction U,
the higher the barrier to sounds of low frequency. Sounds of higher frequency are able to
progress farther before they are reflected back by the barrier. In both eases above a certain
frequency most of the sound energy radiates over the top of the barrier, so that the bell of
the trombone loses its musically useful character and behaves like a loudspeaker horn.
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ferent speeds as they travel through re-
gions of differing horn function U. The

speed of propagation also depends on
the frequency. Another similarity be-

tween horn acoustics and quantum me-
chanics is that for frequencies below a
certain critical value determined by the
magnitude of U, the wavelength be-
comes mathematically imaginary, or, to
put it in more physical terms, the wave
changes its character and becomes
strongly attenuated. In other words, re-
gions where the horn function U is large
can form a barrier to the transmission of
waves and can therefore reduce the es-
cape of energy from within a horn to the
outside. The leaking of sound from the
horn through the horn-function barrier is
an exact analogue to the leaking of quan-
tum-mechanical waves (and therefore
particles) through the nuclear potential
barrier in the radioactive decay of the
atomic nucleus.

Let us look more closely at the dif-
ference between a musical horn and a
loudspeaker horn. A simple example of
a musical horn can be constructed by
joining a trombone bell to a piece of
cylindrical pipe. To a similar pipe one
can join a typical loudspeaker bell,
whose figure is described as catenoid.
Even if the bells are matched to have the
same radii at both ends, we find that
their horn functions are quite different
[see bottom illustration at left]. The
catenoidal bell has a2 horn function that
is approximately constant from one end
to the other, whereas the acoustical
properties of the horn function for the
musical horn vary from point to point.

ive years ago Erik V. Jansson of the

Speech Transmission Laboratory of
the Royal Institute of Technology in
Stockholm worked with me at Case
Western Reserve University on a de-
tailed study of air columns similar to
those found in musical horns. In this
work, which was both theoretical and
experimental, we studied bells of the
type found on trumpets, trombones and
French horns. We unearthed a number
of subtle relations between our experi-
ments and calculations that we did not
have time to clarify immediately. It is
only recently that we have had an op-
portunity to prepare complete reports
on our results. In what follows I shall
lean heavily on information gained in
our work five years ago and its later de-
velopment, and on the earlier observa-
tions of many people concerned with
acoustics or making musical horns.

In a brass musical instrument the

small end of the hom is connected to the
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IMPEDANCE-MEASURING APPARATUS uses the driver from a
horn loudspeaker as a pump to feed a flow stimnlus through a capil-
lary into the mon!hplece cup of the insrument under study. A con-
roph ignals to an attenuator to ensure that the
acoustic stunulus entering the capillary remains constant. The pres-

trol mic

player through his lips, which constitute
a kind of automatically controlled valve
for admitting air from the player’s lungs
to the horn. The opening and closing of
the valve is controlled chiefly by the
pressure fluctuations within the mouth-
piece as they act on the lips in concert
with the steady pressure from the lungs.
Therefore an initial objective is to find
the relations between the flow of air into
the horn and the acoustical pressure set
up at the input end.

Let us begin by imagining a labora-
tory experiment in which the horn is ex-
cited not by air from the player’s lips and
lungs but rather by a small oscillatory
flow of air being pumped in and out of
the mouthpiece through a fine capillary
by a high-speed pump. This small oscil-
latory flow disturbance in the mouth-
piece gives rise to a pressure wave that
ultimately reaches the flaring part of the
horn. As the wave travels down the
length of the bore of the horn some of
its energy is dissipated by friction and
the transfer of heat to the walls of the

sure response of the instrument, and thus its input impedance, is
detected by a second microphone that forms the closure of the
mouthpiece 1:|1|)~ The signal from the microphone goes to a fre-

ive voltmet

pled by a chain drive to escillator. A

instrument. In the flaring part of the bell
a substantial fraction of the acoustic
wave is reflected back toward the mouth-
piece while the remainder penetrates the
horn-function barrier and is radiated out
into the surrounding space. The wave
that is reflected back down the bore of
the horn combines with newly injected
waves to produce a standing wave.

If the round-trip time that the wave
takes to go from the mouthpiece to the
bell and back to the mouthpiece is equal
to half the repetition time of the orig-
inal stimulus or to any odd multiple of
the repetition time, a standing wave
of considerable pressure can build up
and result in a large disturbance in the
mouthpiece. At intermediate frequencies
of excitation the return wave tends to
cancel the influence of the injected wave.
In other words, depending on the precise
interaction between the injected wave
and the reflected wave, the pressure dis-
turbance inside the mouthpiece can be
large or small. For purposes of describ-
ing such disturbances in the mouthpiece
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chan recordu- coupled to the volt.meier plots the resonance curves.

under conditions of constant flow ex-
citation in a laboratory apparatus, en-
gineers define a quantity termed input
impedance: the ratio between the pres-
sure amplitude set up in the mouthpiece
and the excitatory flow that gives rise to
it [see illustration on page 251.

The shape of the horn controls the
natural frequencies associated with the
various impedance maxima and minima
by determining the penetration of the
standing waves into the bell. The shape
also controls the amount of wave energy
that leaks out of the horn into the sur-
rounding space. Furthermore, the kinks
in the standing wave that arise from dis-
continuities in cross section and taper
along an air column produce significant
changes in both the resonance and the
radiation properties of the bell. The in-
teraction of the kinks and the primary
shape of the air column can spell the
difference between success and failure
in the design of an instrument.

There are several ways one might
measure the input impedance, or re-
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sponse, of the air column. Conceptually
the simplest method would be to pump
air in and out of the mouthpiece through
a capillary tube at some frequency and
measure the amplitude of the resulting
pressure fluctuations in the mouthpiece
by means of a probe microphone. It is
more practical, however, to use the driv-
er of a commercial horn loudspeaker as
a pump. The motion of the driver is
controlled electronically by an auxiliary
monitor microphone that maintains a
constant strength of oscillatory flow
through the capillary as one sweeps au-
tomatically through the appropriate
range of frequencies. Between 1945 and
1965 Earle L. Kent and his co-workers
at C. G. Conn Ltd. in Elkhart, Ind., de-
veloped this basic technique to a high
degree of dependability. We often em-
ploy a medification of their technique in
our work [sec illustration on preceding
pagel.

In Cleveland we make use of two ad-

LOUDSPEAKER DRIVER

ditional methods that have special ad-
vantages for certain purposes. The first
method, based on a device described in
1968 by Josef Merhaut of Prague, can
be applied in measurements not only on
the smaller brasses but also on bassoons
and clarinets [see illustration below]. In
Merhaut’s device a thin diaphragm forms
a closure at the end of the mouthpiece
cup and itself serves as the pump piston.
The diaphragm is driven acoustically
through a pipe that connects it to an en-
closed loudspeaker. The diaphragm mo-
tion is monitored for automatic eontrol
by the electrode of a condenser micro-

phone mounted directly behind it. The
second method is based on a device that
was used by John W. Coltman of the
Westinghouse Research Laboratories in
investigating the sounding mechanism of
the flute. In Coltman’s device the excita-
tory diaphragm is driven directly by a
loudspeaker coil whose motion is moni-
tored by means of a second pickup coil

that is moving in an auxiliary magnetic
field [see illustration on opposite pagel.

If one attaches to any one of these
excitation systems a cylindrical section
about 140 centimeters long from a
trumpet, one discovers dozens of input
impedance peaks evenly spaced at odd
multiples of about 63 hertz (cycles per
second) [see curve “@” in top illustration
on page 30]. The peaks correspond ex-
actly to what elementary physics text-
books describe as the “natural frequen-
cies of a cylindrical pipe stopped at one
end.” Because frictional and thermal
losses inside the tube walls increase with
frequency, the resonance peaks become
smaller at higher frequencies. The en-
ergy radiated from the open end of such
a pipe is only a tiny fraction of 1 percent
of the wall losses.

If one now adds a trumpet bell to the
same cylindrical pipe, the impedance
response curve is substantially altered
[see curve “b” in bottom illustration on

IMPEDANCE HEAD _/
258
5 14]9 o
- _PRESSURE X o {C ;
DIAPHRAGM-DISPLACEMENT SIGNAL MICROERIONE: U
W
DIFFERENTIATOR PHASE METER
DIAPHRAGM VELOCITY
(FLOW SIGNAL)
W
- Fi.
Q1 |Q O [
POWER * CONTROLLED | VARIABLE- CHART <
AMPLIFIER ATTENUATOR
0 FREQUENCY RECORDER TUNED
OSCILLATOR > VOLTMETER

SECOND TYPE OF IMPEDANCE-MEASURING DEVICE was de-
veloped by Josef Merhaut. It differs from the apparatus illustrated
on the preceding page only in the way that the flow stimulus into
the mouthpiece is controlled. Here the aconstic stimmlus produced
by a loudspeaker moves an aluminized Mylar diaphragm that in
turn pumps air into the mouthpiece. The diaphragm also acts as
otie electrode of a condenser microphone to produce a signal pro-
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portional to the diaphragm’s velocity and thus proportional to the
oscillatory flow of air at the mouthpiece cup. The velocity signal
adjusts the attenuator in order to maintain constant cxcitation at a
particular frequency. The pressure response of the instrument is
monitored by a microphone on the cup side of the diaphragm. A
phase meter shows the relation between the phase of the input
stimulus and the phase of the pressure response of the instrument.



next page]. The first peak is hardly
shifted at all by adding the bell, but the
frequencies of the other resonances are
lowered in a smooth progression because
the injected waves penetrate ever more
deeply into the bell before being reflect-
ed. In addition the peaks at higher fre-
quencies are markedly reduced in height
because a growing fraction of the en-
ergy supply leaks through the bell “bar-
rier” as the frequency is increased. In
sum, the return wave in the pipe-plus-
bell system is weakened not only by
wall losses but also by radiation losses,
particularly at high frequencies. Above
about 1,500 hertz essentially no energy
returns from the flaring part of the bell.
The small wiggles in the impedance
curve at high frequencies are due chief-
ly to small reflections produced at the
discontinuity where the bell joins the
cylindrical tubing.

By comparing these curves for in-
complete instruments with the imped-
ance curve for a complete cornet [see il-
lustration on page 31] one can see at a
glance that the presence of a mouthpipe
and mouthpiece has a considerable ef-
fect on the overall nature of the input
impedance. The resonance peaks of the
cornet grow taller up to around 800
hertz, then fall away much more abrupt-
ly than the curve produced by the pipe-
plus-bell system.

Ijt us now consider how the player’s
lips control the flow of air from his
lungs into the instrument. As the play-
er blows harder and harder, the flow in-
creases both because of the increased
pressure across the aperture formed by
his lips and because his lips are forced
farther apart by the rising pressure in-
side his mouth. Equally important is
the variation imposed on the flow by
pressure variations inside the mouth-
piece, which tend to increase or decrease
the flow by their own ability to affect the
size of the lip aperture. It is this pres-
sure-operated flow control by the lips
under the influence of the mouthpiece
pressure that ultimately leads to the
possibility of self-sustained oscillation.
Let us abstract from this rather compli-
cated situation only the relevant part
of it: the alteration in net flow that is
produced by acoustical pressure varia-
tions within the cup of the mouthpiece.
As long ago as the middle of the 19th
century it was clearly understood that
it is the flow alteration due to mouth-
piece pressure that can maintain an os-
cillation.
In 1830 Wilhelm Weber described ex-
periments on the action of organ reeds
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ELECTROMAGNETIC SOURCE for projecting acoustic waves into a test instrument was
devised by John W. Coltman. The excitatory piston is directly coupled to the voice coil of
a londspeaker. The coil in tum drives the piston with an amplitade that is ultimately de-
termined by a voltage induced in a pickup coil that is mounted on the same shaft. The
mechanism is used in an overall system similar to that used with the Merhaunt impedance
head. The pressare response in the mouthpiece cup is detected by a miniature microphone.

that led him to a correct theory for the
effect of a compliant structure (the reed
or, in our case, the player’s lips) on the
input impedance of a column of air. This
effect of the yielding closure of the
mouthpiece cup provided by the lips is
quite separate from the lips” functioning
as a valve. Hermann von Helmholtz pro-
vided the next advance. In 1877 he add-
ed an appendix to the fourth German
edition of his classic work Sensations of
Tone that gives a brief but complete
analysis of the basic mechanisms by
which a pressure-controlled reed valve
collaborates with a single impedance
maximum. He found that for a given
pressure-control sensitivity (what an en-
gineer today calls the transconductance)
a certain minimum impedance value is
required. Oscillating systems of the type
analyzed by Helmholtz are found around
us everywhere. The pendulum clock is
possibly the oldest and most familiar.
The wristwatch, electronic or otherwise,
falls into this category. Every radio and
television set has one such oscillator or
more.

Engineers have studied oscillating sys-
tems intensively and have learned that
even if the alteration in flow (of what-
ever kind) that results from a given pres-
sure is not exactly proportional to the
pressure (as Helmholtz assumed for sim-
plicity in his pioneering investigation)
but varies in some more arbitrary fash-
ion, the properties of the system are not
drastically altered. The presence of such
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nonlinearity in the control characteristics
gives rise to additional frequencies at
double, triple and quadruple the fre-
quency of the basic oscillation. The net
generation of oscillatory energy from the
player’s steady muscular effort, however,
is still almost exclusively at the frequen-
cy of the impedance maximum; energy
diverted in the process to other frequen-
cies is dissipated in various ways to the
outside world.

We must now try to explain how os-
cillations in a wind instrument can take
place at not just the tallest impedance
maximum but at any one of several max-
ima belonging to an actual air column.
According to the Helmholtz theory, a
wind instrument should show a strong
preference for oscillations that take place
at the tallest of the impedance maxima.
Thus the question arises of how the bu-
gle player finds it possible to play the
notes based on lesser impedance maxi-
ma. Furthermore, one must ask how the
bugler is able to select one or another
of these peaks in accordance with his
musical requirements.

It is not in fact difficult to deal with
the problem of how the player selects
one note or another. His lips are so mas-
sive compared with the mass of the air
in his instrument that the influence of
the air column on the lips is relatively
small. The player adjusts the tension
of his lips in such a way that their own
natural tendency of vibration favors os-

cillation at the desired note, so that the
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IMPEDANCE PATTERN OF SIMPLE CYLINDRICAL PIPE 140 centimeters long shows
peaks evenly spaced at odd multiples of 63 hertz. The higher the frequency, the greater the
loss of wave energy to the walls of the pipe through friction, hence the steady decline in
the height of the peaks. Less than 1 percent of the input energy is radiated into the room.
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ADDITION OF TRUMPET BELL TO PIPE lowers the overall height of the impedance
peaks and squeczes them together. Whereas the pipe alone produces 16 peaks in a span of
2,000 hertz, the pipe-plus-bell system compresses the first 16 peaks into a span of 1,400 hert=.
Beyond 1,500 hertz more and more of the acoustic energy leaks through the bell barrier,
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air column and the lips collaborate in
producing the desired frequency.

So far we have not said anything that
could not have been understood in terms
of 19th-century acoustics. The best ac-
count of the Weber-Helmholtz analysis
and its musical consequences was made
by a French physicist, Henri Bouasse, in
his book Instruments ¢ Vent, the two
volumes of which appeared in 1929 and
1930. These volumes contain what still
constitutes one of the most thorough ac-
counts of the acoustics of wind instru-
ments, encompassing the flute and reed
organ pipes, the orchestral woodwinds
and the brasses. Bouasse has left us with
a gold mine of mathematical analysis,
along with an account of careful experi-
ments done by himself in collaboration
with M. Fouché or selected from the
writings of earlier investigators.

Bouasse was quite aware of the in-
adequacy of a theory of oscillation as-
suming that all the energy production is
at the basic frequency of oscillation. He
described many phenomena observed
among the reed organ pipes and the or-
chestral woodwinds and brasses that un-
derscore the limitations of this general
viewpoint and that imply cooperation
among several air-column resonances.
Bouasse’s interest in these matters was
to serve both as a strong incentive and
as an invaluable guide when I later un-
dertook a close study of the subject. The
first fruits of this study were described
in a series of technical reports written
in 1958 for C. G. Conn Litd.

By 1964 I found it possible to deal
well enough with the interaction be-
tween a reed valve and an air column
having several impedance maxima that
I could design and build a nonplaying
“tacet horn.” This “instrument” has sev-
eral input impedance maxima chosen in
such a way as to make them unable to
maintain any oscillation in cooperation
with a reed, even though the Weber-
Helmholtz theory would predict the pos-
sibility of oscillation. In 1968 Daniel
Gans and I published an account of this
theory of cooperative oscillations. That

based on Gans’s undergraduate
thesis at Case Western Reserve, included
a description of the tacet horn and ex-
planations of various phenomena dis-
cussed by Bouasse. Since that time the
work has been carried much further in
our laboratory, particularly by Walter
Worman, who wrote his doctoral dis-
sertation on the theory of self-sustained
oscillations of this multiple type in 1971.
Although his work was focused on clari-
netlike systems, his results apply broadly
to all the wind instruments, including



the brasses. These studies were aided by
counsel from many people, in particular
Bruce Schantz, Kent, Robert W. Pyle,
Jr., and John H. Schelleng.

t is now time to see how the Weber-
Helmholtz form of the theory had to
be modified, using the trumpet as our
example. When the musician sounds one
of the tones of a trumpet, the air column
and his lips are functioning in what we
shall formally call a regime of oscilla-
tion: a state of oscillation in which sev-
eral impedance maxima of the air col-
umn collaborate with the lip-valve mech-
anism to generate energy in a steady os-
cillation containing several harmonically
related frequency components. Worman
was able to trace out how a set of im-
pedance maxima can work together with
the air valve. The particular “playing
frequency” chosen by the oscillation
(along with its necessarily whole-number
multiples) is one that maximizes the total
generation of acoustic energy, which is
then shared among the various frequen-
cy components in a well-defined way.
Experiments with instruments as di-
verse as the clarinet, the oboe, the bas-
soon, the trumpet and the French horn
show that softly played notes are domi-
nated by the impedance maximum that
belongs to the note in the sense of Web-
er and Helmholtz. As the musician raises
the dynamic level, however, the influ-
ence of the higher resonances grows in
a definite way that is common to all the
instruments. As he plays louder and
louder, the influence of the impedance
at double the playing frequency be-
comes more marked, and for still louder
playing the resonance properties at triple
or quadruple frequencies join the regime
of oscillation one by one. A look at the
input impedance curves for a modem
trumpet will show how the peaks in a
regime of oscillation cooperate so that
the player can sound various notes on
his instrument, including even some
notes that have no peak at all at the
playing frequency [see illustrations on
next two pages]. Notes in this last cate-
gory have been known to brass players
since the earliest days and were a part
of horn-playing technique in the time of
Mozart and Beethoven. The need for
such notes was reduced, however, as the
instrument became more mechanized. In
recent years they have returned; for ex-
ample, they are sounded by musicians
who want to play bass-trombone parts
without resorting to a special thumb-
operated valve that is otherwise re-
quired. Tuba players also find the tech-
nique useful on occasion.
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IMPEDANCE PATTERN OF A 19TH-CENTURY CORNET is typical of most of the

trumpet and tr

b family. The peaks grow progressively and then fall away sharply.

The cornet was made in 1865 by Henry Distin. The third and fourth impedance peaks do

not quite follow the smoothly rising pattern requi

d for a genuinely fine instrument. The

shortcoming is due chiefly to slight constrictions and misalignments in the valve pistons.

The reader may be wondering what
happens when the valves on a brass in-
strument are depressed. Does anything
radically new happen? The answer is
no. The bell, the mouthpipe and the
mouthpiece dominate the “envelope,” or
overall pattern, of the resonance curve;
the pattern of peaks for a trumpet rises
steadily as one goes from low frequen-
cies to about 850 hertz and then falls
away and disappears at high frequen-
cies. When a valve is depressed, there-
by increasing the length of cylindrical
tubing in the middle of the homn, it mere-
ly shifts the entire family of resonance
peaks to lower frequencies but leaves
them fitting pretty much the same en-
Vi

In addition to working out the details
of the regimes of oscillation in wind in-
struments Worman gained an important
insight into the factors that influence
tone color. He was able to show that in
instruments with a pressure-controlled
air valve (a reed or the lips) the strength
of the various harmonics generated in a
regime of oscillation (as measured inside
the mouthpiece) has a particularly sim-
ple relation when the instrument is be-
ing played at low and medium levels
of loudness. Let us take as given the
strength of the fundamental component
that coincides with the playing frequen-
cy. As one would expect, that strength
increases as the player blows harder.
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Worman’s striking result is that when
the player blows very softly, there is es-
sentially no other component present in
the vibration as it is measured in the
mouthpiece, and that as he plays louder
the amplitude of the second harmonic
grows in such a way that for every dou-
bling of the strength of the fundamental
as the player blows harder, the strength
of the second harmonic quadruples. Fur-
thermore, the strength of this component
proves to be approximately proportional
to the impedance of the air column at
the frequency of the second harmonic.
Similarly, the third harmonic has a
strength that is proportional to the im-
pedance at the third-harmonic frequen-
cy, and from an even tinier beginning it
grows eightfold for every doubling of the
strength of the fundamental component.
In short, the nth harmonic has a strength
that is proportional to the impedance at
the nth harmonic of the playing note,
and that component grows as the nth
power of the fundamental pressure am-
plitude. The remarkable thing about
Worman’s observation is that it is totally
independent of all details of the flow-
control properties of the reed or the lips,
provided only that the flow is controlled
solely by the pressure variations in the
mouthpiece [see top illustration on page
34].

Let me summarize what we have
found out so far about how the tone
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IMPEDANCE PATTERN OF A MODERN TRUMPET is annotated to show what happens
when a player sounds the notes C, or G,. When he blows into the hom, a “regime of oscil-
lation™ is set up in which several impedance maxima of the air column collaborate with
oscillations of his lips to generate energy in a steady oscillation that contains several har-
monically related frequency components. The regime of oscillation for the C, note involves
the second, fourth, sixth and eighth peaks in the curve. When the trumpeter plays very
softly, the second peak is dominant, but becaunse this peak is not tall the beginner may pro-
duce a wobbly note. As he plays louder the other peaks become more influential and the
oscillation becomes stabilized. The dominant oscillation for the G4 note corresponds to the
third impedance peak; since it is taller than the second peak, G, is easier than C; to
play pianissimo. As the trumpeter plays Iouder the tall sixth peak comes in and greatly
stabilizes the regime of oscillation, making the G, one of the casiest notes of all to play.
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REGIMES OF OSCILLATION FOR HICHER NOTES show why they become increasingly
hard to play as one moves up the scale. Gy, is still quite casy to play becaunse its regime of
oscillation is dominated by the tall sixth impedance peak; the 12th peak makes only a
minor contribution. g is somewhat more difficult to play b the dominant peak of the
note is lower than the peak for Gy. It 1akes an athletic rumpeter to reach the high E; and
higher notes. The trumpet at this point has become virtually a megaphone: the energy pro-
duction of the instrument is due almost completely to the interaction of the air column
with the lips themselves, much as the human larynx operates in producing vocal sounds.
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quality develops as measured inside the
mouthpiece of the brass instruments.
When one plays very softly, only the
fundamental component associated with
the playing frequency is present. As one
plays louder the second, third, fourth
and still higher harmonics grow progres-
sively. If the oscillation is in the nature
of a regime involving several cooperat-
ing resonance the harmonics grow
in the simple fashion described by Wor-
man’s theorem; it is only at very loud
playing levels that his theorem fails to
give simple results. Furthermore, the
theorem shows that the strength of the
various components is proportional to
the height of the various impedance
maxima that are cooperating to generate
the tone. In other words, when one plays
rather loud, the strengths of the various
harmonics have heights that correspond
roughly to the heights of the impedance
maxima from which they draw their
chief sustenance. On the other hand,
when a tone is generated on the basis of
only a single resonance peak, as is the
case in the upper part of the trumpet’s
range, we would be able to describe the
strength of the components only if we
could specify all the details of the flow-
control characteristic.

Up to this point I have been discuss-
ing only the strength of the various har-
monics as they are measured by a small
probe microphone inside the brass in-
strument’s mouthpiece cup. What one
hears in the concert hall is, of course,
very different. The transformation from
the spectrum generated inside the
mouthpiece, where the actual dynamics
of the oscillation are taking place, into
the spectrum found in the concert hall
has to do with the transmission of sound
from the mouthpiece into the main air
column and thence out through the bell
There are many facets to the total trans-
mission process, even without taking into
account the complexities of room acous-
tics or the complications of our percep-
tual mechanism, which does a remark-
able job of processing the great irregu-
larity of room properties to give us clear-
cut, definite impressions of the tone qual-
ity of musical instruments. I shall only
remark that the transformation of the
spectrum inside the mouthpiece to the
external spectrum has the general nature
of a treble boost. In other words, what-
ever sounds may be generated inside the
instrument, it is the higher components
that are radiated into the room [see bot-
tom illustration on page 34].

The very fact that the bell of an in-
strument leaks energy preferentially at
high frequencies has two important con-



sequences. On the one hand the leakage
enhances the relative amount of high-
frequency energy that comes out of the
horn; on the other it serves to reduce the
height of the impedance peaks at high
frequencies that lead to the weak gener-
ation of the high-frequency part of the
spectrum inside the instrument. As a re-
sult measurements made outside the in-
strument in a room do not show nearly
as much instructive detail about the dy-
namics of the entire system as measure-
ments made inside the instrument do.

et me conclude this discussion of the
physics of brass instruments by indi-
cating some of its implications for the
musician and the instrument maker. As
an illustration of the way physics can
help the musician, I shall quote from an
article of mine that appeared recently in
the magazine Selmer Bandwagon. In this
passage it was my intention to help
French-horn players clarify and systema-
tize their technique of placing one hand
in the bell of the instrument to enhance
certain frequencies.

“The player’s hand in the bell is,
acoustically speaking, a part of the bell.
... A properly placed hand provides...
resonance peaks out to 1,500 hertz on an
instrument that otherwise would lose all
visible peaks at about 750 hertz [see il-
lustration on page 35]. Suppose you
meet a totally unfamiliar horn (perhaps
during a museum visit when the curator
opens the display cases) and you wish to
find out quickly how well the instrument
plays. Blow a mid-range note (for exam-
ple concert F3 in the bass clef) and, keep-
ing your hand absolutely flat and straight,
push it into the bell little by little until
you feel a slight tingle in your fingertips.
At this point (keeping the hand always
perfectly straight) move the hand in and
out a little until the horn sings as clearly
as possible and the oscillation feels se-
cure to your lips. Any listening bystand-
er will agree with your final choice. Keep
your hand in this slightly strained posi-
tion and blow a tone an octave or a
twelfth above the first one (say concert
F4 or Cj). Keeping your fingertips always
in their original position, bend the palm
of your hand so that its heel moves
toward a position more familiar to the
horn player. As you do so the tone will
again fill out and get a ringing quality to
it; also your lips will vibrate with a more
solid feel. Your hand will now be in an
excellent position for playing all notes
on this horn, although an expert will be
able to do even better after careful prac-
tice.

“Moving your straightened hand in

and out while sounding the low F allows
you to arrange to have an accurately lo-
cated second helper for the tone. The
unstopped horn works somewhat like a
trumpet playing G; above the staff,
while putting in the flattened hand
serves to set up a regime that is analo-
gous to the one which runs the trumpet’s
midstaff C;. Bending the palm of one’s
hand while keeping the fingertips in
place will leave the resonance peaks ad-
justed so far pretty much intact, but will
make them taller (and hence more influ-
ential). This also gives rise to more peaks
at the high-frequency end of things. The
frequencies of these peaks move as the
hand is bent more, so that once again the
player has a means for tuning them for
optimum cooperation with the other
members of the regime. Trumpet players
sometimes find it interesting and tech-
nically worthwhile to adapt the horn
player’s hand technique for their own
purposes—especially for playing high
passages on a piccolo trumpet.”

It is only in the past few years that we
have begun to have an understanding of
the acoustics of mouthpieces. William
Cardwell of Whittier, Calif., has provid-
ed a good theoretical basis for dealing
with the relation of the mouthpiece di-
mensions to the tuning of the various
resonance peaks. We in Cleveland, with
the help of George McCracken of the
King Musical Instrument Division of the
Seeburg Corporation, have given atten-
tion to how the mouthpiece design con-
trols the height of the impedance peaks.
I quote again from the article for musi-
cians to indicate the practical implica-
tions of mouthpiece acoustics.

“Acoustical theory tells us that, first
and foremost, a given instrument will re-
quire that the mouthpiece have a certain
well-defined “popping frequency’ when
its cup is slapped shut against the palm
of the hand. In other words, the lowest
natural frequency of the mouthpiece
alone (with the cup closed) must be of
the correct value. It is this requirement
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UNUSUAL REGIMES OF OSCILLATION are associated with notes whose frequencies cor-
respond to impedances that are close to minimum values. The note Cg in the bass clef is
known to musicians as the pedal tone. Its regime of oscillation is such that the second,
third and fourth resonance peaks of the trumpet snstain an oscillation that lies at a fre.
quency equal to the common difference between their own natural frequencies. Since there
is actually a loss of energy at the fundamental playing frequency for this note rather than a
gaim, there is only a small amount of fundamental component in the sound, and even the
small guantity present is converted to that frequency from the higher components by way
of the nonlinearity in the flow-control characteristics of the player’s lips. The sitnation for
G is even more unusnal in that the second and fourth components of the tone are the chief
source of oscillatory energy, whereas the fundamental component and the other odd har-
monics contribute virtually nothing since the impedance is minimal at their frequencies.
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TONE COLOR OF TRUMPET is related to the way harmonic frequencies make up an in.
creasing fraction of the total sound emitted as the player blows louder. The sirengths of
the various harmonic components are plotied as a logarithmic scale (decibels) against the
logarithm of the strength of the fundamental component. At low and medinm playing levels
each harmonic lies on a straight line whose slope is approximately equal to the serial num-
ber of the harmonic. As one plays pianissimo essentially no harmonics are present in the
vibration as measured in the mouthpiece. For every doubling in strength of the funda-
mental component the second harmonic increases from an initial tiny value by a factor of
four. Similarly, the third harmonic increases in strength by a factor of eight for each dou-
bling in strength of the fundamental, and so on. This finding corresponds to a theory de-
veloped by Walter Worman at Case Western Reserve University. At the loudness where
Worman’s relation begins to break down the player senses a change in “feel” and listeners
are aware of a change in sound, The data that are reflected in the curves were obtained with
the help of Charles Schlueter, who now plays principal trumpet in the Minnesota Orchestra.

SPECTRUM TRANSFORMATION FUNCTION

1.200
FREQUENCY (HERTZ)

800

TRANSMISSION OF TRUMPET SOUND INTO ROOM is characterized by the “spectrum
transformation function,” which indicates what fraction of the acoustic energy at each fre-
quency, as measured inside the mouthpiece, is emitied from the hell. Depending on the
Ievel of play and characteristics of the instrument, the energy emitted usually falls within
the band plotted here. The eurve has the qualitative nature of a “reble boost” becaunse the
bell leaks energy preferentially at high frequencies. Numbers on vertical scale are arbitrary.
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that determines which of the peaks in
the trumpet’s response curve are the tall-
est. It also helps the peaks in this region
to have the proper frequencies for good
cooperation with the low-note regimes.
The second most stringent requirement
on the mouthpiece is that its total vol-
ume be correct {cup plus backbore). We
must have this volume right in order to
make the bottom two or three regimes of
ascillation work properly.”

So far I have discussed only the fac-
tors that contribute to favorable oscilla-
tion inside the horn and have said noth-
ing about the tuning of instruments in
the musician’s sense: the relation be-
tween the pitches of the various tones
that the instrument will generate. For-
tunately the requirements for good tun-
ing are almost identical with the require-
ments for favorable oscillation. It is for
this reason that the traditional musical-
instrument maker, focusing the major
part of his attention on the tuning of the
notes of the instrument, was able to de-
velop instruments that would “speak”
well and have good tone.

In more recent years, as our knowl-
edge of acoustics has grown and the
computer has become available, efforts
have been made to design good brass
instruments with the computer’s help.
Here the influence of loudspeaker acous-
tics has been great. Substantial efforts
have been made to mathematically piece
together a sequence of short loudspeak-
er-horn segments, each one intended lo-
cally to represent the shape of a work-
able brass instrument. This segmental
approach to the problem has certain
computational advantages. As we have
seen, wherever the bore of a horn has a
discontinuity of angle or of cross section
there are anomalies in the standing-wave
pattern. In spite of this fact it is always
possible in principle to find suitable an-
gles and cross sections that will place the

maxima of the horn with an
accuracy that is acceptable by tuning
standards. Although instruments built in
this manner may play fairly well in tune,
they can be quite disappointing in their
musical value because of the neglect of
the more subtle cooperative phenomena
that ultimately distinguish between me-
diocrity and genuine excellence. Fur-
thermore, the ability of an instrument to
speak promptly and cleanly at the begin-
ning of a tone is extremely sensitive to
the presence of discontinuities, so that
even though these discontinuities are
arranged to offset one another in such a
way as to give an excellent steady tone,
it does not follow that the instrument
starts well. The musician must of course




have a “clean attack” as well as a clear,
steady tone.

The skillful instrument maker grad-
ually acquires an almost instinctive feel
for the subtleties of instruments, so that
he can sometimes be astonishingly quick
in the use of his empirical store of knowl-
edge to find a correct solution to a tun-
ing or response problem. Consider the
problem that such a person must solve
when he is asked to correct a trumpet
that is faulty, with the sole error being
the behavior of the tone corresponding
to Cy. Let us suppose that the problem
is caused by the fourth impedance peak
(beginning from the peak of lowest fre-
quency), which is somewhat high in its
frequency. When the C, is played at a
pianissimo level, the note will be in tune,
but as the loudness increases somewhat
the note will tend to run a little sharp as
the second member of the regime (the
mistuned fourth peak) begins to show its
influence. The player will also notice
that he can “lip” the tone up and down
over a considerable range in pitch with-
out appreciable change in tone color. He
will complain that at this moderate dy-
namic level the tone “lacks center.” If he
plays louder, the influence of the still
properly tuned third and fourth mem-
bers of the regime becomes strong
enough to partly overcome the defect of
the second member. When this occurs,
the player finds that the tone once again
acquires what he calls a core, or center,
at a certain playing level, which happens
then to fall pretty well back in tune be-
cause all but one of the resonances in the
regime agree on the desired playing
pitch.

In the practical world of the instru-
ment maker or designer one often meets
instruments in which one or more notes
are “bad” in this way. It has often proved
quite difficult to correct such problems
with only instinct and experience. Once
one understands what is going on, how-
ever, it is often possible to bypass labo-
ratory measurements and diagnose the
errors with the help of carefully de-
signed “player’s experiments.” One then
uses acoustical perturbation theory to
guide the alteration of the shape of the
air column to give a desired correction.
Such corrections are made by enlarging
or reducing the cross section of the bore
in one region or more of the air column.
The problem is complicated by the need
to preserve the locations of the correctly
tuned resonance peaks while the faulty
peak s being moved.

Whether one is a physicist, a musician
or an instrument maker, one tries to
make use of any tools at hand to provide

an instrument that helps rather than hin-
ders the creative effort of music making.
At first it would seem that the computer
is ideally suited to be one of these tools
and that it could immediately be put to
work designing the perfect instrument.
As a practical matter one finds that al-
though we have a reasonable under-
standing of the goals to be achieved, the
complexity of the problem is such that it
is very difficult to specify the problem
for the computer in sufficient detail. I
have found that it is much more efficient
to start with an already existing good in-
strument developed by traditional meth-
ods and then apply the physical un-
derstanding and the technical facilities
available to us today to guide the im-
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provement of the instrument, whether it
is for an individual player in a symphony
orchestra or for the development of a
prototype for large-scale production.

In all my work I have found it always
important to keep in constant touch both
with professional players and with in-
strument makers. They provide an inex-
haustible supply of information about
the properties of instruments. They also
are a source of questions that have
proved enormously fruitful in guiding
my investigations. As the subject con-
tinues to develop it is becoming increas-
ingly possible for the results of formal
acoustical research to be translated into
useful information for the player and the
instrument maker.
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PLACING HAND IN BELL OF FRENCH HORN is a well*known technique for extending
the frequency range of the instrument. The curve at the top shows the input impedance re-
sponse of a valveless prototype for the B-flat half of a standard French horn when measured
without the player’s hand in the bell. There are essentially no resonance peaks above 750
hertz. If the player tries to reach a note such as Gy (783 hertz), allhe gets is a wobbly scream
becanse there is litile or no feedback of acoustic energy from the bell of the instrument to
stabilize a note of higher frequency. Notes in the octave below G would also be weak and
characterless for lack of a strong feedback. The curve at the bottom shows the additional
resonance peaks produced when the musician points his flattened hand into the bell until
he feels a slight tingling at his fingertips and then bends his palm slightly. The instrument
now produces peaks well beyond a frequency of 1,000 hertz, making it possible for the musi-
cian to play the note G; quite dependably and even a few higher notes when he is pressed.
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