Nucleation Behavior of Polypropylene with a Nan-O-Sil Additive Dr. Previn Shah, Rheoplast Associates

James Browne
Applications Scientist
TA Instruments
159 Lukens Drive
New Castle, DE 19720
(302) 427-4015
email: jbrowne@tainstruments.com

https://img1.wsimg.com/blobby/go/11ec885e-992b-42c5-ab2b-3d97bdbc4d52/Report%20for%20Rheoplast_v1.pdf

Kristallisationsverhalten von Polypropylen mit einem Nan-O-Sil-Additiv

Dr. Pravin Shah, Rheoplast Associates

James Browne Anwendungstechniker TA Instruments 159 Lukens Drive New Castle, DE 19720 (302) 427-4015

E-Mail: jbrowne@tainstruments.com

Proben und Anfrage

- 3 Proben von Polypropylen:
- 1) Reines PP
- 2) Nan-O-Sil Pulver
- 3) Nan-O-Sil Masterbatch

Die Anfrage zielt darauf ab, den Nukleationseffekt des hinzugefügten Nan-O-Sil auf Polypropylen zu bestimmen, insbesondere in Bezug auf die Nukleationsgeometrie und den Einfluss auf die Aktivierungsenergie.

Experimentell: Methode

- Der Nukleationseffekt wird mit isothermer Differenzscanning-Kalorimetrie (DSC) bewertet.

- Die Probe wird de erhitzt und schnell a

$$X(t) = \frac{\int_{t_0}^{t_\infty} \left(\frac{dH_C}{dt}\right) dt}{\Delta H_C}$$

wichtsschmelztemperatur ekühlt, bei der die

Kristallisation erfolgt. Der Bereich unter der Kurve wird als kristallisierter Anteil in Abhängigkeit von der Zeit bewertet. Das Experiment wird bei verschiedenen Temperaturen wiederholt, sodass 5 Wiederholungen in Abständen von etwa 10 °C erzielt werden.

- Gleichung 1

- Gleichung 1 beschreibt den Volumenanteil, der als Funktion der Zeit kristallisiert ist.

Experimentell: Methode

- Die resultierende Kurve, dargestellt durch X(t), wird mit zwei mathematischen Modellen ausgewertet:
- 1) Avrami

$$X(t) = 1 - \exp(-k_a t^{n_a})$$

$$\log(-\ln(1-X(t)) = \log k_a + n_a \log t$$
 - Gleichungen 2 und 3

- Gleichuneng 2 und 3 sind die Avrami- und linearisierten Avrami-Gleichungen.
- Der Avrami-Parameter n steht in Beziehung zur Nukleationsgeometrie:
 - n = 1 Stäbchenartiges Wachstum, eine Dimension
 - n = 2 Planares Wachstum, zwei Dimensionen
 - n = 3 Kugelförmiges Wachstum, drei Dimensionen
 - k = Avrami-Ratenkonstante

Experimentell: Methode

- 2) Malkin Modell

$$X(t) = 1 - \frac{C_0 + 1}{C_0 + \exp(C_1 t)}$$

- Gleichung 4 Malkin Gleichung
- Malkin-Parameter C₀ steht in Beziehung zum Wachstum der Nukleation
- er ist proportional zum Verhältnis des sekundären Nukleationswachstums (Propagation) zum primären Wachstum.

- Malkin-Parameter C₁ ist eine Ratenkonstante, die proportional zur Gesamtnukleation ist.

Experimentell: Methode

- 3) Malkin-Beziehung zu den Avrami-Parametern k und n

$$X(t) = 1 - \frac{C_0 + 1}{C_0 + \exp(C_0 t)}$$
where
$$C_0 = 4n - 4$$

$$C_1 = \ln(4n-2) \left(\frac{k}{\ln(2)}\right)^{1/n}$$

Experimentell: Methode

- Aus den Avrami-Parametern berechnete Daten:

- Gleichung 5 t1/2
$$t_{1/2} = \left(\frac{\ln 2}{k}\right)^{1/n}$$
 - Gleichung 6 tau
$$\tau = \frac{1}{t}$$

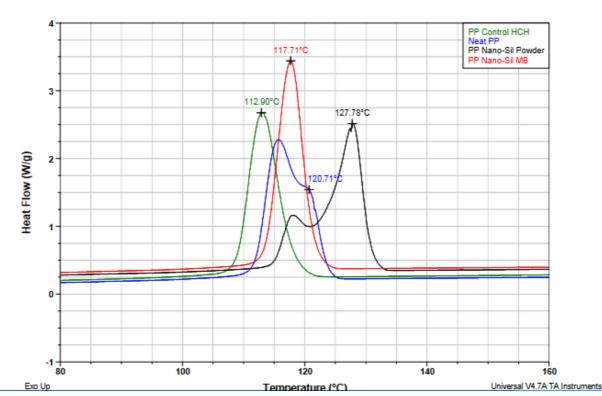
Experimentell: Methode

- 4) Berechnung der Aktivierungsenergie Der Effekt der Nukleation kann gemessen werden, indem die Aktivierungsenergie von nichtnukleierten Proben mit nukleierten Proben verglichen wird.
- Die allgemeine Gleichung zur Berechnung der Aktivierungsenergie lautet:

$$\Psi_{T_0} = \Psi_0 \exp(-\Delta E / RT)$$

- Gleichung 7
- wo Ψ sein kann

- ΔE = Kristallisation

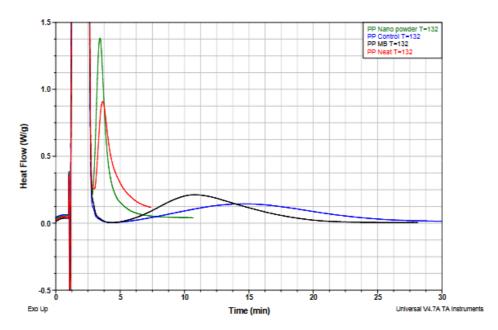

Aktivierungsenergie

- k $- k^{1/n}$ $- C_1$ $- \tau$ $- dX_{(t)} / dt$

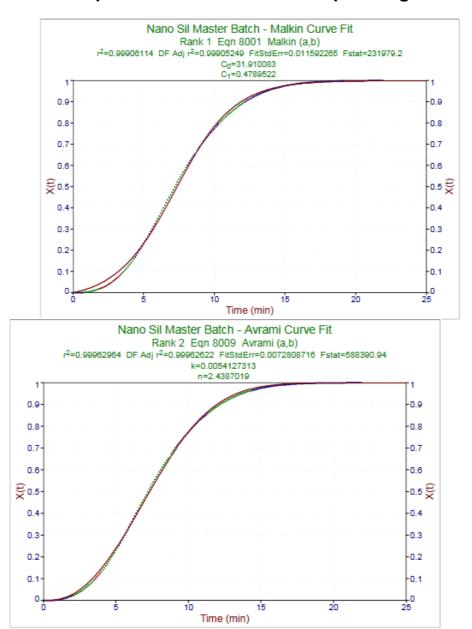
- T = Temperatur (K)
- R = Gaskonstante

- **Experimentell: Methode**
- Polypropylen, das einen Nukleator enthält, zeigt einige einzigartige Merkmale, darunter:
 - Erhöhte Kristallisationstemperatur bei dynamischer Kühlung
 - Avrami-Geometrie-Exponent (n) von etwa 2
 - Verringerte Malkin-Konstante C0 Malkin C0 ist direkt proportional zum Verhältnis von sekundärer zu primärer Nukleation.
 - Niedrigere Aktivierungsenergie der Kristallisation
 - Höhere Ratekonstanten, niedrigere Werte von t1/2 (höheres τ)
 - Offensichtliche Unterschiede im Wärmefluss und im kristallisierten Anteil in Abhängigkeit von der Zeit

Experimentell: Ergebnisse - Umfrage-Scans Kühlung bei 10 °C / Minute (nicht isotherm)


Experimental: Results – Survey Scans Cooling at 10 C / minute (Non-Isothermal)

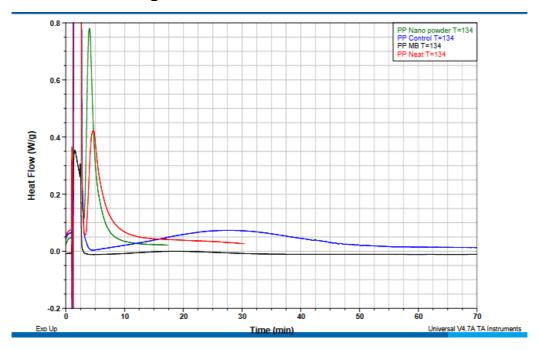
- Die Kühlscans zeigen mehr als einen Kristallisationspeak im reinen PP und im Nano-Sil-Pulver. Der PP Nano-Sil Masterbatch zeigt nur einen Peak. Die gespaltenen Peaks deuten auf eine schlechte Dispersion des Nukleierungsmittels hin.
- Das reine PP scheint ein Nukleierungsmittel zu enthalten, daher werden wir eine Referenz auf nicht-nukleiertes Polypropylen in die isothermische Studie aufnehmen.


Experimentell

- Die Daten werden mit den Malkin und Avrami Modellen angepasst.
- Die Aktivierungsenergie wird bestimmt, in dem die Proben bei 5 verschiedenen Heizstufen durchgeführt werden, so dass der Temperaturbereich etwa 10k auseinander liegt.

Vergleich von Isothermen bei 132°C

Beispiel einer Malkin-Kurvenanpassung



Ergebnisse: Isothermer Vergleich bei 132°C

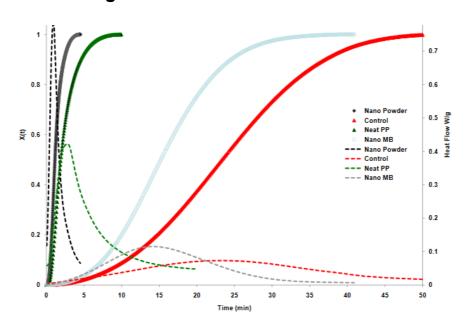
Muster Neat Kontrolle Masterbatch Pulver

ΔH (J/g)	43.51	99.71	99.55	54.85
t _{1/2} from DSC	0.66	10.23	6.28	0.064
1/T (K-1)	0.00246889	0.0024689	0.0024689	0.0024689
Malkin Fit				
C0	7.359	35.867	31.910	23.732
C1	2.460	0.334	0.479	4.324
n	1.753	2.659	2.583	2.397
k	0.819	0.001	0.004	1.376
t _{1/2} (min)	0.909	10.872	7.357	0.751
τ (s ⁻¹)	1.100	0.092	0.136	1.331
1/n ln(k)	-0.114	-2.524	-2.138	0.133
Avrami Fit				
n	1.736	2.511	2.439	2.259
k	0.837	0.002	0.005	1.346
t _{1/2} (min)	0.897	10.813	7.314	0.745
τ (s ⁻¹)	1.114	0.092	0.137	1.342
1/n ln(k)	-0.103	-2.527	-2.140	0.132

Vergleich der Isothermen bei 134°C

Ergebnisse: Isothermer Vergleich bei 134°C

Muster Neat Kontrolle Masterbatch Pulver

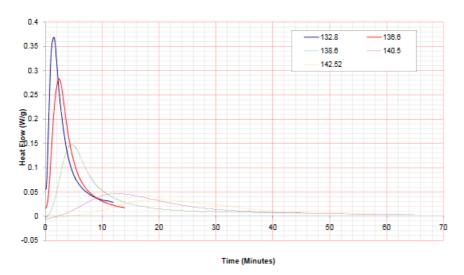

ΔH (J/g)	54.89	133.8	133.8	133.8
t _{1/2} from DSC	1.38	103.2	111.5	55.78
1/T (K-1)	0.0024572	0.0024572	0.0024572	0.0024572
Malkin Fit				
C0	4.933	36.573	40.549	11.013
C1	0.942	0.157	0.244	2.149
n	1.580	2.671	2.739	1.954
k	0.222	0.000	0.000	0.490
t _{1/2} (min)	2.055	23.309	15.366	1.194
τ (s ⁻¹)	0.487	0.043	0.065	0.837
1/n ln(k)	-0.952	-3.286	-2.866	-0.365
Avrami Fit				
n	1.593	2.537	2.578	1.896
k	0.225	0.000	0.001	0.506
t _{1/2} (min)	2.028	23.187	15.297	1.180
τ (s ⁻¹)	0.493	0.043	0.065	0.847
1/n ln(k)	-0.937	-3.288	-2.870	-0.359

Ergebnisse: Isothermale Kristallisation

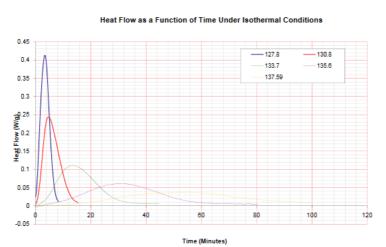
- Neat PP Sample
 - Erscheint Nukleierungsmittel zu enthalten, was sich durch Folgendes zeigt:
 - Niedriger Avrami-Exponent (n)
 - Niedriges Malkin C0
 - Hohe Geschwindigkeitskonstanten (k und C1) im Vergleich zur Polypropylen-Kontrolle
 - Höherer Wert von Tau
 - Nukleator ist in diesem Muster schlecht dispers (geteilte Peaks in der nicht-isothermen Kristallisationskurve).
- Nan-O-Sil Pulver
 - Muster ist nukleiert.
 - Niedriger Avrami-Exponent (n)
 - Niedriges Malkin C0
 - Hohe Geschwindigkeitskonstanten (k und C1) im Vergleich zur Polypropylen-Kontrolle
 - Höherer Wert von Tau
 - Nukleator ist auch in diesem Muster schlecht dispers (geteilte Peaks in der nicht-isothermen Kristallisationskurve).
- Polypropylen-Kontrolle (unbehandelt)

- Nicht nukleiert, wird für den Vergleich in dieser Arbeit verwendet.
- Typischer Avrami-Exponent ~3
- Relativ hoher Malkin-Wert
- Niedrigere nicht-isotherme Kristallisationstemperatur
- Nan-O-Sil Masterbatch
 - Muster kristallisiert signifikant langsamer als entweder das Nan-O-Sil Pulver oder das reine Polypropylenmuster.
 - Hat ähnliche Eigenschaften wie die Polypropylen-Kontrolle.

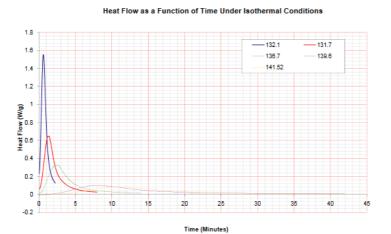
Experimentell: Vergleich isothermer Kristallisationsläufe bei 134 °C



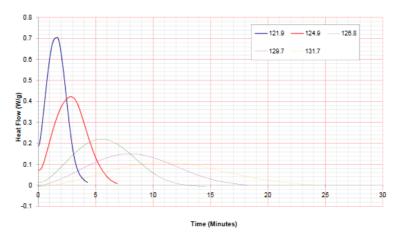
Experimentell: Isotherme Kristallisationsläufe zur Bestimmung von ΔE (Aktivierungsenergie)


Isotherme Kristallisationsexperimente werden bei 4-5 verschiedenen Temperaturen durchgeführt, die sich über etwa 10 K erstrecken, wenn möglich. Dies stellt sicher, dass die Berechnung von ΔE aus einem vernünftig linearen Bereich der in Gleichung 7 beschriebenen Funktionen erfolgt. Für die Berechnungen von ΔE gilt: ψ = 1/n ln k. Für die isokonversionale Methode gilt: ψ = dX(t) / dt

Experimentell: Ergebnisse isotherme Kristallisation – reines PP


Heat Flow as a Function of Time Under Isothermal Conditions

Experimentell: Ergebnisse isotherme Kristallisation – Nan-O-Sil Masterbatch



Experimentell: Ergebnisse isotherme Kristallisation – Nan-O-Sil-Pulver

Experimentell: Ergebnisse isotherme Kristallisation – Polypropylen-Kontrolle

Ergebnisse: Kinetische Daten für reines PP-Muster

T° C	132.8	136.6	138.6	140.5	142.52
ΔH (J/g)	50.42	62.03	75.7	66.46	52.99
t _{1/2} from DSC	1.5	2.43	4.57	12.4	19.11
1/T (K-1)	0.00246366	0.0024403	0.002429	0.0024173	0.002405755
Malkin Fit					
C0	7.101	8.134	2.206	8.004	29.320
C1	1.029	0.690	0.190	0.127	0.151
n	1.736	1.800	1.317	1.793	2.529
k	0.184	0.078	0.048	0.004	0.000
t _{1/2} (min)	2.146	3.355	7.566	18.093	22.852
τ (s -1)	0.466	0.298	0.132	0.055	0.044
1/n ln(k)	-0.975	-1.414	-2.302	-3.100	-3.274
Avrami Fit					
n	1.727	1.771	1.366	1.770	2.389
k	0.190	0.083	0.044	0.004	0.000
t _{1/2} (min)	2.118	3.313	7.499	17.859	22.710
τ (s -1)	0.472	0.302	0.133	0.056	0.044
1/n ln(k)	-0.962	-1.405	-2.283	-3.090	-3.276

Ergebnisse: Kinetische Daten für Nan-O-Sil Masterbatch

T° C	127.8	130.8	133.7	135.6	137.59
ΔH (J/g)	89.6	96.41	108.4	118.3	103.5
t _{1/2} from DSC	3.46	4.7	13.5	29.3	51.14
1/T (K-1)	0.00249401	0.0024759	0.002458	0.0024464	0.00243463
Malkin Fit					
C0	46.337	27.891	38.739	49.971	66.269
C1	1.107	0.578	0.243	0.126	0.086
n	2.827	2.498	2.709	2.877	3.067
k	0.020	0.008	0.000	0.000	0.000
t _{1/2} (min)	3.503	5.882	15.243	31.297	49.137
τ (s -1)	0.285	0.170	0.066	0.032	0.020
1/n ln(k)	-1.383	-1.919	-2.859	-3.571	-4.014
Avrami Fit					
n	2.663	2.368	2.549	2.708	2.896
k	0.025	0.011	0.001	0.000	0.000
t _{1/2} (min)	3.489	5.838	15.174	31.188	49.048
τ (s ⁻¹)	0.287	0.171	0.066	0.032	0.020
1/n ln(k)	-1.387	-1.919	-2.863	-3.575	-4.019

Ergebnisse: Kinetische Daten für Nan-O-Sil-Pulver

T° C	132.1	131.7	136.7	139.6	141.52
ΔH (J/g)	59.22	63.01	66.85	71.5	68.98
t _{1/2} from DSC	0.61	1.36	2.46	7.85	11.05
1/T (K-1)	0.00246792	0.0024701	0.0024402	0.002423	0.002411556
Malkin Fit					
C0	30.749	13.185	9.265	10.743	23.989
C1	5.037	1.650	0.765	0.229	0.241
n	2.559	2.052	1.865	1.941	2.403
k	1.774	0.249	0.081	0.006	0.001
t _{1/2} (min)	0.693	1.648	3.164	11.097	13.497
τ (s -1)	1.444	0.607	0.316	0.090	0.074
1/n ln(k)	0.224	-0.678	-1.348	-2.596	-2.755
Avrami Fit					
n	2.406	1.968	1.819	1.881	2.258
k	1.702	0.265	0.087	0.008	0.002
t _{1/2} (min)	0.688	1.631	3.125	10.971	13.402
τ (s -1)	1.453	0.613	0.320	0.091	0.075
1/n ln(k)	0.221	-0.675	-1.341	-2.590	-2.758

Ergebnisse: Kinetische Daten für PP-Kontrolle

T° C	121.9	124.9	126.8	129.7	131.7
ΔH (J/g)	66.09	74.15	82.7	83.5	83.49
t _{1/2} from DSC	1.69	2.89	5.56	8.01	11.16
1/T (K-1)	0.00253139	0.0025125	0.0025003	0.0024823	0.002470051
Malkin Fit					
C0	38.756	39.867	42.438	42.260	46.352
Cl	2.271	1.286	0.652	0.456	0.344
n	2.709	2.728	2.769	2.766	2.827
k	0.184	0.038	0.005	0.002	0.001
t _{1/2} (min)	1.633	2.904	5.818	8.313	11.262
τ (s ⁻¹)	0.612	0.344	0.172	0.120	0.089
1/n ln(k)	-0.626	-1.201	-1.893	-2.250	-2.551
Avrami Fit					
n	2.567	2.579	2.613	2.601	2.669
k	0.194	0.045	0.007	0.003	0.001
t _{1/2} (min)	1.642	2.892	5.793	8.276	11.218
τ (s ⁻¹)	0.609	0.346	0.173	0.121	0.089
1/n ln(k)	-0.638	-1.204	-1.897	-2.254	-2.555

Zusammenfassung der Aktivierungsenergie der Kristallisation

	Neat PP	PP_Nano_MB	PP_Nano_Powder	Polypropylene
	ΔE kJ mol-1		ΔE kJ mol-1	Готургорупенс
Malkin	-364.8		-388.1	-265.8
	222.0			
Avrami Non Linear	-366.3	-385.6	-382.0	-264.8
Isoconversional				
X(t)	400.75	272.0	205.4	242.2
0.0			-386.1	
0.03			-387.0	
0.04			-374.6 -368.4	
0.02			-367.9	
0.00			-372.3	
0.07			-372.3	
0.00			-363.7	
0.09			-371.2	
0.0			-361.8	
0.2			-363.9	
0.3			-369.7	
0.4			-376,5	
0.9			-386.2	
0.0			-392.3	
	0.0			-270.4
	-50.0			-273.5
				-312.8
	-100.0			
	-150.0			
	-200.0			
ΔΕ (kJ / mol)	-250.0		-■-Neat PP	
<u>s</u>		1	PP_Nano_MB	
٩	-300.0		→ PP_Nano_Powder → Polypropylene	
	-350.0			
	400.0			
	A-A-A			
	-450.0		•	
	-500.0	7 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6	0.7 0.8 0.9	
	5.5. 5.52 5.50 0.04 0.00 0.00 0.0	X(t) Fraction Converted		

Experimentell: Ergebnisse - Interpretation der Daten

Reines PP

- Das Muster ist mit einem ΔE-Wert von ca. -365 kJ/mol nukleiert im Vergleich zum Kontroll-PP mit -285 kJ/mol.
- Die Geschwindigkeitskonstanten sind durchweg h\u00f6her als bei der Kontrolle.
- Der Avrami-Exponent 'n' liegt im Allgemeinen näher bei 2, außer in einem Fall, was wahrscheinlich auf eine schlechte Dispersion zurückzuführen ist.
- Malkin C0 ist durchweg niedriger, außer in einem Fall aufgrund der Dispersion. Dies deutet darauf hin, dass die Nukleation hauptsächlich die Ausbreitung neuer Kristallisationsstellen ist.

Nan-O-Sil-Pulver

- Das Muster zeigt eine Aktivierungsenergie von ca. -385 kJ/mol, was niedriger ist als bei reinem PP und signifikant niedriger als beim Polypropylen-Referenzwert.
- Die Geschwindigkeitskonstanten sind signifikant höher.
- Der Avrami-Exponent 'n' liegt in den meisten Fällen nahe bei 2, nähert sich aber in einem Fall aufgrund von Dispersionsschwierigkeiten an.
- Malkin C0 ist durchweg niedriger, außer in einem Fall aufgrund der Dispersion.

Kontroll-Polypropylen

- Typisches Verhalten von Polypropylen mit einem Avrami-Exponenten 'n' von etwa 3 und einer relativ hohen Malkin C0-Konstanten.
- ΔE im typischen Bereich von ca. -280 kJ/mol f
 ür nicht nukleiertes PP.

Nan-O-Sil Masterbatch

- Das Muster zeigt eine Aktivierungsenergie von ca. -385 kJ/mol, was eine signifikante Senkung der Aktivierungsenergie darstellt.
- Trotz der niedrigen ΔE sind die Geschwindigkeitskonstanten niedriger. Dies ist auf einen Avrami-Exponenten 'n' von etwa 3 zurückzuführen. Die Nukleationseffizienz bei PP scheint bei 'n' = 2 optimal zu sein.
- Malkin C0 ist relativ hoch, was darauf hindeutet, dass der vorherrschende Nukleationsmechanismus die Ausbreitung bestehender Kristalldomänen ist.
- Der Masterbatch verhält sich ähnlich wie einige mineralische Füllstoffe (z. B. Talk), was zu einer niedrigeren Aktivierungsenergie und einer gewissen Verbesserung der Zykluszeit führt, jedoch mit einer sphärischen Geometrie.
- Typischerweise haben Nukleatoren optimale Konzentrationsniveaus

Schlussfolgerungen:

 Das Q 2000 DSC ist das optimale Werkzeug zur Bewertung der Leistung von Nukleatoren in Polypropylen und anderen Kunststoffen. Dies liegt an mehreren Faktoren, darunter:

- Tzero-Baselinienleistung Eine flache Baseline ist entscheidend bei isothermen Studien, und die Baseline-Leistung ist überlegen.
- Zuverlässiger Autosampler
- Einfache Kalibrierung
- Das Nan-O-Sil-Additiv hat einen signifikanten Nukleationseffekt auf Polypropylen, wie durch die Senkung der Aktivierungsenergie, verbesserte Geschwindigkeitskonstanten, Änderung des Avrami-Geometrie-Exponenten 'n' und niedrigeren Wert von Malkin C0 angezeigt wird.
- All dies sollte zu verbesserten Zykluszeiten bei der Verarbeitung von PP führen.

Vielen Dank

Der weltweit führende Anbieter für thermische Analyse, Rheologie und Mikrokalorimetrie