Machine Learning Use Cases for DevOps and Continuous Everything @JuniTweets

Juni Mukherjee

□ Warm Up: CE, ML, AI
 □ Use Cases: Supervised & Unsupervised Learning
 □ Pipeline Architecture & Design Patterns

Agenda

continuity.world @JuniTweets

CE=CI+CT+CD+CD+CA+CG+...

ML = M + EI?

A.Artificial Intelligence

Al is intelligence demonstrated by machines as opposed to natural intelligence displayed by humans.

Machines mimic "cognitive" functions of humans, like "learning" and "problem solving".

B.Machine Learning

ML algos build a mathematical model based on "training data", in order to make predictions or decisions without being explicitly programmed to perform the task.

Google Trend

Automated Pipelines DO (NOT THINK)

Pipeline as code: Explicitly programmed to perform each task

Terminology Hell

(DevOps & CE) for ML

Models need to undergo CI, CT, CD, CD, CA, CG, ...

====>

Continuous Everything

ML for (DevOps & CE)

- Every company is a data company
- Supervised Learning
- Unsupervised Learning
- □ Pipeline Architecture
- ☐ Pipeline Design Patterns

□ Warm Up: CE, ML, AI
 □ Use Cases: Supervised & Unsupervised Learning
 □ Pipeline Architecture & Design Patterns

Agenda

continuity.world @JuniTweets

A.Supervised Learning

Supervised Learning infers a function from labeled training data consisting of a set of training examples.

B.Unsupervised Learning

Unsupervised Learning is a type of self-organized learning that helps find unknown hidden structures in unlabeled data sets.

Supervised Learning

Learn a function that maps an input to an output based on example input-output pairs

Pipelines Can Predict

Predict failures based on past failures

Breaking Bad

Pipeline Failures:

- Application
- Environmental
 - □ 0&0
 - ☐ 3rd Party
- ...

Data Is The New Oil

Step #1/5: Gather Labeled Failure Data

Human labeling

- Crowdsource: Expose data
- Internal workforce: Data privacy
- 3rd party vendors: Domain expertise

Automatic labeling

□ Apply ML with human labels

Consolidation: 1, 2, 3, ...?, Weights, Confidence score: 0.95, ...

Step #2/5: Design Input Feature Vector vs. Target Signal

Sample Features To Predict Pipeline Failures:

- ☐ Offending code snippets: 3rd party, O&O
- Vulnerable artifacts: 3rd party, O&O
- □ Data: PII (SSN/govt. ID, birth date), financial (credit card, bank account)
- Code Quality Index = Function (code coverage, cyclomatic complexity, code dupes)
- □ Stability Index = Function (responsible speed, escaped defects, repeat customers)
- **...**

Step #3/5: Choose The Algorithm

A. Author algo(s)

- ☐ High barrier of entry
- Got data scientists?
 - Central
 - Embedded

B. Reuse standard algos

- Low barrier of entry
- Empower developers
 - Democratize ML

Step #4/5: Train The Model

Run the algorithm on the labeled training data

- Predict pipeline failures
 - Decision Tree
 - Leaves represent labels
 - Branches represent conjunctions of features that lead to labels

Step #5/5: Test Model Accuracy

- **□** Define model performance metrics
- □ Adjust parameters
- ☐ Cross-validate
 - ☐ Make test data mutually exclusive from training data

Democratize ML: Amazon/AWS Ecosystem

#	Name of service	Utility	
1	SageMaker	Built-in algorithms to build, train and deploy	
2	Mechanical Turk	Crowdsource human labeling	
3	Ground Truth	□ Automatic labeling □ 20% human> 80% ML	
4	Simple Storage Service (S3)	☐ Training and test data ☐ Models	
5	IAM	Manage secure access to (test and training) data	

Democratize ML: Amazon/AWS Ecosystem

#	Name	Utility
6	CloudWatch	Monitor model metricsInterim monitorsFinal evaluation
7	[Serverless] Lambda	☐ Write and upload functions☐ Triggers from S3, CloudWatch,
8	Step Functions	Orchestrate overall workflow
9	EC2	Storage. Leverage spot economy
10	CloudTrail	Generate audit trails

Unsupervised Learning

...Because Past Performance Is Not Indicative Of Future

Results

Clustering Reveals Hidden Structures

- ☐ Identify incident root-cause vs. symptoms
 - Prioritize B. A, C, D should go away
 - □ Prevent death by a thousand P1, S1 alerts!
- Track related incidents
 - ☐ If M or N happen, proactively alert for both

Find Patterns: Disparate Data Sources

```
Jenkins X | Spinnaker | CircleCl | Jenkins |
                                                      AWS | GCP | Azure ...
AWS CodePipeline ...
                                                      Artifactory | Nexus Repo | S3
GitHub | GitLab | Bitbucket ...
 Cloud Foundry | OpenShift | Heroku ...
                                                     SauceLabs | Device Farm ...
 Splunk | New Relic | Dynatrace | Datadog ...
                                                     BlazeMeter
  Liquibase/Datical | Flyway | DBMaestro ...
                                                     Coverity
   JUnit | TestNG ...
                                                    OWASP Zap
   Sonar | ESLint ...
```

Death by a thousand vendors: # of tool integrations inflate Time2Code

Find Relationships: Correlation | Causation

Source Code Repositories

- Microsoft GitHub
- ☐ GitLab
- Atlassian Bitbucket

Artifact Repositories

- ☐ JFrog Artifactory
- Sonatype Nexus Repository
- Amazon S3

Death by a thousand dependencies: # of dependencies inflate

- □ Time2Code
- ☐ Test Cycle Time => Feature Lead Time => Time To Market

Usual Suspect: Tech Relationship With Biz

House of Cards: March Madness

Strange Things: Anomaly Detectors

Source Control Repo

Daily Average:

- #A reads
- □ #B writes

1000x activity!

On specific days?

Artifact Repo

Daily Average:

- ☐ #M downloads
- #N uploads

At specific times?

On a specific coast?

Stranger Things: Anomaly Detectors

Pipelines

- One took too long?
 - ☐ All tests passed.
 - Lurking print stmt?

Tests

- Never failed?
 - Never ran!
 - ☐ Test duration ~ 0?
 - □ Gamed test(s)?

□ Warm Up: CE, ML, AI
 □ Use Cases: Supervised & Unsupervised Learning
 □ Pipeline Architecture & Design Patterns

Agenda

continuity.world @JuniTweets

As Ichronous | Services

Architecture
SplitInputData (:::)

TrainModel (:::)

CrossValidate (:::)

- ☐ Split input data (K)
 - Training (K 1)
 - ☐ Test (1)
- How BIG is big data?
 - Version control
 - Data storage

- - Build or buy?
 - OSS OSS
 - Commercial?

(K - 1) training data

Blackbox or configurable?

- (1) test data
- K-fold cross-validation:
 - K-peat, with a different slice

Simple Software Gates

Simple Gate: Static Thresholds

Should we fail pipelines if our code coverage drops below 80%?

Velocity

Vulnerabilities

Production Issues

Cyclomatic Complexity

Chase What Matters!

Composite Gate: Removes Bias and Skew

Composite
Software
Gate #1:
Code

Quality

Index

Unit Test Coverage Cyclomatic omplexity

How should I gate promotion of versioned artifacts based on "Code Quality"?

How do I define "Code Quality"?

Diversify your portfolio of KPIs

Smart Gate Monitors Code Quality

Example: Sum(weight[i] * feature[i]) => "Code Quality" Index

Composite Software **Gate #2: Stability** Index

How do I define a stability index that satisfies Dev, Ops and Business?

How do I automate Segregation of Duties (SoD)?

SoD: Don't put all your eggs in the same basket

Anti-corruption Layer

Acts like a facade between different subsystems that don't share the same semantics.

Circuit Breaker

Unstable models should not break fast-feedback pipelines.

Protect with a circuit breaker.

eBook offer on Amazon

Borrow It For Free

Own It For Free (4 days)

5-pack Paperback 20% Discount: 1st 10, 4 days

Discount code "book1"

Discount code "book2"

Thank you!

continuity.world

Machine Learning Use Cases for DevOps and Continuous Everything

T: @JuniTweets

L: https://www.linkedin.com/in/junim/

E: powerofcontinuity@gmail.com