
UNITY NETWORKING
MULTIPLAYER WITH STEAM
USING MIRROR AND STEAMWORKS.NET

BY FRED DUFFIELD

Devlog - Steam Networking in Unity Fred Duffield

CONTENTS
INTRODUCTION 3

SETUP 4

MIRROR CONNECTIONS 5
NETWORK MANAGER 5
PREFABS 6
MANAGER VALUES 7

INTEGRATING STEAM 8
STEAM LOBBY SCRIPT 9

STEAM BUTTONS 10
JOIN SYSTEM 10
INVITE SYSTEM 17
QUICK MATCH SYSTEM 20

REFERENCES 22

Devlog - Steam Networking in Unity Fred Duffield

INTRODUCTION
Networking in Unity is a task that can be approached in many ways. For this project the

focus was making a game that uses the Steamworks API to connect via Steam. This will allow
our finished game to use Steam servers to connect players with their friends or even with other
random players in game. To connect Steamworks to our Unity game we are also going to use
Mirror, which will handle the actual in game Networking. There are other options such as Proton
and Unity MLAPI, which do vary slightly however the broad topics discussed here should still be
relevant.

My aim for this project was to create a lobby system that connects players through
Steam and allows for character customization. To do this I first focused on making a system that
connects through Mirror using players IP addresses. Mirror is what handles the actual
Networking of the game, and requires one player to host and the others to join as clients. Mirror
is what passes the data between the different players and so this is all that is necessary for a
networked game. This system worked but was not the best experience for players - having to
deal with IP addresses. This is where Steam comes in. Steamworks servers can be used to find
the connections between players. Once the connection is found Mirror takes over to handle the
actual Networking, meaning Steamworks is only replacing the IP address input.

Steamworks also provides many other benefits, such as achievements, overlay
integration and matchmaking. It is vital to use Steamworks to make any game that goes up on
Steam, and so there’s a lot to learn from the API. This devlog is of course only going to focus on
the use of Steam lobbies and how to use Steamworks to create a networked game.

Devlog - Steam Networking in Unity Fred Duffield

SETUP
One thing to consider when creating a Networked game is that most of the code will

have to be written using Networking functions and syntax. Because of this it is generally easier
to make a new game as opposed to trying to convert an existing game to Networking, as the
gameplay programming will have to be split between being run on the Client side and being run
on the Server. To set up a new project you need to import 2 things - Mirror Networking and
Steamworks.API.

In the project a vital step is creating a GameObject called Network Manager. This will
hold all of the important scripts concerned with Networking. You can also set up UI for
interacting with the game: buttons for choosing between hosting and joining.

Devlog - Steam Networking in Unity Fred Duffield

MIRROR CONNECTIONS

NETWORK MANAGER

To start creating Mirror Connections you will need to create a Network Manager Override
script, which will take the premade Mirror Network Manager script and allow us to add some
modifications. To do this, the script needs to inherit from Network Manager as opposed to
MonoBehaviour. This script will also need to use the Mirror namespace to make use of the new
Mirror functions.

This script manages the connections between clients and the host. There are quite a few
functions and scripts to this process, and I will discuss a few here, however the focus of this
devlog is Steam integration. For more information about Mirror connections and what some of
the more specific functions do there are some great resources linked below.

Devlog - Steam Networking in Unity Fred Duffield

One thing to remember when working on this script (and most others when dealing with
networking) is that this is going to run on both the Server and the Clients when they play the
game. Because of this it is important to distinguish between which functions will be called
where. For example some functions such as OnStartServer will only be called on the server
when it starts, whereas OnClientConnect is only called on the clients. Some custom functions
can also be restricted to only run on the server by using [Server]. Commands are similar, using
[Command] restricts a function so that it can be called on clients but only run on the server.

PREFABS

To display the players in the lobby I created a prefab to hold all the UI and character
objects. This holds UI for changing the players Skin, Hat and Name. To manage this there is a
separate script called CharacterLook which updates how the gameobject actually looks. The
values for the characters customization is saved so when the game is started the prefabs for the
game characters can be updated to match the players selection.

For prefabs to work with networking they need to be assigned to the Registered
Spawnable Prefabs in the Network Override Script. One method for doing this is to add some
code into the Network Override Script that automatically gets all the prefabs from a folder and
assigns them to the spawnable prefabs list. This code is shown below. By doing this you can
avoid the user error of not assigning new prefabs that are needed.

Devlog - Steam Networking in Unity Fred Duffield

MANAGER VALUES

The Network Manager Override Script can then be added to the Network Manager
Game Object. There are a lot of Public Variables shown in the inspector and these are important
for getting the Networking to behave as intended. The Offline Scene is an important one, this is
the scene that will be displayed when the connection is dropped. The Transport is also
important - this is the actual networking transport used by the program - we will look at this more
when implementing Steam.

Devlog - Steam Networking in Unity Fred Duffield

INTEGRATING STEAM
To implement Steamworks into the game you need to add a few components to the

Network Manager. Add the Fizzy Steamworks component and the Steam Manager component.
To connect the Network Manager override script drag the Fizzy Steamworks into the Transport
slot. You will also need to create a new script called Steam Lobby, which will manage the
Steamworks API.

Devlog - Steam Networking in Unity Fred Duffield

STEAM LOBBY SCRIPT

The SteamLobby script deals with lots of different callbacks and functions to allow the
lobby system to integrate into the game. Callbacks are functions that are called from Steam
when it completes a certain task. For example the game may tell Steam to retrieve data about a
player and this could take a little time for Steam to complete. And so instead of the game
waiting for Steam to return the data, or continuing too soon before the data is collected, Steam
instead calls a new function when the task is complete. This is much more efficient and less
likely to run into errors. Most of these will be covered later in this devlog, but one main function
is OnLobbyCreated.

This is called when Steam has successfully created a lobby (To create a lobby simply
use SteamMatchmaking.CreateLobby(ELobbyType.k_ELobbyTypeFriendsOnly,
networkManager.maxConnections);). The OnLobbyCreated function will first check to
make sure the connection was successful - see line 68 - and if so it starts a Mirror host. It then
updates the metadata stored in the lobby.

Metadata can be anything and it is stored in the lobby to help all members to have some
small consistent data. The first bit of metadata being set here is the hostAddress, which is the
address needed for clients to connect to this Mirror host. The second bit of metadata is simply
an identifier key to distinguish this game from any others that may be found when steam
searches for lobbies. Metadata is important as it allows all members of the lobby to have access
to the same data, and can be viewed by others outside of the lobby. This means this Metadata
can be used to decide whether any one lobby is viable for a player to join by checking the data
before they send a join request.

Devlog - Steam Networking in Unity Fred Duffield

STEAM BUTTONS

This basic implementation of Steam will allow players to connect, however, they have to
do so through the Steam Overlay. This works and allows the players to connect much more
easily, however it could still be a lot more intuitive. To fully implement Steam Connections into
the game we need to add UI. The game will have to provide the player buttons to invite or join
friends, as well as showing their Steam friends in game. There are 3 different areas that we
need to implement to have this working - a Join System, an Invite System and a Quick Match
System. The Join System and Invite System will be similar and will allow players to connect with
their Steam Friends. The Quick Match System, however, will allow players to connect to anyone
else publicly playing the game.

JOIN SYSTEM

The Join System needs to search through all the user’s Steam friends and return a list of
those in an available lobby. We can then display this list in game and have a button for each that
joins the player to that lobby. The script to find this list is shown below.

Devlog - Steam Networking in Unity Fred Duffield

Devlog - Steam Networking in Unity Fred Duffield

The first line to receive data from Steam is line 33:

This creates a new int to store the amount of friends the player has in Steam. The
parameter EFriendFlags.k_EFriendFlagImmediate is simply restricting the friends to
the players most recent and common friends. This avoids the list being too long and full of
friends the player is unlikely to play with.

This int - friendCount - is used when looping through all the friends at line 51:

For each integer between 0 and friendCount we find the SteamID of that friend using
SteamFriends.GetFriendByIndex() CSteamID’s are a variable type that stores Steam’s
own ID’s. These ID’s can be used for players and lobbies so they are a valuable data type to
know. Then we check whether the player is currently in a valid lobby, and if so they need to be
displayed on the list. The code within this IF statement is all UI management, and so depends
on how you set up your UI. In this instance I pass the basic data about the friend to another
script in the gameobject so it can handle displaying this information.

For my UI I used a Scroll Box with some layout components to make sure all the items
line up. A great video on how to set up a scrolling system like this is linked below. I also created
a prefab for the items that are displayed in the list. This prefab has a text object to show the
friends name, a raw Image to show their Steam avatar and a button to allow the player to join
their lobby. There is also a Refresh button which clears the list and retrieves data from Steam
again. This could be an automated process that refreshes every few seconds, however, as this
game is small it seems unnecessary.

Devlog - Steam Networking in Unity Fred Duffield

The script to manage what is displayed is attached to this prefab, meaning that each one
instantiated gets its own data from Steam. This avoids having to store all the data in one place
and manage that data if connections drop or lobbies change. The SetName function is
incredibly straight forward:

However the SetImage function is a little more complex. This is because to display the
Image from Steam it has to be saved and loaded into a Raw Image because it is not an asset
saved in Unity.

Displaying the image is broken down into three functions: SetImage, GetSteamImage
and OnAvatarImageLoaded. This is because there is a chance that the avatar image will be
stored in the memory - having been loaded recently. If so, SetImage will call GetSteamImage
immediately. However, if the Avatar image has not loaded yet then SetImage just returns - see
line 61. This will leave the image blank for now. Then when Steam loads the image the
OnAvatarImageLoaded function is called. This will then call GetSteamImage to display the
Avatar. The delay taken to load this image is likely to only be frames and so the filler image will
only be shown for a very short time.

Devlog - Steam Networking in Unity Fred Duffield

Devlog - Steam Networking in Unity Fred Duffield

The way the GetSteamImage function works is interesting. As it is taking an image that
is not stored as a sprite/texture in Unity it needs to convert this image into an array of bytes and
then convert it back into a texture. This is done by first taking the Steam Avatar image and
checking that it is valid for use. This is almost always going to be true but it's good to have a
check just in case. Then the image is converted into an array of bytes - 4 bytes for every pixel in
the image to hold RGBA. As long as this is successful it passes this array into a new Texture2D
and returns it so it can be shown as an image.

The final functionality of this script is actually joining the room when the button is
pressed. This seemed like it would be a big challenge, and during my research I struggled to
find a good breakdown of the steps, however, we have already set up the actual connection
code using Mirror. All this needs to do is pass some data to replace the IP address and then
Mirror should be able to take it from there. So when the join button is pressed the clicked
function is called. This finds the Steam info about the friend, including the Steam Lobby ID. This
can then be used in SteamMatchmaking.JoinLobby()to join this player to their friends
Steam Lobby.

This then causes a callback in the SteamLobby script: OnLobbyEntered. Being in the
same Steam Lobby doesn’t mean you’re in the same game - remember Mirror is handling the
game Networking, the Steam Lobby is just a stepping stone. As you can see in the code below
taken from the SteamLobby script, the first thing that is to check if the Network Server is already
running - in which case the rest of the code doesn't need to run. Then it will hide any UI that
doesn't need to be there anymore. It then gets the Host Address that is stored in the lobby
metadata. This is set by the host when they start the server and this is the IP address needed
for other players to connect. Once this is retrieved it can be used to start a Client for the game.

Devlog - Steam Networking in Unity Fred Duffield

Devlog - Steam Networking in Unity Fred Duffield

INVITE SYSTEM

The invite system is very very similar to the join system. Instead of being accessed on
the main menu page it is only available to someone hosting a lobby. Again it uses a very similar
UI with a list of all available friends in a Scroll window, each with their own button to invite them
to play. When the button is pressed Steam sends the friend an invite to join the game, which
pops up in the bottom corner and can be accessed in the Steam overlay.

Devlog - Steam Networking in Unity Fred Duffield

Devlog - Steam Networking in Unity Fred Duffield

The code behind this is similar to that of the Join system. The script loops through all of
the players Friends on Steam and instantiates a new item in the list for them. The data about
each friend is passed to a script on the List items called InviteFriendButton, which sets all the UI
to display the correct info for this friend. This again uses the same system to grab the friends
Steam Avatar and convert it into a texture to be used in game. The main difference in this script
is the clicked function, which is called when the Invite button is pressed. Instead of joining the
lobby the script sends an invite to the other player. This function
SteamMatchmaking.InviteUserToLobby() immediately returns true or false depending
on whether the invite was sent successfully. This doesn’t have anything to do with whether they
accept or deny the invite, it just returns true if it was sent to them. To visualize this the Text
changes to tell the user if they sent it successfully or not.

Devlog - Steam Networking in Unity Fred Duffield

QUICK MATCH SYSTEM

The Quick Match System is the most complex of the three, however, we can borrow
heavily from the previous two Systems. The way that a quick match works is when the player
presses the button the system searches for any public lobbies with available spaces in them. If
one is found then the player sends a join request to that lobby and joins it. If there are no
available lobbies then this player hosts a new public lobby and waits for others to join. The main
difference between a Quick Match and the previous Systems is that Quick Match uses Public
lobbies as opposed to Friends only. This means players will most likely be put into lobbies with
people they don’t know. We don’t need to set up any additional UI for this, it’s all done behind
the scenes.

Devlog - Steam Networking in Unity Fred Duffield

Devlog - Steam Networking in Unity Fred Duffield

Once the button is pressed the clicked function is called. This then Requests a list of all
Lobbies with a certain filter - in this case the filter is to check the Metadata of the lobby and to
make sure the lobby is for this game specifically.

This SteamMatchmaking.RequestLobbyList() returns a callback to
OnLobbyMatchList once the list is received. However, this list could be empty and so the first
step on line 42 is to check whether the list is empty, and if so the player must host their own
lobby using steamLobby.HostPublicLobby(). If there are lobbies in the list the script must
then loop through them and try to join each one. Failing to join will be rare, only caused by edge
cases such as when the lobby fills in the time between the list being retrieved and the player
trying to join, and so often the player will join the first lobby in the list. If they don’t then it’ll loop
through all the lobbies, and if none are available it’ll host a new one.

REFERENCES
To build this project I did a lot of research and found many sources that helped me to

succeed. Some of the most useful references are linked here:

Steamworks API:
https://partner.steamgames.com/doc/api/ISteamMatchmaking#LobbyChatUpdate_t

Mirror Setup and linking to Steam:
https://www.youtube.com/watch?v=JJESrjLWhNM&list=PLS6sInD7ThM1aUDj8lZrF4b4lpvejB2u
B&index=30

Steamworks integration explanation:
https://gemesutra.com/integration-of-your-game-in-steam-working-with-the-lobby-in-steamworks
-net/

Tutorial for setting up UI layout:
https://www.youtube.com/watch?v=H9GdXiF15r8

https://partner.steamgames.com/doc/api/ISteamMatchmaking#LobbyChatUpdate_t
https://www.youtube.com/watch?v=JJESrjLWhNM&list=PLS6sInD7ThM1aUDj8lZrF4b4lpvejB2uB&index=30
https://www.youtube.com/watch?v=JJESrjLWhNM&list=PLS6sInD7ThM1aUDj8lZrF4b4lpvejB2uB&index=30
https://gemesutra.com/integration-of-your-game-in-steam-working-with-the-lobby-in-steamworks-net/
https://gemesutra.com/integration-of-your-game-in-steam-working-with-the-lobby-in-steamworks-net/
https://www.youtube.com/watch?v=H9GdXiF15r8

