

ELM Experiences Engineering Complex Systems at MBDA

Ian Clark & Mark Bennison, MBDA Missile Systems

- Introductions
- Our Business Journey
- Our Experiences
- Questions

Introductions

- Mark
- lan
- MBDA

Introductions

Mark Bennison BSc (Hons) CEng MIET MBCS CITP Head of Digital Technologies & ALM

- Career in brief
 - Started in 1986 as a software engineer working on Nimrod AEW, cancelled 2 months later...
 - Spend many years designing and developing RTOS for various products
 - Mid 1990's moved into systems engineering and held various positions: consultant, technical management, Chief Engineer ... mostly on military communications equipment
 - 2005 moved into a role providing technical assurance/scrutineering across all MBDA's products; also redeveloped the product engineering processes
 - 2018 role change to own and improve the MBDA ALM solution
 - ELM, DOORS, Rhapsody, pure::variants, Eggplant, ...

Current focus upon:

- Governance of the model based engineering tools, digital continuity and data architecture
- Definition and implementation of the "to-be" digital thread & data model

lan Clark - model-based engineering since 1992 - ELM user since 2014

Aircraft Head-Down
Display System

Ship and Submarine
Sonar Systems

Model-Based Systems
Engineering Tooling

Military Communications and Information System (CIS)

Missile Systems

— 1992

1993

1997 ——

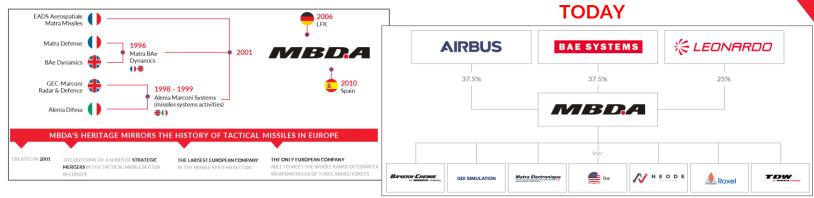
2003

2013

- Model Based Engineering practitioner, manager and advisor of Aerospace and Defence Software and Systems development
 - Six years Project Manager at Artisan Software Tools developing Real-time Studio modelling toolset.

Currently, System Architect on one of MBDA's Development Programmes and an MBDA
 Systems Engineering Technical Expert

• INCOSE member since 2004. Member of INCOSE UK Architecture and MBSE Working Groups (co-chair MBSE-WG 2017-22).


Introductions

"a unique and successful model of a European integrated defence company at the core of the sovereignty of our nations"

MBDA

MBDA

OUR HERITIGE

OUR VISION

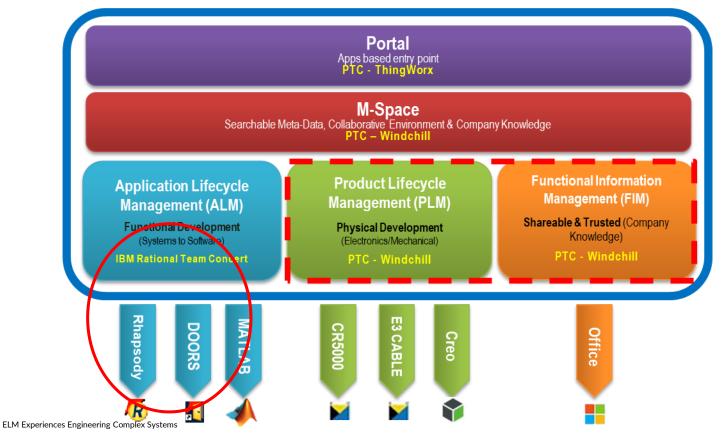
To be the European Complex Weapons

LEADER & A GLOBAL PLAYER

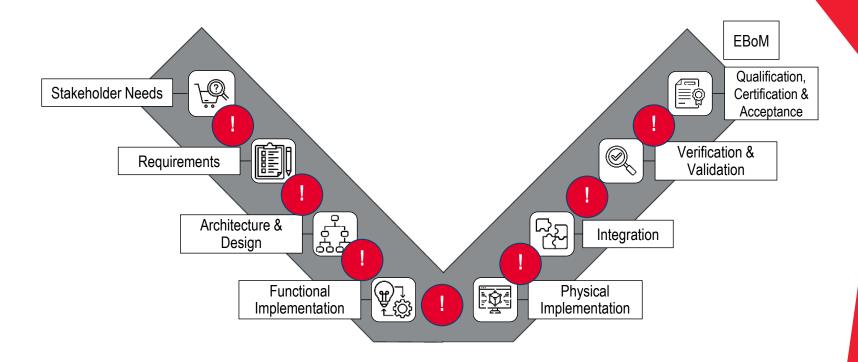
OUR MISSION

To operate as a trusted part of the defence community by providing our home nations and their allies with decisive military capability TO PROTECT NATIONAL SECURITY and enable STRATEGIC INDEPENDENCE

OUR POSITIONING


ELM Experiences Engineering Complex Systems

Our Business Journey



Where we were: Our engineering information architecture circa 2018

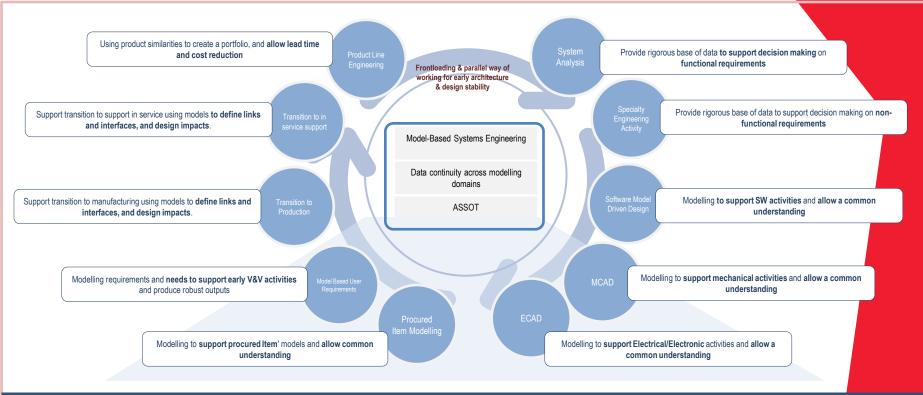
Engineering Workflow

Diagnosis

Engineering data is fixed inside internal and/or contractual silos – it is hard to access and exploit

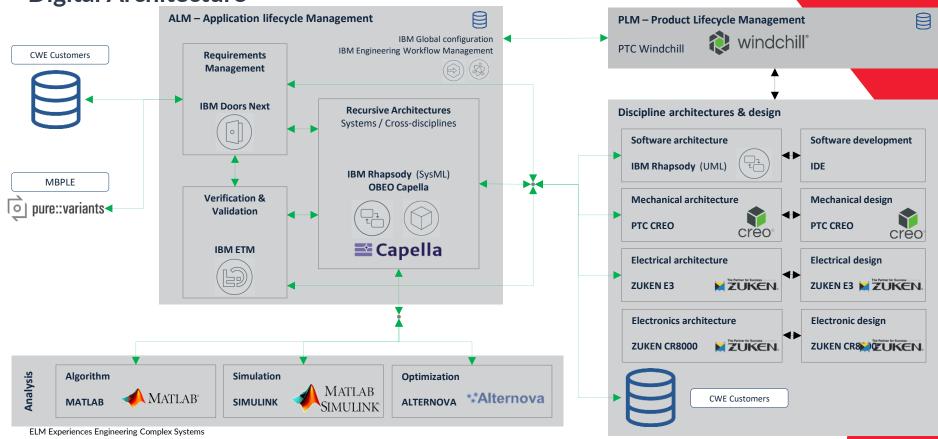
Engineering technology 'core' is too fragmented, fragile and at a high risk of becoming obsolete

We remain with industrial era processes and culture despite efforts to change

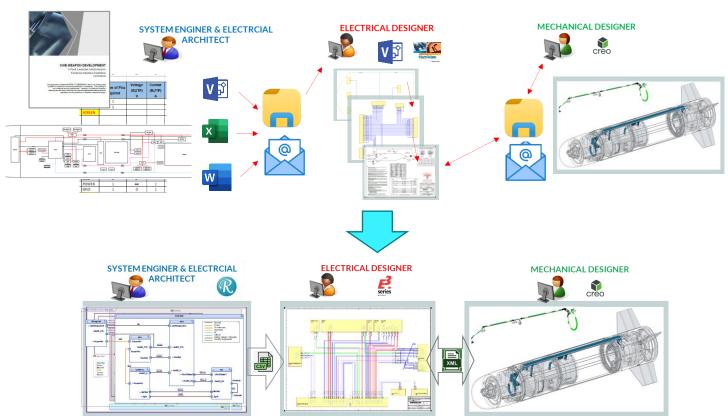


There is a digital skills gap across product development, and beyond

ELM Experiences Engineering Complex Systems


Digital Engineering Transformation

Putting Model-Based Systems Engineering, ASSOT and Digital & Data Continuity at the heart of End-to-End Model Based Engineering



Digital Architecture

Digital Continuity Example

Our Experiences (so far . . .)

- Our Complex Systems and ELM Environment
- The Requirements Space
- The Architecture & Design Space
- Key Benefits and Challenges so far

Our Complex Systems

Systems Architecture/ System Design

- Safety
- Security
- Human Factors
- Integrated Support
- . . .

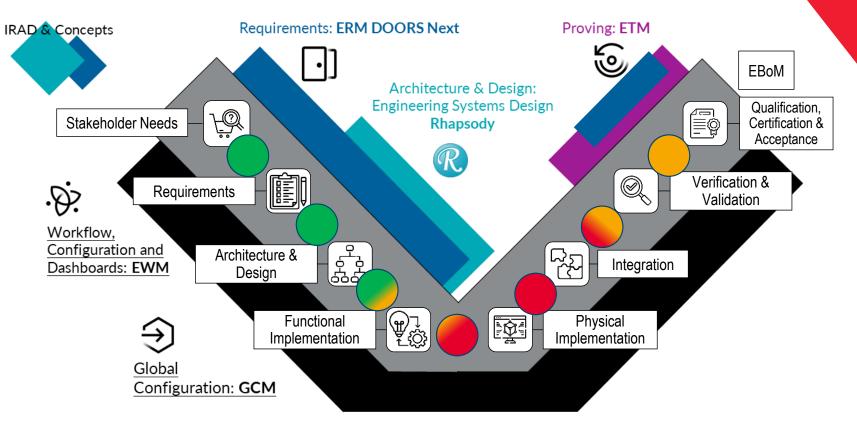
Mission Planning HMI

C2

Aerodynamics & Stealth

Guidance, Control & Navigation

Image Processing & Countermeasures


Lethality

Armed Forces based perspective: Air, Navy, Army

Our ELM Environment

ELM Experiences Engineering Complex Systems

The Requirements Space

- Engineering Requirements Management (DOORS Next) for our requirements engineering
 - Leveraging our processes, procedures and skillsets from years of DOORS 'Classic' usage
- Engineering Workflow Management (EWM) for the configuration, change and baseline management of our requirements
 - Also the Task Management, Monitoring and Reporting valuable for our leaders/managers (no excuse)
- Unique Requirement objects re-usable across Requirement Specifications
 - Don't have to make and manage copies (within same project)
 - · Enables us to have variant specifications for variant products with common requirements
 - Change management impact assessment across multiple specifications/products is fundamental!
 - The actual 'Specifications' can be configurable and recoverable within the ELM environment
- Concurrent multi-user day-to-day activities in DOORS Next:
 - Stakeholder collaboration capturing and managing all our Systems' requirements our ASSOT*
 - · Baselining requirement and collective 'specifications' (e.g. for multiple related products) for review and release
 - Maintaining requirements through a change initiation and management process

17

The Architecture & Design Space

- Engineering Systems Design (Rhapsody) modelling our systems' architectures and designs generating 'some' code
 - Rhapsody Model Manager (RMM) integrating Rhapsody to EWM behind the scenes for the masses (i.e. minimal User Interface)
 - Using Eclipse Client for the Configuration of our Rhapsody models additional skill set
- EWM for the configuration, change and baseline management, and browsing of our models
 - Also the Task Management, Monitoring and Reporting valuable for our leaders/managers (no excuse)
- Model configuration in EWM:
 - Project Area per project (has Team Areas)
 - Team Area per project team (contains Streams) very useful to plan, prepare, manage and control our modelling
 - Stream per Architecture/Design (contains Components) in most cases made up of multiple models (different discussion, different day)
 - Component per model 'the basic configuration unit for a model' (i.e. we use reference models different discussion, different day)
- Concurrent multi-user day-to-day activities in Rhapsody and EWM with ERM:
 - · Creating and configuring our models
 - Updating and delivering models into 'project area streams' on the 'central server'
 - Associating (i.e. creating relationships) Architecture and Design to Requirements in our models in a configured controlled environment
 - Baselining models for review and release
 - Generating documents from our models early days for this and still maturing overall competencies

ELM Experiences Engineering Complex Systems

Key Benefits

- Requirements are no longer being engineered in stovepipes the toolset facilitating the visibility, collaboration, co-specification and impact assessment into Architecture & Design and our V&V (i.e. our 'Proving') our Requirements Engineering is maturing
- Architecture and Design is a centrally configured and controlled set of artefacts (primarily models) linkable to configured requirements and in time to our Proving our Model Based Engineering is maturing
- Workflow planning, implementation and monitoring with the EWM Work Items and Dashboards is very visible and usable our Planning and Management is improving
- · Product Development delivery and quality is improving in meeting project and programme milestones from 'seeing it' and 'doing it'
- Competencies of our people, using the tools and the methods are maturing i.e. our Systems Engineering is maturing!

Key Challenges (currently being worked on and we are learning!)

- ELM Global Configuration Management (GCM) understanding our needs across our extensive lifecycle teams, their activity and delivery
- EWM Change Management control, planning and impact with cross-domain/team collaboration and usage (i.e. Requirement in Architecture in Design in Implementation)
- EWM and GCM Baselining locally with dependents (e.g. Requirements- Architecture) and globally across the Lifecycle (i.e. Product)
- Project 'ELM back-office' capabilities planning, coverage and competencies not at the forefront for key stakeholders
- Project user competencies actively staying on top of this and maintaining and maturing these
- Project secret/controlled data the setup and management of this to enable tight control of access and requirement/model integrations

Questions

Thank you for your attention and contribution