

Part Three: V and V For Victory

Matt Hirschfield Senior Consultant

Registered Office: 18 Northgate, Sleaford, Lincolnshire, United Kingdom, NG34 7BJ

T: +44 (0) 1529 717369

About Me

Matt Hirschfield MIfSE ASEP

1998 2001 2021 2013

Copyright © 2024 Optimise Engineering Ltd Ref: OPTSERW001 Slide No.2 www.optimise-engineering.co.uk

Agenda

This edition of our Ctrl-Alt-Engineering series explores Verification and Validation.

Verification and Validation Overview

Verification Key Principles

Verification Processes/Methods

Validation Key Principles

Validation Processes/Methods

Benefits of Verification and Validation

Verification and Validation - Overview

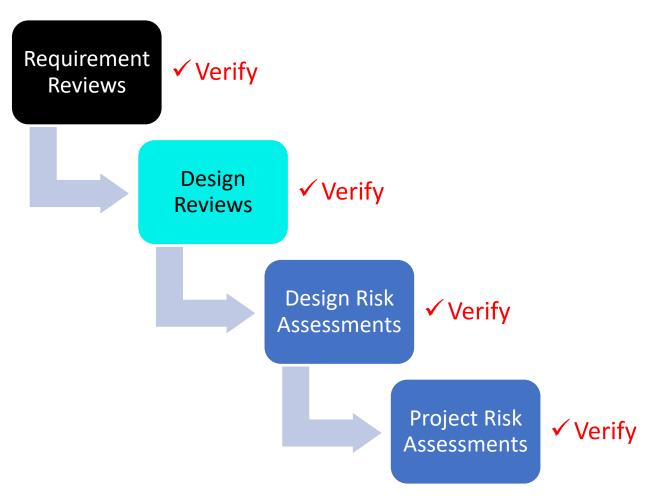
erification

Checking that the system design is correctly aligned to the stakeholder requirement characteristics

alidation

Checking that the system has been built correctly and meets the stakeholder's needs in its intended operational environment

- Why do we verify
 - People
 - Customers!
 - Peers
 - Users



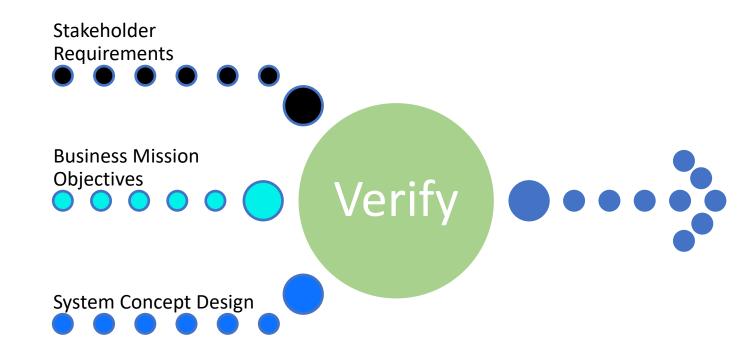
- Another reason we verify
 - Project Governance
 - Opportunity to Share
 - Progress
 - Challenges
 - Risks
 - Success
 - Good Verification, builds
 Confidence in the delivery team
 - Happy Customers!

- When do we Verify
- Throughout the project/product lifecycle
 - Requirement Reviews
 - Design Reviews
 - Design Risk Assessment
 - Project Risk Assessment

How do we verify?

2P-Process

Verification Processes and Methods



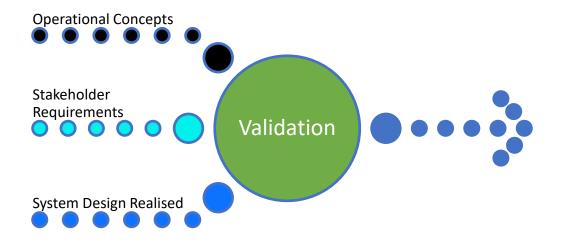
- Planning for Verification
 - Developing a Verification Strategy
 - When and What to verify
 - The plan should be reviewed and tailored to suit the project complexity, budget and scope
- Performing Verification
 - Checking Required Inputs are complete
 - Verification Objectives
 - Verification Criteria
 - What counts as Good, Bad and in between
- Managing the Results
 - Reporting the results
 - Managing exceptions

Inputs

- Verification Criteria
 - Scope, Constraints, Schedule
- Initial Stakeholder Requirements
- Business Mission Objects
- Lifecycle Concepts
- System Concept Design
 - Scope
 - Interface Definition
 - Architecture Definition
 - Initial Requirement Verification
 Traceability Matrix RVTM

- Activities
 - Verification Methods
 - Inspection and Review
 - Analysis and Modelling
 - Demonstration or Prototyping
 - Testing and Evaluation
 - Formal Verification
 - Execute and Record Verification Activities
 - Carry out the chosen verification method(s) systematically.
 - For each requirement, document outcomes as pass, fail, or not applicable.
 - Any discrepancies or failures must be logged for corrective action.

- Output
 - Verified System Design
 - Supporting Documentation
 - Verification Procedure,
 Strategy, Constraints
 - Final RVTM that shows traceability from Stakeholder needs to design documentation
 - Verification Reports
 - Verification Records



- Why do we validate?
 - People (Again!)
 - Validation is the final opportunity to ensure the project has successfully satisfied the needs of the stakeholder and Business Mission Objectives

- When do we start to Validate?
 - As soon as possible –
 - Once the Operational Concepts and Stakeholder Requirements are known, validation planning can begin.
 - Actual validation or testing of system elements and wider system, can only begin once the system is in its intended operational state and environment.

Ref: OPTSERW001 Slide No.14 www.optimise-engineering.co.uk

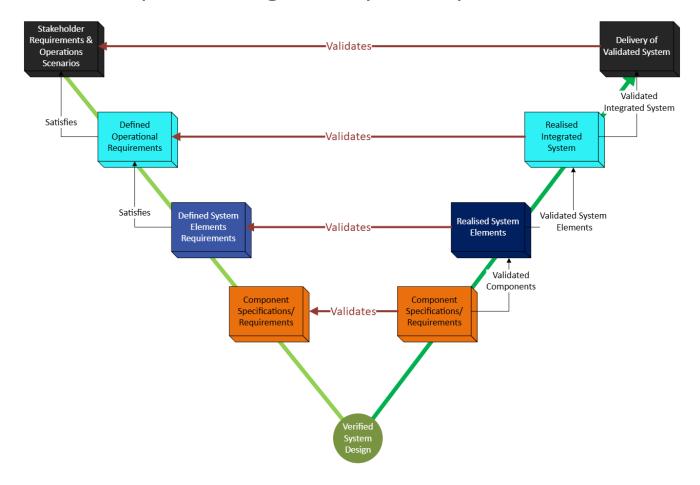
- Where do we start?
- By Following the Validation Process
- Formulate the Validation Strategy Tailored to meet the project
- The Validation strategy feeds into the Validation Test Plan(s)
- Test Plans should
 - Identify the Stakeholders
 - Identify Validation Constraints
 - The Validation Objectives
 - The Validation Scope
 - Associated Risks
 - The Schedule
 - Be tailored to the suit the project complexity and constraints

2P –

Process

Validation Process

Inputs • Life Cycle Concepts Stakeholder Needs • RVTM Validation Criteria System/System Element


	Activities	
PreparePerformManage		

Outputs

- Validated System Documented Evidence that the System has been successfully Validated
- Validation Strategy
- Validation enabling System Requirements requirements outside of the system boundaries that are enablers for System Validation
- Validation Constraints Schedule, Resources, Budget
- Validation Procedures Document Evidence
- Validated Requirements traceability from test results, through System requirements back to Stakeholder/Business Requirements
- Validation Report An account prepared for stakeholders that shares the Validation status of the system against the stakeholder requirements
- Validation Record Validation data

Validation levels decomposed to align with system layers

Verification and Validation Summary

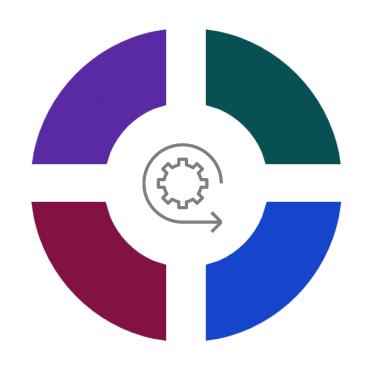
https://www.engineeringforhumans.com/category/case-studies/

Verification and Validation Summary

3P –
Products

IBM Engineering Lifecycle Management is the most comprehensive solution to work consistent across engineering domains

Engineering Requirements Management DOORS Next


Capture and structure requirements; Version, baseline and exchange

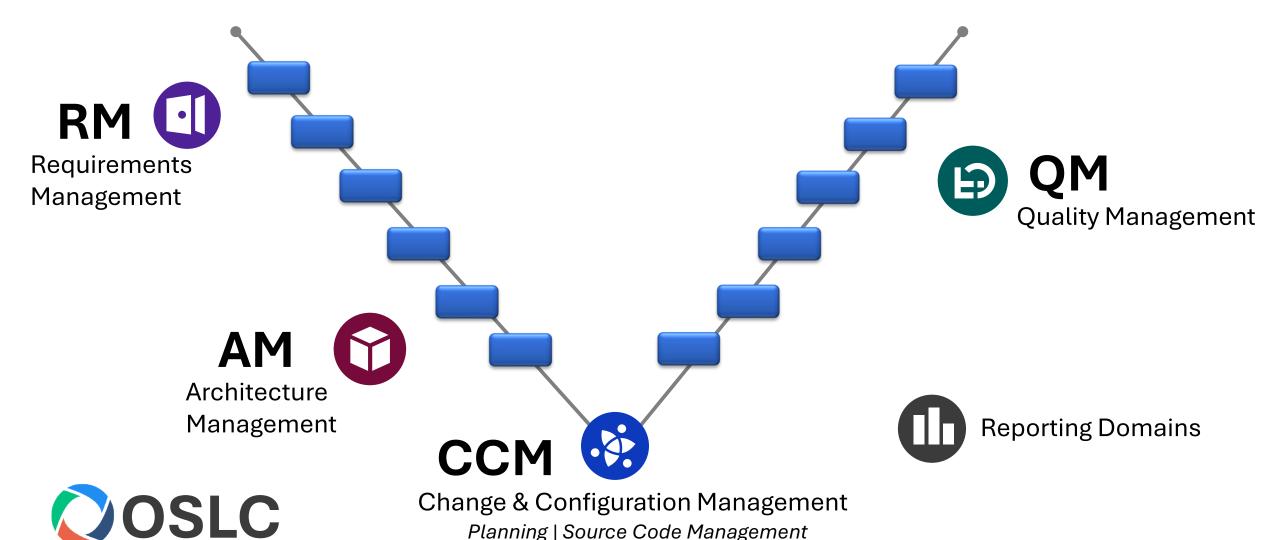
Engineering Systems Design Rhapsody

Model and execute software- and system architecture and behaviour

Engineering Test Management

Plan, execute and automize tests. Manage plans, suites & environments

o —


Engineering Workflow Management

Plan and assign tasks, manage code changes, track risks and reviews

IBM Engineering Lifecycle Management (ELM) is preparing for the future by building an open linked data set

Planning | Source Code Management

References

- 1. https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/test-management/7.1.0?topic=testing-getting-started-managing-test-effort
- 2. https://www.engineeringforhumans.com/systems-engineering/written-in-blood-case-studies-of-systems-engineering-failure/
- 3. https://moldstud.com/articles/p-exploring-case-studies-in-systems-engineering-failures
- 4. https://www.medicaldesignandoutsourcing.com/top-10-vv-fails-dont-let-these-common-mistakes-derail-your-verification-and-validation-program/
- 5. http://sysengr.engr.arizona.edu/publishedPapers/FamousFailures.pdf