

FIABLE HYDRAULICS PVT.LTD Sector 10, MIDC, Bhosari, Pune, Pimpri-Chinchwad, Maharashtra 411026 E-mail - fiablehydraulics@gmail.com Website - www.fiablehydraulics.in

A10V(S)0

Variable Axial Piston pump, swashplate design Sizes: 18 to 140 ml/r Flow: 27 to 210 l/min Nominal Pressure: 280 bar Maximum Pressure: 350 bar

٠	Index	Page No
•	• Features	01
٠	Ordering code	02
٠	Technical data	04
٠	Installation notes	06
٠	Characteristics curves	07
٠	Unit Dimensions A10V(S)O18	08
٠	Unit Dimensions A10V(S)O28	09
٠	Unit Dimensions A10V(S)O45	10
٠	Unit Dimensions A10V(S)071	11
٠	Unit Dimensions A10V(S)O100	12
٠	Unit Dimensions A10V(S)O140	14
٠	DR Pressure Control	16
٠	DRG Pressure Controller, Remote Control	18
٠	DFR/DFR1 Pressure / Flow Control DFLR	21
٠	Pressure , flow and power Control Through	23
	Drive Installation Dimensions, Through	24
	Drives	

Features

- Variable pump witch axial piston rotary group in swashplate design for hydraulic open circuit.
- Flow is proportional to drive speed and displacement.
- The flow can be smoothly changed by adjustment.
- 2 drain ports.
- Excellent suction characteristics.
- Low noise level
- Long service life
- Good power to weight ratio
- Versation controller range.
- Short control times.
- The through drive is suitable for adding gear pumps and axial pistion pumps up to the same size,i.e.,100% • through drive.
- 1/33

Ordering code

	A10VS				
Swashplate design,variable, (ISO Standard) Swashplate design, Variable (SAE Standard) Nominal pressure up to 280 bar Maximum pressure up to 350 bar	= A10VS = A10V				
Pump, Open Circuit	= 0				
Size (mL/r) = 18,	28, 45, 71, 100, 1	40			
Control device Pressure controller Pressure control, remote controlled Pressure /flow control Pressure /flow control, without orifice in X-line pressure, flow and power controller		= DR = DRG = DFR = DFR1 = DFLR			
Series		=	31		
Direction of Rotation (View from shaft end) Clockwise Counter- clockwise			= R = L		
Sealing Material NBR nitrl~ caoutchouc to (shalft seal in FKM) FKM [uor~ caoutchouc			= P = V		
Shaft end See next page (table 1)					
Mounting Flange ISO 2-hole SAE 2-hole ISO 4-hole SAE 4-hole				= A = C = B = D	
Working Port					
AE flange ports according to ISO 6162 working p AE flange ports according to ISO 6162 working p	-		-		= 12 = 62

Through drive See next page (table 2)

Ordering Code

Table 1: Shaft end							
Size	18	28	45	71	100	140	
Parallel with key DIN6885	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Р
Parallel with key SAE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	K
Splined shaft SAE	3/4"	7/8"	1"	1 1/4"	1 1/2"	1	S
Splined shaft SAE (higher through-shaft drive torque)	/	7/8"	1"	1 1/4"	/	3/4"	R
Splined shaft SAE (limited suitability for through drive)	5/8"	/	7/8"	/	1 1/4"	11	U

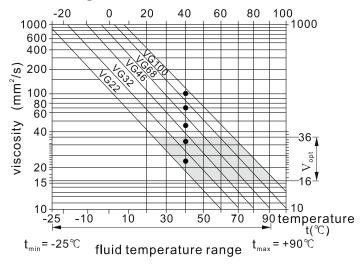
Table 2: Through drives

Installation of f	lange Hub for shaft diameter	Acceptable	18	28	45	71	100	140	
Without throug	h drive		1	1	1	1	1	1	N00
ISO 80,2-hole	splined shaft 3/4"19-4(SAE A-B)	A10VSO18(shaft S or R)	/	1	1	1	1	1	KB2
ISO 80,2-hole	with key shaft Ø18	A10VSO18(shaft P)	/	1	1	1	1	1	K51
ISO 100,2-hole	splined shaft 7/8"22-4(SAE B)	A10VSO28(shaft S or R)	1	1	1	1	1	1	KB3
ISO 100,2-hole	with key shaft Ø22	A10VSO28(shaft P)	1	1	1	1	1	1	K25
ISO 100,2-hole	splined shaft 1"25-4(SAE B-B)	A10VSO45(shaft S or R)	1	/	1	1	1	1	KB4
ISO 100,2-hole	with key shaft Ø25	A10VSO45(shaft P)	1	1	1	1	1	1	K26
ISO 125,2-hole	splined shaft 1 1/4"32-4(SAE C)	A10VSO71(shaft S or R)	/	1	1	1	1	1	KB5
ISO 125,2-hole	with key shaft Ø32	A10VSO71(shaft P)	1	1	/	1	1	1	K27
ISO 125,2-hole	splined shaft 1 1/2"38-4(SAE C-C)	A10VSO100(shaft S)	1	1	1	1	1	1	KB6
ISO 180,4-hole	splined shaft 1 3/4"44-4(SAE D)	A10VSO140(shaft S)	/	/	1	/	/	1	KB7
SAE 82,2-hole	splined shaft 5/8°16-4(SAE A)		1	1	1	1	1	1	K01
SAE 82,2-hole	splined shaft 3/4"19-4(SAE A-B)	A10VO18(shaft S)	1	1	1	1	1	1	K52
SAE 101,2-hole	splined shaft 7/8°22-4(SAE B) radial seal	A10VO28(shaft S)	1	1	1	1	1	1	K02
SAE 101,2-hole	splined shaft 7/8"22-4(SAE B) axial seal	A10VO28(shaft S)	1	1	1	1	1	1	K68
SAE 101,2-hole	splined shaft 1"25-4(SAE B-B)	A10VO45(shaft S)	/	/	1	1	1	1	K04
SAE 127,2-hole	splined shaft 1 1/4"32-4(SAE C)	A10VO71(shaft S)	1	/	1	1	1	1	K07
SAE 127,2-hole	splined shaft 1 1/2"38-4(SAE C-C)	A10VO100(shaft S)	1	/	/	/	1	1	K24
SAE 180,4-hole	splined shaft 1 3/4"44-4(SAE D)	A10VO140(shaft S)	1	/	1	/	/	1	K17

If a second pump is to be fitted at factory then the two model codes must be linked with

a + sign. Model code 1st pump + Model code 2nd pump. Ordering example:A10VSO100DR/31R-PPA12KB5 + A10VSO71DFR/31R-PSA12N00 If a gear or radial piston pump is to be fitted at factory please consult us.

.


Technical data

- pump is suitable for use with mineral oil. we can offer pumps for water based oils, please contact us.
- Operating viscosity range In order to obtain optimum efficiency and service life, we recommend that the operating viscosity(at operating temperature) be selected from within the range

Referred to the reservoir temperature(open circuit). Vopt = operating viscosity 16...36 mm²/s

Viscosity limits The limiting values for viscosity are as follows: Vmin =10 mm²/s short term at a max. permissible case temp. of 90°C. Vmax = 1000 mm²/s short term on cold start Temperature range (see selection diagram) tmin = -25°C tmax = 90°C

Selection Diagram

• Hydraulic fluid The A10V(S)O variable displacement • Notes on the selection of the hydraulic fluid In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open loop) in relation to the ambient temperature. The hydraulic fluid should be selected so that within the operating temperature range, the operating viscosity lies within the optimum range (Vopt) (see shaded section of the selection diagram). We recommend that the higher viscosity range should be chosen in each case. Example: At an ambient temperature of x°C the operating temperature is 60°C.Within the operating viscosity range (opt ;shaded area), this corresponds to viscosity ranges VG46 or VG68;VG68 should be selected.

> **Important:** The leakage oil (case drain oil) temperature is influenced by pressure and pump speed and is always higher than the tank temperature. However, at on point in the circuit may the temperature exceed 90°C. If it is not possible to comply with the above conditions because of extreme operating parameters or high ambient temperatures please consult us.

• Filtration The Iner the filtration the better the cleanliness of the pressure Duid and the longer the life of the axial piston unit. To ensure the functioning of the axial piston unit a minimum cleanliness level of:

9 to NAS 1638 18/15 to ISO/DIS 4406 is necessary

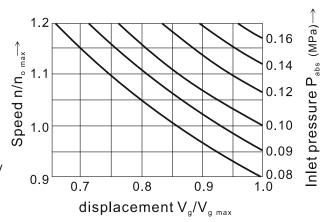
if above mentioned grades cannot be maintained please consult supplier.

High-speed-version The size 140 is available in an optional high speed version. This version allows higher drive speeds at max. displacement (higher output flow) without affecting outside dimensions.

Mechanical displacement limiter Mechanical

displacement limiter is possible on the non through-drive model, N00 series but not for the model with throughdrive. Vg max : for sizes 28 to 140

Vg min : for sizes 100 and 140 setting range Vg max to 50% Vg max stepless

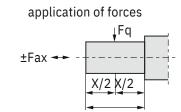

Technical data

Operating pressure	range-inlet Absolute
--------------------	----------------------

٠	pressure at port S Pabs	
	min	0.8 bar
	Pabs max	30
	bar	

- **Operating pressure range-outlet** Pressure at port B Nominal pressure PN ______ 280 bar Peak pressure Pmax ______ 350 bar (Pressure data to DIN 24312) Applications with intermittent operating pressures up to 315 bar at 10% duty are permissible. Limitation of pump output pressure spikes is possible with relief valve blocks mounted directly on flange connection.
- **Case drain pressure** Maximum permissible pressure of leakage fluid (at port L,L1) Maximum 0.5 bar higher than the inlet pressure at port S, but no higher than 2 bar absolute

Determination of inlet pressure Pabs at suction port S or reduction of displacement for increasing speed.


Direction of through flow S to B

Size				18	28	45	71	100	140
Displacement		Vg max	mL/r	18	28	45	71	100	140
Max. Speed ¹⁾	at Vg max	No max	rpm	3300	3000	2600	2200	2000	1800
Max.permitted speed (limit spe with increased input pressure		No max	rpm	3900	3600	3100	2600	2400	2100
Max. flow	at Nomax	qvo max	L/min	59	84	117	156	200	252
	at nE=1500 min	1	L/min	27	42	68	107	150	210
Max.power	at No max	Pvo max	kW	28	39	55	73	93	118
(△P.= 28 MPa)	at nE=1500 min	1	kW	13	20	32	50	70	98
Max.torque (Δ P= 280 bar)	at Vq max	Tmax	Nm	80	125	200	316	445	623
Torque ($\Delta P = 100$ bar)	at Vg max	Т	Nm	30	45	72	113	159	223
Moment of inertia about drive	axis	J	Kgm ²	0.00093	0.0017	0.0033	0.0083	0.0167	0.0242
Case volume			L	0.4	0.7	1.0	1.6	2.2	3.0
Weight (without fluid)	m	kg	11	15	12	33	45	60	
Permissible loading of drive sh	naft: max.axial force	Faxmax	N	350	1000	1500	2400	4000	4800
Max, permissible radial force20		Fqmax	N	700	1200	1500	1900	2300	2800

Specifications

1) These values are valid for an absolute pressure of 0.1 MPa at the suction port S.By reducing the displacement or increasing the input pressure the speed can be increased as shown in the diagram.

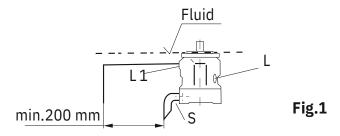
2) Please consult us for higher radial forces.

Determination of displacement

Flow $q_V = \frac{V_9 \times nxn_v}{1000}$ (l/min) Torque $T = \frac{V_9 \times \Delta p}{20 \times \pi \times nm}$ (Nm) Power $P = \frac{2 \pi \times T \times n}{60000} = \frac{q_v \times \Delta p}{600 \times n}$ (KW)

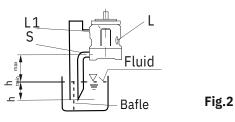
- V_g Displacement per revolution [cm³]
- Δp Differential pressure [bar]
- n Rotational speed [rpm]
- n_v Volumetric efficiency

nhm Hydraulic-mechanical efficiency

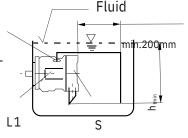

 n_t Total efficiency ($n_t = n_v \times n_{hm}$)

Installation Notes

Optional installation position. The pump housing must be filled with fluid during commissioning and remain full when installed, so that "L" or "L " is at the top. 1 operating. In order to attain the lowest noise level, all connections(suction, pressure, case drain ports) must be linked by flexble couplings to tank. Avoid placing a check valve in the case drain line. This may, however, be permissible in individual cases, after consultation with us.


1. Vertical installation (shaft end upwards) The following installation conditions must be taken into account

1.1.Arrangement in the reservoir Before installation all pump housing, keeping it in a horizontal position. a) If the minimum fluid level is equal to or above the pump mounting face close port "L"plugged, leave ports "L " and 1 "S" open; L piped and recommendation S piped (see Fig.1). 1 b) If the minimum fluid level is below the pump mounting face pipe port "L " and "S" according to Fig.2. 1 Close port "L" with respect taking into consideration conditions in 1.2.1.


1.2. Arrangement outside the reservoir Before installation all the pump housing, keeping it in a horizontal position. For mounting above reservoir see Fig.2.

Limiting condition: 1.2.1. Minimum pump inlet pressure Pabs min = 0.8 bar under both static and dynamic conditions. Note: Avoid mounting above reservoir wherever possible in order to achieve a low noise level. The permissible suction height h comes from the overall pressure loss, but may not be bigger than hmax = 800 mm (immerdion depth ht min = 200mm).

2. Horizontal installation The pump must be **2.1.Arrangement in the reservoir** a) If the minimum fluid level is above the top of the pump, port "L " closed,"L" and "S" should remain open, L piped 1 and recommendation S piped (see Fig.3) b) If the minimum fluid level is equal to or below the top of the pump, pipe ports "L" and possibly "S" as Fig.4.; close port "L ". 1 The conditions accourding to tiem 1.2.1.

2.2. Installation outside the reservoir

Fill the pump housing before commissioning. Pipe ports "s" and the higher port "L" or "L ". 1

a) When mounting above the reservoir, see fg.4. Conditions according to 1.2.1.

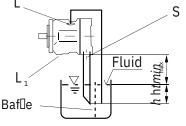
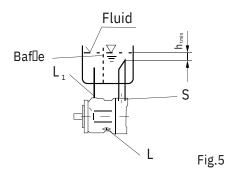



Fig.4

Fig.3

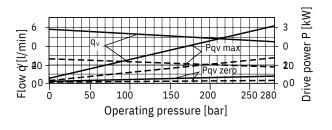
b) Mounting below the reservoir Pipe ports "L " and "S" according to Fig.5, 1 close port "L".

Overall pressure loss $\Delta Ptot = \Delta P1 + \Delta P2 + \Delta P3 \le (1 - Pabs min) = 0.02 MPa$ $\Delta P1$: Pressure loss in pipe due 1 to accelerating column of fluid

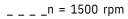
pxlxdv = 10(Mpa) ΔP dt ΔP2 : Pressure loss due to static head $\triangle P2 = h \times p \times g \times 10$ - (Mpa) \triangle P3:Line losses (elbows etc.)

 $p = density(kg/m^3)$ l = pipe lenght(m)dv/dt = rate of changein fluid velocity(m/s²)

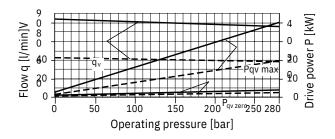
 $g = gravity = 9.81 m/s^2$

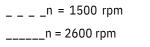

Characteristic curves

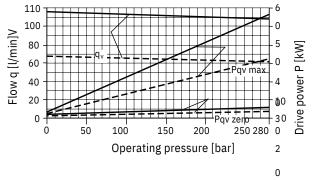
Drive Power and flow


Hydraulic 🛛 uid ISO VG 46 DIN 51519, t=50 °C

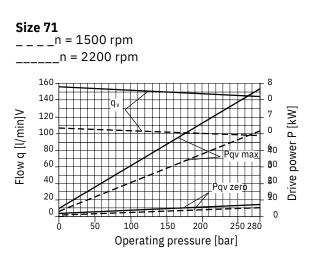
Size 18

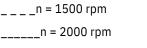

_ _ _ _ n = 1500 rpm _____n = 3300 rpm

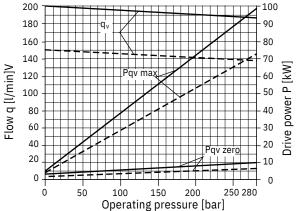


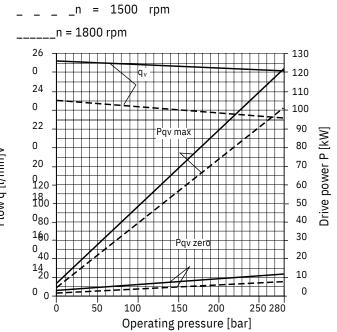


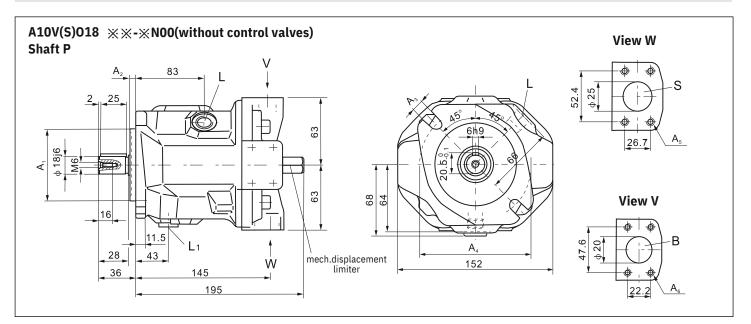
_____n = 3000 rpm

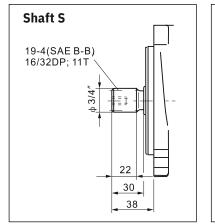


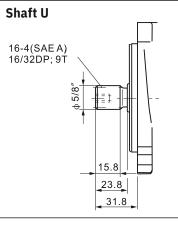


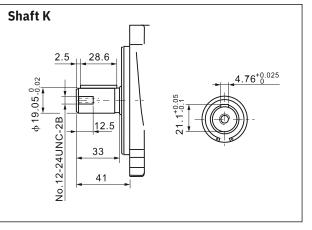








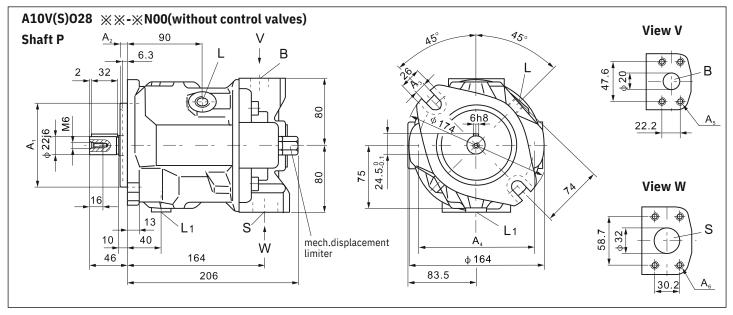


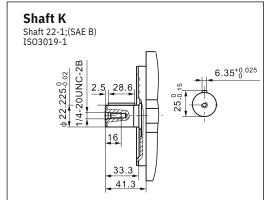

(Dimensions in mm)

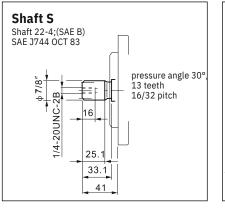
Fiable Hydraulics

 B S
 Pressure port
 SAE 3/4" (St

 L/L
 Suction port
 SAE 1" (St


 1
 Case drain ports
 (L1 plugg


" (Standard pressure range) (Standard pressure range) (L1 plugged at factory)


Size	Al	A2	A3	A4	A5	A6	Drain ports L/L1
A10VSO18 ISO	Ø80 h8	7	11	Ø109	4-M10,17 deep	4-M10,17 deep	M16x1.5
A10VO18 SAE	Ø82.55 h8	6.3	11	Ø106.4	4-3/8-16UNC -2B,20 deep	4-3/8-16UNC -2B,20 deep	9/16-18UNF-2B

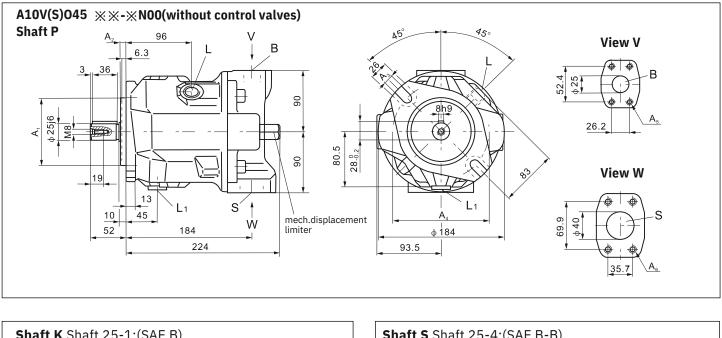
(Dimensions in mm)

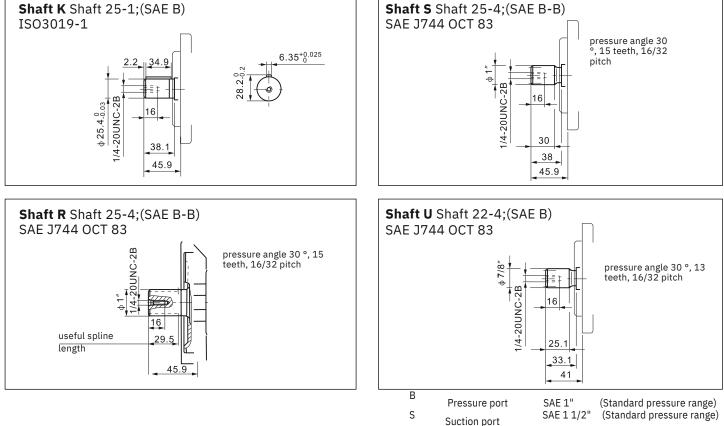
ΒS Pressure L/L port Suction port

Case drain ports

1

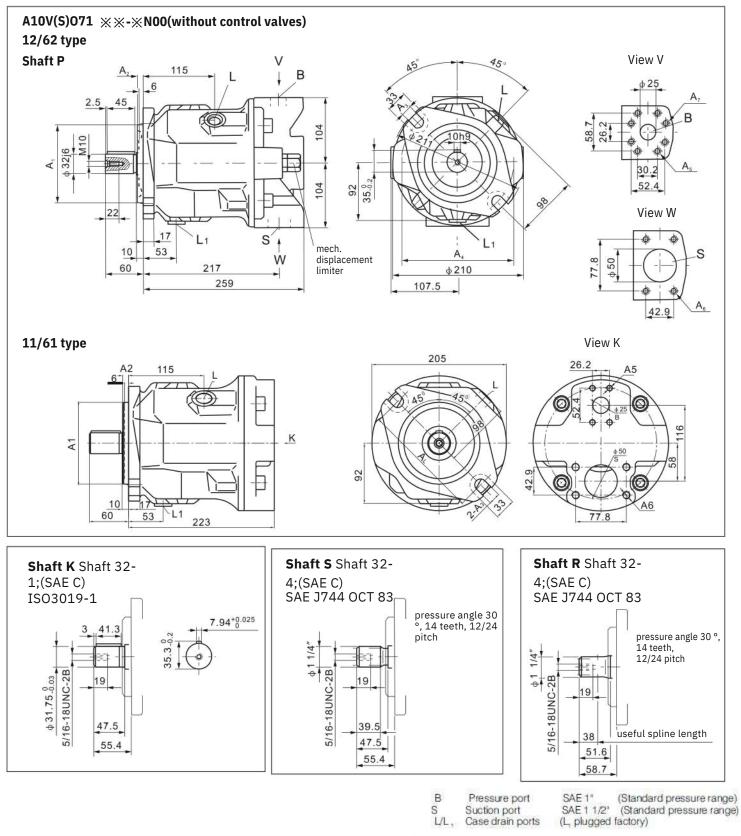
SAE 3/4"


(Standard pressure range) SAE 11/4" (Standard pressure range) (L1 plugged at factory)


Size	A1	A2	A3	A4	A5	A6	Drain ports L/L1
A10VSO28 ISO	Ø100 h8	9	14	Ø140	4-M10,17 deep	4-M10,17 deep	M18x1.5
A10VO28 SAE	Ø101.6 h8	9.5	14	Ø146	4-3/8-16UNC -2B,18 deep	4-7/16-14UNC -2B,24 deep	3/4-16UNF-2B

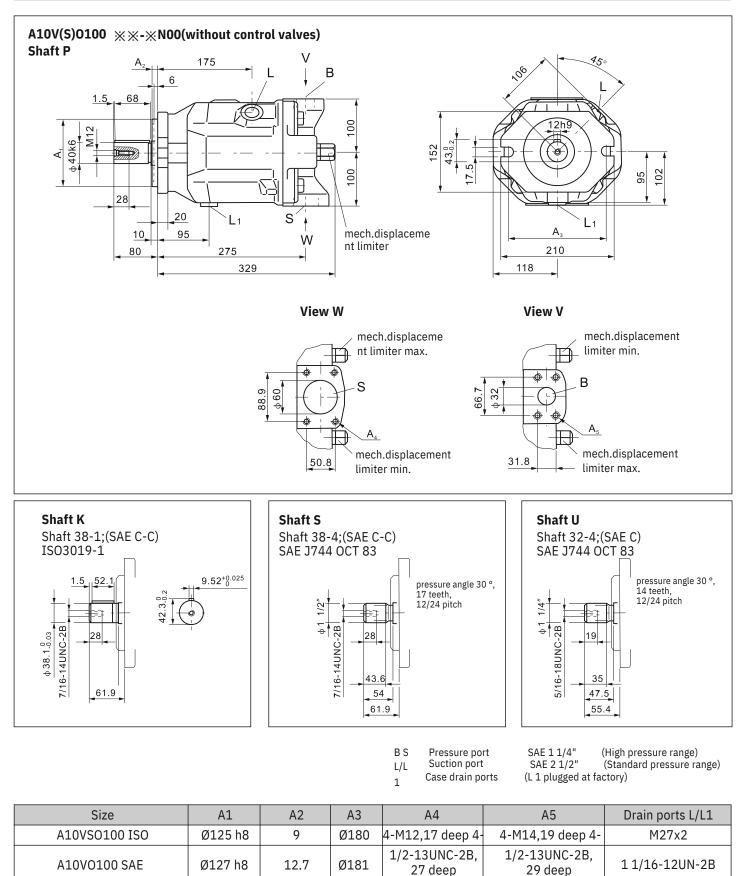
(Dimensions in mm)

(L1 plugged factory)


					Case urain p	0115	
Size	A1	A2	A3	A4	A5	A6	Drain ports L/L1
A10VSO45 ISO	Ø100 h8	9	14	Ø140	4-M10,17 deep	4-M12,20 deep	M22x1.5
A10VO45 SAE	Ø101.6 h8	9.5	14	Ø146	4-3/8-16UNC -2B,18 deep	4-1/2-13UNC -2B,22 deep	7/8-14UNF-2B

L/L 1

Case drain ports

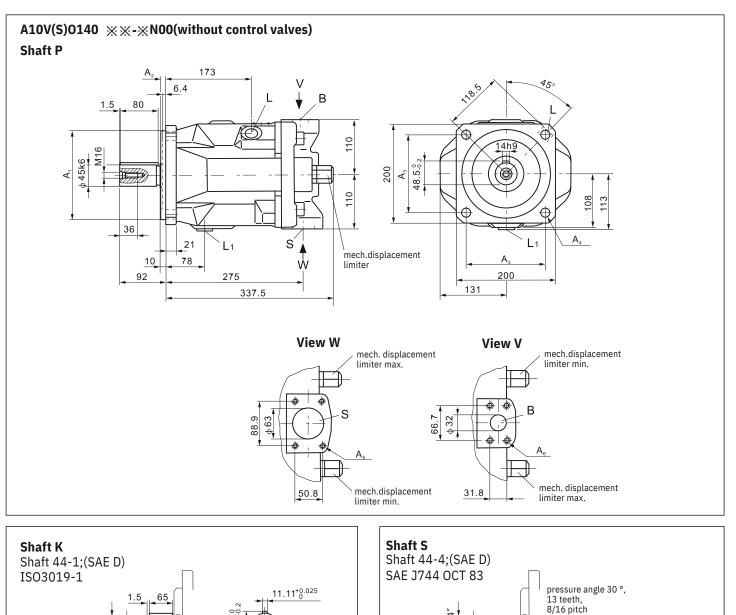

(Dimensions in mm)

Size	A1	A2	A3	A4	A5	A6	Drain ports L/L1
A10VSO45 ISO	Ø100 h8	9	14	Ø140	4-M10,17 deep	4-M12,20 deep	M22x1.5
A10VO45 SAE	Ø101.6 h8	9.5	14	Ø146	4-3/8-16UNC -2B, 18 deep	4-1/2-13UNC -28,22 deep	7/8-14UNF-2B

(Dimensions in mm)

≡"±

36


67

75

5/8-11UNC-2B

 $\phi \, 44.45 \, {}^{0}_{-0.03}$

(Dimensions in mm)

_								
	Size	A1	A2	A3	A4	A5	A6	Drain ports L/L1
	A10VSO140 ISO	Ø180 h8	9	158.4	4-Ø18	4-M12,17 deep 4-	4-M14,19 deep	M27x2
	A10V0140 SAE	Ø152.4 h8	12.7	161.6	4-Ø20	1/2-13UNC-2B, 27 deep	4-1/2-13UNC-2B, 19 deep	11/16-12UN-2B

Pressure port

Case drain port

Suction port

ΒS

L/L

1

3/4

ф 1

5/8-11UNC-2B

SAE 1 1/4"

SAE 2 1/2"

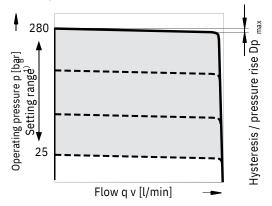
(L1 plugged at factory)

36

55

67 75

(High pressure range)


(Standard pressure range)

DR Pressure Control

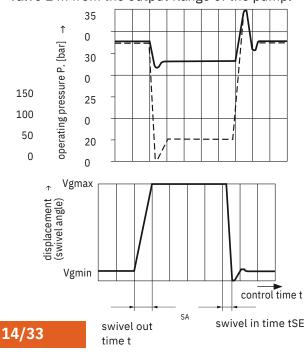
The pressure control limits the maximum pressure at the pump output within the pump control range. The variable pump only supplies as much hydraulic fluid as is required by the consumers. If the operating pressure exceeds the pressure setpoint set at the integrated pressure valve, the pump will adjust towards a smaller displacement and the control deviation will be reduced. The pressure can be set steplessly at the control valve.

Static characteristic curves (at

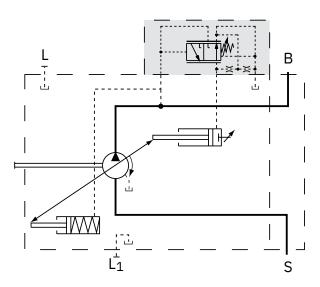
n1=1500 rpm; toil = 50°C)

1) In order to prevent damage to the pump and the system, this setting range is the permissible setting range and must not be exceeded. The range of possible settings at the valve are greater.

Dynamic operating curves

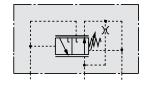

The operating curves are mean values measured under test conditions with the unit mounted inside the tank. Conditions:

n = 1500 rpm


toil= 50°C

Main relief set at 350 bar

Load steps were obtained by suddenly opening and closin the pressure line with a pressure relief valve as load valve 1 m from the output flange of the pump.



Circuit diagram, sizes 18 to 100

Circuit diagram, size 140

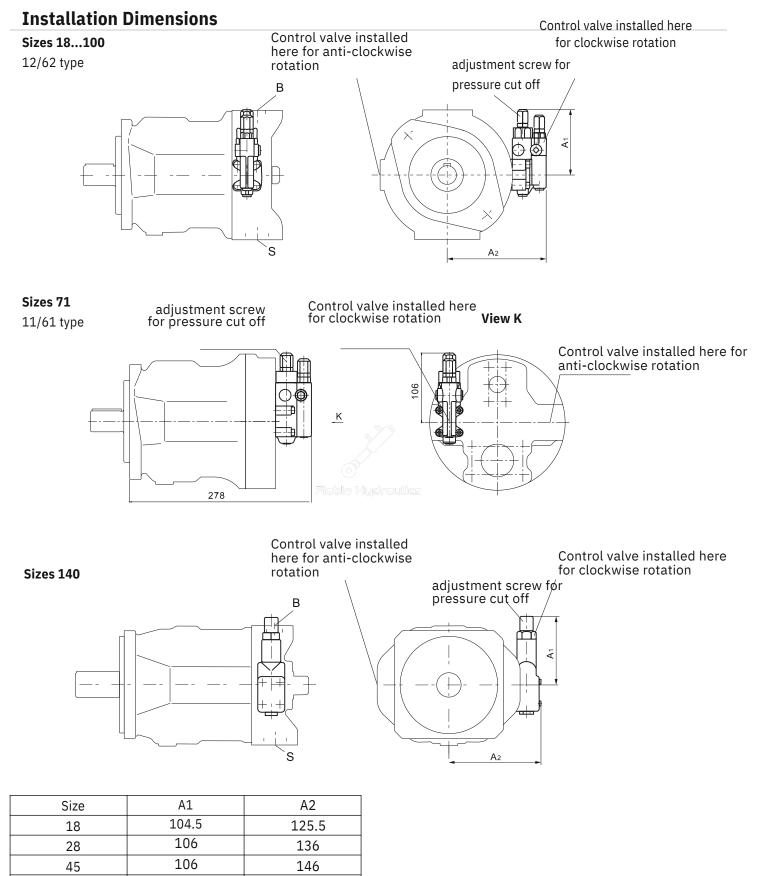
Ports B S L,L 1

P ressure port Suction port Case drain ports (L 1 plugged)

Control Data

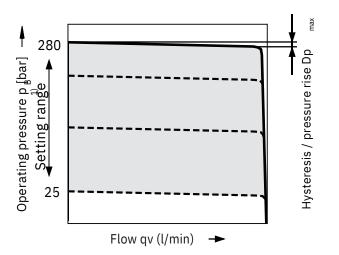
Hysteresis and repetitive accuracy Max. pressure rise ΔP____ max. 3 bar

losing Size		18	28	45	71	100
ΔP	bar	4	4	6	8	10


Pilot oil requirement _____ 140 12 Max.approx 3 L/min

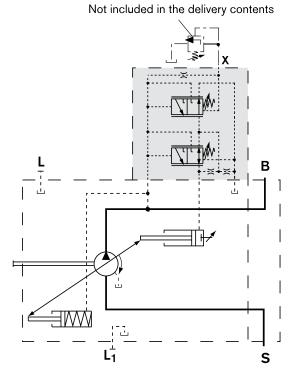
Control Times

Size	tSA (ms)	tSA (ms) again	tSA (ms) again 280 bar
	again 50 bar	220 bar	20
18	50	20	20
28	60	30	-
45	80	40	20
71	100	50	25
100	125	90	30
140	130	110	30
-			

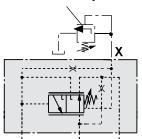


DRG Pressure Controller, Remote Control

The DR-control valve (see page 14) is overriding this DRG remote setting of max. outlet pressure. A pressure relief valve can be externally piped to port X for remote setting of pressure below the setting of the DR control valve spool. This relief valve is not included in the delivery con tents of the DRG control. The differential pressure at the DRG control valve is set as standard to 20 bar. This results in a pilot oil low to the relief valve of approx. 1.5 l/min at port X. If another setting is required (range from 10-22 bar) please state in clear text. As a separate pressure relief valve we can recommend: DBDH 6 (hydraulic) DBETR-SO 381 with orifice Ø 0.8 mm in P (electric) The max. length of piping should not exceed 2


Static Characteristic Curve

(at n1=1500 rpm; toil=50°C)


1) In order to prevent damage to the pump and the system, this setting range is the permissible setting range and must not be exceeded. The range of possible settings at the valve are greater.

Circuit diagram, sizes 18 to 100

Circuit diagram, size 140

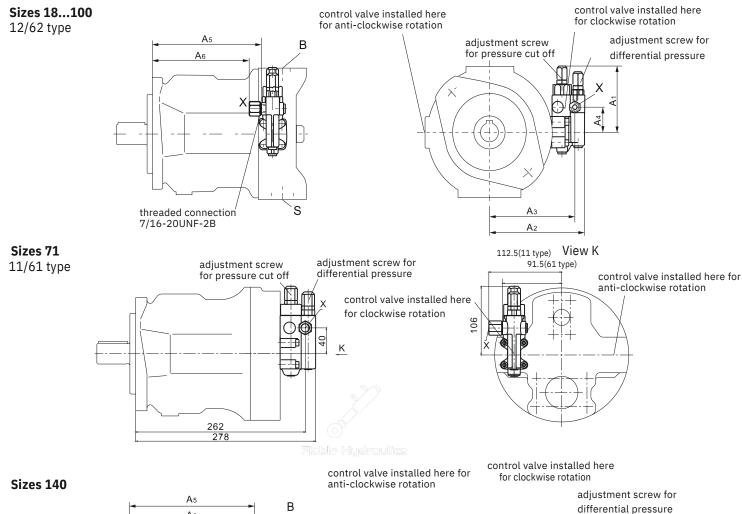
Not included in the delivery contents

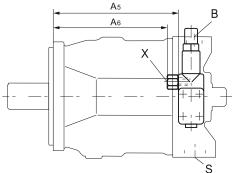
Ports

Pressure port Suction port ΒS

L/L1 Case drain ports(L1

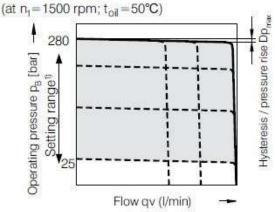
plugged) Х Pilot pressure port


Control Data Hysteresis and


Max. pressure rise				
repetitive accuracy		ΔΡ	max.	3 bar

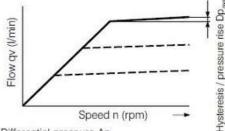
Size		18	28	45	71	100	140
ΔP	bar	4	4	6	8	10	12
Pilot oil	requirement			Max	x.appr	ox 4.5	L/min

Installation Dimensions



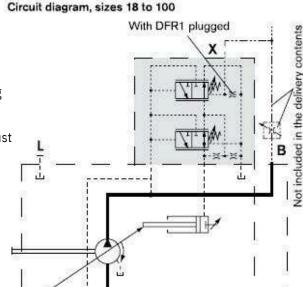
Size	A1	A2	A3	A4	A5	A6	Port X	
18iso	104.5	125.5	109	40		109	M14x1.5;12 deep	with adaptor
18sae	104.5	125.5	109	40	130		7/16-20UNF-2B;11.5 deep	without adaptor
28iso	106	136	119	40		119	M14x1.5;12 deep	with adaptor
28sae	106	136	119	40	138		7/16-20UNF-2B;11.5deep	without adaptor
45iso	106	146	129	40	2	134	M14x1.5;12 deep	with adaptor
45sae	106	146	129	40	153	1.00	7/16-20UNF-2B;11.5 deep	without adaptor
71iso	106	160	143	40		162	M14x1.5;12 deep	with adaptor
71SAE	106	160	143	40	181		7/16-20UNF-2B;11.5 deep	without adaptor
100iso	106	165	148	40		229	M14x1.5; 12 deep	with adaptor
100sae	106	165	148	40	248	500	7/16-20UNF-2B;11.5 deep	without adaptor
140iso	127	169	143	27	244		M14x1.5; 12 deep	without adaptor
140sae	127	169	143	27		222	9/16-18UNF-2B; 13 deep	with adaptor

DFR/DFR1 Pressure / Flow Control


In addition to the pressure control function the pump low may be varied by means of a differential pressure over an adjustable orillce (e.g. directional valve) installed in the service line to the actuator. The pump flow is equal to the actual required flow by the actuator, regardless of changing pressure levels. The pressure control overrides the Dow control function. **Note** The DFR1 version has no connection between X and the reservoir. Unloading the LS-pilot line must be possible in the valve system. Because of the flushing function sufficient unloading of the X-line must also be provided.

1) In order to prevent damage to the pump and the system, this setting range is the permissible setting range and must not be exceeded. The range of possible settings at the valve are greater.

Static characteristic curve at variable speed


Differential pressure Ap

Standard setting: 14 to 22 bar.

If another setting is required, please state in clear text. Relieving the load on port X to the reservoir results in a zero

stroke ("standby") pressure which lies about 1 to 2 bar higher

than the differential pressure Δp . System inf;uences are not taken into account.

Fiable Hydraulics

S

Not included in the delivery contents

в

- В
- Pressure port Suction port S
- L/L1Case drain ports(L1 plugged)

11 1

Circuit diagram, size 140

Pilot pressure port Х

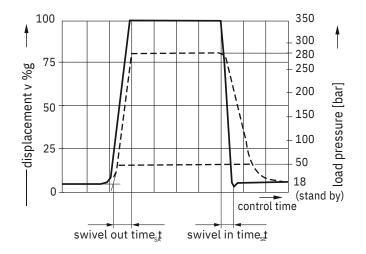
Differential Pressure ΔP

Adjustable between 10 and 22 bar

(higher valves on request). Standard setting: 14 bar . If a different setting is required please indicate in clear text.

When port X is unloaded to tank a "zero stroke pressure" of P=18±2 bar (stand by) results (dependent on ΔP).

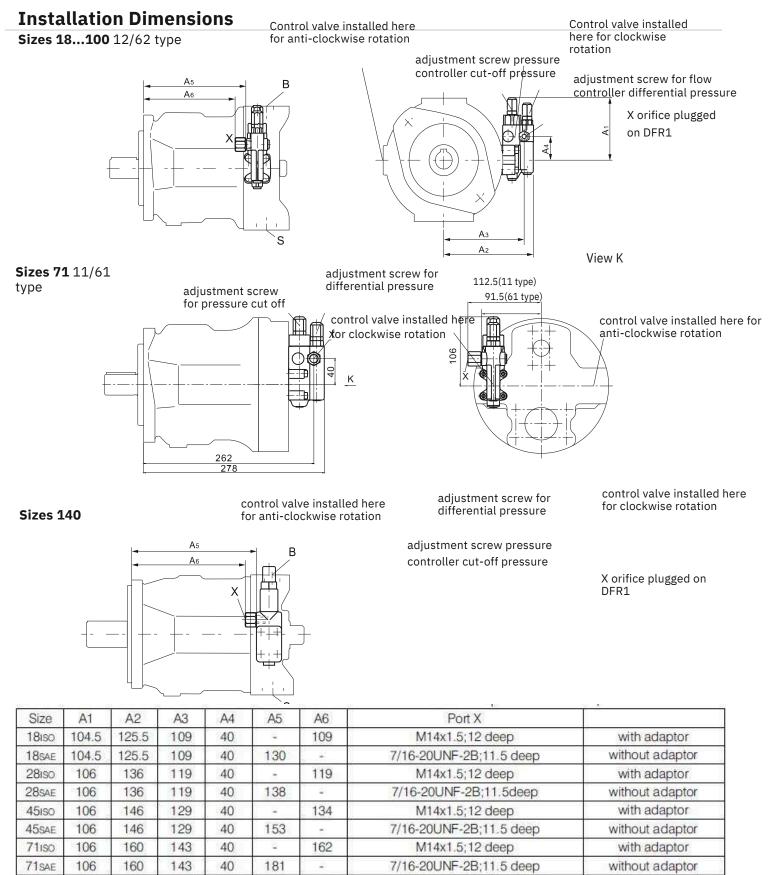
Control Data Data pressure controller see page 13. Max. Flow variation (hysteresis and increase) measured at drive speed n=1500 rpm


With DFR1 plugged

Size		18	28	45	71	100	140
gvmax		10	20		, -	100	140
yvinax	L/min	0.51	.0	1.8	2.8	4.0	6.0
DFR pilot o	oil consum	ption	max	k.appr	юх. З.	4.5 L	/min
DFR1 pilot	oil consu	nptior	า	max.	appro	x. 3 L/	min

DFR/DFR1 Pressure / Flow Control

Dynamic flow control operating curve The operating curves are average values measured under test conditions with the unit mounted inside the tank.



Control Times

Size	t _{SA} (ms) stand by 280 bar	t _{SE} (ms) 280 bar stand by	t _{SE} (ms) 50 bar stand by
18	40	15	40
28	40	20	40
45	50	25	50
71	60	30	60
100	120	60	120
140	130	60	130

100iso

100SAE

140iso

140sae

106

106

127

127

165

165

169

169

148

148

143

143

40

40

27

27

-

248

244

229

-

-

222

M14x1.5; 12 deep

7/16-20UNF-2B;11.5 deep

M14x1.5; 12 deep

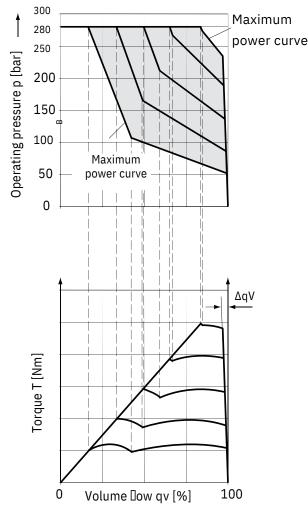
9/16-18UNF-2B; 13 deep

with adaptor

without adaptor

without adaptor

with adaptor

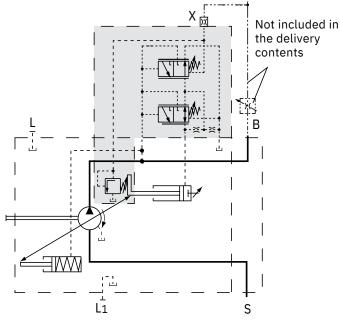


DFLR Pressure, Flow and power

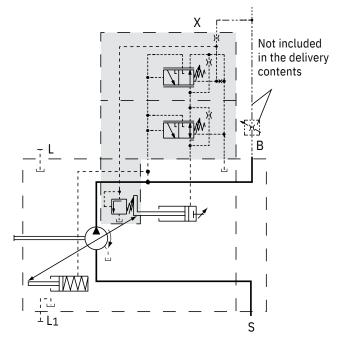
Control

Execution of the pressure control like DR(G), Execution of the Flow control like DFR, DFR1, In order to achieve a constant drive torque with varying operating pressures, the swivel angle and with it the output flow from the axial piston pump is varied so that the product of flow and pressure remains constant. Flow control is possible below the power control curve.

Static curves and torque characteristic



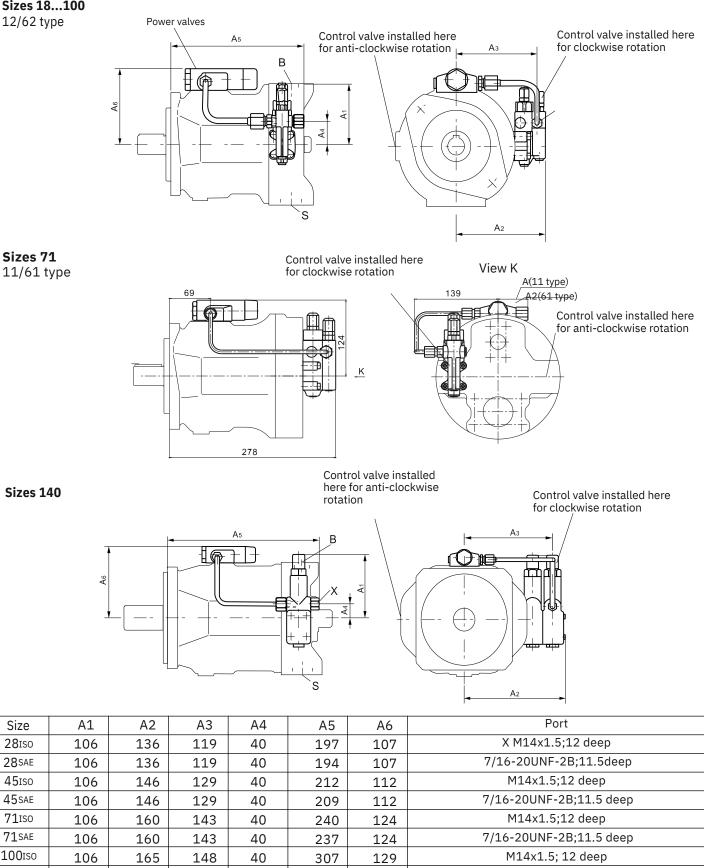
Control data


Controls the starting point 80 bar rise Pilot 🛛 uid consumption: maximum approx.5.5L/min

The power characteristic is set in the factory; when ordering, please state in clear text, e.g. 20 kW at 1500 rpm.

Circuit diagram, sizes 28 to 100

Circuit diagram, size 140



Installation Dimensions

Sizes 18...100

7/16-20UNF-2B;11.5 deep

M14x1.5; 12 deep

9/16-18UNF-2B; 13 deep

Size 281so

28SAE

451so

45sae

71ISO

71SAE

100ISO

100SAE

140 ISO

140sae

106

127

127

165

209

209

148

183

183

40

26

26

304

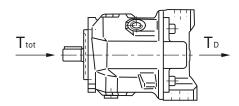
314

314

129

140

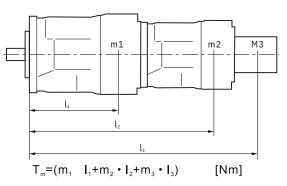
140


Through Drive

The A10V(S)O pump can be supplied with through drive in accordance with the type code on page 3. The through drive version is designated by the code numbers (KB3-KB6). If on other pumps are litted by the manufacturer, the simple type designation is suffcient. in this case, the delivery package comprises: Hub flxing screws, seal and, if necessary, an adaptor flange.

Combination Pump By building on further pumps it is possible to obtain independent circuits: If the combination pump consists of 2

- A10VSO and if these are to be supplied assembled then the two order c odes should be linked by means of a "+"sign. Ordering example: A10VSO 71 DR/31 L -PPA12KB3+ A10VSO 28 DR/31 L -PSA12N00 If a gear or radial piston pump is to be built on at the
- factory, please consult us.

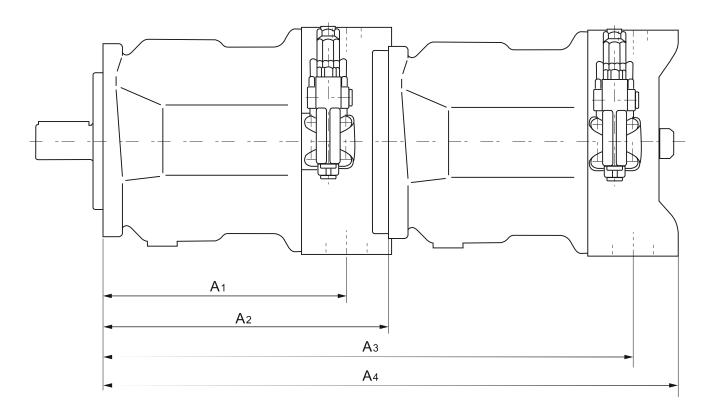

Maximum permissible input and through drive torque

The split in torque between pump 1 and 2 is optional. The max. permissible input torque Ttot as well as the max. tot permissible through drive torque TD may not be exceeded.

Size		28	45	71	100	140
Max. permissible i	nput torqu	e at pump 1	with sh	naft "P"		
	Ttot	Nm 137	200 4	39	857	1206
Max. permissible	TD	Nm137	200	439	778	1206
through-drive torq	lue ^T Dkeye	edshaft Nm	112 1	79 283	398	557
Size		28	45	71	100	140
Max. permissible i	nput torqu	e at pump 1	with sh	naft "S"		
	Ttot	Nm 137	319 6	26	1104	1620
Max. permissible	TD		319	492	778	1266
through-drive toro		Nm160	179	283	398	557
	Tukeyeds	haftNm112				
Size		28	45	71	100	140
Max. Permissible i	nput torqu	e at pump 1	with sł	naft "R"		
	Ttot	Nm 225	400 6	44	-	-
Max. permissible	TD	Nm176	365	548	-	-
through-drive	T Dkeyed	shaftNm112	179	283	-	-

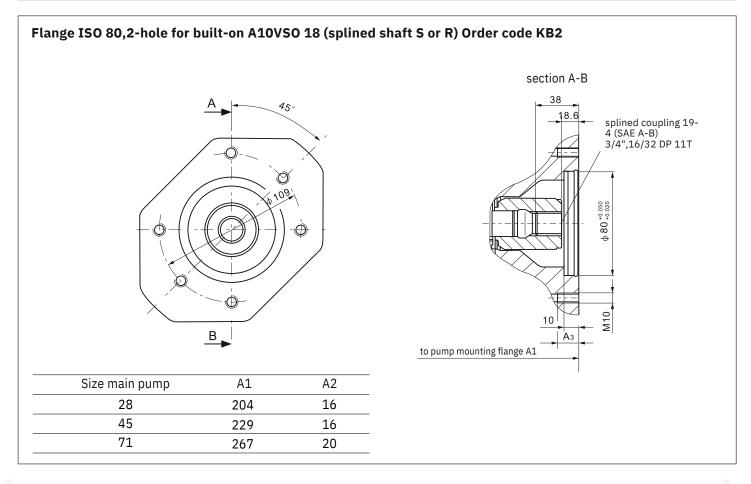
Permissible moment of inertia

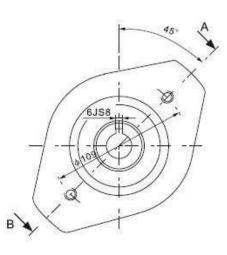
m1, m2 ,m3 [kg] Pump mass l1 ,l2 ,l3 [mm] distance to center of gravity Tm= (m1·I1+m2·l2+m3·l3) $\cdot \frac{1}{102}$ Nm


Size Permissible			28	45	71	100	140
moment of inertia	Tm	Nm 8	880	1370	2160	3000	4500
Permissible moment of							
inertia at dynamic mass acceleration	Tm	Nm	88	137	216	300	450
10gŁŁ98.1m /s2	m1	kg	15	21	33	45	60
Mass	l1	mm1	110	130	150	160	160
To center of gravity							

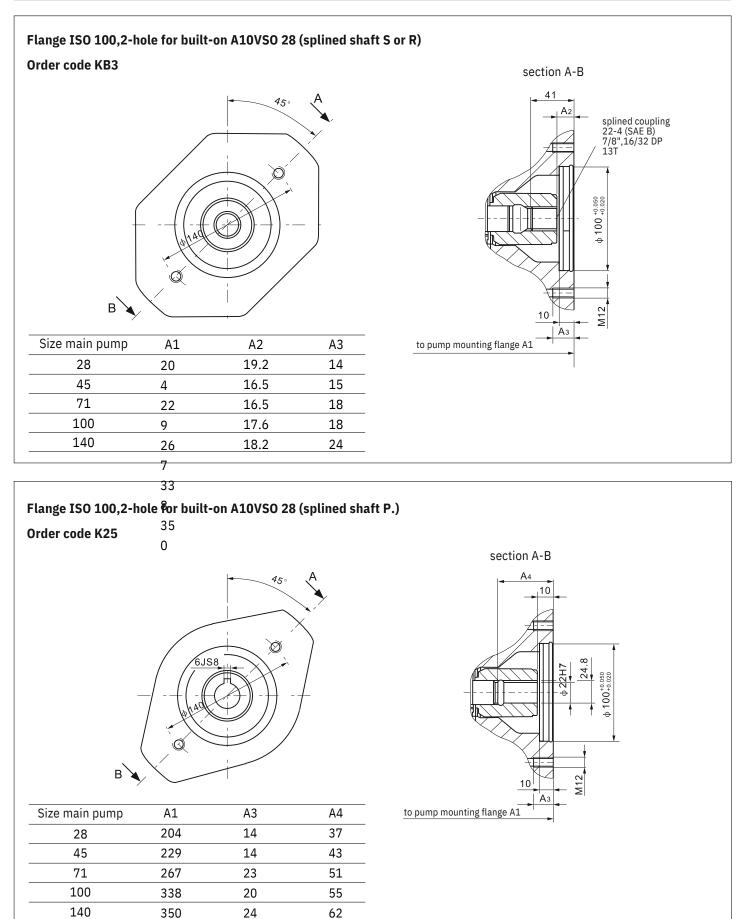
To center of gravity

Ttot = Max. permissible input torque at pump 1 TD = Max. permissible through-drive torque at through-drive to splined shaft TD keyed shaft = Max. permissible through-drive torque at through-drive to keyed shaft


Installation Dimensions

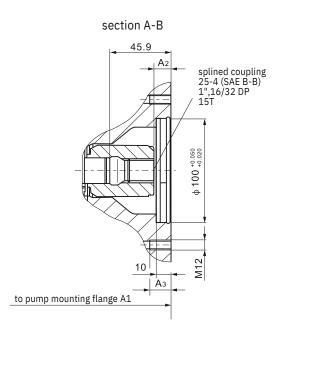

main p.	A10V(S)018 A10V(S)028 A10V(S)045											
built-on p.	A1	A2	A3	A4	A1	A2	A3	A4	A1	A2	A3	A4
A10V(S)018	164	204	349	399	164	204	349	399	184	229	374	424
A10V(S)028	-	-	-	-	164	204	368.5	410	184	229	393.5	435
A10V(S)045	-	-	-	-	-	-	-	-	184	229	413	453
A10V(S)071	-	-	-	-	-	-	-	-	-	-	-	-
A10V(S)0100	-	-	-	-	-	-	-	-	-	-	-	-
A10V(S)0140	-	-	-	-	-	-	-	-	-	-	-	-

main p.	A10V(S)071					A10V(S)0100			A10V(S)0140			
built-on p.	A1	A2	A3	A4	A1	A2	A3	A4	A1	A2	A3	A4
A10V(S)018	217	267	412	462	275	338	483	533	275	350	495	545
A10V(S)028	217	267	431.5	431.5	275	338	502.5	544	275	350	514	556
A10V(S)045	217	267	451	491	275	338	522	562	275	350	534	574
A10V(S)071	217	267	484	524	275	338	555	595	275	350	567	609
A10V(S)0100	-	-	-	-	275	338	613	664	275	350	625	679
A10V(S)0140	-	-	-	-	-	-	-	-	275	350	625	688

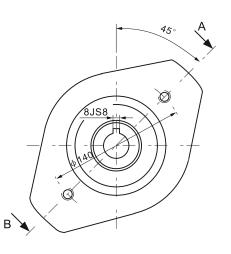

Flange ISO 80,2-hole for built- on A10VSO 18 (splined shaft P.) Order code K51

Size main pump	A1	A3	A4	
28	204	16	37	
45	229	16	43	
71	267	20	51	
100	338	20	55	
140	350	20	67	

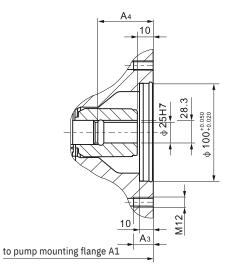
section A-B



Flange ISO 100,2-hole for built-on A10VSO 45 (splined shaft S or R) Order code KB4 section

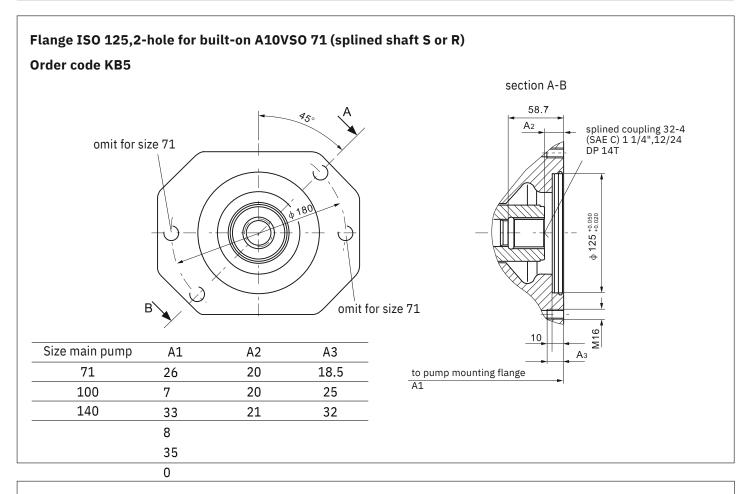

в			
Size main pump	A1	A2	A3
45	22	17.2	14
71	9	17.2	18
100	26	18.2	20
140	7	18.2	24
	33		
	8		
	35		

Fiable Hydraulics

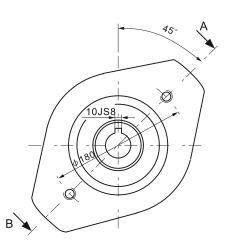

Flange ISO 100,2-hole for built-on A10VSO 45 (splined shaft P.)

Order code K26

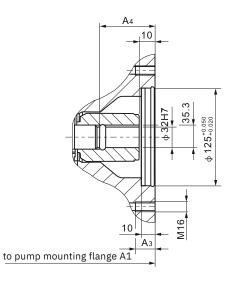
Size main pump	A1	A3	A4
45	229	14	43
71	267	23	51
100	338	20	55
140	350	24	67


section A-B

27/33



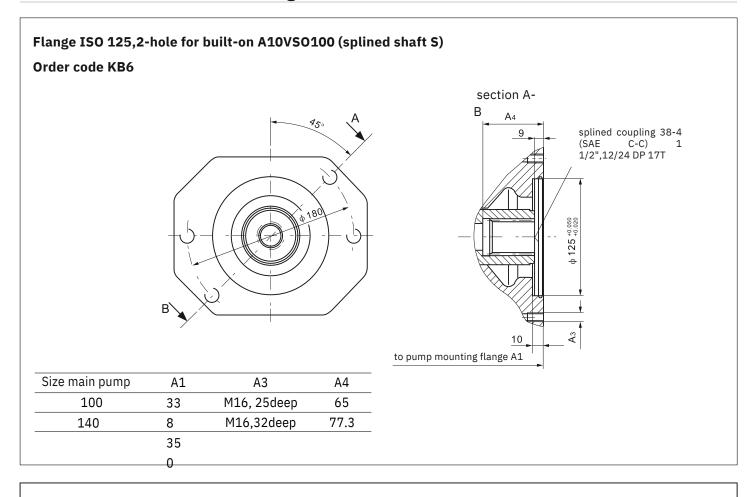
Installation Dimensions, Through drives

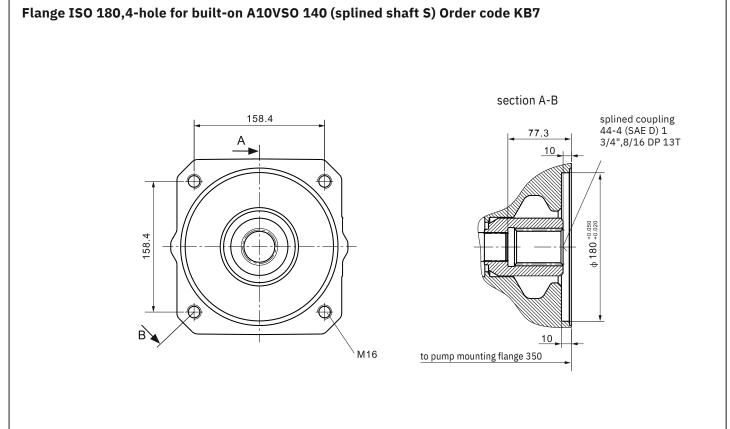

Flange ISO 125,2-hole for built-on A10VSO 71 (splined shaft P.)

Order code K27

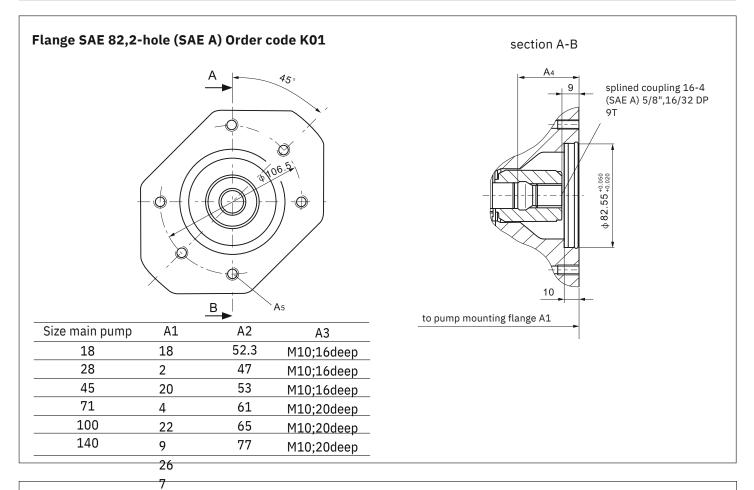
Size main pump	A1	A3	A4
71	26	18	51
100	7	20	54
140	33	24	63
	8		
	35		

section A-B

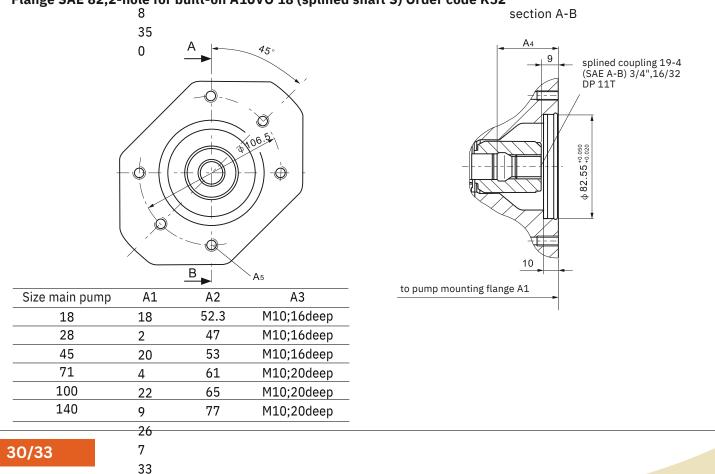


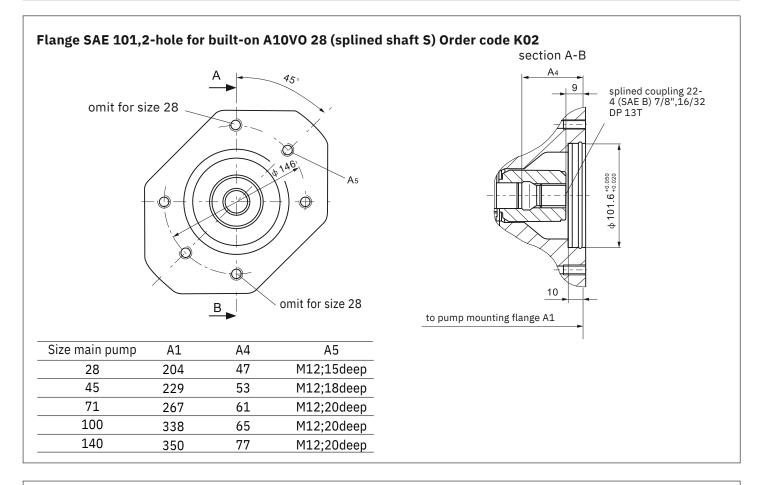

28/33

0

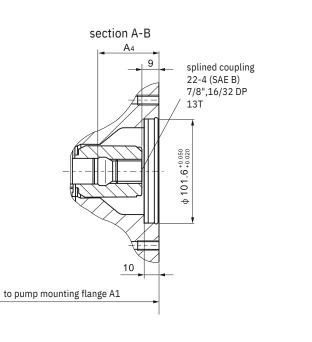


Installation Dimensions, Through drives



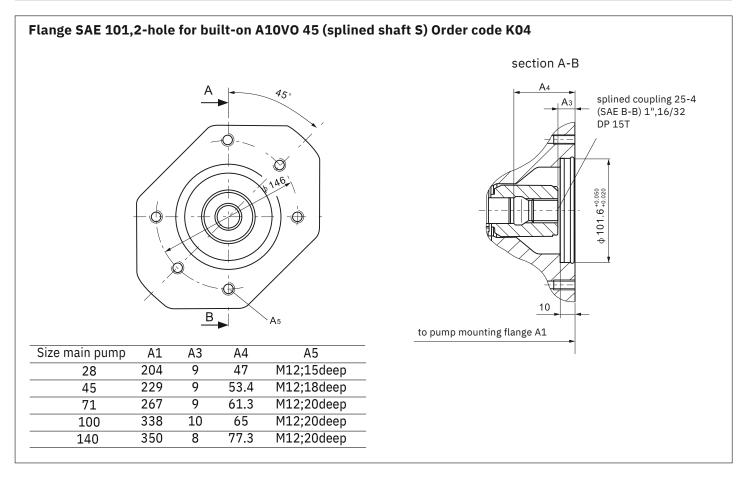


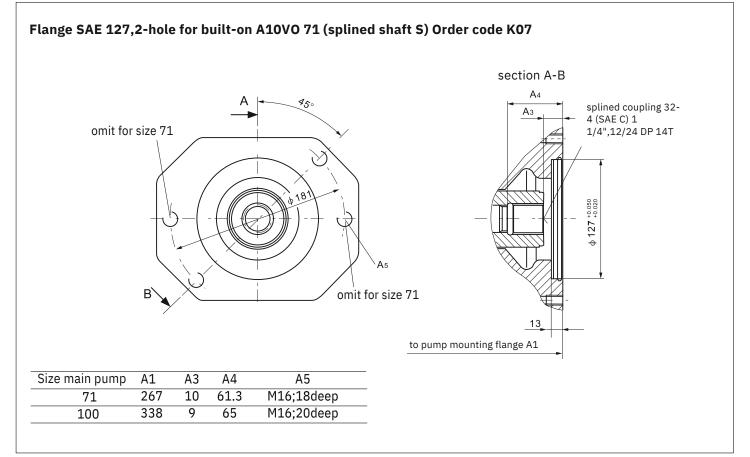
8

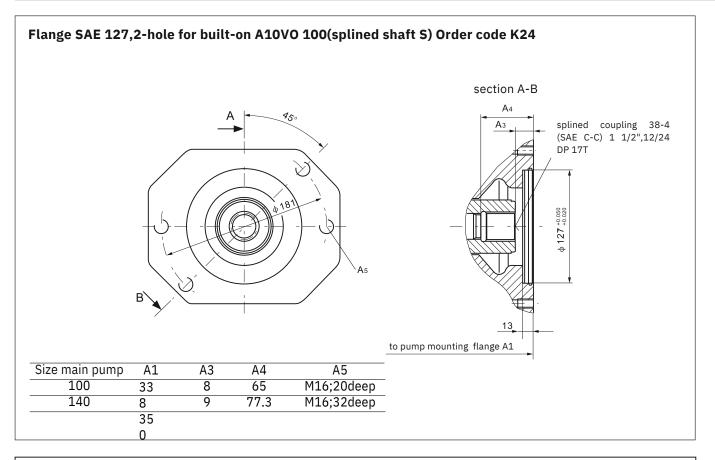


Flange SAE 101,2-hole for built-on A10VO 28 (splined shaft S) Order code K68 Omit for size 28 Omit for size 28

В


Omit for size 28


Size main pump	A1	A4	A5
28	20	47	M12;15deep
45	4	53	M12;18deep
71	22	61	M12;20deep
100	9	65	M12;20deep
140	26	77	M12;20deep


7

