
·

M. Morris Mano .1l

Preface

This book deals with computer architecture as well as computer organization
and design. Computer architecture is concerned with the structure and behav­
ior of the various functional modules of the computer and how they interact
to provide the processing needs of the user. Computer organization is con­
cerned with the way the hardware components are connected together to form
a computer system. Computer design is concerned with the development of
the hardware for the computer taking into consideration a given set of specifJCa­
tions.

The book provides the basic knowledge necessary to understand the
hardware operation of digital computers and covers the three subjects associ­
ated with computer hardware. Chapters 1 through 4 present the va.rious digital
components used in the organization and design of digital computers. Chap­
ters 5 through 7 show the detailed steps that a designer must go through in
order to design an elementary basic computer. Chapters 8 through 10 deal with
the organization and architecture of the cential processing unit. Chapters 11
and 12 present the organization and architecture of input-output and memory.
Chapter 13 introduces the concept of multiprocessing. The plan of the book is
to present the simpler material first and introduce the more advanced subjects
later. Thus, the first seven chapters cover material needed for the basic under­
standing of computer organization, design, and programming of a simple
digital computer. The last six chapters present the organization and architec­
ture of the separate functional units of the digital computer with an emphasis
on more advanced topics.

The material in the third edition is organized in the same manner as in the
second edition and many of the features remain the same. The third edition,
however, offers several improvements over the second edition. All chapters
except two (6 and 10) have been completely revised to bring the material up to
date and to clarify the presentation. Two new chapters were added: chapter 9
on pipeline and vector processing, and chapter 13 on multiprocessors. Two
sections deal with the reduced instruction set computer (RISC). Chapter 5 has
been revised completely to simplify and clarify the design of the basic com­
puter. New problems have been formulated for eleven of the thirteen chapters.

The physical organization of a particular computer including its registers,

XV

xvi Preface

the data flow, the microoperations, and control functions can be described
symbolically by means of a hardware description language. In this book we
develop a simple register transfer language and use it to specify various com­
puter operations in a concise and precise manner. The relation of the register
transfer language to the hardware organization and design of digital computers
is fully explained.

The book does not assume prior knowledge of computer hardware and
the material can be understood without the need of prerequisites. However,
some experience in assembly language programming with a microcomputer
will make the material easier to understand. Chapters 1 through 3 can be
skipped if the reader is familiar with digital logic design.

The following is a brief description of the subjects that are covered in each
chapter with an emphasis on the revisions that were made in the third edition.

Chapter 1 introduces the fundamental knowledge needed for the design
of digital systems constructed with individual gates and flip-flops. It covers
Boolean algebra, combinational circuits, and sequential circuits. This provides
the necessary background for understanding the digital circuits to be
presented.

Chapter 2 explains in detail the logical operation of the most common
standard digital components. It includes decoders, multiplexers, registers,
counters, and memories. These digital components are used as building blocks
for the design of larger units in the chapters that follow.

Chapter 3 shows how the various data types found in digital computers
are represented in binary form in computer registers. Emphasis is on the
representation of numbers employed in arithmetic operations, and on the
binary coding of symbols used in data processing.

Chapter 4 introduces a register transfer language and shows how it is
used to express microoperations in symbolic form. Symbols are defined for
arithmetic, logic, and shift microoperations. A composite arithmetic logic shift
unit is developed to show the hardware design of the most common micro­
operations.

Chapter 5 presents the organization and design of a basic digital com­
puter. Although the computer is simple compared to commercial computers, it
nevertheless encompasses enough functional capabilities to demonstrate the
power of a stored program general purpose device. Register transfer language
is used to describe the internal operation of the computer and to specify the
requirements for its design. The basic computer uses the same set of instruc­
tions as in the second edition but its hardware organization and design has
been completely revised. By going through the detailed steps of the design
presented in this chapter, the student will be able to understand the inner
workings of digital computers.

Chapter 6 utilizes the twenty five instructions of the basic computer to
illustrate techniques used in assembly language programming. Programming
examples are presented for a number of data processing tasks. The relationship

Preface xvii

between binary programs and symbolic code is explained by examples. The
basic operations of an assembler are presented to show the translation from
symbolic code to an equivalent binary program.

Chapter 7 introduces the concept of microprogramming. A specific micro­
programmed control unit is developed to show by example how to write
microcode for a typical set of instructions. The design of the control unit is
carried-out in detail including the hardware for the microprogram sequencer.

Chapter 8 deals with the central processing unit (CPU). An execution unit
with common buses and an arithmetic logic unit is developed to show the
general register organization of a typical CPU. The operation of a memory stack
is explained and some of its applications are demonstrated. Various instruction
formats are illustrated together with a variety of addressing modes. The most
common instructions found in computers are enumerated with an explanation
of their function. The last section introduces the reduced instruction set com­
puter (RISC) concept and discusses its characteristics and advantages.

Chapter 9 on pipeline and vector processing is a new chapter in the third
edition. (The material on arithmetic operations from the second edition has
been moved to Chapter 10.) The concept of pipelining is explained and the way
it can speed-up processing is illustrated with several examples. Both arithmetic
and instruction pipeline is considered. It is shown how RISC processors can
achieve single-cycle instruction execution by using an efficient instruction
pipeline together with the delayed load and delayed branch techniques. Vector
processing is introduced and examples are shown of floating-point operations
using pipeline procedures.

Chapter 10 presents arithmetic algorithms for addition, subtraction, mul­
tiplication, and division and shows the procedures for implementing them with
digital hardware. Procedures are developed for signed-magnitude and
signed-2's complement fixed-point numbers, for floating-point binary
numbers, and for binary coded decimal (BCD) numbers. The algorithms are
presented by means of flowcharts that use the register transfer language to
specify the sequence of microoperations and control decisions required for their
implementation.

Chapter 11 discusses the techniques that computers use to communicate
with input and output devices. Interface units are presented to show the way
that the processor interacts with external peripherals. The procedure for
asynchronous transfer of either parallel or serial data is explained. Four modes
of transfer are discussed: programmed 110, interrupt initiated transfer, direct
memory access, and the use of input-output processors. Specific examples
illustrate procedures for serial data transmission.

Chapter 12 introduces the concept of memory hierarchy, composed of
cache memory, main memory, and auxiliary memory such as magnetic disks.
The organization and operation of associative memories is explained in

.
detail.

The concept of memory management is introduced through the presentation of
the hardware requirements for a cache memory and a virtual memory system.

xviii Preface

Chapter 13 presents the basic characteristics of mutiprocessors. Various
interconnection structures are presented. The need for interprocessor arbitra­
tion, communication, and synchronization is discussed. The cache coherence
problem is explained together with some possible solutions.

Every chapter includes a set of problems and a list of references. Some of
the problems serve as exercises for the material covered in the chapter. Others
are of a more advanced nature and are intended to provide practice in solving
problems associated with computer hardware architecture and design. A solu­
tions manual is available for the instructor from the publisher.

The book is suitable for a course in computer hardware systems in an
electrical engineering, computer engineering, or computer science depart­
ment. Parts of the book can be used in a variety of ways: as a first course in
computer hardware by covering Chapters 1 through 7; as a course in computer
organization and design with previous knowledge of digital logic design by
reviewing Chapter 4 and then covering chapters 5 through 13; as a course in
computer organization and architecture that covers the five functional units of
digital computers including control (Chapter 7), processing unit (Chapters 8
and 9), arithmetic operations (Chapter 10), input-output (Chapter 11), and
memory (Chapter 12). The book is also suitable for self-study by engineers and
scientists who need to acquire the basic knowledge of computer hardware
architecture.

Acknowledgments

My thanks goes to those who reviewed the text: particularly Professor Thomas
L. Casavant of the University of Iowa; Professor Murray R. Berkowitz of George
Mason University; Professor Cern Ersoy of Brooklyn Polytechnic University;
Professor Upkar Varshney of the University of Missouri, Kansas City; Professor
Karan Watson of Texas A&M University, and Professor Scott F. Midkiff of the
Virginia Polytechnic Institute.

M. Morris Mano

Contents

Preface

CHAPTER ONE

Digital Logic Circuits

1·1 Digital Computers
1·2 Logic Gates
1-3 Boolean Algebra

Complemmr of a Function I 0
1-4 Map Simplification

Prodvct-af·Swru Sfm�Jlifico.tion /of
Don't-Care Condirioru 16

1-S Combinational Circuits
Hai{-Mkr 19
MJI.Mkf 20

,1-6 Flip-Flop�
SR FU,.Fiop 22
0 FU,.Fiop 23
JK Flip-Flop 24
T Flip-Flop 24
E.dgc-Tfiumd Flip.Fiops 25
Exti!ation Talks 27

1-7 Sequential Circuits
Flip-Flop Input Equ4tioru 28
SIOU Table 30
SIOU Oiogr11m 31
�Example 32
� Proced.at 36
Problems
References

iii

XV

1
4
7

II

18

22

iv Contents

CHAPTER TWO

Digital Components

2-1 Integrated Circuits

2-2 Decoders
NAND Gate Decoder
Decoder Expansion
Encoders 47

45
46

2·3 Multiplexers

2-4 Registers
Register with Parallel Load 51

2-5 Shift Registers
Bidirectional Shift Register with Parallel Load

2-6 Binary Counters
Binary Counter with Parallel Load

2-7 Memory Unit
Random-Access Memory 60
Read-Only Memory 61
Types of ROMs 62

Problems

References

58

CHAPTER THREE

Data Representation

3-1 Data Types
Number Systems 68
Octal and Hexadecimal Numbers 69
Decimal Representation 72
Alphanumeric Representation 73

3-2 Complements
(r-l)'s Complement 75
(r's) Complement 75
Subtraction of Unsigned Numbers 76

3-3 Fixed-Point Representation
Integer Representation 78
Arithmetic Addition 79
Arithmetic Subtraction 80
Overflow 80
Decimal Fixed-Point Representation 81

53

41

41
43

48
50

53

56

58

63
65

67

67

74

77

3-4 Floating-Point Representation

3-5 Other Binary Codes
Gray Code 84
Other Decimal Codes 85
Ocher Alphanumeric Codes 86

3-6 Error Detection Codes

Problems

References

CHAPTER FO UR

Contents V

83
84

87
89
91

Register Transfer and Microoperations 93

4·1 Register Transfer language

4·2 Register Transfer

4-3 Bus and Memory Transfers
Three-Stare Bus Buffers I 00

4-4
Memory Transfer 10 I

Arithmetic Microoperations
Binary Adder 1 03
Binary Adder-Subtractor I04

4-5

Binary lncremenrer 1 05
Arithmetic Circuit I 06

Logic Microoperations
List of Logic Microoperations
Hardware Implementation
Some Applications III

4-6 Shift Microoperations

1 09
III

Hardware Implementation II5

4-7 Arithmetic Logic Shift Unit

Problems

References

CHAPTER FIVE

93
95
97

102

108

114

116
119
122

Basic Computer Organization and Design 123

5-1 Instruction Codes
Stored Prowam Organization
Indirect Address I26

123
I25

vi Contents

5-2 Computer Registers
Common Bus System 1 29

5-3 Computer Instructions
Instruction Set Completeness

5-4 Timing and Control

5-5 Instruction Cycle
Fetch and Decode 1 39
Determine the Type of Instruction
Register-Reference Instructions

1 34

141
1 43

127

132

135
139

5-6 Memory-Reference Instructions 145

5-7

AND to AC 1 45
ADD wAC 146
LOA: Load to AC 1 46
STA: Store AC 147
BUN: Branch UnconditionaUy 147
BSA: Branch and Save Return Address 14 7
ISZ: Increment and Skip If Zero 149
Control Flowchart 149

Input-Output and Interrupt
Input-Output Configuration
Input-Output Instructions
Program Interrupt 15 3
Interrupt Cycle 1 56

1 51
1 52

5-8 Complete Computer Description

5-9 Design of Basic Computer
Control Logic Gates 1 60
Control of Registers and Memory 1 60
Control of Single Flip-Flops 1 62
Control of Common Bus 1 62

5-10 Design of Accumulator Logic
Control of AC Register 1 65
Adder and Logic Circuit 1 66

Problems

References

CHAPTER SIX

150

157
157

164

167
171

Programming the Basic Computer 173

6-1 Introduction

6-2 Machine Language

173
174

Contents vii

6-3 Assembly Language 179
Rules of the Language 1 79
An Example 1 81
Translation to Binary 1 82

6-4 The Assembler 183
Representation of Symbolic Program

in Memory 1 84
First Pass 1 85
Secorui Pass 1 87

6-5 Program Loops 190
6-6 Programming Arithmetic and Logic

Operations 192
Multiplication Program 1 93
Double-Precision Addition 1 96
Logic Operations 1 97
Shift Operations 1 97

6-7 Subroutines 198
Subroutines Parameters and Dara Linkage 200

6-8 Input-Output Programming 203
Character Manipulation 204
Program Interrupt 205

Problems 208
References 211

CHAPTER SEVEN

Microprogrammed Control 213

7-1 Control Memory 213
7-2 Address Sequencing 216

Coruiitional Branching 21 7
Mapping of Instruction 21 9
Subroutines 220

7-3 Microprogram Example 220
Computer Configuration 220
Microinstruction Format 222
Symbolic Microinstructions 225
The Fetch Routine 226
Symbolic Microprogram 227
Binary Microprogram 229

viii Contents

7-4 Design of Control Unit
Microprogram Sequencer 232

Problems

References

CHAPTER EIGHT

Central Processing Unit

8-1 Introduction

8-2 General Register Organization
Control Word 244
Examples of Microoperations 246

8-3 Stack Organization

8-4

Register Stack 247
Memory Stack 249
Reverse Polish Notation 251
Evaluation of Arithmetic Expressions 253

Instruction Formats
Three-Address Instructions
Tw:J-Address Instructions
One-Address Instructions
Zero-Address Instructions
RISC Instructions 259

258
258
259
259

8-5 Addressing Modes
Numerical Example 264

8-6 Data Transfer and Manipulation
Data Transfer Instructions 267
Data Manipulation Instructions 268
Arithmetic Instructions 269
Logical and Bit Manipulation Instructions
Shift Instructions 271

8-7 Program Control
Status Bit Conditions 274
Conditional Branch Instructions 275
Subroutine Call and Return 2 78
Program Interrupt 279
Types of Interrupts 281

8-8 Reduced Instruction Set Computer (RISC)
CISC Characteristics 283
RISC Characteristics 284

270

231

235
238

241

241
242

247

255

260

266

273

282

Contents ix

Overlapped Register Windows 285
B.,-keley ruse 1 288

Problems 291
References 297

CHAPTER N IN E

Pipeline and Vector Processing 299

9-1 Parallel Processing 299
9-2 Pipelining 302

General Considerations 304

9-3 Arithmetic Pipeline 307
9-4 Instruction Pipeline 310

Example: Four-Segment Instruction Pipeline 31 1
Data Dependency 31 3
Handling of Branch Instructions 314

9-5 R ISC Pipeline 315
Example: Three-Segment Instruction Pipeline 31 6
Delayed Load 31 7
Delayed Branch 31 8

9-6 Vector Processing 319
Vector Op.,-ations 321
Matrix Multiplication 322
Memory Interleaving 324
Sup...comput£rs 325

9-7 Array Processors 326
Attached Array Processor 326
SIMD Array Processor 327

Problems 329
References 330

CHAPTER TEN

Computer Arithmetic 333

10-1 Introduction 333
10.2 Addition and Subtraction 334

Addition and Subtraction with Signed-Magnitude
Data 335

X Contents

Hardware Implementation 336
Hardware Algorithm 337
Addition and Subtraction with Signed-2's

Complement Data 338

10-3 Multiplication Algorithms
Hardware Implementation for Signed-Magnitude

Data 341
Hardware Algorithm 34 2
Booth Multiplication Algorithm 343
Array Multiplier 346

10-4 Division Algorithms
Hardware Implementation for Signed-Magnitude

Data 349
Divide Overflow 351
Hardware Algorithm 352
Other Algorithms 35 3

10-5 Floating-Point Arithmetic Operations
Basic Considerations 354
Register Configuration 357
Addition and Subtraction 358
Multiplication 360
Division 362

10-6 Decimal Arithmetic Unit
BCD Adder 365
BCD Subtraction 368

10-7 Decimal Arithmetic Operations
Addition and Subtraction 3 71
Multiplication 371
Division 374
Floating-Point Operations 376

Problems

References

CHAPTER ELEVEN

Input-Output Organization

11-1 Peripheral Devices
ASCII Alphanumeric Characters 383

11-2 Input-Output Interface
110 Bus and Interface Modules 386
110 versus Memory Bus 387

340

348

354

363

369

376
380

381

381

385

Contents xi

Isolated versus Memory-Mapped 110 388
Example of 110 Interface 389

11-3 Asynchronous Data Transfer 391
Strobe Control 391
Handshaking 393
Asynchronous Serial Transfer 396
Asynchronous Communication Interface 398
First-In, First-Out Buffer 400

11-4 Modes of Transfer 402
Example of Programmed 110 403
Interrupt-Initiated 110 406
Software Considerations 406

11-5 Priority Interrupt 407
Daisy-Chaining Priority 408
Parallel Priority Interrupt 409
Priority Encoder 41 1
Interrupt Cycle 41 2
Software Routines 413
Initial and Final Operations 414

11-6 Direct Memory Access (DMA) 415
DMA Controller 41 6
DMA Transfer 41 8

11-7 Input-Output Processor (lOP) 420
CPU-lOP Communication 422
IBM 370 110 Channel 423
Intel 8089 lOP 427

11-8 Serial Communication 429
Character-Oriented Protocol 432
Transmission Example 433
Data Transparency 436
Bit-Oriented Protocol 437

Problems 439
References 442

CHAPTER TWELVE

Memory Organization 445

12-1 Memory Hierarchy 445
12-2 Main Memory 448

RAM and ROM Chips 449

xii Contents

Memory Address Map 4 50
Memory Connection to CPU 452

12-3 Auxiliary Memory
Magnetic Disks 454
Magnetic Tape 455

12·4 Associative Memory
Hardware Organization 457
March Logic 459
Read Operation 460
Write Operation 461

12·5 Cache Memory
Associative Mapping 464
Direct Mapping 465
Set-Associative Mapping 467
Writing into Cache 468
Cache Initialization 469

12-6 Virrual Memory
Address Space and Memory Space 4 70
Address Mapping Using Pages 472
Associative Memory Page Table 474
Page Replacement 4 75

12· 7 Memory Management Hardware
Segmented-Page Mapping 477
Numerical Example 4 79
Memory Protection 482

Problems

References

CHAPTER THIRTEEN

Multiprocessors

13-1 Characteristics of Multiprocessors

13-2 Interconnection Structures
Time-Shared Common Bus
Multipart Memory 493
Crossbar Switch 494
Multistage Switching Network
Hypercube Interconnection

13·3 lnterprocessor Arbitration
System Bus 500

491

496
498

452

456

462

469

476

483
486

489

489
491

500

Contents xiii

Serial Arbitration Procedure 502
Parallel Arbitration Logic 503
Dynamic Arbitration Algorithms 505

13·4 lnterprocessor Communication and
Synchronization 506
lnterprocessor Synchronization 507
Mutual Exclusion with a Semaphore 508

13-5 Cache Coherence 509
Conditions for Incoherence 509
Solutions to the Cache Coherence Problem 51 0

Problems 512
References 514

Index 515

digital

..

lrit

CHAPTER ONE

Digital Logic
Circuits

lN THIS CHAPTER

1-1 Digital Computers
1-2 logic Gates
1-3 Boolean Algebra

1-4 Map Simplification
1-5 Combinational Circuits
1-6 Rip-Flops
1-7 Sequential Circuit>

1-1 Digital Computers
The d igital computer is a digital system that performs various computational
tasks. The word digital implies t.hat the information in the computer is repre­
sented by variables that take a limited number of discrete values. These values
are processed intemally by components that can maintain a limited number of
disaete states. The decimal digits 0, 1, 2, ... , 9, for example, provide 10
discrete values. The first electronic digital computers, developed in the late
1940s, were used primarily for numerical computations. ln this case the dis­
crete elements are the digits. From this application the term digitAl c:omputu ha.s
emerged. In practice, digital computers function more reliably if only two
states are used. Because of the physical restriction of components, and because
human logic tends to be binary (i.e., true-<>r-false, yes-<>r-no statements),
digital components that are constrained to take discrete values are further
constrained to take only two values and are said to be bituzry.

Digital computers use the binary number system, which has two digits:
0 and 1. A binary digit is called a mi. Information is represented in digital
computers in groups of bits. By using various coding techniques, groups of bits
can be made to represent not only binary numbers but also other discrete

2 CHAPTER ONE Digital Logic Circuits

symbols, such as decimal digits or letters of the alphabet. By judicious use of
binary arrangements and by using various coding techniques, the groups of
bits are used to develop complete sets of instructions for performing various
types of computations.

In contrast to the common decimal numbers that employ the base 10
system, binary numbers use a base 2 system with two digits: 0 and I. The
decimal equivalent of a binary number can be found by expanding it into a
power series with a base of 2. For example, the binary number 1001011 repre­
sents a quantity that can be converted to a decimal number by multiplying each
bit by the base 2 raised to an integer power as follows:

The seven bits 10010ll represent a binary number whose decimal equivalent
is 75. However, this same group of seven bits represents the letter K when used
in conjunction with a binary code for the letters of the alphabet. It may also
represent a control code for specifying some decision logic in a particular digital
computer. In other words, groups of bits in a digital computer are used to
represent many different things. This is similar to the concept that the same
letters of an alphabet are used to construct different languages, such as English
and French.

A computer system is sometimes subdivided into two functional entities:
hardware and software. The hardware of the computer consists of all the
electronic components and electromechanical devices that comprise the phys­
ical entity of the device. Computer software consists of the instructions and
data that the computer manipulates to perform various data-processing tasks.

program A sequence of instructions for the computer is called a program. The data that
are manipulated by the program constitute the data base.

A computer system is composed of its hardware and the system software
available for its use. The system software of a computer consists of a collection
of programs whose purpose is to make more effective use of the computer. The
programs included in a systems software package are referred to as the oper­
ating system. They are distinguished from application programs written by the
user for the purpose of solving particular problems. For example, a high-level
language program written by a user to solve particular data-processing needs
is an application program, but the compiler that translates the high-level
language program to machine language is a system program. The customer
who buys a computer system would need, in addition to the hardware, any
available software needed for effective operation of the computer. The system
software is an indispensable part of a total computer system. Its function is to
compensate for the differences that exist between user needs and the capability
of the hardware.

computer hardware The hardware of the computer is usually divided into three major parts,
as shown in Fig. 1-1. The central processing unit (CPU) contains an arithmetic

CO"'P"t"
0'8111d%11tiOrt

computer dalgn

computer
m:hiteclurt

SOCTION 1·1 0\gllal Compuru> 3

Figure 1·1 Block diaeram of a digital computer.

and logic unit for manipulating dala, a number of registers for storing dala, and
control circuits for fetching and executing inslnlctions. The memory of a
computer contains storage for inslnlctions and data. It is called a random·
access memory (RAM) because the CPU can access any location in memory at
random and retrieve the binary information within a fixed interval of time. The
input and output processor (lOP) contains electronic circuits for communicat­
ing and controlling the transfer of information between the computer and the
outside world. The input and output devices connected to the computer
include keyboards, printers, terminals, magnetic disk drives, and other com·
munication devices.

This book provides the basic knowledge necessary to understand the
hardware operations of a computer syst�m. The subject is sometimes consid­
ered from three different points of view, depending on the interest of the
investigator. When dealing with computer hardware it is customary to distin·
guish between what is referred to as computer organi.ution, computer design,
and computer architecture.

Compul�r organiZRiion is concerned with the way the hardware compo­
nents operate and the way they are connected together to form the computer
system. The various components are assumed to be in place and the task is to
investigate the organhational slnlcture to verify that the computer parts oper­
ate as intended.

Compute cksign is concerned with the hardware design of the computer.
Once the computer specifications are formulated, it is the task of the designer
to develop hardware for the system. Computer design is concerned with the
determination of what hardware should be used and how the parts should be
connected. This aspect of computer hardware is sometimes referred to as
computer implrolhltation.

Computer architecture is concerned with the slnlcture and behavior of the
computer as seen by the user. It includes the information formats, the inslnlc-

4 CHAPTER ONE Digital Logic Circuits

gates

AND

tion set, and techniques for addressing memory. The architectural design of
a computer system is concerned with the specifications of the various func­
tional modules, such as processors and memories, and structuring them to­
gether into a computer system.

The book deals with all three subjects associated with computer hard­
ware. In Chapters 1 through 4 we present the various digital components used
in the organization and design of computer systems. Chapters 5 through 7
cover ·the steps that a designer must go through to design and program an
elementary digital computer. Chapters 8 and 9 deal with the architecture of the
central processing unit. In Chapters 11 and 12 we present the organization and
architecture of the input-output processor and the memory unit.

1-2 Logic Gates

Binary information is represented in digital computers by physical quantities
called signals . Electrical signals such as voltages exist throughout the computer
in either one of two recognizable states. The two states represent a binary
variable that can be equal to 1 or 0. For example, a particular digital computer
may employ a signal of 3 volts to represent binary 1 and 0.5 volt to represent
binary 0. The input terminals of digital circuits accept binary signals of 3 and
0.5 volts and the circuits respond at the output terminals with signals of 3 and
0.5 volts to represent binary input and output corresponding to 1 and 0,
respectively.

Binary logic deals with binary variables and with operations that assume
a logical meaning. It is used to describe, in algebraic or tabular form, the
manipulation and processing of binary information. The manipulation of bi­
nary information is done by logic circuits called gates . Gates are blocks of
hardware that produce signals of binary 1 or 0 when input logic requirements
are satisfied. A variety of logic gates are commonly used in digital computer
systems. Each gate has a distinct graphic symbol and its operation can be
described by means of an algebraic expression. The input-output relationship
of the binary variables for each gate can be represented in tabular form by a
truth table.

The names, graphic symbols, algebraic functions, and truth tables of
eight logic gates are listed in Fig. 1-2. Each gate has one or two binary input
variables designated by A and Band one binary output variable designated by
x. The AND gate produces the AND logic function: that is, the output is 1 if
input A and input B are both equal to 1; otherwise, the output is 0. These
conditions are also specified in the truth table for the AND gate. The table
shows that output x is 1 only when both input A and input Bare 1. The algebraic
operation symbol of the AND function is the same as the multiplication symbol
of ordinary arithmetic. We can either use a dot between the variables or

Name

AND

OR

Inverter

Buffer

NAND

NOR

Exclusive-OR
(XOR)

Exclusive-NOR
or equivalence

Graphic
symh(J/

;=C)---,

AIKehral(
func/I(Jn

x=A•B
0'

x = AB

;=:[)--- x x=A+B

A ---{>o--- x x = A'

A -----t:>-- .r x = A

;� x x=(AB)'

; � x x=(A+B)'

x=AfBB
0'

x=A'B+AB'

A � x=(AfBB)'

B � x or
.\=A'B'+AB

Figure 1 .. 2 Digital logic gates.

5

Tmtll
tah/e

A B

0 0
I

I 0 0
I I

A 8 x

0 0

I I

A 8 x

0 0
0
I
I I

A 8 x

0 0
0 I
I 0 0
I I

A 8 x

0 0 0
0 I
I 0
I I

A B x

0 0
0 I
I 0 0
I I

6 CHAPTER ONE Digital Logic Circuits

OR

inverter

NOR

exclusive-OR

concatenate the variables without an operation symbol between them. AND
gates may have more than two inputs, and by definition, the output is 1 if and
only if all inputs are I.

The OR gate produces the inclusive-OR function; that is, the output is 1
if input A or input B or both inputs are I; otherwise, the output is 0. The
algebraic symbol of the OR function is +, similar to arithmetic addition. OR
gates may have more than two inputs, and by definition, the output is 1 if any
input is I.

The inverter circuit inverts the logic sense of a binary signal. It produces
the NOT, or complement, function. The algebraic symbol used for the logic
complement is either a prime or a bar over the variable symbol. In this book
we use a prime for the logic complement of a binary variable, while a bar over
the letter is reserved for designating a complement microoperation as defined
in Chap. 4.

The small circle in the output of the graphic symbol of an inverter desig­
nates a logic complement. A triangle symbol by itself designates a buffer
circuit. A buffer does not produce any particular logic function since the binary
value of the output is the same as the binary value of the input. This circuit
is used merely for power amplification. For example, a buffer that uses 3 volts
for binart 1 will produce an output of 3 volts when its input is 3 volts. However,
the amount of electrical power needed at the input of the buffer is much less
than the power produced at the output of the buffer. The main purpose of the
buffer is to drive other gates that require a large amount of power.

The NAND function is the complement of the AND function, as indicated
by the graphic symbol, which consists of an AND graphic symbol followed by
a small circle. The designation NAND is derived from the abbreviation of
NOT-AND. The NOR gate is the complement of the OR gate and uses an OR
graphic symbol followed by a small circle. Both NAND and NOR gates may
have more than two inputs, and the output is always the complement of the
AND or OR function, respectively.

The exclusive-OR gate has a graphic symbol similar to the OR gate except
for the additional curved line on the input side. The output of this gate is I if
any input is 1 but excludes the combination when both inputs are I. The
exclusive-OR function has its own algebraic symbol or can be expressed in
terms of AND, OR, and complement operations as shown in Fig. 1-2. The
exclusive-NOR is the complement of the exclusive-OR, as indicated by the
small circle in the graphic symbol. The output of this gate is 1 only if both inputs
are equal to 1 or both inputs are equal to 0. A more fitting name for the
exclusive-OR operation would be an odd function; that is, its output is I if an
odd number of inputs are I. Thus in a three-input exclusive-OR (odd) function,
the output is 1 if only one input is 1 or if all three inputs are 1. The exclusive-OR
and exclusive-NOR gates are commonly available with two inputs, and only
seldom are they found with three or more inputs.

Boolean function

:ruth table

:.,gic diagram

1-3 Boolean Algebra

SECTION 1-J Boolean Algebra 7

Boolean algebra is an algebra that deals with binary variables and logic oper­
ations. The variables are designated by letters such as A, B, x, andy. The three
basic logic operations are AND, OR, and complement. A Boolean function can
be expressed algebraically with binary variables, the logic operation symbols,
parentheses, and equal sign. For a given value of the variables, the Boolean
function can be either 1 or 0. Consider, for example, the Boolean function

F = x + y'z

The function F is equal to 1 if x is 1 or if both y' and z are equal to I; F is equal
to 0 otherwise. But saying that y' = 1 is equivalent to saying that y = 0 since
y' is the complement of y. Therefore, we may say that F is equal to 1 if x = 1
or if yz = 01. The relationship between a function and its binary variables can
be represented in a truth table. To represent a function in a truth table we need
a list of the 2' combinations of then binary variables. As shown in Fig. l-3(a),
there are eight possible distinct combinations for assigning bits to the three
variables x, y, and z. The function F is equal to 1 for those combinations where
x = 1 or yz = 01; it is equal to 0 for all other combinations.

A Boolean function can be transformed from an algebraic expression into
a logic diagram composed of AND, OR, and inverter gates. The logic diagram
for F is shown in Fig. l-3(b). There is an inverter for input y to generate its
complement y'. There is an AND gate for the term y'z, and an OR gate is used
to combine the two terms. In a logic diagram, the variables of the function are
taken to be the inputs of the circuit, and the variable symbol of the function
is taken as the output of the circuit.

The purpose of Boolean algebra is to facilitate the analysis and design of
digital circuits. It provides a convenient tool to:

1. Express in algebraic form a truth table relationship between binary
variables.

Figure 1 .. 3 Truth table and logic diagram for F = x + y1z..
y F

0 0 0 0 :�F 0 0 I I
0 I 0 0
0 I I 0
I 0 0 I z
I 0 I I
I I 0 I
I I I I

(a) Truth table (b) Logic diagram

8 CHAPTER ONE Digital Logic Circuits

Boolean expression

2. Express in algebraic form the input-<mtput relationship of logic
diagrams.

3. Find simpler circuits for the same function.
A Boolean function specified by a truth table can be expressed algebraically in
many different ways. By manipulating a Boolean expression according to
Boolean algebra rules, one may obtain a simpler expression that will require
fewer gates. To see how this is done, we must first study the manipulative
capabilities of Boolean algebra.

Table 1-1 lists the most basic identities of Boolean algebra. All the iden­
tities in the table can be proven by means of truth tables. The first eight
identities show the basic relationship between a single variable and itself, or
in conjunction with the binary constants 1 and 0. The next five identities (9
through 13) are similar to ordinary algebra. Identity 14 does not apply in
ordinary algebra but is very useful in manipulating Boolean expressions.
Identities 15 and 16 are called DeMorgan's theorems and are discussed below.
The last identity states that if a variable is complemented twice, one obtains
the original value of the variable.

TABLE 1·1 Basic Identities of Boolean Algebra

(1) X + 0 = X
(3) x+ 1 = 1
(5) x+ x= x
(7) x + x' = 1
(9) x+ y = y + x

(11) x + (y + z) = (x + y) + z
(13) x(y + z) = xy + xz
(15) (x + y) ' = x'y '
(17) (x') ' = x

(2) x·O=O
(4) X ·1 = X
(6) X ·X = X
(8) x·x' = 0

(10) xy = yx
(12) x(yz) = (xy)z
(14) x + yx = (x + y)(x + z)
(16) (xy) ' = x' + y '

The identities listed in the table apply to single variables or to Boolean
functions expressed in terms of binary variables. For example, consider the
following Boolean algebra expression:

AB' + C'D + AB' + C'D

By letting x = AB' + C' D the expression can be written as x + x. From identity
5 in Table 1-1 we find that x + x = x. Thus the expression can be reduced to
only two terms:

AB' + C'D + A'B + C'D = AB' + C'D

DeMorgan's theorem DeMorgan' s theorem is very important in dealing with NOR and NAND
gates. It states that a NOR gate that performs the (x + y)' function is equivalent

SECTION 1-3 Boolean Algebra 9

to the function x'y ' . Similarly, a NAND function can be expressed by either
(xy) ' or (x' + y'). For this reason the NOR and NAND gates have two distinct
graphic symbols, as shown in Figs. 1-4 and 1-5. Instead of representing a NOR
gate with an OR graphic symbol followed by a circle, we can represent it by
an AND graphic symbol preceded by circles in all inputs. The invert-AND
symbol for the NOR gate follows from DeMorgan's theorem and from the
convention that small circles denote complementation. Similarly, the NAND
gate has two distinct symbols, as shown in Fig. 1-5.

To see how Boolean algebra manipulation is used to simplify digital
circuits, consider the logic diagram of Fig. 1-6(a). The output of the circuit can
be expressed algebraically as follows:

F =ABC+ ABC' + A'C

Each term corresponds to one AND gate, and the OR gate forms the logical
sum of the three terms. Two inverters are needed to complement A' and C'.
The expression can be simplified using Boolean algebra.

F =ABC+ ABC' + A'C = AB(C + C') + A'C

= AB + A'C

Note that(C +C)' = 1 by identity 7 andAB ·1 = ABby identity 4 in Table 1-1.
The logic diagram of the simplified expression is drawn in Fig. 1-6(b). It

requires only four gates rather than the six gates used in the circuit of Fig.
1-6(a). The two circuits are equivalent and produce the same truth table rela­
tionship between inputs A, B, C and output F.

Figure 1·4 Two graphic symbols for NOR gate.

��(x+y+z)' {v--x'y'z' = (x + y + z)'

(a) OR-invert (b) invert-AND

Figure 1·5 Two graphic symbols for NAND gate.

J=i>-(xyz)' �v--x' + y' +z' = (xyz)'

(a) AND-invert (b) invert-OR

10 CHAPTER ONE Digital Logic Circuits

(a)F = ABC+ ABC'+ A'C

A--�------�--�

B -t-----{__J

(B)F = AB+A'C

F

Figure 1 .. 6 Two logic diagrams for the same Boolean function.

Complement of a Function

F

The complement of a function F when expressed in a truth table is obtained
by interchanging l's and D's in the values of F in the truth table. When the
function is expressed in algebraic form, the complement of the function can be
derived by means of DeMorgan's theorem. The general form of DeMorgan's
theorem can be expressed as follows:

(xi+ X2 + X3 + · · · + Xn) ' = xix2x� · · ·x�

(X1 X2X3· · ·Xn) ' = Xi+ X2 +X�+···+ X�

From the general DeMorgan's theorem we can derive a simple procedure for
obtaining the complement of an algebraic expression. This is done by changing
all OR operations to AND operations and all AND operations to OR operations
and then complementing each individual letter variable. As an example, con­
sider the following expression and its complement:

F = AB + C'D' + B 'D

F ' = (A ' + B')(C + D)(B + D')

SECfiON l -4 Map Simplification 1 1

The complement expression is obtained by interchanging AND and OR oper­
ations and complementing each individual variable. Note that the complement
of C ' is C .

1 -4 Map Simplification

The complexity of the logic diagram that implements a Boolean function is
related directly to the complexity of the algebraic expression from which the
function is implemented. The truth table representation of a function is unique,
but the function can appear in many different forms when expressed alge­
braically. The expression may be simplified using the basic relations of Boolean
algebra. However, this procedure is sometimes difficult because it lacks specific
rules for predicting each succeeding step in the manipulative process. The map
method provides a simple, straightforward procedure for simplifying Boolean
expressions. This method may be regarded as a pictorial arrangement of the
truth table which allows an easy interpretation for choosing the minimum
number of terms needed to express the function algebraically. The map
method is also known as the I<arnaugh map or K-map.

Each combination of the variables in a truth table is called a minterm. For
example, the truth table of Fig. 1-3 contains eight minterms. When expressed
in a truth table a function of n variables will have 2" minterms, equivalent to
the 2" binary numbers obtained from n bits. A Boolean function is equal to 1
for some minterms and to 0 for others. The information contained in a truth
table may be expressed in compact form by listing the decimal equivalent of
those minterms that produce a 1 for the function. For example, the truth table
of Fig. 1-3 can be expressed as follows:

F(x, y, z) = � (1, 4, 5, 6, 7)

The letters in parentheses list the binary variables in the order that they appear
in the truth table. The symbol � stands for the sum of the min terms that follow
in parentheses. The min terms that produce 1 for the function are listed in their
decimal equivalent. The minterms missing from the list are the ones that
produce 0 for the function.

The map is a diagram made up of squares, with each square representing
one minterm. The squares corresponding to minterms that produce 1 for the
function are marked by a 1 and the others are marked by a 0 or are left empty.
By recognizing various patterns and combining squares marked by 1's in the
map, it is possible to derive alternative algebraic expressions for the function,
from which the most convenient may be selected.

The maps for functions of two, three, and four variables are shown in Fig.
1-7. The number of squares in a map of n variables is 2". The 2" minterms are
listed by an equivalent decimal number for easy reference. The minterm

1 2 CHAPTER ONE Digital logic Circuits

adjacent squares

(a) Two-variable map

c

A

CD '""ilio B 00 0 1

00 0 I 3 2

0 1 4 5 7 6 {I I 1 2 1 3 1 5 1 4

1 0 8 9 I I 1 0

A

(c) Four-variable map

BC

A 00

B

(b) Three-variable map

Figure 1� 7 Maps for two- , three-, and four,variable functions.

numbers are assigned in an orderly arrangement such that adjacent squares
represent minterms that differ by only one variable. The variable names are
listed across both sides of the diagonal line in the corner of the map. The O's
and 1' s marked along each row and each column designate the value of the
variables. Each variable under brackets contains half of the squares in the map
where that variable appears unprimed. The variable appears with a prime
(complemented) in the remaining half of the squares.

The minterm represented by a square is determined from the binary
assignments of the variables along the left and top edges in the map. For
example, minterm 5 in the three-variable map is 101 in binary, which may be
obtained from the 1 in the second row concatenated with the 01 of the second
column. This min term represents a value for the binary variables A, B, and C,
with A and C being unprimed and B being primed (i.e. , AB 'C). On the other
hand, minterrn 5 in the four-variable map represents a minterm for four
variables. The binary number contains the four bits 0101, and the correspond­
ing term it represents is A 'BC 'D.

Minterms of adjacent squares in the map are identical except for one
variable, which appears complemented in one square and uncomplemented
in the adjacent square. According to this definition of adjacency, the squares
at the extreme ends of the same horizontal row are also to be considered

SECflON 1-4 Map Simplification 13

adjacent. The same applies t o the top and bottom squares o f a column. A s a
result, the four corner squares of a map must also be considered to be adjacent.

A Boolean function represented by a truth table is plotted into the map
by inserting 1's in those squares where the function is I. The squares contain­
ing 1's are combined in groups of adjacent squares. These groups must contain
a number of squares that is an integral power of 2. Groups of combined
adjacent squares may share one or more squares with one or more groups.
Each group of squares represents an algebraic term, and the OR of those terms
gives the simplified algebraic expression for the function. The following exam­
ples show the use of the map for simplifying Boolean functions.

In the first example we will simplify the Boolean function

F(A, B, C) = I (3, 4, 6, 7)

The three-variable map for this function is shown in Fig. 1-8. There are four
squares marked with 1's, one for each minterm that produces 1 for the func­
tion. These squares belong to minterms 3, 4, 6, and 7 and are recognized from
Fig. 1-7(b). Two adjacent squares are combined in the third column. This
column belongs to both B and C and produces the term BC. The remaining two
squares with 1's in the two comers of the second row are adjacent and belong
to row A and the two columns of C', so they produce the term AC'. The
simplified algebraic expression for the function is the OR of the two terms:

F = BC + AC'

The second example simplifies the following Boolean function:

F(A, B, C) = I (0, 2, 4, 5, 6)

The five min terms are marked with 1' s in the corresponding squares of the
three-variable map shown in Fig. 1-9. The four squares in the first and fourth
columns are adjacent and represent the term C'. The remaining square marked
with a 1 belongs to min term 5 and can be combined with the square of min term
4 to produce the term AB ' . The simplified function is

F = C' +AB'

Figure 1-8 Map for F(A. B. C) = :1: (3 ,4.6, 7).
B

,.....-J-.

A {a '-y--'
c

14 CHAPTER ONE Digital Logic Circuits

B ___.,_____,

A {m
'--y--"

c

Figure 1-9 Map for F (A , 8, C) = l (0,2,4, 5 ,6) .

The third example needs a four-variable map.

F(A , B, C, D) = I (0, 1, 2, 6, 8, 9, 10)

The area in the map covered by this four-variable function consists of the
squares marked with 1's in Fig. 1-10. The function contains 1's in the four
comers that, when taken as a group, give the term B ' D ' . This is possible
because these four squares are adjacent when the map is considered with top
and bottom or left and right edges touching. The two 1's on the left of the top
row are combined with the two 1's on the left of the bottom row to give the
term B 'C ' . The remaining 1 in the square of minterm 6 is combined with
minterm 2 to give the term A 'CD ' . The simplified function is

F = B 'D ' + B 'C ' + A 'CD '

Product-of-Sums Simplification
The Boolean expressions derived from the maps in the preceding examples
were expressed in sum-of-products form. The product terms are AND terms
and the sum denotes the ORing of these terms. It is sometimes convenient to
obtain the algebraic expression for the function in a product-of-sums form. The

Figure 1-10 Map for F(A, B , C , D) = :!: (0, 1 , 2 ,6 ,8 ,9 , 10).
c

m}·
A {� .__,........,

D

SECfiON 1 -4 Map Simplification 15

sums are OR terms and the product denotes the ANDing of these terms. With
a minor modification, a product-of-sums form can be obtained from a map.

The procedure for obtaining a product-of-sums expression follows from
the basic properties of Boolean algebra. The 1's in the map represent the
minterms that produce 1 for the function. The squares not marked by 1
represent the min terms that produce 0 for the function. If we mark the empty
squares with 0' s and combine them into groups of adjacent squares, we obtain
the complement of the function, f ' . Taking the complement of F' produces an
expression for F in product-of-sums form. The best way to show this is by
example.

We wish to simpllfy the following Boolean function in both sum-of­
products form and product-of-sums form:

F(A, B, C, D) = I (0, 1, 2, 5, 8, 9, 10)

The 1' s marked in the map of Fig. 1-11 represent the min terms that produce
a 1 for the function. The squares marked with 0' s represent the min terms not
included in F and therefore denote the complement of F. Combining the
squares with 1's gives the simplified function in sum-of-products form:

F = B 'D' + B 'C ' + A'C 'D

I f the squares marked with 0 ' s are combined, as shown in the diagram, we
obtain the simplified complemented function:

F' = AB +CD + BD'

Taking the complement of F', we obtain the simplified function in product-of­
sums form:

F = (A ' + B ')(C ' + D')(B ' + D)

Figure 1·1 1 Map for F(A, 8, C, D) = l (0, 1 , 2 , 5 ,8 ,9 , 10).
c

I

0

0

I

,....._._,
I 0

I 0

0 0

I 0

'-y---o'
D

I

0

o I
I

1 6 CHAPTER ONE Digital Logic Circuits

NAND
implementation

NOR
implementation

The logic diagrams of the two simplified expressions are shown in Fig. 1-12.
The sum-of-products expression is implemented in Fig. 1-12(a) with a group
of AND gates, one for each AND term. The outputs of the AND gates are
connected to the inputs of a single OR gate. The same function is implemented
in Fig. 1-12(b) in product-of-sums form with a group of OR gates, one for each
OR term. The outputs of the OR gates are connected to the inputs of a single
AND gate. In each case it is assumed that the input variables are directly
available in their complement, so inverters are not included. The pattern
established in Fig. 1-12 is the general form by which any Boolean function is
implemented when expressed in one of the standard forms. AND gates are
connected to a single OR gate when in sum-of-products form. OR gates are
connected to a single AND gate when in product-of-sums form.

A sum-of-products expression can be implemented with NAND gates as
shown in Fig. 1-13(a). Note that the second NAND gate is drawn with the
graphic symbol of Fig. 1-S(b). There are three lines in the diagram with small
circles at both ends. Two circles in the same line designate double complemen­
tation, and since (x ') ' = x, the two circles can be removed and the resulting
diagram is equivalent to the one shown in Fig. 1-12(a). Similarly, a product-of­
sums expression can be implemented with NOR gates as shown in Fig. 1-13(b).
The second NOR gate is drawn with the graphic symbol of Fig. 1-4(b). Again
the two circles on both sides of each line may be removed, and the diagram
so obtained is equivalent to the one shown in Fig. 1-12(b).

Don't-Care Conditions
The 1' s and 0' s in the map represent the min terms that make the function equal
to 1 or 0. There are occasions when it does not matter if the function produces
0 or 1 for a given minterm. Since the function may be either 0 or 1, we say that
we don't care what the function output is to be for this min term. Min terms that

don't-care conditions may produce either 0 or 1 for the function are said to be don't-care conditions
and are marked with an x in the map. These don't-care conditions can be used
to provide further simplification of the algebraic expression.

Figure 1�12 Logic diagrams with AND and OR gates.

8' ---r---...
D'--r-.c_.-/

c' --r...,_ _ _.,
A '--1--r--....

D --...,_ _ _.,

(a) Sum of products:
F = B'D' + B'c' + A 'C'D

F F

(b) Product of sums:
F = (A ' + B') (C'+ D') (B' + D)

SECflON l -4 Map Simplification 1 7

B' A '

D' B'

c'

C' F
D' F

A '

D D

(a) With NAND gates (b) With NOR gates

Figure 1,13 Logic diagrams with NAND or NOR gates.

When choosing adjacent squares for the function in the map, the x 's may
be assumed to be either 0 or I, whichever gives the simplest expression. In
addition, an x need not be used at all if it does not contribute to the simplifi­
cation of the function. In each case, the choice depends only on the simplifi­
cation that can be achieved. As an example, consider the following Boolean
function together with the don't-care mmterms:

F(A, B, C) = I (0, 2, 6)

d(A, B, C) = I (1, 3, 5)

The mmterms listed with F produce a 1 for the function. The don't-care mill­
terms listed with d may produce either a 0 or a 1 for the function. The remaining
minterms, 4 and 7, produce a O for the function. The map is shown in Fig. 1-14.
The minterms of F are marked with l's, those of d are marked with x 's, and
the remaining squares are marked with O's . The l's and x's are combined in
any convenient manner so as to enclose the maximum number of adjacent
squares. It is not necessary to include all or any of the x 's, but all the l's must
be included. By including the don't-care minterms 1 and 3 with the l's in the
first row we obtain the term A ' . The remaining 1 for min term 6 is combined
with min term 2 to obtain the term BC' . The simplified expression is

F = A ' + BC '

Note that don't-care min term 5 was not included because it does not contribute
to the simplification of the expression. Note also that if don't-care mmterms
1 and 3 were not included with the l's, the simplified expression for F would
have been

F = A 'C ' + BC '

This would require two AND gates and an OR gate, as compared to the ex­
pression obtained previously, which requires only one AND and one OR gate.

1 8 CHA PTER ONE Digital logic Circuits

block diagram

8

c

Figure 1-14 Example of map with don't .. care conditions.

The function is determined completely once the x 's are assigned to the
1's or O's in the map. Thus the expression

F = A ' + BC '

represents the Boolean function

F(A, B, C) = I (0, 1, 2, 3, 6)

It consists of the original minterms 0, 2, and 6 and the don't-care minterms 1
and 3. Minterm 5 is not included in the function . Since minterms 1, 3, and 5
were specified as being don't-care conditions, we have chosen min terms 1 and
3 to produce a 1 and minterm 5 to produce a 0. This was chosen because this
assignment produces the simplest Boolean expression.

1 -5 Combinational Circuits

A combinational circuit is a connected arrangement of logic gates with a set of
inputs and outputs. At any given time, the binary values of the outputs are a
function of the binary combination of the inputs. A block diagram of a combi­
national circuit is shown in Fig. 1-15. The n binary input variables come from
an external source, the m binary output variables go to an external destination,
and in between there is an interconnection of logic gates. A combinational
circuit transforms binary information from the given input data to the required
output data. Combinational circuits are employed in digital computers for
generating binary control decisions and for providing digital components
required for data processing.

A combinational circuit can be described by a truth table showing the
binary relationship between the n input variables and the m output variables.
The truth table lists the corresponding output binary values for each of the 2"
input combinations. A combinational circuit can also be specified with m
Boolean functions, one for each output variable. Each output function is
expressed in terms of the n input variables.

n input
variables

SECTION l -5 Combinational Circuits 19

m output
variables

Figure 1 .. 15 Block diagram of a combinational circuit.

The analysis of a combinational circuit starts with a given logic circuit
diagram and culminates with a set of Boolean functions or a truth table. If the
digital circuit is accompanied by a verbal explanation of its function, the
Boolean functions or the truth table is sufficient for verification. If the function
of the circuit is under investigation, it is necessary to interpret the operation of
the circuit from the derived Boolean functions or the truth table. The success
of such investigation is enhanced if one has experience and familiarity with
digital circuits. The ability to correlate a truth table or a set of Boolean functions
with an information-processing task is an art that one acquires with experience.

The design of combinational circuits starts from the verbal outline of the
problem and ends in a logic circuit diagram. The procedure involves the
following steps:

1. The problem is stated.

2. The input and output variables are assigned letter symbols.

3. The truth table that defines the relationship between inputs and outputs
is derived.

4. The simplified Boolean functions for each output are obtained.

5. The logic diagram is drawn.

To demonstrate the design of combinational circuits, we present two
examples of simple arithmetic circuits. These circuits serve as basic building
blocks for the construction of more complicated arithmetic circuits.

Half-Adder
The most basic digital arithmetic circuit is the addition of two binary digits. A
combinational circuit that performs the arithmetic addition of two bits is called
a half-adder. One that performs the addition of three bits (two significant bits
and a previous carry) is called a full-adder. The name of the former stems from
the fact that two half-adders are needed to implement a full-adder.

The input variables of a half-adder are called the augend and addend
bits. The output variables the sum and carry. It is necessary to specify two
output variables because the sum of 1 + 1 is binary 10, which has two digits.
We assign symbols x and y to the two input variables, and S (for sum) and C

20 CHAPTER ONE Digital Logic Circuits

X

0
0
I
I

y c s

0 0 0
I 0 I
0 0 I
I I 0 ;�:

(a) Truth table (b) Logic diagram

Figure 1-16 Half-adder.

(for carry) to the two output variables. The truth table for the half-adder is
shown in Fig. l-16(a). The C output is 0 unless both inputs are I. The S output
represents the least significant bit of the sum. The Boolean functions for the
two outputs can be obtained directly from the truth table:

S = x'y + xy' = x a1 y

c = xy

The logic diagram is shown in Fig. l-16(b). It consists of an exclusive-OR gate
and an AND gate.

Full-Adder
A full-adder is a combinational circuit that forms the arithmetic sum of three
input bits. It consists of three inputs and two outputs. Two of the input
variables, denoted by x and y, represent the two significant bits to be added.
The third input, z, te'?teseuts the <:any from the ptev'..ous \owet s\.gn\.ncant
position. Two outputs are necessary because the arithmetic sum of three binary
digi.t:nanges \.n val.ue 'irom \) to �. ana 'Omary 2 or 3 needs two digits. The two
outputs are designated by the symbols S (for sum) and C (for carry). The binary
variable S gives the value of the least significant bit of the sum. The binary
variable C gives the output carry. The truth table of the full-adder is shown in
Table 1-2. The eight rows under the in?ut variables designate all possib\e
combinations that the binary variables may have. The value of the output
variables are determined from the arithmetic sum of the input bits. When all
input bits are 0, the output is 0. The S output is equal to 1 when only one input
is equal to 1 or when all three inputs are equal to I. The C output has a carry
of 1 if two or three inputs are equal to I.

The maps of Fig. 1-17 are used to find algebraic expressions for the two
output variables. The l's in the squares for the maps of S and C are determined
directly from the minterms in the truth table. The squares with l's for the S
output do not combine in groups of adjacent squares. But since the output is
1 when an odd number of inputs are I, S is an odd function and represents

SECTION 1 ·5 Combinational Circuits 2 1

TABLE 1 - 2 Truth Table for Full-Adder

Inputs Outputs

X y c 5

0 0 0 0 0
0 0 1 0
0 0 0 1
0 1 1 1 0

0 0 0 1
0 1 0

0 0

the exclusive-OR relation of the variables (see the discussion at the end of Sec.
1-2). The squares with 1's for the C output may be combined in a variety of
ways. One possible expression for C is

C = xy + (x'y + ry')z

Realizing that x'y + xy' = x a1 y and including the expression for output S , we
obtain the two Boolean expressions for the full-adder:

S = x a1 y a1 z

C = xy + (x a1 y)z

The logic diagram of the full-adder is drawn in Fig. 1-18. Note that the full­
adder circuit consists of two half-adders and an OR gate. When used in
subsequent chapters, the full-adder (FA) will be designated by a block diagram
as shown in Fig. 1-18(b).

Figure 1-17 Maps for full-adder.

S = x'y'z + x'yz' + xy'z' + xyz

= x EB y E9 z

C = xy + xz + yz

= xy + (x'y + .ry')z

22 CHAPTER ONE Digital Logic Circuits

clocked sequential
circuit

(a) Logic diagram

Figure 1� 18 Full�adder circuit.

1 -6 Flip-Flops

x=Bs
Y FA

z c

(b) Block diagram

The digital circuits considered thus far have been combinational, where the
outputs at any given time are entirely dependent on the inputs that are present
at that time. Although every digital system is likely to have a combinational
circuit, most systems encountered in practice also include storage elements,
which require that the system be described in terms of sequential circuits. The
most common type of sequential circuit is the synchronous type. Synchronous
sequential circuits employ signals that affect the storage elements only at
discrete instants of time. Synchronization is achieved by a timing device called
a clock pulse generator that produces a periodic train of clock pulses. The clock
pulses are distributed throughout the system in such a way that storage
elements are affected only with the arrival of the synchronization pulse.
Oocked synchronous sequential circuits are the type most frequently encoun­
tered in practice. They seldom manifest instability problems and their timing
is easily broken down into independent discrete steps, each of which may be
considered separately.

The storage elements employed in clocked sequential circuits are called
flip-flops. A flip-flop is a binary cell capable of storing one bit of information.
It has two outputs, one for the normal value and one for the complement value
of the bit stored in it. A flip-flop maintains a binary state until directed by a
clock pulse to switch states. The difference among various types of flip-flops
is in the number of inputs they possess and in the manner in which the inputs
affect the binary state. The most common types of flip-flops are presented
below.

SR Flip-Flop
The graphic symbol of the SR flip-flop is shown in Fig. 1-19(a). It has three
inputs, labeled S (for set), R (for reset), and C (for clock). It has an output Q
and sometimes the flip-flop has a complemented output, which is indicated
with a small circle at the other output terminal. There is an arrowhead-shaped
symbol in front of the letter C to designate a dynamic input . The dynamic

SECTION 1 -6 Flips-Flops 23

Q
s R Q (t + I)

c 0 0 Q (c) No change
0 I 0 Clear to O
I 0 I Set to I
I I ? Indeterminate

(a) Graphic symbol (b) Characteristic table

Figure 1 · 1 9 SR flip-flop.

indicator symbol denotes the fact that the flip-flop responds to a positive
transition (from 0 to 1) of the input clock signal .

The operation of the SR flip-flop is as follows . If there is no signal at the
clock input C, the output of the circuit cannot change irrespective of the values
at inputs S and R . Only when the clock signal changes from 0 to 1 can the
output be affected according to the values in inputs S and R . If S = 1 and R = 0
when C changes from 0 to 1, output Q is set to 1 . If S = 0 and R = 1 when C
changes from 0 to 1, output Q is cleared to 0. If both S and R are 0 during the
clock transition, the output does not change . When both 5 and R are equal to
1, the output is unpredictable and may go to either 0 or 1, depending on
internal timing delays that occur within the circuit.

The characteristic table shown in Fig. 1-19(b) summarizes the operation
of the SR flip-flop in tabular form. The S and R columns give the binary values
of the two inputs . Q(t) is the binary state of the Q output at a given time
(referred to as present state). Q(t + 1) is the binary state of the Q output after
the occurrence of a clock transition (referred to as next state). If S = R = 0, a
clock transition produces no change of state [i . e . , Q(t + 1) = Q(t)] . If S = 0
and R = 1 , the flip-flop goes to the 0 (clear) state . If S = 1 and R = 0, the
flip-flop goes to the 1 (set) state . The SR flip-flop should not be pulsed when
S = R = 1 since it produces an indeterminate next state . This indeterminate
condition makes the SR flip-flop difficult to manage and therefore it is seldom
used in practice .

D Flip-Flop
The D (data) flip-flop is a slight modification of the SR flip-flop . An SR flip-flop
is converted to a D flip-flop by inserting an inverter between S and R and
assigning the symbol D to the single input. The D input is sampled during the
occurrence of a clock transition from 0 to 1. If D = 1, the output of the flip-flop
goes to the 1 state, but if D = 0, the output of the flip-flop goes to the 0 state .

The graphic symbol and characteristic table of the D flip-flop are shown
in Fig. 1-20 . From the characteristic table we note that the next state Q(t + 1)

24 CHAPTER ONE Digital Logic Circuits

(a) Graphic symbol

D Q (t + I)

Clear to 0
Set to l

(b) Characteristic table

Figure 1-ZO D flip-flop.

is determined from the D input. The relationship can be expressed by a
characteristic equation:

Q(t + 1) = D

This means that the Q output of the flip-flop receives its value from the D input
every time that the clock signal goes through a transition from 0 to 1 .

Note that no input condition exists that will leave the state of the D
flip-flop unchanged. Although a D flip-flop has the advantage of having only
one input (excluding C), it has the disadvantage that its characteristic table does
not have a "no change" condition Q(t + 1) = Q(t). The "no change" condition
can be accomplished either by disabling the clock signal or by feeding the
output back into the input, so that clock pulses keep the state of the flip-flop
unchanged.

]K Flip-Flop
A JK flip-flop is a refinement of the SR flip-flop in that the indeterminate
condition of the SR type is defined in the JK type. Inputs J and K behave like
inputs S and R to set and clear the flip-flop, respectively. When inputs J and
K are both equal to 1, a clock transition switches the outputs of the flip-flop
to their complement state.

The graphic symbol and characteristic table of the JK flip-flop are shown
in Fig. 1-21 . The J input is equivalent to the S (set) input of the SR flip-flop,
and the K input is equivalent to the R (clear) input. Instead of the indeterminate
condition, the JK flip-flop has a complement condition Q(t + 1) = Q' (t) when
both J and K are equal to 1 .

T Flip-Flop
Another type of flip-flop found in textbooks is the T (toggle) flip-flop. This
flip-flop, shown in Fig. 1-22, is obtained from a JK type when inputs J and K
are connected to provide a single input designated by T. The T flip-flop

(a) Graphic symbol

(a) Graphic symbol

K

SECTION 1-6 Flips-Hops 25

Q (t + I)

Q (r)
0
I

Q' (r)

No change
Clear to 0
Set to I
Complement

(b) Characteristic table

Figure 1-21]K flip-flop.

T Q (t + I)

Q (t)
Q' (t)

No change
Complement

(b) Characteristic table

Figure 1·22 T flip-flop.

therefore has only two conditions. When T = 0 (J = K = 0) a clock transition
does not change the state of the flip-flop. When T = 1 (J = K = 1) a clock
transition complements the state of the flip-flop. These conditions can be
expressed by a characteristic equation:

Q(t + 1) = Q(t) Ell T

Edge· Triggered Flip· Flops
The most common type of flip-flop used to synchronize the state change during
a clock pulse transition is the edge-triggered flip-flop. In this type of flip-flop,
output transitions occur at a specific level of the clock pulse. When the pulse
input level exceeds this threshold level, the inputs are locked out so that the
flip-flop is unresponsive to further changes in inputs until the clock pulse
returns to 0 and another pulse occurs. Some edge-triggered flip-flops cause a
transition on the rising edge of the clock signal (positive-edge transition), and
others cause a transition on the falling edge (negative-edge transition).

Figure 1-23(a) shows the clock pulse signal in a positive-edge-triggered
D flip-flop. The value in the D input is transferred to the Q output when the
clock makes a positive transition. The output cannot change when the clock
is in the 1 level, in the 0 level, or in a transition from the 1 level to the 0 level.

26 CHAPTER ONE Digital logic Circuits

master-slave
flip-flop

Positivej
clock

transition

(a) Positive-edge-triggered D flip-flop.

Negativ�
clock

transition

Output
cannot
change

(b) Negative-edge-triggered D flip-flop.

Figure I · 23 Edge-triggered flip-flop.

The effective positive clock transition includes a minimum time called the setup
time in which the D input must remain at a constant value before the transition,
and a definite time called the hold time in which the D input must not change
after the positive transition. The effective positive transition is usually a very
small fraction of the total period of the clock pulse.

Figure 1-23(b) shows the corresponding graphic symbol and timing dia­
gram for a negative-edge-triggered D flip-flop. The graphic symbol includes a
negation small circle in front of the dynamic indicator at the C input. This
denotes a negative-edge-triggered behavior. In this case the flip-flop responds
to a transition from the 1 level to the 0 level of the clock signal.

Another type of flip-flop used in some systems is the master-slave flip­
flop. This type of circuit consists of two flip-flops. The first is the master, which
responds to the positive level of the clock, and the second is the slave, which
responds to the negative level of the clock. The result is that the output changes
during the 1-to-0 transition of the clock signal. The trend is away from the use
of master-slave flip-flops and toward edge-triggered flip-flops.

Flip-flops available in integrated circuit packages will sometimes provide
special input terminals for setting or clearing the flip-flop asynchronously.
These inputs are usually called "preset" and "clear." They affect the flip-flop
on a negative level of the input signal without the need of a clock pulse. These
inputs are useful for bringing the flip-flops to an initial state prior to its clocked
operation.

Excitation Tables

SECTION !-6 Flips-Flops 2 7

The characteristic tables of flip-flops specify the next state when the inputs and
the present state are known. During the design of sequential circuits we usually
know the required transition from present state to next state and wish to find
the flip-flop input conditions that will cause the required transition. For this
reason we need a table that lists the required input combinations for a given
change of state. Such a table is called a flip-flop excitation table.

Table 1-3 lists the excitation tables for the four types of flip-flops. Each
table consists of two columns, Q(t) and Q(t + 1), and a column for each input
to show how the required transition is achieved. There are four possible
transitions from present state Q(t) to next state Q(t + 1). The required input
conditions for each of these transitions are derived from the information
available in the characteristic tables. The symbol x in the tables represents a
don't-care condition; that is, it does not matter whether the input to the
flip-flop is 0 or 1 .

TABLE 1-3 Excitation Table for Four Flip-Flops

SR flip-flop D flip-flop

Q(t) Q(t + I) s R Q(t) Q(t + I) D

0 0 0 X 0 0 0
0 I I 0 0 I I

0 0 I 0 0
X 0

JK flip-flop T flip-flop

Q(t) Q(t + I) K Q(t) Q(t + I) T

0 0 0 X 0 0 0
0 I X 0 I I

0 X I 0 I
X 0 I 0

The reason for the don't-care conditions in the excitation tables is that
there are two ways of achieving the required transition. For example, in a JK
flip-flop, a transition from present state of 0 to a next state of 0 can be achieved
by having inputs J and K equal to 0 (to obtain no change) or by letting J = 0
and K = 1 to clear the flip-flop (although it is already cleared). In both cases
J must be 0, but K is 0 in the first case and 1 in the second. Since the required
transition will occur in either case, we mark the K input with a don't-care x

28 CHAPTER ONE Digital Logic Circuits

input equation

and let the designer choose either 0 or 1 for the K input, whichever is more
convenient.

1-7 Sequential Circuits

A sequential circuit is an interconnection of flip-flops and gates. The gates by
themselves constitute a combinational circuit, but when included with the
flip-flops, the overall circuit is classified as a sequential circuit. The block
diagram of a clocked sequential circuit is shown in Fig. 1-24. It consists of a
combinational circuit and a number of clocked flip-flops. In general, any
number or type of flip-flops may be included. As shown in the diagram, the
combinational circuit block receives binary signals from external inputs and
from the outputs of flip-flops. The outputs of the combinational circuit go to
external outputs and to inputs of flip-flops. The gates in the combinational
circuit determine the binary value to be stored in the flip-flops after each clock
transition. The outputs of flip-flops, in turn, are applied to the combinational
circuit inputs and determine the circuit's behavior. This process demonstrates
that the external outputs of a sequential circuit are functions of both external
inputs and the present state of the flip-flops. Moreover, the next state of
flip-flops is also a function of their present state and external inputs. Thus a
sequential circuit is specified by a time sequence of external inputs, external
outputs, and internal flip-flop binary states.

Flip-Flop Input Equations
An example of a sequential circuit is shown in Fig. 1-25. It has one input
variable x, one output variable y, and two clocked D flip-flops. The AND gates,
OR gates, and inverter form the combinational logic part of the circuit. The
interconnections among the gates in the combinational circuit can be specified
by a set of Boolean expressions. The part of the combinational circuit that
generates the inputs to flip-flops are described by a set of Boolean expressions
called flip-flop input equations. We adopt the convention of using the flip-flop
input symbol to denote the input equation variable name and a subscript to

Figure 1 .. 24 Block diagram of a clocked synchronous sequential circuit.

SECTION 1·7 Sequential Circuits 29

A

A '

B

B'

Figure 1�25 Example of a sequential circuit.

designate the symbol chosen for the output of the flip-flop. Thus, in Fig. 1-25,
we have two input equations, designated DA and 08 . The first letter in each
symbol denotes the D input of a D flip-flop. The subscript letter is the symbol
name of the flip-flop. The input equations are Boolean functions for flip-flop
input variables and can be derived by inspection of the circuit. Since the output
of the OR gate is connected to the D input of flip-flop A, we write the first input
equation as

DA = Ax + Bx

where A and B are the outputs of the two flip-flops and x is the external input.
The second input equation is derived from the single AND gate whose output
is connected to the D input of flip-flop B:

D. = A 'x

30 CHAPTER ONE Digital Logic Circuits

present state

next state

The sequential circuit also has an external output, which is a function of
the input variable and the state of the flip-flops. This output can be specified
algebraically by the expression

y = Ax ' + Bx '

From this example we note that a flip-flop input equation is a Boolean
expression for a combinational circuit . The subscripted variable is a binary
variable name for the output of a combinational circuit. This output is always
connected to a flip-flop input.

State Table
The behavior of a sequential circuit is determined from the inputs, the outputs,
and the state of its flip-flops. Both the outputs and the next state are a function
of the inputs and the present state. A sequential circuit is specified by a state
table that relates outputs and next states as a function of inputs and present
states. In clocked sequential circuits, the transition from present state to next
state is activated by the presence of a clock signal.

The state table for the circuit of Fig. 1-25 is shown in Table 1-4. The table
consists of four sections, labeled present state, input, next state, and output . The
present-state section shows the states of flip-flops A and B at any given time
t . The input section gives a value of x for each possible present state. The
next-state section shows the states of the flip-flops one clock period later at time
t + I. The output section gives the value of y for each present state and input
condition.

The derivation of a state table consists of first listing all possible binary
combinations of present state and inputs. In this case we have eight binary
combinations from 000 to Il l . The next-state values are then determined from
the logic diagram or from the input equations. The input equation for flip-flop
A is

DA = Ax + Bx

The next-state value of a each flip-flop is equal to its D input value in the present
state. The transition from present state to next state occurs after application of
a clock signal. Therefore, the next state of A is equal to 1 when the present state
and input values satisfy the conditions Ax = 1 or Bx = 1, which makes DA
equal ! . This is shown in the state table with three 1's under the column for
next state of A. Similarly, the input equation for flip-flop B is

D, = A 'x

state table

state diagram

SECTION l-7 Sequential Circuits 3 1

The next state of B in the state table is equal to 1 when the present state of A
is 0 and input x is equal to 1. The output column is derived from the output
equation

y = Ax ' + Bx '

TABLE 1-4 State Table for Circuit of Fig. 1-25

Present Next
state Input state Output

A B X A B y

0 0 0 0 0 0
0 0 I 0 I 0
0 0 0 0 1
0 1 1 1 1 0

0 0 0 0 I
0 I I 0 0

0 0 0 I
0 0

The state table of any sequential circuit is obtained by the procedure used
in this example. In general, a sequential circuit with m flip-flops, n input
variables, and p output variables will contain m columns for present state, n
columns for inputs, m columns for next state, and p columns for outputs. The
present state and input columns are combined and under them we list the 2m + "
binary combinations from 0 through 2m . , - 1. The next-state and output
columns are functions of the present state and input values and are derived
directly from the circuit or the Boolean equations that describe the circuit.

State Diagram
The information available in a state table can be represented graphically in a
state diagram. In this type of diagram, a state is represented by a circle, and
the transition between states is indicated by directed lines connecting the
circles. The state diagram of the sequential circuit of Fig. 1-25 is shown in Fig.
1-26. The state diagram provides the same information as the state table and
is obtained directly from Table 1-4. The binary number inside each circle
identifies the state of the flip-flops. The directed lines are labeled with two
binary numbers separated by a slash. The input value during the present state
is labeled first and the number after the slash gives the output during the
present state. For example, the directed line from state 00 to 01 is labeled 1/0,
meaning that when the sequential circuit is in the present state 00 and the input

32 CHAPTER ONE Digital Logic Circuits

binary counter

Figure 1�26 State diagrams of sequential circuit.

is 1, the output is 0. After a clock transition, the circuit goes to the next state
01 . The same clock transition may change the input value. If the input changes
to 0, the output becomes 1, but if the input remains at 1 , the output stays at
0. This information is obtained from the state diagram along the two directed
lines emanating from the circle representing state 01 . A directed line connect­
ing a circle with itself indicates that no change of state occurs.

There is no difference between a state table and a state diagram except
in the manner of representation. The state table is easier to derive from a given
logic diagram and the state diagram follows directly from the state table. The
state diagram gives a pictorial view of state transitions and is the form suitable
for human interpretation of the circuit operation. For example, the state dia­
gram of Fig. 1-26 clearly shows that starting from state 00, the output is 0 as
long as the input stays at 1. The first 0 input after a string of 1's gives an output
of 1 and transfers the circuit back to the initial state 00.

Design Example
The procedure for designing sequential circuits will be demonstrated by a
specific example. The design procedure consists of first translating the circuit
specifications into a state diagram. The state diagram is then converted into a
state table. From the state table we obtain the information for obtaining the
logic circuit diagram.

We wish to design a clocked sequential circuit that goes through a se­
quence of repeated binary states 00, 01, 10, and 11 when an external input x
is equal to 1. The state of the circuit remains unchanged when x = 0. This type
of circuit is called a 2-bit binary counter because the state sequence is identical
to the count sequence of two binary digits. Input x is the control variable that
specifies when the count should proceed.

The binary counter needs two flip-flops to represent the two bits. The
state diagram for the sequential circuit is shown in Fig. 1-27. The diagram is
drawn to show that the states of the circuit follow the binary count as long as

excitation table

SECTION 1-7 Sequential Circuits 33

Figure 1 .. 27 State diagram for binary counter.

x = 1. The state following 11 is 00, which causes the count to be repeated. If
x = 0, the state of the circuit remains unchanged. This sequential circuit has
no external outputs, and therefore only the input value is labeled in the
diagram. The state of the flip-flops is considered as the outputs of the counter.

We have already assigned the symbol x to the input variable. We now
assign the symbols A and B to the two flip-flop outputs. The next state of A
and B, as a function of the present state and input x, can be transferred from
the state diagram into a state table. The first five columns of Table 1-5 constitute
the state table. The entries for this table are obtained directly from the state
diagram.

The excitation table of a sequential circuit is an extension of the state table.
This extension consists of a list of flip-flop input excitations that will cause the

TABLE 1 .. 5 Excitation Table for Binary Counter

Present Next
state Input state Flip-flop inputs

A B X A B ,. K. Is Ks

0 0 0 0 0 0 X 0 X
0 0 1 0 1 0 X X
0 1 0 0 1 0 X X 0
0 1 1 0 X X

0 0 0 X 0 0 X
0 1 1 X 0 X

0 1 1 X 0 X 0
0 0 X X

34 CHAPTER ONE Digital Logic Circuits

required state transitions. The flip-flop input conditions are a function of the
type of flip-flop used. If we employ]K flip-flops, we need columns for the J
and K inputs of each flip-flop. We denote the inputs of flip-flop A by !A and
K., and those of flip-flop B by J, and K, .

The excitation table for the]K flip-flop specified in Table 1-3 is now u!.ed
to derive the excitation table of the sequential circuit. For example, in the first
row of Table 1-5, we have a transition for flip-flop A from 0 in the present state
to 0 in the next state. In Table 1-3 we find that a transition of states from Q(t) = 0
to Q(t + 1) = 0 in a]K flip-flop requires that input J = 0 and input K = x . So
0 and x are copied in the first row under]A and KA, respectively. Since the first
row also shows a transition for flip-flop B from 0 in the present state to 0 in
the next state, 0 and x are copied in the first row under J, and K, . The second
row of Table 1-5 shows a transition for flip-flop B from 0 in the present state
to 1 in the next state. From Table 1-3 we find that a transition from Q(t) = 0
to Q(t + 1) = 1 requires that input J = 1 and input K = x . So 1 and x are
copied in the second row under], and K,, respectively. This process is contin­
ued for each row of the table and for each flip-flop, with the input conditions
as specified in Table 1-3 being copied into the proper row of the particular
flip-flop being considered.

Let us now consider the information available in an excitation table such
as Table 1-5. We know that a sequential circuit consists of a number of flip-flops
and a combinational circuit. From the block diagram of Fig. 1-24, we note that
the outputs of the combinational circuit must go to the four flip-flop inputs]A,
KA,],, and K, . The inputs to the combinational circuit are the external input
x and the present-state values of flip-flops A and B. Moreover, the Boolean
functions that specify a combinational circuit are derived from a truth table that
shows the input-output relationship of the circuit. The entries that list the
combinational circuit inputs are specified under the "present state" and "in­
put" columns in the excitation table. The combinational circuit outputs are
specified under the "flip-flop inputs" columns. Thus an excitation table trans­
forms a state diagram to a truth table needed for the design of the combina­
tional circuit part of the sequential circuit.

The simplified Boolean functions for the combinational circuit can now
be derived. The inputs are the variables A, B, and x. The outputs are the
variables]A, K.,],, and K, . The information from the excitation table is trans­
ferred into the maps of Fig. 1-28, where the four simplified flip-flop input
equations are derived:

]A = Bx

J, = X

KA = Bx

K, = X

The logic diagram is drawn in Fig. 1-29 and consists of two]K flip-flops and
an AND gate. Note that inputs J and K determine the next state of the counter
when a clock signal occurs. If both J and K are equal to 0, a clock signal will

SECTION 1·7 Sequential Circuits 35

B

B

Js = x Ks = x

B

B

Figure 1�28 Maps for combinational circuit of counter.

A

B

Figure 1-29 Logic diagram of a 2�bit binary counter.

36 CHAPTER ONE Digital Logic Circuits

have no effect; that is, the state of the flip-flops will not change. Thus when
x = 0, all four inputs of the flip-flops are equal to 0 and the state of the flip-flops
remains unchanged even though clock pulses are applied continuously.

Design Procedure
The design of sequential circuits follows the outline described in the preceding
example. The behavior of the circuit is first formulated in a state diagram. The
number of flip-flops needed for the circuit is determined from the number of
bits listed within the circles of the state diagram. The number of inputs for the
circuit is specified along the directed lines between the circles. We then assign
letters to designate all flip-flops and input and output variables and proceed
to obtain the state table.

For m flip-flops and n inputs, the state table will consist of m columns for
the present state, n columns for the inputs, and m columns for the next state.
The number of rows in the table will be up to 2m + ", one row for each binary
combination of present state and inputs. For each row we list the next state as
specified by the state diagram. Next, the flip-flop type to be used in the circuit
is chosen. The state table is then extended into an excitation table by including
columns for each input of each flip-flop. The excitation table for the type of
flip-flop in use can be found in Table 1-3. From the information available in this
table and by inspecting present state-to-next state transitions in the state table,
we obtain the information for the flop-flop input conditions in the excitation
table.

The truth table for the combinational circuit part of the sequential circuit
is available in the excitation table. The present-state and input columns consti­
tute the inputs in the truth table. The flip-flop input conditions constitute the
outputs in the truth table. By means of map simplification we obtain a set of
flip-flop input equations for the combinational circuit. Each flip-flop input
equation specifies a logic diagram whose output must be connected to one of
the flip-flop inputs. The combinational circuit so obtained, together with the
flip-flops, constitutes the sequential circuit.

The outputs of flip-flops are often considered to be part of the outputs
of the sequential circuit. However, the combinational circuit may also contain
external outputs. In such a case the Boolean functions for the external outputs
are derived from the state table by combinational circuit design techniques.

A set of flip-flop input equations specifies a sequential circuit in algebraic
form. The procedure for obtaining the logic diagram from a set of flip-flop input
equations is a straightforward process. First draw the flip-flops and label all
their inputs and outputs. Then draw the combinational circuit from the
Boolean expressions given by the flip-flop input equations. Finally, connect
outputs of flip-flops to inputs in the combinational circuit and outputs of the
combinational circuit to flip-flop inputs.

PROBLEMS]
1·1. Detennine by means cia truth table the validilyofDeMorgan's theomn for

three variables: (ABC)' • A' + 8' + C'.

1·2. Ust the truth table of a three-variable e><dusiv�R (odd) function: r = A 61
sec.

1·3. Simplify the following expressions using Boolean algebra.
a. A + AB
b. JIB + AB'
c. A' BC + J\C
d. A'B +ABC' + ABC

1-4. Simplify the following expressions using Boolean algebra.
a. JIB + J\(CD + CD')
b. (BC' + A'D) (AB' + CD')

1-5. Using DeMcngan's thoomn, show that
a. (A + 8)'(11' + B')' Q 0
b. A + J\'B + J\'B' • I

1�. Given the Boolean ""f'T"5sion F • r'y + ryz':
a. Derive an algebraic expression for the complement f'.
b. Show that F • F' a 0.
c. Show that F + f' • I.

1·7. Given the Boolean function

F • .xy': + z'y'z + ryz

a. Ust the truth table of the function.
b. Draw the logic diagram using the original Boolean expression.
c. Simplify the algebraic expression using Boolean algebra.
d. Ust the truth table or the functlon from the simplified expression and

show thal li Is the same as the INih !able In part (a).
e. Draw the logic diagram from the slmpUfled expression and axnpare the

total number or gates wilh the diagram of part (b).

1-8. Simplify the following Boolean functions using three-variable maps.

a. f(r,y,z) • I (0, 1,5, 7)
b. f(r.y.z) a I (1,2,3,6,7)
c. F(r, y.z) • I. (3, 5, 6, 7)

cl. f(J\,B, C) - I (0,2.3.4.6)
1·9. Simplify the following Boolean functlons using four-variable maps.

a. F(A, 8, C, D) • I (4, 6, 7, 15)
b. F(J\, B. C, D) = I (3, 7. \1, 13. 14. 15)
c. F(J\, B, C, D) - I (0,1, 2, 4,5, 7, 11, 15)

d. F(A. B. c. D) - I (0, 2, 4, 5, 6, 7, 8, 10, 13, IS)

38 CHAPTER ONE Digital Logic Circuits

1-10. Simplify the following expressions in (1) sum-of-products form and (2)
product-of-sums form.
a. x 'z ' + y 'z ' + yz ' + xy
b. AC' + B ' D + A ' CD + ABCD

1-11. Simplify the following Boolean function in sum-of-products form by means
of a four-variable map. Draw the logic diagram with (a) AND-OR gates; (b)
NAND gates.

F(A , B, C, D) = I (0, 2, 8, 9, 10, 11, 14 , 15)

1-12. Simplify the following Boolean function in product-of-sums form by means
of a four-variable map. Draw the logic diagram with (a) OR-AND gates; (b)
NOR gates.

F(w, x, y, z) = I (2 , 3, 4 , 5 , 6, 7 , 11, 14 , 15)

1-13. Simplify the Boolean function F together with the don't-care conditions d in
(1) sum-of-products form and (2) product-of-sums form.

F(w, x, y, z) = I (0, 1, 2 , 3, 7, 8, 10)

d(w, x, y, z) = I (5 , 6, 11, 15)

1-14. Using Table 1-2 , derive the Boolean expression for the S (sum) output of the
full-adder in sum-of-products form. Then by algebraic manipulation show
that S can be expressed as the exclusive-OR of the three input variables.

S = x E!l y E!l z
1-15. A majority function is generated in a combinational circuit when the output

is equal to 1 if the input variables have more 1's than O's. The output is 0
otherwise. Design a three-input majority function.

1-16. Design a combinational circuit with three inputs x, y, z and three outputs
A, B, C. When the binary input is 0, 1, 2 , or 3, the binary output is one greater
than the input. When the binary input is 4, 5 , 6, or 7, the binary output is
one less than the input.

1-17. Show that a JK flip-flop can be converted to a D flip-flop with an inverter
between the J and K inputs.

1-18. Using the information from the characteristic table of the JK flip-flop listed
in Fig. 1-21(b), derive the excitation table for the JK flip-flop and compare
your answer with Table 1-3.

1-19. A sequential circuit has two D flip-flops A and B, two inputs x and y, and
one output z. The flip-flop input equations and the circuit output are as
follows:

D, = x 'y + xA

Da = x 'B + xA
z = B

SEC'I1Ctl 1·7 Sequential O.rcuil> 39

•· Draw the logic diagram oE the c:ircWt.
b. Tabulate the state table.

1·20. Design a 2-bit count-down countet. This is a sequential c:ircWt with two
llip•flops and one input x. When x • 0, the state of the Dip-flops does nnt
change. When x • I, the state sequence is U, \0, 01, 00, 11, and repeat.

1·21. Design a sequential circuit with two TK flip-Oops A and B and two inputs E
and x. U E = 0, the circuit remains in the same state regardless of the value
of x. When E = 1 and x = 1, the circuit goes through the state transitions
from 00 to 01 to 10 to II back to 00, and repeat. When E a I and x = 0, the
c:ircWt goes through the state transitions &om 00 to 11 to 10 to 01 bad< to 00,
and repeat.

REFERENCES

1. Hill, F. J., and G. R. Peterson . • lntrodU£tion to Switching Tlltwy ond Logioll Design, 3rd
ed. New York: john W�ey. 1981.

2. Mano, M. M, Digitd Design, 2nd ed. Englewood Cliffs, N): Prenlitt HAIL 1991.
3. Roth, C. H .. Fund.ttmcJtols of Logic Design, 3rd ed. St. Paul, MN: West Publishing,

1985.
4. Sandige, R. S., Moden Digitol Design. New Yodc McGraw-Hill. 1990.
S. Shlva, S. G., /ntrodudion to LDgic Design. Glenview, 11.; Smtt, Foresman, 1988.
6. Wakerly, J. F., Digitol Design Prindpl., 1md Practi«s. Englewood Oiffs, N): Prentice

HaU, 1990.
7. Ward, S. A., and R. H. Halstead, Jr., U>mputation Strudum. Cambridge, MA: MIT

Press, 1990.

IC

SSI

CHAPTER T W O

Digital Components

IN THIS CHAPTER

2·1 Integrated Circuits
2-2 Decoders
2·3 Multiplexers
2-4 Registen
2·5 Shift Regineno

U Binary Counters
2-7 Memory Unit

2·1 Integrated Circuits
Digital circuits are constructed with integrated circuits. Azl integrated cin:uit
(abbreviated IC) is a small silicon semiconductor crystal. called a dlip, contain·
ing the electronic components for the digital gates. The various gates are
inte.rconnected inside the chip to form the required circuit. The chip is mounted
In a ceramic or plastic container, and connections are welded by thin gold wines
to external pins to form the integrated circuit. The number of pins may range
from 14 in a small IC package to 100 or more in a larger package. Each IC has
a numeric designation printed on the surface of the package for identification.
Each vendor publishes a data book or catalog that contains the exact descrip­
tion and all the necessa.ry information about the ICs that it manufactures.

As the technology of ICs has improved, the number of gates that can be
put in a single chip has increased considerably. The differentiation between
those chips that have a few internal gates and those having hundreds or
thousands of gates is made by a customary reference to a packa$1! as being
either a small·, medium·, or large-scale integration device.

SmaU-5Cille inttgralion (SSI) devices contain several independent gates in
a single package. The inputs and outputs of the gates are connected directly

42 CHAPTER 1WO Digital Components

to the pins in the package. The number of gates is usually less than 10 and is
limited by the number of pins available in the !C.

MSI Medium-scale integration (MSI) devices have a complexity of approximately
10 to 200 gates in a single package. They usually perform specific elementary
digital functions such as decoders, adders, and registers.

LSI Large-scale integration (LSI) devices contain between 200 and a few thou-
sand gates in a single package. They include digital systems, such as proces­
sors, memory chips, and programmable modules.

VLSI Very-large-scale integration (VLSI) devices contain thousands of gates

TTL

within a single package. Examples are large memory arrays and complex
microcomputer chips. Because of their small size and low cost, VLSI devices
have revolutionized the computer system design technology, giving designers
the capability to create structures that previously were not economical.

Digital integrated circuits are classified not only by their logic operation
but also by the specific circuit technology to which they belong. The circuit
technology is referred to as a digital logic family . Each logic family has its own
basic electronic circuit upon which more complex digital circuits and functions
are developed. The basic circuit in each technology is either a NAND, a NOR,
or an inverter gate. The electronic components that are employed in the
construction of the basic circuit are usually used for the name of the technol­
ogy. Many different logic families of integrated circuits have been introduced
commercially. The following are the most popular.

TTL

ECL

MOS

CMOS

Transistor-transistor logic

Emitter-coupled logic

Metal-oxide semiconductor

Complementary metal-oxide semiconductor

TTL is a widespread logic family that has been in operation for many
years and is considered as standard. ECL has an advantage in systems requir­
ing high-speed operation. MOS is suitable for circuits that need high compo­
nent density, and CMOS is preferable in systems requiring low power
consumption.

The transistor-transistor logic family was an evolution of a previous
technology that used diodes and transistors for the basic NAND gate. This
technology was called DTL, for "diode-transistor logic." Later the diodes were
replaced by transistors to improve the circuit operation and the name of the
logic family was changed to "transistor-transistor logic." This is the reason for
mentioning the word "transistor" twice. There are several variations of the TTL
family besides the standard TTL, such as high-speed TTL, low-power TTL,
Schottky TTL, low-power Schottky TTL, and advanced Schottky TTL. The

ECL

CMOS

decoder

SECTION 2-2 Decoders 4 3

power supply voltage for TIL circuits is 5 volts, and the two logic levels are
approximately 0 and 3.5 volts.

The emitter-coupled logic (ECL) family provides the highest-speed digital
circuits in integrated form. ECL is used in systems such as supercomputers and
signal processors where high speed is essentiaL The transistors in ECL gates
operate in a nonsaturated state, a condition that allows the achievement of
propagation delays of 1 to 2 nanoseconds.

The metal-oxide semiconductor (MOS) is a unipolar transistor that
depends on the flow of only one type of carrier, which may be electrons
(n-channel) or holes (p-channel). This is in contrast to the bipolar transistor
used in TIL and ECL gates, where both carriers exist during normal operation.
A p-channel MOS is referred to as PMOS and an n-channel as NMOS. NMOS
is the one that is commonly used in circuits with only one type of MOS
transistor. The complementary MOS (CMOS) technology uses PMOS and
NMOS transistors connected in a complementary fashion in all circuits. The
most important advantages of CMOS over bipolar are the high packing density
of circuits, a simpler processing technique during fabrication, and a more
economical operation because of low power consumption.

Because of their many advantages, integrated circuits are used exclu­
sively to provide various digital components needed in the design of computer
systems. To understand the organization and design of digital computers it is
very important to be familiar with the various components encountered in
integrated circuits. For this reason, the most basic components are introduced
in this chapter with an explanation of their logical properties. These compo­
nents provide a catalog of elementary digital functional units commonly used
as basic building blocks in the design of digital computers.

2-2 Decoders

Discrete quantities of information are represented in digital computers with
binary codes. A binary code of n bits is capable of representing up to 2" distinct
elements of the coded information. A decoder is a combinational circuit that
converts binary information from the n coded inputs to a maximum of 2"
unique outputs. If the n-bit coded information has unused bit combinations,
the decoder may have less than 2" outputs.

The decoders presented in this section are called n-to-m-line decoders,
where m :5 2" . Their purpose is to generate the 2" (or fewer) binary combina­
tions of the n input variables. A decoder has n inputs and m outputs and is also
referred to as an n x m decoder.

The logic diagram of a 3-to-8-line decoder is shown in Fig. 2-L The three
data inputs, Ao, A1, and A,, are decoded into eight outputs, each output

44 CHAPTER TWO Digital Components

Enable input

A, ()()()
-----1 Do

v ,...---..
00 1

-{)o-
�

- -----j 010 v,

,...---..
01 1

D,

100

101

-----1
Ds

.....----.. 1 10

�

I l l
D,

Enable (E)

Figure 2.-1 J .. to.-8.-line decoder.

representing one of the combinations of the three binary input variables. The
three inverters provide the complement of the inputs, and each of the eight
AND gates generates one of the binary combination. A particular application
of this decoder is a binary-to-octal conversion. The input variables represent
a binary number and the outputs represent the eight digits of the octal number
system. However, a 3-to-8-line decoder can be used for decoding any 3-bit code
to provide eight outputs, one for each combination of the binary code.

Commercial decoders include one or more enable inputs to control the
operation of the circuit. The decoder of Fig. 2-1 has one enable input, E. The
decoder is enabled when E is equal to 1 and disabled when E is equal to 0.

The operation of the decoder can be clarified using the truth table listed
in Table 2-1 . When the enable input E is equal to 0, all the outputs are equal
to 0 regardless of the values of the other three data inputs. The three x 's in
the table designate don't-care conditions. When the enable input is equal to
I, the decoder operates in a normal fashion. For each possible input combina­
tion, there are seven outputs that are equal to 0 and only one that is equal to
I. The output variable whose value is equal to 1 represents the octal number
equivalent of the binary number that is available in the input data lines.

SECTION 2-2 Decoders 45

TABLE 2- 1 Truth Table for 3-to-8-Line Decoder

Enable Inputs Outputs

E A, A, Ao D, D, D, D, D, D, D, Do

0 X X X 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 I
0 0 I 0 0 0 0 0 0 I 0
0 I 0 0 0 0 0 0 I 0 0
0 I I 0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0 0 0
0 I 0 0 I 0 0 0 0 0

0 0 I 0 0 0 0 0 0
0 0 0 0 0 0 0

NAND Gate Decoder
Some decoders are constructed with NAND instead of AND gates. Since a
NAND gate produces the AND operation with an inverted output, it becomes
more economical to generate the decoder outputs in their complement form.
A 2-to-4-line decoder with an enable input constructed with NAND gates is
shown in Fig. 2-2. The circuit operates with complemented outputs and a
complemented enable input E. The decoder is enabled when E is equal to 0.
As indicated by the truth table, only one output is equal to 0 at any given time;
the other three outputs are equal to 1. The output whose value is equal to 0
represents the equivalent binary number in inputs A1 and A,. The circuit is
disabled when E is equal to 1, regardless of the values of the other two inputs.

Figure 2-2 2-to-4-line decoder with NAND gates.

Do E A, Ao Do D , D, D,

0 0 0 0
D,

0 0

D, 0

0 0

D,
X X

(a) Logic diagram (b) Truth >able

46 CHAPTER TWO Digital Components

When the circuit is disabled, none of the outputs are selected and all outputs
are equal to 1. In general, a decoder may operate with complemented or
uncomplemented outputs. The enable input may be activated with a 0 or with
a 1 signal level. Some decoders have two or more enable inputs that must
satisfy a given logic condition in order to enable the circuit.

Decoder Expansion
There are occasions when a certain-size decoder is needed but only smaller
sizes are available. When this occurs it is possible to combine two or more
decoders with enable inputs to form a larger decoder. Thus if a 6-to-64-line
decoder is needed, it is possible to construct it with four 4-to-16-line decoders.

Figure 2-3 shows how decoders with enable inputs can be connected to
form a larger decoder. Two 2-to-4-line decoders are combined to achieve a
3-to-8-line decoder. The two least significant bits of the input are connected to
both decoders. The most significant bit is connected to the enable input of one
decoder and through an inverter to the enable input of the other decoder. It
is assumed that each decoder is enabled when its E input is equal to 1. When
E is equal to 0, the decoder is disabled and all its outputs are in the O level. When
A, = 0, the upper decoder is enabled and the lower is disabled. The lower
decoder outputs become inactive with all outputs at 0. The outputs of the upper
decoder generate outputs Do through D3, depending on the values of A1 and
A0 (while A, = 0). When A, = 1, the lower decoder is enabled and the upper
is disabled. The lower decoder output generates the binary equivalent D4
through D, since these binary numbers have a 1 in the A, position.

Figure z,J A 3 X 8 decoder constructed with two 2 X 4 decoders.

Ao 2'

A , 2 '

A , E

2'

2 '

E

2 x 4
decoder

2 x 4
decoder D,

Ds

Do

D,

SECTION 2-2 Decoders 4 7

The example demonstrates the usefulness of the enable input in decoders
or any other combinational logic component. Enable inputs are a convenient
feature for interconnecting two or more circuits for the purpose of expand­
ing the digital component into a similar function but with more inputs and
outputs.

Encoders
An encoder is a digital circuit that performs the inverse operation of a decoder.
An encoder has 2" (or less) input lines and n output lines. The output lines
generate the binary code corresponding to the input value. An example of an
encoder is the octal-to-binary encoder, whose truth table is given in Table 2-2.
It has eight inputs, one for each of the octal digits, and three outputs that
generate the corresponding binary number. It is assumed that only one input
has a value of 1 at any given time; otherwise, the circuit has no meaning.

TABLE 2-2 Truth Table for Octal-to-Binary Encoder

Inputs Outputs

D, D, D, D, D, D, D, Do A, A, A,

0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0

The encoder can be implemented with OR gates whose inputs are deter­
mined directly from the truth table. Output Ao = 1 if the input octal digit is 1
or 3 or 5 or 7. Similar conditions apply for the other two outputs. These
conditions can be expressed by the following Boolean functions:

Ao = D1 + D, + Ds + D7

A, = D2 + D3 + D, + D7

A, = D4 + D5 + D, + D,

The encoder can be implemented with three OR gates.

48 CHAPTER TWO Digital Components

multiplexer

2-3 Multiplexers

A multiplexer is a combinational circuit that receives binary information from
one of 2" input data lines and directs it to a single output line. The selec­
tion of a particular input data line for the output is determined by a set of
selection inputs. A 2"-to-1 multiplexer has 2" input data lines and n input
selection lines whose bit combinations determine which input data are selected
for the output.

A 4-to-1-line multiplexer is shown in Fig. 2-4. Each of the four data inputs
I0 through I, is applied to one input of an AND gate. The two selection inputs
51 and 50 are decoded to select a particular AND gate. The outputs of the AND
gates are applied to a single OR gate to provide the single output. To demon­
strate the circuit operation, consider the case when 5150 = 10. The AND gate
associated with input I, has two of its inputs equal to 1. The third input of the
gate is connected to I2• The other three AND gates have at least one input equal
to 0, which makes their outputs equal to 0. The OR gate output is now equal
to the value of I,, thus providing a path from the selected input to the output.

The 4-to-1 line multiplexer of Fig. 2-4 has six inputs and one output. A
truth table describing the circuit needs 64 rows since six input variables can
have 26 binary combinations. This is an excessively long table and will not be
shown here. A more convenient way to describe the operation of multiplexers
is by means of a function table. The function table for the multiplexer is shown
in Table 2-3. The table demonstrates the relationship between the four data
inputs and the single output as a function of the selection inputs 51 and 50.

Figure 2,4 4�to- l -line multiplexer.

y

So ---<>--'
s, -------�

�ta selector

SECTION 2-3 Multiplexers 49

When the selection inputs are equal to 00, output Y is equal to input /0• When
the selection inputs are equal to 01, input 11 has a path to output Y, and similarly
for the other two combinations. The multiplexer is also called a data selector,
since it selects one of many data inputs and steers the binary information to
the output.

TABLE 2.-3 Function Table for 4;to; l ;Line Multiplexer

Select Output

5, s, y

0 0 I,
0 1 I,

0 I,
I,

The AND gates and inverters in the multiplexer resemble a decoder
circuit, and indeed they decode the input selection lines. In general, a 2"-to-1-
line multiplexer is constructed from an n-to-2" decoder by adding to it 2" input
lines, one from each data input. The size of the multiplexer is specified by the
number 2" of its data inputs and the single output. It is then implied that it also
contains n input selection lines. The multiplexer is often abbreviated as MUX.

As in decoders, multiplexers may have an enable input to control the
operation of the unit. When the enable input is in the inactive state, the outputs
are disabled, and when it is in the active state, the circuit functions as a normal
multiplexer. The enable input is useful for expanding two or more multiplexers
to a multiplexer with a larger number of inputs.

In some cases two or more multiplexers are enclosed within a single
integrated circuit package. The selection and the enable inputs in multiple-unit
construction are usually common to all multiplexers. As an illustration, the
block diagram of a quadruple 2-to-1-line multiplexer is shown in Fig. 2-5. The
circuit has four multiplexers, each capable of selecting one of two input lines.
Output Y0 can be selected to come from either input Ao or Bo. Similarly, output
Y; may have the value of A1 or B1, and so on. One input selection line S selects
one of the lines in each of the four multiplexers. The enable input E must be
active for normal operation. Although the circuit contains four multiplexers,
we can also think of it as a circuit that selects one of two 4-bit data lines. As
shown in the function table, the unit is enabled when E = 1. Then, if S = 0,
the four A inputs have a path to the four outputs. On the other hand, if S = 1,
the four B inputs are applied to the outputs. The outputs have all O's when
E = 0, regardless of the values of S .

50 CHAPTER lWO Digital Components

register load

Enable

Select

E

s

Quadruple
2 x l

multiplexers

(a) Block diagram

Yo E

r,
Y,

r,

Figure 2 .. 5 Quadruple 2-to- 1 line multiplexers.

2-4 Registers

y

X All O's

0 A

8

(b) Function lable

A register is a group of flip-flops with each flip-flop capable of storing one bit
of information. An n-bit register has a group of n flip-flops and is capable of
storing any binary information of n bits. In addition to the flip-flops, a register
may have combinational gates that perform certain data-processing tasks. In
its broadest definition, a register consists of a group of flip-flops and gates that
effect their transition. The flip-flops hold the binary information and the gates
control when and how new information is transferred into the register.

Various types of registers are available commercially. The simplest regis­
ter is one that consists only of flip-flops, with no external gates. Figure 2-6
shows such a register constructed with four D flip-flops. The common clock
input triggers all flip-flops on the rising edge of each pulse, and the binary data
available at the four inputs are transferred into the 4-bit register. The four
outputs can be sampled at any time to obtain the binary information stored in
the register. The clear input goes to a special terminal in each flip-flop. When
this input goes to 0, all flip-flops are reset asynchronously. The clear input is
useful for clearing the register to all O's prior to its clocked operation. The clear
input must be maintained at logic 1 during normal clocked operation. Note that
the clock signal enables the D input but that the clear. input is independent of
the clock.

The transfer of new information into a register is referred to as loading the
register. If all the bits of the register are loaded simultaneously with a common

SECTION 2·"1 Registers 5 1

lo D Q - Ao
Clock c

y

/I D Q -

c

y

12 D Q r---

c

y

h D Q r---

c

Clear y
Figure 2-6 4-bit register.

clock pulse transition, we say that the loading is done in parallel . A clock
transition applied to the C inputs of the register of Fig . 2-6 will load all four
inputs 10 through 13 in parallel. In this configuration, the clock must be inhibited
from the circuit if the content of the register must be left unchanged.

Register with Parallel Load
Most digital systems have a master clock generator that supplies a continuous
train of clock pulses. The clock pulses are applied to all flip-flops and registers
in the system. The master clock acts like a pump that supplies a constant beat
to all parts of the system . A separate control signal must be used to decide
which specific clock pulse will have an effect on a particular register.

A 4-bit register with a load control input that is directed through gates
and into the D inputs is shown in Fig. 2-7. The C inputs receive clock pulses
at all times. The buffer gate in the dock input reduces the power requirement

serial input

SECTION 2-5 Shift Registers 53

With each clock pulse, the D input determines the next state of the output. To
leave the output unchanged, it is necessary to make the D input equal to the
present value of the output.

Note that the clock pulses are applied to the C inputs at all times. The load
input determines whether the next pulse will accept new information or leave
the information in the register intact. The transfer of information from the
inputs into the register is done simultaneously with all four bits during a single
pulse transition.

2-5 Shift Registers

A register capable of shifting its binary information in one or both directions
is called a shift register. The logical configuration of a shift register consists of
a chain of flip-flops in cascade, with the output of one flip-flop connected to
the input of the next flip-flop. All flip-flops receive common clock pulses that
initiate the shift from one stage to the next.

The simplest possible shift register is one that uses only flip-flops, as
shown in Fig. 2-8. The output of a given flip-flop is connected to the D input
of the flip-flop at its right. The clock is common to all flip-flops. The serial input
determines what goes into the leftmost position during the shift. The serial
output is taken from the output of the rightmost flip-flop.

Sometimes it is necessary to control the shift so that it occurs with certain
clock pulses but not with others. This can be done by inhibiting the clock from
the input of the register if we do not want it to shift. When the shift register
of Fig 2-8 is used, the shift can be controlled by connecting the clock to the input
of an AND gate, and a second input of the AND gate can then control the shift
by inhibiting the clock. However, it is also possible to provide extra circuits to
control the shift operation through the D inputs of the flip-flops rather than
the clock input.

Bidirectional Shift Register with Parallel Load
A register capable of shifting in one direction only is called a unldirectional shift
register. A register that can shift in both directions is called a bidirectional shift
register. Some shift registers provide the necessary input and output terminals

Figure 2-8 4�bit shift register.

Serial
output

54 CHAPTER TWO Digital Components

for parallel transfer. The most general shift register has all the capabilities listed
below. Others may have some of these capabilities, with at least one shift
operation.

1. An input for clock pulses to synchronize all operations.

2. A shift-right operation and a serial input line associated with the shift­
right.

3. A shift-left operation and a serial input line associated with the shift-left.

4. A parallel load operation and n input lines associated with the parallel
transfer.

5. n parallel output lines.

6. A control state that leaves the information in the register unchanged
even though clock pulses are applied continuously.

A 4-bit bidirectional shift register with parallel load is shown in Fig. 2-9.
Each stage consists of a D flip-flop and a 4 x 1 multiplexer. The two selection
inputs 51 and 50 select one of the multiplexer data inputs for the D flip-flop.
The selection lines control the mode of operation of the register according to
the function table shown in Table 2-4. When the mode control 5150 = 00, data
input 0 of each multiplexer is selected. This condition forms a path from the
output of each flip-flop into the input of the same flip-flop. The next clock
transition transfers into each flip-flop the binary value it held previously, and
no change of state occurs. When 5150 = 01, the terminal marked 1 in each
multiplexer has a path to the D input of the corresponding flip-flop. This causes
a shift-right operation, with the serial input data transferred into flip-flop A0
and the content of each flip-flop A, _ 1 transferred into flip-flop A; for i = 1, 2,
3. When 5150 = 10 a shift-left operation results, with the other serial input data
going into flip-flop A, and the content of flip-flop A, + 1 transferred into flip-flop
A; for i = 0, I, 2. When 5150 = 11 , the binary information from each input
10 through I, is transferred into the corresponding flip-flop, resulting in a
parallel load operation. Note that the way the diagram is drawn, the shift-right
operation shifts the contents of the register in the down direction while the
shift left operation causes the contents of the register to shift in the upward
direction.

TABLE 2·4 Function Table for Register of Fig. 2-9

Mode control

s, s, Register operation

0 0 No change
0 I Shift right (down)
I 0 Shift left (up)
I Parallel load

So
So

'•

lo

Serial
'•

input

i-

So
So

0 4>< 1
MUX I

2
3

So
s,

0 4xl
MlJl(

I
l
l

�.
s,

0 4xl
MUX I

2
J

s
So

0 4><1
M\..'X I

2
l

� 2-S Shift R<pras 55

1-- D a Ao
r- c

f-I- D Q Ao

I- c

1--r-- D Q

I- c

f-1-- D Q

I->c

Shift registers are often used to interlace digital systems situaled remotely
from each other. For example, suppose that it is nece5Sal)' to transmit an n-bit
quantity between two points. U the distance between the source and the
destination is too far, it will be expensive to use " Jines to transmit the " bits
In parallel. It may be more economical to use a single line and transmit the
information serially one bit at a time. The transmitter loads the n-bit data in

56 CHAPTIR TWO Digital Components

parallel into a shift register and then transmits the data from the serial output
line. The receiver accepts the data serially into a shift register through its serial
input line. When the entire n bits are accumulated they can be taken from the
outputs of the register in parallel. Thus the transmitter performs a parallel-to­
serial conversion of data and the receiver converts the incoming serial data back
to parallel data transfer.

2-6 Binary Counters

A register that goes through a predetermined sequence of states upon the
application of input pulses is called a counter. The input pulses may be clock
pulses or may originate from an external source. They may occur at uniform
intervals of time or at random. Counters are found in almost all equipment
containing digital logic. They are used for counting the number of occurrences
of an event and are useful for generating timing signals to control the sequence
of operations in digital computers.

Of the various sequences a counter may follow, the straight binary se­
quence is the simplest and most straightforward. A counter that follows the
binary number sequence is called a binary counter. An n-bit binary counter is
a register of n flip-flops and associated gates that follows a sequence of states
according to the binary count of n bits, from 0 to 2" - 1. The design of binary
counters can be carried out by the procedure outlined in Sec. 1-7 for sequential
circuits. A simpler alternative design procedure may be carried out from a
direct inspection of the sequence of states that the register must undergo to
achieve a straight binary count.

Going through a sequence of binary numbers such as 0000, 0001, 0010,
0011, and so on, we note that the lower-order bit is complemented after every
count and every other bit is complemented from one count to the next if and
only if all its lower-order bits are equal to 1 . For example, the binary count from
0111 (7) to 1000 (8) is obtained by (a) complementing the low-order bit, (b)
complementing the second-order bit because the first bit of 0111 is 1, (c)
complementing the third-order bit because the first two bits of 0111 are 1' s, and
(d) complementing the fourth-order bit because the first three bits of 0111 are
ali i's.

A counter circuit will usually employ flip-flops with complementing
capabilities. Both T and IK flip-flops have this property. Remember that a IK
flip-flop is complemented if both its I and K inputs are 1 and the clock goes
through a positive transition. The output of the flip-flop does not change if
I = K = 0. In addition, the counter may be controlled with an enable input that
turns the counter on or off without removing the clock signal from the flip­
flops.

Synchronous binary counters have a regular pattern, as can be seen from
the 4-bit binary counter shown in Fig. 2-10. The C inputs of all flip-flops receive
the common clock. If the count enable is 0, all I and K inputs are maintained

SECTION 2-6 Binary Counters 57

Figure 2· 10 4-bit synchronous binary counter.

at 0 and the output of the counter does not change. The first stage A0 is
complemented when the counter is enabled and the clock goes through a
positive transition. Each of the other three flip-flops are complemented when
all previous least significant flip-flops are equal to 1 and the count is enabled.
The chain of AND gates generate the required logic for the J and K inputs. The

58 CHAPTIR TWO Digital Components

increment

word

output carry can be used to extend the counter to more stages, with each stage
having an additional flip-flop and an AND gate.

Binary Counter with Parallel Load
Counters employed in digital systems quite often require a parallel load capa­
bility for transferring an initial binary number prior to the count operation.
Figure 2-II shows the logic diagram of a binary counter that has a parallel load
capability and can also be cleared to 0 synchronous with the clock. When equal
to I, the clear input sets all the K inputs to I, thus clearing all flip-flops with
the next clock transition. The input load control when equal to I, disables the
count operation and causes a transfer of data from the four parallel inputs into
the four flip-flops (provided that the clear input is 0). If the clear and load inputs
are both 0 and the increment input is I, the circuit operates as a binary counter.

The operation of the circuit is summarized in Table 2-5. With the clear,
load, and increment inputs all at 0, the outputs do not change even when
pulses are applied to the C terminals. If the clear and load inputs are main­
tained at logic 0, the increment input controls the operation of the counter and
the outputs change to the next binary count for each positive transition of the
clock. The input data are loaded into the flip-flops when the load control input
is equal to I provided that the clear is disabled, but the increment input can
be 0 or I. The register is cleared to 0 with the clear control regardless of the
values in the load and increment inputs.

TABLE 2-5 Function Table for the Register of Fig. 2- l l

Clock Clear Load Increment Operation

0 0 0 No change
0 0 Increment count by 1
0 X Load inputs !0 through I,
I X X Clear outputs to 0

Counters with parallel load are very useful in the design of digital com­
puters. In subsequent chapters we refer to them as registers with load and
increment operations. The increment operation adds one to the content of a
register. By enabling the count input during one clock period, the content of
the register can be incremented by one .

2-7 Memory Unit

A memory unit is a collection of storage cells together with associated circuits
needed to transfer information in and out of storage. The memory stores binary
information in groups of bits called words . A word in memory is an entity of

SI3Cl1Cti 2-7 Mm>ory Unit 59

60 CHAPTER 1WO Digital Components

bits that move in and out of storage as a unit. A memory word is a group of
l's and O's and may represent a number, an instruction code, one or more
alphanumeric characters, or any other binary-coded information. A group of

byte eight bits is called a byte. Most computer memories use words whose number
of bits is a multiple of 8. Thus a 16-bit word contains two bytes, and a 32-bit
word is made up of four bytes. The capacity of memories in commercial
computers is usually stated as the total number of bytes that can be stored.

RAM

write and
read operations

The internal structure of a memory unit is specified by the number of
words it contains and the number of bits in each word. Special input lines call�d
address lines select one particular word. Each word in memory is assigned an
identification number, called an address, starting from 0 and continuing with
1, 2, 3, up to 2' - 1 where k is the number of address lines. The selection of
a specific word inside the memory is done by applying the k-bit binary address
to the address lines. A decoder inside the memory accepts this address and
opens the paths needed to select the bits of the specified word. Computer
memories may range from 1024 words, requiring an address of 10 bits, to 232
words, requiring 32 address bits. It is customary to refer to the number of words
(or bytes) in a memory with one of the letters K (kilo), M (mega), or G (giga).
K is equal to 210, M is equal to 220, and G is equal to 230• Thus 64K = 216, 2M = 221,
and 4G = 232 .

Two major types of memories are used in computer systems: random­
access memory (RAM) and read-only memory (ROM).

Random-Access Memory
In random-access memory (RAM) the memory cells can be accessed for infor­
mation transfer from any desired random location. That is, the process of
locating a word in memory is the same and requires an equal amount of time
no matter where the cells are located physically in memory: thus the name
"random access ."

Communication between a memory and its environment is achieved
through data input and output lines, address selection lines, and control lines
that specify the direction of transfer. A block diagram of a RAM unit is shown
in Fig. 2-12. The n data input lines provide the information to be stored in
memory, and the n data output lines supply the information coming out of
memory. The k address lines provide a binary number of k bits that specify a
particular word chosen among the 2' available inside the memory. The two
control inputs specify the direction of transfer desired.

The two operations that a random-access memory can perform are the
write and read operations. The write signal specifies a transfer-in operation
and the read signal specifies a transfer-out operation. On accepting one of
these control signals, the internal circuits inside the memory provide the
desired function. The steps that must be taken for the purpose of transferring
a new word to be stored into memory are as follows:

1. Apply the binary address of the desired word into the address lines.

ROM

k address lines

Read

Write

SECTION 2-7 Memory Unit 61

n data input lines

n data output lines

Figure 2 .. 12 Block diagram of random access memory (RAM).

2. Apply the data bits that must be stored in memory into the data input
lines.

3. Activate the write input.

The memory unit will then take the bits presently available in the input data
lines and store them in the word specified by the address lines.

The steps that must be taken for the purpose of transferring a stored word
out of memory are as follows:

1. Apply the binary address of the desired word into the address lines.

2. Activate the read input.

The memory unit will then take the bits from the word that has been selected
by the address and apply them into the output data lines. The content of the
selected word does not change after reading.

Read-Only Memory
As the name implies, a read-only memory (ROM) is a memory unit that
performs the read operation only; it does not have a write capability. This
implies that the binary information stored in a ROM is made permanent during
the hardware production of the unit and cannot be altered by writing different
words into it. Whereas a RAM is a general-purpose device whose contents can
be altered during the computational process, a ROM is restricted to reading
words that are permanently stored within the unit. The binary information to
be stored, specified by the designer, is then embedded in the unit to form the
reqttired interconnection pattern. ROMs come with special internal electronic
fuses that can be "programmed" for a specific configuration. Once the pattern
is established, it stays within the unit even when power is turned off and on
again.

62 CHAPTER TWO Digital Components

k address input lines

m x n ROM
(m = 2'J

t
n data output lines

Figure Z-13 Block diagram of read only memory (ROM).

An m x n ROM is an array of binary cells organized into m words of n
bits each. As shown in the block diagram of Fig. 2-13, a ROM has k address
input llnes to select one of 2' = m words of memory, and n output llnes, one
for each bit of the word. An integrated circuit ROM may also have one or more
enable inputs for expanding a number of packages into a ROM with larger
capacity.

The ROM does not need a read-control llne since at any given time, the
output llnes automatically provide the n bits of the word selected by the
address value. Because the outputs are a function of only the present inputs
(the address lines), a ROM is classified as a combinational circuit. In fact, a ROM
is constructed internally with decoders and a set of OR gates. There is no need
for providing storage capabilities as in a RAM, since the values of the bits in
the ROM are permanently fixed.

ROMs find a wide range of applications in the design of digital systems.
Basically, a ROM generates an input--<>utput relation specified by a truth table.
As such, it can implement any combinational circuit with k inputs and n outputs.
When employed in a computer system as a memory unit, the ROM is used for
storing fixed programs that are not to be altered and for tables of constants that
are not subject to change. ROM is also employed in the design of control units
for digital computers. As such, they are used to store coded information that
represents the sequence of internal control variables needed for enabling the
various operations in the computer. A control unit that utilizes a ROM to store
binary control information is called a microprogrammed control unit. This
subject is dicsussed in more detail in Chapter 7.

Types of ROMs
The required paths in a ROM may be programmed in three different ways. The
first, mask programming, is done by the semiconductor company during the last
fabrication process of the unit. The procedure for fabricating a ROM requires

PROM

EEPROM

5ECT10N 1--7 Mrmory Unir 63

that the customer fill out the truth table that he or she wishes the ROM to
satisfy. The truth table may be submitted in a special form provided by the
manufacturer or in a specified format on a computer output medium. The
manufacturer makes the corresponding mask for the paths to produce the l's
and O's according to the customer's truth table. This procedure is costly because
the vendor charges the customer a specia I fee for custom masking the particular
ROM. For this reason, mask programming is economical only if a large quantity
of the same ROM configuration is to be ordered.

For small quantities it is more economical to use a second type of ROM
called a programmable read-only mmrory or PROM. When ordered. PROM units
contain aU the fuses intact, giving aU 1' s in the bits of the stored words. The
fuses in the PROM are blown by application of current pulses through the
output terminals for each address. A blown fuse defines a binary 0 state, and
an intact fuse gives a binary 1 state. This allows users to program PROMs in
their own laboratories to achieve the desired relationship between input ad­
dresses and stored words. Special instruments c:alled PROM progrummers are
available commercially to facilitate this procedure. In any case, all procedures
for programming ROMs are hardware procedures even though the word
"programming" is used.

The hardware procedure for programming ROMs or PROMs is in'e­
versible, and once programmed, the fixed pattern is permanent and cannot be
altered. Once a bit pattern has been established, the unit must be discarded
if the bit pattern is to be changed. A third type of ROM available is c:alled CTQS�Jb/�
PROM or EPROM. The EPROM can be restructured to the initial value even
though its fuses have been blown previously. When the EPROM is placed
under a special ultraviolet light for a given period of time, the shortwave
radiation discharges the internal gates that serve as fuses. After erasure, the
EPROM returns to its in.itial state and can be reprogrammed to a new set of
words. Certain PROMs can be erased with electrical signals instead of ultra vi·
olet Ught. These PROMs are called tltdriallly tmsablt PROM or EEPROM.

PROBLEMS

2-1. lTLSSicomemostly in 14-plniCpackages. Two pins are reserved for power
supply and the other pins are used for input and output terminals. How
many circuiiS are included in one such package if it contains � following
type of circuits? (a) Inverters; (b) �input exdusive-OR gates; (c) lhreoHn­
put OR gates; (d) four•input AND ga�s; (e) 6vt-input NOR gates; (f) eight­
input NAND gates; (g) docked JK flip-Bops with asynchronous clear.

2·2. MS! chips perform elementary digital functions such as decoders, multiplex·
ers, registers, and counters. The following are T1l.·type integrated circuits
that provide such functions. Find their description in a dala book and
compare them with the <:OrTeSponding oomponent presented in !hi$ chapter.

64 CHAPTER lWO Digital Components

a. IC type 74155 dual 2-to-4-line decoders.
b. IC type 74157 quadruple 2-to-1-line multiplexers.
c. IC type 74194 4-bit bidirectional shift register with parallel load.
d. IC type 74163 4-bit binary counter with parallel load and synchronous

clear.

2-3. Construct a 5-to-32-line decoder with four 3-to-8-line decoders with enable
and one 2-to+line decoder. Use block diagrams similar to Fig. 2·3.

2-4. Draw the logic diagram of a 2-to-4-line decoder with only NOR gates.
Include an enable input.

2-5. Modify the decoder of Fig. 2-2 so that the circuit is enabled when E = 1 and
disabled when E = 0. List the modified truth table.

2-6. Draw the logic diagram of an eight-input, three-output encoder whose truth
table is given in Table 2·2. What is the output when all the inputs are equal
to 0? What is the output when only input Do is equal to 0? Establish a
procedure that will distinguish between these two cases.

2-7. Construct a 16-to+line multiplexer with two 8-to.J.line multiplexers and
one 2·to+line multiplexer. Use block diagrams for the three multiplexers.

2-8. Draw the block diagram of a dual 4-to·1·line multiplexers and explain its
operation by means of a function table.

2-9. Include a two-input AND gate with the register of Fig. 2·6 and connect the
gate output to the clock inputs of all the flip-flops. One input of the AND
gate receives the clock pulses from the clock pulse genera tor. The other input
of the AND gate provides a parallel load control. Explain the operation of
the modified register,

2-10. What is the purpose of the buffer gate in the dock input of the register of
Fig. 2-7?

2-11. Include a synchronous clear capability to the register with parallel load of
Fig. 2·7.

2-12. The content of a 4-bit register is initially 1101. The register is shifted six times
to the right with the serial input being 101101. What is the content of the
register after each shift?

2-13. What is the difference between serial and parallel transfer? Using a shift
register with parallel load, explain how to convert serial input data to parallel
output and parallel input data to serial output.

2-14. A ring counter is a shift register as in Fig. 2-S with the serial output connected
to the serial input. Starting from an initial state of 1000, list the sequence of
states of the four flip-flops after each shift.

2-15. The 4-bit bidirectional shift register with parallel load shown in Fig. 2-9 is
enclosed within one IC package.
a. Draw a block diagram of the IC showing all inputs and outputs. Include

two pins for power supply.
b. Draw a block diagram using two !Cs to produce an 8-bit bidirectional shift

register with parallel load.

2-16. How many flip-flops will be complemented in a 10-bit binary counter to
reach the next count after (a) 1001100111; (b) 0011111111?

SECTK)N 2·7 Memo.ry Unit 65

2-17. Show the connections between four 4-bit binary countCJS with parallel load
(Fig. 2-11) to produce a 16-bit binary counter with parallel load. Use a block
diagram for each 4-bit counter.

2-18. Show how the binary counter with parallel load of Fig. 2-11 can be made to
operate as a divide-by-N counter (i.e., a counter that counts from 0000 to
N-and back to 0000� Specifically show the circuit for a divide-by-10 counter
using the counter of Fig. 2-11 and an external AND gate.

2-19. The following memory units are specified by the number of words times the
number of bits per word. How many address lines and input-output data
lines are needed in each case? (a) 2K x 16; (b) 64K x 8; (c) 16M x 32;
(d) 4G X 64.

2-20. Specify the number of bytes that can be stored in the memories listed in
Prob. 2-19.

2-21. How many 128 x 8 memory chips are needed to provide a memory capacity
of 4096 x 16?

2-22. Given a 32 x 8 ROM chip with an enable input, show the external connec­
tions necessary to construct a 128 x 8 ROM with four chips and a decoder.

2-23. A ROM chip of 40% x 8 bits has two enable inputs and operates from a 5-volt
power supply. How many pins are needed for the integrated circuit pack­
age? Draw a block diagram and label all input and output terminals in th.e
ROM.

REFERENCES

1. Hill, F. J., and G. R. Peterson, Introduction to Switching Theory and Lt>giCJll Design, 3rd
ed. New York: John Wiley, 1981.

2. Mano, M. M., Digital Design, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991.

3. Roth, C. H., Fundamentals of Logic Design, 3rd ed. St. Paul, MN: West Publishing.
1985.

4. Sandige, R. 5., Modern Digital Design. New York: McGraw-Hill, 1990.

5. Shiva, S. G., Introduction to Logic Design. Glenview, ll: Scott, Foresman, 1988.
6. Wakerly, J. F., Digital Design Principles and Practices. Englewood Oiffs, NJ: Prentice

Hall, 1990.

7. Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.

C H A P T E R T H R E E

Data Representation

IN TIUS CHAPTER

3-1 Dalll Types
l·Z Complemenrs
3-3 Fixed-Point Represen!llrion
3-4 Floaring·Poim Represen!lltion
3-S Other Binary Codes
3-6 Enor �tection Codeo

3-1 Data Types
Binary information in digital computers is stored in memory or processor
registers. Registers contain either data or control information. Control informa­
tion Is a bit or a group of bits used to specify the sequence of command signals
needed for manipulation of the data iJ'I other registers. Data are numbers and
other binary-<:oded information that are operated on to achieve required com­
putational results. In this chapter we present the most common types of data
found in digital compute.rs and show how the various data types are repre­
sented in binary-<:oded form iJ'I computer registers.

The data types found iJ'I the registers of digital computers may be classi­
fied as beirlg one of the foUowing categories: {1) numbers used in arithmetic
computations, (2) letters of the alphabet used in data processing. and {3) other
discrete symbols used for specific purposes. All types of data, except binary
numbers, are represented in computer registers in binary<Oded form. This is
because registers are made up of flip-flops and flip-flops are two-state devires
that can store only l's and O's. The binary number system is the most natural
system to use in a digital computer. But sometimes it is convenient to employ
different number systems, espedally the decimal number system, since it is
used by people to perform arithmetic computations.

67

68 CHAPTER THREE Data Representation

radix

decimal

binary

octal
herademical

contJeTSion

Number Systems
A number system of base, or radix, r is a system that uses distinct symbols for
r digits. Numbers are represented by a string of digit symbols. To determine
the quantity that the number represents, it is necessary to multiply each digit
by an integer power of r and then form the sum of all weighted digits. For
example, the decimal number system in everyday use employs the radix 10
system. The 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The string of digits
724.5 is interpreted to represent the quantity

7 X 102 + 2 X 101 + 4 X 10° + 5 X 10-1

that is, 7 hundreds, plus 2 tens, plus 4 units, plus 5 tenths. Every decimal
number can be similarly interpreted to find the quantity it represents.

The binary number system uses the radix 2. The two digit symbols used
are 0 and 1. The string of digits 101101 is interpreted to represent the quantity

1 x � + O x � + 1 x � + 1 x � + O x � + 1 x � = e

To distinguish between different radix numbers, the digits will be enclosed in
parentheses and the radix of the number inserted as a subscript. For example,
to show the equality between decimal and binary forty-five we will write
(101101), = (45)w.

Besides the decimal and binary number systems, the octal (radix 8) and
hexadecimal (radix 16) are important in digital computer work. The eight sym­
bols of the octal system are 0, 1, 2, 3, 4, 5, 6, and 7. The 16 symbols of the
hexadecimal system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, 0, E, and F. The last
six symbols are, unfortunately, identical to the letters of the alphabet and can
cause confusion at times. However, this is the convention that has been
adopted. When used to represent hexadecimal digits, the symbols A, B, C, D,
E, F correspond to the decimal numbers 10, 11, 12, 13, 14, 15, respectively.

A number in radix r can be converted to the familiar decimal system by
forming the sum of the weighted digits. For example, octal 736.4 is converted
to decimal as follows:

(736.4), = 7 X 82 + 3 X 81 + 6 X 8° + 4 X 8-I

= 7 X 64 + 3 X 8 + 6 X 1 + 4/8 = (478.5)10

The equivalent decimal number of hexadecimal F3 is obtained from the follow­
ing calculation:

(F3)J6 = F X 16 + 3 = 15 X 16 + 3 = (243)10

Conversion from decimal to its equivalent representation in the radix r system
is carried out by separating the number into its integer and fraction parts and

SECTION 3- 1 Data Types 69

converting each part separately. The conversion of a decimal integer into a base
r representation is done by successive divisions by r and accumulation of the
remainders. The conversion of a decimal fraction to radix r representation is
accomplished by successive multiplications by r and accumulation of the in­
teger digits so obtained. Figure 3-1 demonstrates these procedures.

The conversion of decimal 4L 6875 into binary is done by first separating
the number into its integer part 41 and fraction part .6875. The integer part is
converted by dividing 41 by r = 2 to give an integer quotient of 20 and a
remainder of L The quotient is again divided by 2 to give a new quotient and
remainder. This process is repeated until the integer quotient becomes 0. The
coefficients of the binary number are obtained from the remainders with the
first remainder giving the low-order bit of the converted binary number.

The fraction part is converted by multiplying it by r = 2 to give an integer
and a fraction. The new fraction (without the integer) is multiplied again by 2
to give a new integer and a new fraction. This process is repeated until the
fraction part becomes zero or until the number of digits obtained gives the
required accuracy. The coefficients of the binary fraction are obtained from
the integer digits with the first integer computed being the digit to be placed
next to the binary point. Finally, the two parts are combined to give the total
required conversion.

Octal and Hexadecimal Numbers
The conversion from and to binary, octal, and hexadecimal representation
plays an important part in digital computers. Since 23 = 8 and 24 = 16, each
octal digit corresponds to three binary digits and each hexadecimal digit cor­
responds to four binary digits. The conversion from binary to octal is easily
accomplished by partitioning the binary number into groups of three bits each.
The corresponding octal digit is then assigned to each group of bits and the
string of digits so obtained gives the octal equivalent of the binary number.
Consider, for example, a 16-bit register. Physically, one may think of the

Figure J .. l Conversion of decimal 4 1 . 6875 into binary.

Integer = 4 1

4 1
2 0
1 0

5
2 I
I 0
0 I

(4 1) 10 = (1 0 1 00 1),

Fraction = 0.6875

0.6875
2

1 .3750
X 2

0.7500
X 2

1 .5000
X 2

1 .0000
(0.6875),. = (0. 1 0 1 1),

14 1 . 6875)10 = (1 0 1 00 1 . 1 0 1 1),

70 CHArnR THREE Data Representation

2 7 S 4 3 Octal
� - � - --- --

1 0 1 0 I I I l O l l 0 0 0 1 I IDM�
- ---- ---- -

A F 6 3 Hexadecimal

Figure 3-l Binary, octal, and hexadecimal conversion.

register as composed of 16 binary storage cells, with each cell capable of
holding either a 1 or a 0. Suppose that the bit configuration stored in the register
is as shown in Fig. 3-2. Since a binary number consists of a string of l's and
D's, the 16-bit register can be used to store any binary number from 0 to 216 - 1 .
Fo r the particular example shown, the binary number stored in the register is
the equivalent of decimal 44899. Starting from the low-order bit, we partition
the register into groups of three bits each (the sixteenth bit remains in a group
by itself). Each group of three bits is assigned its octal equivalent and placed
on top of the register. The string of octal digits so obtained represents the octal
equivalent of the binary number .

Conversion from binary to hexadecimal is similar except that the bits are
divided into groups of four . The corresponding hexadecimal digit for each
group of four bits is written as shown below the register of Fig . 3-2. The string
of hexadecimal digits so obtained represents the hexadecimal equivalent of the
binary number. The corresponding octal digit for each group of three bits is
easily remembered after studying the first eight entries listed in Table 3-1 . The
correspondence between a hexadecimal digit and its equivalent 4-bit code can
be found in the first 16 entries of Table 3-2.

TABLE 3·1 Binary-Coded Octal Numbers

Octal Binary-coded Decimal
number octal equivalent

0 000 0
l 1 001 1

2 010 2 Code
3 011 3 for one
4 100 4 octal
5 101 5 digit
6 110 6

1 7 1 1 1 7

10 001 000 8
1 1 001 001 9
12 001 010 10
24 010 100 20
62 110 010 50

143 001 100 011 99
370 011 111 000 248

SECTION 3- 1 Data Types 7 1

Table 3-1 lists a few octal numbers and their representation in registers
in binary-coded form. The binary code is obtained by the procedure explained
above. Each octal digit is assigned a 3-bit code as specified by the entries of the
first eight digits in the table. Similarly, Table 3-2 lists a few hexadecimal
numbers and their representation in registers in binary-coded form. Here the
binary code is obtained by assigning to each hexadecimal digit the 4-bit code
listed in the first 16 entries of the table.

Comparing the binary-coded octal and hexadecimal numbers with their
binary number equivalent we find that the bit combination in all three repre­
sentations is exactly the same. For example, decimal 99, when converted to
binary, becomes llOOOII . The binary-coded octal equivalent of decimal 99 is
001 100 Oll and the binary-coded hexadecimal of decimal 99 is 0110 OOll . If
we neglect the leading zeros in these three binary representations, we find that
their bit combination is identicaL This should be so because of the straightfor­
ward conversion that exists between binary numbers and octal or hexadecimaL
The point of all this is that a string of 1's and O's stored in a register could
represent a binary number, but this same string of bits may be interpreted as
holding an octal number in binary-coded form (if we divide the bits in groups
of three) or as holding a hexadecimal number in binary-coded form (if we
divide the bits in groups of four).

TABLE 3·2 Binary-Coded Hexadecimal Numbers

Hexadecimal Binary-coded Decimal
number hexadecimal equivalent

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6 Code
7 0111 7 for one
8 1000 8 hexadecimal
9 1001 9 digit

A 1010 10
B lOll 11
c 1100 12
D 1101 13
E 1110 14
F 1111 15

14 0001 0100 20
32 0011 0010 50
63 0110 0011 99
F8 1111 1000 248

72 CHAPTER THREE Data Representation

binary code

BCD

The registers in a digital computer contain many bits. Specifying the
content of registers by their binary values will require a long string of binary
digits. It is more convenient to specify content of registers by their octal or
hexadecimal equivalent. The number of digits is reduced by one-third in the
octal designation and by one-fourth in the hexadecimal designation. For exam­
ple, the binary number 1111 1111 1111 has 12 digits. It can be expressed in
octals as 7777 (four digits) or in hexadecimal as FFF (three digits). Computer
manuals invariably choose either the octal or the hexadecimal designation for
specifying contents of registers.

Decimal Representation
The binary number system is the most natural system for a computer, but
people are accustomed to the decimal system. One way to solve this conflict
is to convert all input decimal numbers into binary numbers, let the computer
perform all arithmetic operations in binary and then convert the binary results
back to decimal for the human user to understand. However, it is also possible
for the computer to perform arithmetic operations directly with decimal num­
bers provided they are placed in registers in a coded form. Decimal numbers
enter the computer usually as binary-coded alphanumeric characters. These
codes, introduced later, may contain from six to eight bits for each decimal
digit. When decimal numbers are used for internal arithmetic computations,
they are converted to a binary code with four bits per digit.

A binary code is a group of n bits that assume up to 2" distinct combina­
tions of 1's and D's with each combination representing one element of the set
that is being coded. For example, a set of four elements can be coded by a 2-bit
code with each element assigned one of the following bit combinations; 00, 01,
10, or 11. A set of eight elements requires a 3-bit code, a set of 16 elements
requires a 4-bit code, and so on. A binary code will have some unassigned bit
combinations if the number of elements in the set is not a multiple power of
2. The 10 decimal digits form such a set. A binary code that distinguishes
among 10 elements must contain at least four bits, but six combinations will
remain unassigned. Numerous different codes can be obtained by arranging
four bits in 10 distinct combinations. The bit assignment most commonly used
for the decimal digits is the straight binary assigrunent listed in the first 10
entries of Table 3-3. This particular code is called binary-coded decimal and is
commonly referred to by its abbreviation BCD. Other decimal codes are some­
times used and a few of them are given in Sec. 3-5 .

It is very important to understand the difference between the conversion
of decimal numbers into binary and the binary coding of decimal numbers. For
example, when converted to a binary number, the decimal number 99 is repre­
sented by the string of bits 1100011, but when represented in BCD, it becomes
1001 1001 . The only difference between a decimal number represented by the
familiar digit symbols 0, 1, 2, . . . , 9 and the BCD symbols 0001, 0010, . . . , 1001
is in the symbols used to represent the digits-the number itself is exactly the

character

.HCII

SECTION 3· 1 Data Types 73

TABLE 3-3 Binary-Coded Decimal (BCD) Numbers

Decimal Binary-coded decimal
number (BCD) number

0 0000
1 0001
2 0010
3 0011 Code
4 0100 for one
5 0101 decimal
6 0110 digit
7 0111 1 8 1000
9 1001

10 0001 0000
20 0010 0000
50 0101 0000
99 1001 1001

248 0010 0100 1000

same. A few decimal numbers and their representation in BCD are listed in
Table 3-3.

Alphanumeric Representation
Many applications of digital computers require the handling of data that
consist not only of numbers, but also of the letters of the alphabet and certain
special characters. An alphanumeric character set is a set of elements that includes
the 10 decimal digits, the 26 letters of the alphabet and a number of special
characters, such as $, + , and = . Such a set contains between 32 and 64 elements
(if only uppercase letters are included) or between 64 and 128 (if both uppercase
and lowercase letters are included). In the first case, the binary code will require
six bits and in the second case, seven bits. The standard alphanumeric binary
code is the ASCII (American Standard Code for Information Interchange),
which uses seven bits to code 128 characters. The binary code for the uppercase
letters, the decimal digits, and a few special characters is listed in Table 3-4.
Note that the decimal digits in ASCII can be converted to BCD by removing
the three high-order bits, 011 . A complete list of ASCII characters is provided
in Table 11-L

Binary codes play an important part in digital computer operations. The
codes must be in binary because registers can only hold binary information.
One must realize that binary codes merely change the symbols, not the mean­
ing of the discrete elements they represent. The operations specified for digital

74 CHAPTER THREE Data Representation

TABLE 3-4 American Standard Code for Information Interchange (ASCII)

Binary Binary
Character code Character code

A 100 0001 0 011 0000
B 100 0010 1 011 0001
c 100 0011 2 011 0010
D 100 0100 3 011 0011
E 100 0101 4 011 0100
F 100 0110 5 011 0101
G 100 0111 0 011 0110
H 100 1000 7 011 0111
I 100 1001 8 011 1000
J 100 1010 9 011 1001
K 100 lOll
L 100 1100
M 100 1101 space 010 0000
N 100 1110 010 1110
0 100 1111 010 1000
p 101 0000 + 010 lOll
Q 101 0001 $ 010 0100
R 101 0010 010 1010
s 101 0011 010 1001
T 101 0100 010 1101
u 101 0101 010 1111
v 101 0110 010 1100
w 101 0111 011 1101
X 101 1000
y 101 1001
z 101 1010

computers must take into consideration the meaning of the bits stored in
registers so that operations are performed on operands of the same type. In
inspecting the bits of a computer register at random, one is likely to find that
it represents some type of coded information rather than a binary number.

Binary codes can be formulated for any set of discrete elements such as
the musical notes and chess pieces and their positions on the chessboard.
Binary codes are also used to formulate instructions that specify control infor·
mation for the computer. This chapter is concerned with data representation.
Instruction codes are discussed in Chap. 5.

3-2 Complements

Complements are used in digital computers for simplifying the subtraction
operation and for logical manipulation. There are two types of complements
for each base r system: the r's complement and the (r - l)'s complement.

9' s complement

l 's complement

10's complement

2's complement

SECTION 3-2 Complements 7 5

When the value of the base r is substituted in the name, the two types are
referred to as the 2's and I's complement for binary numbers and the ID's and
9's complement for decimal numbers.

(r - l)'s Complement
Given a number N in base r having n digits, the (r - I)'s complement of N is
defined as (r' - I) - N. For decimal numbers r = ID and r - I = 9, so the 9's
complement of N is (ID' - I) - N. Now, ID' represents a number that consists
of a single I followed by n D's. 10' - I is a number represented by n 9's. For
example, with n = 4 we have ID4 = 10DDD and ID4 - I = 9999. It follows that
the 9' s complement of a decimal r:tumber is obtained by subtracting each digit
from 9. For example, the 9's complement of 5467DD is 999999 - 5467DD =
453299 and the 9's complement of I2389 is 99999 - 12389 = 876ID.

For binary numbers, r = 2 and r - I = I, so the I's complement of N is
(2' - I) - N. Again, 2' is represented by a binary number that consists of a I
followed by n D's. 2' - I is a binary number represented by n I's. For example,
with n = 4, we have 24 = (10DDD), and 24 - I = (1111),. Thus the I's comple­
ment of a binary number is obtained by subtracting each digit from I . However,
the subtraction of a binary digit from I causes the bit to change from D to I or
from I to D. Therefore, the I's complement of a binary number is formed by
changing I's into D's and D's into I's. For example, the I's complement of
ID11D01 is 010011D and the I' s complement of DDD1 111 is 1 1 IDDDD.

The (r - I)'s complement of octal or hexadecimal numbers are obtained
by subtracting each digit from 7 or F (decimal i5) respectively.

(r's) Complement
The r's complement of an n-digit number N in base r is defined as r' - N for
N * D and D for N = D. Comparing with the (r - I)'s complement, we note
that the r's complement is obtained by adding I to the (r - I)'s complement
since r' - N = [(r' - I) - N] + I. Thus the ID's complement of the decimal
2389 is 76ID + I = 761 1 and is obtained by adding I to the 9' s complement
value. The 2's complement of binary I01 IDD is 01DD11 + I = DIDIDD and is
obtained by adding I to the I's complement value.

Since ID' is a number represented by a I followed by n D's, then ID' - N,
which is the ID's complement of N, can be formed also be leaving all least
significant D's unchanged, subtracting the first nonzero least significant digit
from ID, and then subtracting all higher significant digits from 9. The ID's
complement of 2467DD is 7533DD and is obtained by leaving the two zeros
unchanged, subtracting 7 from ID, and subtracting the other three digits from
9. Similarly, the 2's complement can be formed by leaving all least significant
D's and the first I unchanged, and then replacing I's by D's and D's by I's in
all other higher significant bits. The 2's complement of 11D1 1DD is DDIDIDD and
is obtained by leaving the two low-order D's and the first I unchanged, and then
replacing I's by D's and D's by I's in the other four most significant bits.

76 CHAPTER TIIREE Data Representation

subtraction

end carry

In the definitions above it was assumed that the numbers do not have a
radix point. If the original number N contains a radix point, it should be
removed temporarily to form the r's or (r - I)'s complement. The radix point
is then restored to the complemented number in the same relative position. It
is also worth mentioning that the complement of the complement restores the
number to its original value. The r's complement of N is r' - N. The comple­
ment of the complement is r' - (r' - N) = N giving back the original number.

Subtraction of Unsigned Numbers
The direct method of subtraction taught in elementary schools uses the borrow
concept. In this method we borrow a 1 from a higher significant position when
the minuend digit is smaller than the corresponding subtrahend digit. This
seems to be easiest when people perform subtraction with paper and pencil.
When subtraction is implemented with digital hardware, this method is found
to be less efficient than the method that uses complements.

The subtraction of two n-digit unsigned numbers M - N (N * 0) in base
r can be done as follows:

1. Add the minuend M to the r's complement of the subtrahend N. This
performs M + (r' - N) = M - N + r'.

2. If M "" N, the sum will produce an end carry r' which is discarded, and
what is left is the result M - N.

3. I f M < N, the sum does not produce a n end carry and i s equal to
r' - (N - M), which is the r's complement of (N - M). To obtain the
answer in a familiar form, take the r' s complement of the sum and place
a negative sign in front.

Consider, for example, the subtraction 72532 - 13250 = 59282. The lO's com­
plement of 13250 is 86750. Therefore:

M = 72532
lO's complement of N = +86750

Sum = 159282
Discard end carry 10' = -100000

Answer = 59282

Now consider an example with M < N. The subtraction 13250 - 72532
produces negative 59282. Using the procedure with complements, we have

M = 13250
lO's complement of N = +27468

Sum = 40718

binary point

There is no end carry

SEcriON 3-3 Fixed-Point Representation 7 7

Answer is negative 59282 = 10's complement of 40718

Since we are dealing with unsigned numbers, there is really no way to
get an unsigned result for the second example. When working with paper and
pencil, we recognize that the answer must be changed to a signed negative
number. When subtracting with complements, the negative answer is recog­
nized by the absence of the end carry and the complemented result.

Subtraction with complements is done with binary numbers in a similar
manner using the same procedure outlined above. Using the two binary
numbers X = 1010100 and Y = 1000011, we perform the subtraction X - Y
and Y - X using 2's complemenfs:

X = 1010100
2' s complement of Y = +0111101

Sum = 10010001
Discard end carry 27 = - 10000000

Answer: X - Y = 0010001

y = 1000011
2's complement of X = +0101 100

There is no end carry

Sum = 1101111

Answer is negative 0010001 = 2's complement of 1101111

3-3 Fixed-Point Representation

Positive integers, including zero, can be represented as unsigned numbers.
However, to represent negative integers, we need a notation for negative
values. In ordinary arithmetic, a negative number is indicated by a minus sign
and a positive number by a plus sign. Because of hardware limitations, com­
puters must represent everything with 1's and D's, including the sign of a
number. As a consequence, it is customary to represent the sign with a bit
placed in the leftmost position of the number. The convention is to make the
sign bit equal to 0 for positive and to 1 for negative.

In addition to the sign, a number may have a binary (or decimal) point.
The position of the binary point is needed to represent fractions, integers, or
mixed integer-fraction numbers. The representation of the binary point in a
register is complicated by the fact that it is characterized by a position in the
register. There are two ways of specifying the position of the binary point in
a register: by giving it a fixed position or by employing a floating-point repre­
sentation. The fixed-point method assumes that the binary point is always

78 CHAPTER THREE Data Representation

signed numbers

fixed in one position. The two positions most widely used are (1) a binary point
in the extreme left of the register to make the stored number a fraction, and
(2) a binary point in the extreme right of the register to make the stored number
an integer. In either case, the binary point is not actually present, but its
presence is assumed from the fact that the number stored in the register is
treated as a fraction or as an integer. The floating-point representation uses a
second register to store a number that designates the position of the decimal
point in the first register. Floating-point r.epresentation is discussed further in
the next section.

Integer Representation
When an integer binary number is positive, the sign is represented by 0 and
the magnitude by a positive binary number. When the number is negative, the
sign is represented by 1 but the rest of the number may be represented in one
of three possible ways:

1. Signed-magnitude representation

2. Signed-1' s complement representation

3. Signed 2' s complement representation

The signed-magnitude representation of a negative number consists of the
magnitude and a negative sign. In the other two representations, the negative
number is represented in either the 1's or 2's complement of its positive value.
As an example, consider the signed number 14 stored in an 8-bit register. + 14
is represented by a sign bit of 0 in the leftmost position followed by the binary
equivalent of 14: 00001110. Note that each of the eight bits of the register must
have a value and therefore 0' s must be inserted in the most significant positions
following the sign bit. Although there is only one way to represent + 14, there
are three different ways to represent - 14 with eight bits.

In signed-magnitude representation 1 0001110

In signed-1's complement representation 1 11 10001

In signed-2's complement representation 1 11 10010

The signed-magnitude representation of - 14 is obtained from + 14 by comple­
menting only the sign bit . The signed-1's complement representation of - 14
is obtained by complementing all the bits of + 14, including the sign bit. The
signed-2' s complement representation is obtained by taking the 2' s comple­
ment of the positive number, including its sign bit.

The signed-magnitude system is used in ordinary arithmetic but is awk­
ward when employed in computer arithmetic. Therefore, the signed-comple­
ment is normally used. The 1' s complement imposes difficulties because it

2's complement
addiHon

SECTION 3-3 Fixed� Point Representation 79

has two representations of 0 (+0 and - 0). It is seldom used for arithmetic
operations except in some older computers. The 1's complement is useful as
a logical operation since the change of 1 to 0 or 0 to 1 is equivalent to a logical
complement operation. The following discussion of signed binary arithmetic
deals exclusively with the signed-2's complement representation of negative
numbers.

Arithmetic Addition
The addition of two numbers in the signed-magnitude system follows the rules
of ordinary arithmetic. If the signs are the same, we add the two magnitudes
and give the sum the common sign. If the signs are different, we subtract the
smaller magnitude from the larger and give the result the sign of the larger
magnitude. For example, (+25) + (- 37) = - (37 - 25) = - 12 and is done by
subtracting the smaller magnitude 25 from the larger magnitude 37 and using
the sign of 37 for the sign of the result. This is a process that requires the
comparison of the signs and the magnitudes and then performing either
addition or subtraction. (The procedure for adding binary numbers in signed­
magnitude representation is described in Sec. 10-2 .) By contrast, the rule for
adding numbers in the signed-2's complement system does not require a
comparison or subtraction, only addition and complementation. The proce­
dure is very simple and can be stated as follows: Add the two numbers,
including their sign bits, and discard any carry out of the sign (leftmost) bit
position. Numerical examples for addition are shown below. Note that nega­
tive numbers must initially be in 2' s complement and that if the sum obtained
after the addition is negative, it is in 2's complement form.

+ 6 00000110 -6 111 11010
+ 13 00001101 + 13 00001101
+19 00010011 +7 000001 11

+6 00000110 - 6 11111010
- 13 11110011 - 13 1111001 1
::'j 1111 1001 -19 1 1 101101

In each of the four cases, the operation performed is always addition, including
the sign bits. Any carry out of the sign bit position is discarded, and negative
results are automatically in 2' s complement form.

The complement form of representing negative numbers is unfamiliar to
people used to the signed-magnitude system. To determine the value of a
negative number when in signed-2's complement, it is necessary to convert it
to a positive number to place it in a more familiar form. For example, the signed
binary number 1111 1001 is negative because the leftmost bit is I. Its 2' s com­
plement is 00000111, which is the binary equivalent of +7. We therefore
recognize the original negative number to be equal to -7 .

80 CHAPTER THREE Data Representation

2's complement
subtracUon

OTJerflow

Arithmetic Subtraction
Subtraction of two signed binary numbers when negative numbers are in 2' s
complement form is very simple and can be stated as follows: Take the 2's
complement of the subtrahend (including the sign bit) and add it to the
minuend (including the sign bit). A carry out of the sign bit position is dis­
carded.

This procedure stems from the fact that a subtraction operation can be
changed to an addition operation if the sign of the subtrahend is changed. This
is demonstrated by the following relationship:

(±A) - (+B) = (±A) + (-B)

(±A) - (-B) = (±A) + (+B)

But changing a positive number to a negative number is easily done by taking
its 2's complement. The reverse is also true because the complement of a
negative number in complement form produces the equivalent positive num­
ber. Consider the subtraction of (-6) - (- 13) = +7. In binary with eight bits
this is written as 11111010 - 11110011 . The subtraction is changed to addition
by taking the 2's complement of the subtrahend (- 13) to give (+ 13). In binary
this is 11111010 + 00001101 = 10000011 1 . Removing the end carry, we obtain
the correct answer 00000111 (+ 7).

It is worth noting that binary numbers in the signed-2's complement
system are added and subtracted by the same basic addition and subtraction
rules as unsigned numbers. Therefore, computers need only one common
hardware circuit to handle both types of arithmetic. The user or programmer
must interpret the results of such addition or subtraction differently depending
on whether it is assumed that the numbers are signed or unsigned.

Overflow
When two numbers of n digits each are added and the sum occupies n + 1
digits, we say that an overflow occurred. When the addition is performed with
paper and pencil, an overflow is not a problem since there is no limit to the
width of the page to write down the sum. An overflow is a problem in digital
computers because the width of registers is finite. A result that contains n + 1
bits cannot be accommodated in a register with a standard length of n bits. For
this reason, many computers detect the occurrence of an overflow, and when
it occurs, a corresponding flip-flop is set which can then be checked by the user.

The detection of an overflow after the addition of two binary numbers
depends on whether the numbers are considered to be signed or unsigned.
When two unsigned numbers are added, an overflow is detected from the end
carry out of the most significant position. In the case of signed numbers, the
leftmost bit always represents the sign, and negative numbers are in 2' s

ilow detection

SECTION J.J Fixed�Point Representation 8 1

complement form. When two signed numbers are added, the sign bit is treated
as part of the number and the end carry does not indicate an overflow.

An overflow cannot occur after an addition if one number is positive and
the other is negative, since adding a positive number to a negative number
produces a result that is smaller than the larger of the two original numbers.
An overflow may occur if the two numbers added are both positive or both
negative. To see how this can happen, consider the following example. Two
signed binary numbers, + 70 and + 80, are stored in two 8-bit registers. The
range of numbers that each register can accommodate is from binary + 127 to
binary - I28. Since the sum of the two numbers is + I50, it exceeds the capacity
of the 8-bit register. This is true if the numbers are both positive or both
negative. The two additions in binary are shown below together with the last
two carries.

carries: 0 I
+ 70 0 I000110
+ 80 0 I010000

+ ISO I 0010110

carries: I
- 70
-80

- ISO

0
I OI110IO
I 0110000
0 110IOIO

Note that the 8-bit result that should have been positive has a negative sign
bit and the 8-bit result that should have been negative has a positive sign bit.
If, however, the carry out of the sign bit position is taken as the sign bit of the
result, the 9-bit answer so obtained will be correct. Since the answer cannot be
accommodated within 8 bits, we say that an overflow occurred.

An overflow condition can be detected by observing the carry into the
sign bit position and the carry out of the sign bit position. If these two carries
are not equal, an overflow condition is produced. This is indicated in the
examples where the two carries are explicitly shown. If the two carries are
applied to an exclusive-OR gate, an overflow will be detected when the output
of the gate is equal to 1 .

Decimal Fixed-Point Representation
The representation of decimal numbers in registers is a function of the binary
code used to represent a decimal digit. A 4-bit decimal code requires four
flip-flops for each decimal digit. The representation of 4385 in BCD requires I6
flip-flops, four flip-flops for each digit. The number will be represented in a
register with I6 flip-flops as follows:

OIOO 0011 1000 010I

By representing numbers in decimal we are wasting a considerable
amount of storage space since the number of bits needed to store a decimal
number in a binary code is greater than the number of bits needed for its

82 CHAPTER THREE Data Representation

equivalent binary representation. Also, the circuits required to perform deci­
mal arithmetic are more complex. However, there are some advantages in the
use of decimal representation because computer input and output data are
generated by people who use the decimal system. Some applications, such as
business data processing, require small amounts of arithmetic computations
compared to the amount required for input and output of decimal data. For this
reason, some computers and all electronic calculators perform arithmetic oper­
ations directly with the decimal data (in a binary code) and thus eliminate the
need for conversion to binary and back to decimal. Some computer systems
have hardware for arithmetic calculations with both binary and decimal data.

The representation of signed decimal numbers in BCD is similar to the
representation of signed numbers in binary. We can either use the familiar
signed-magnitude system or the signed-complement system. The sign of a
decimal number is usually represented with four bits to conform with the 4-bit
code of the decimal digits. It is customary to designate a plus with four 0' s and
a minus with the BCD equivalent of 9, which is 1001 .

The signed-magnitude system is difficult to use with computers. The
signed-complement system can be either the 9's or the 10's complement, but
the 10's complement is the one most often used. To obtain the 10' s complement
of a BCD number, we first take the 9's complement and then add one to the
least significant digit. The 9' s complement is calculated from the subtraction
of each digit from 9.

The procedures developed for the signed-2's complement system apply
also to the signed-10's complement system for decimal numbers. Addition is
done by adding all digits, including the sign digit, and discarding the end
carry. Obviously, this assumes that all negative numbers are in 10's comple­
ment form. Consider the addition (+375) + (-240) = + 135 done in the signed-
10's complement system.

0 375 (0000 0011 0111 0101)BCD
+9 760 (1001 0111 0110 OOOO)BCD

0 135 (0000 0001 0011 0101)BCD

The 9 in the leftmost position of the second number indicates that the number
is negative. 9760 is the 10's complement of 0240. The two numbers are added
and the end carry is discarded to obtain + 135. Of course, the decimal numbers
inside the computer must be in BCD, including the sign digits. The addition
is done with BCD adders (see Fig. 10-18).

The subtraction of decimal numbers either unsigned or in the signed-10' s
complement system is the same as in the binary case. Take the 10' s complement
of the subtrahend and add it to the minuend. Many computers have special
hardware to perform arithmetic calculations directly with decimal numbers in
BCD. The user of the computer can specify by programmed instructions that
the arithmetic operations be performed with decimal numbers directly without
having to convert them to binary.

mantissa

exponent

fraction

normalization

SECf!ON 3-4 Floating-Point Representation 83

3-4 Floating-Point Representation

The floating-point representation of a number has two parts. The first part
represents a signed, fixed-point number called the mantissa. The second part
designates the position of the decimal (or binary) point and is called the
exponent. The fixed-point mantissa may be a fraction or an integer. For exam­
ple, the decimal number + 6132.789 is represented in floating-point with a
fraction and an exponent as follows:

Fraction

+0.6132789

Exponent

+04

The value of the exponent indicates that the actual position of the decimal point
is four positions to the right of the indicated decimal point in the fraction. This
representation is equivalent to the scientific notation +0.6132789 X 10+4.

Floating-point is always interpreted to represent a number in the follow­
ing form:

m x r'

Only the mantissa m and the exponent e are physically represented in the
register (including their signs). The radix r and the radix-point position of the
mantissa are always assumed. The circuits that manipulate the floating-point
numbers in registers conform with these two assumptions in order to provide
the correct computational results.

A floating-point binary number is represented in a similar manner except
that it uses base 2 for the exponent. For example, the binary number + 1001 . 1 1
i s represented with a n 8-bit fraction and 6-bit exponent a s follows:

Fraction

01001110

Exponent

000100

The fraction has a 0 in the leftmost position to denote positive. The binary point
of the fraction follows the sign bit but is not shown in the register. The exponent
has the equivalent binary number +4. The floating-point number is equivalent
to

m x 2' = + (. 1001110), x z+•

A floating-point number is said to be normalized if the most significant
digit of the mantissa is nonzero. For example, the decimal number 350 is
normalized but 00035 is not. Regardless of where the position of the radix point
is assumed to be in the mantissa, the number is normalized only if its leftmost
digit is nonzero. For example, the 8-bit binary number 00011010 is not normal-

84 CHAPTER THREE Data Representation

Gray code

ized because of the three leading 0' s. The number can be normalized by shifting
it three positions to the left and discarding the leading O's to obtain 11010000.
The three shifts multiply the number by 23 = 8. To keep the same value for the
floating-point number, the exponent must be subtracted by 3 . Normalized
numbers provide the maximum possible precision for the floating-point num­
ber. A zero cannot be normalized because it does not have a nonzero digit. It
is usually represented in floating-point by all O's in the mantissa and exponent.

Arithmetic operations with floating-point numbers are more complicated
than arithmetic operations with fixed-point numbers and their execution takes
longer and requires more complex hardware. However, floating-point repre­
sentation is a must for scientific computations because of the scaling problems
involved with fixed-point computations .. Many computers and all electronic
calculators have the built-in capability of performing floating-point arithmetic
operations. Computers that do not have hardware for floating-point computa­
tions have a set of subroutines to help the user program scientific problems
with floating-point numbers. Arithmetic operations with floating-point num­
bers are discussed in Sec. 10-5.

3-5 Other Binary Codes

In previous sections we introduced the most common types of binary-coded
data found in digital computers. Other binary codes for decimal numbers and
alphanumeric characters are sometimes used. Digital computers also employ
other binary codes for special applications. A few additional binary codes
encountered in digital computers are presented in this section.

Gray Code
Digital systems can process data in discrete form only. Many physical systems
supply continuous output data. The data must be converted into digital form
before they can be used by a digital computer. Continuous, or analog, infor­
mation is converted into digital form by means of an analog-to-digital con­
verter. The reflected binary or Gray code, shown in Table 3-5, is sometimes used
for the converted digital data. The advantage of the Gray code over straight
binary numbers is that the Gray code changes by only one bit as it sequences
from one number to the next. In other words, the change from any number
to the next in sequence is recognized by a change of only one bit from 0 to 1
or from 1 to 0. A typical application of the Gray code occurs when the analog
data are represented by the continuous change of a shaft position. The shaft
is partitioned into segments with each segment assigned a number. If adjacent
segments are made to correspond to adjacent Gray code numbers, ambiguity
is reduced when the shaft position is in the line that separates any two
segments.

Gray code counters are sometimes used to provide the timing sequences

SECTION 3-5 Other Binary Codes 85

TABLE 3-5 4-Bit Gray Code

Binary Decimal Binary Decimal
code equivalent code equivalent

0000 0 1 100 8
0001 1 1 101 9
001 1 2 1 1 1 1 10

0010 3 1110 11
0110 4 1010 12

0 1 1 1 5 1011 13

0101 6 1001 14

0100 7 " 1000 15

that control the operations in a digital system. A Gray code counter is a counter
whose flip-flops go through a sequence of states as specified in Table 3-5. Gray
code counters remove the ambiguity during the change from one state of the
counter to the next because only one bit can change during the state transition.

Other Decimal Codes
Binary codes for decimal digits require a minimum of four bits. Numerous
different codes can be formulated by arranging four or more bits in 10 distinct
possible combinations. A few possibilities are shown in Table 3-6.

TABLE 3-6 Four Different Binary Codes for the Decimal Digit

Decimal BCD Excess-3
digit 8421 242 1 Excess-3 gray

0 0000 0000 0011 0010

1 0001 0001 0100 0110

2 0010 0010 0101 0111

3 00 1 1 001 1 0110 0101

4 0100 0100 0 1 1 1 0100

5 0101 101 1 1000 1 100

6 0110 1 100 1001 1 101

7 0111 1101 1010 1 1 1 1

8 1000 1 1 10 1011 1110

9 1001 1 1 1 1 1100 1010

1010 0101 0000 0000
Unused 101 1 0110 0001 0001

bit 1100 01 1 1 0010 001 1

combi- 1 101 1000 1 101 1000

nations 1110 1001 1110 1001

1 1 1 1 1010 1 1 1 1 1011

86 CHAPTER THREE Data Representation

The BCD (binary-coded decimal) has been introduced before. It uses a
straight assignment of the binary equivalent of the digit. The six unused bit
combinations listed have no meaning when BCD is used, just as the letter H
has no meaning when decimal digit symbols are written down. For example,
saying that 1001 1110 is a decimal number in BCD is like saying that 9H is a
decimal number in the conventional symbol designation. Both cases contain
an invalid symbol and therefore designate a meaningless number.

One disadvantage of using BCD is the difficulty encountered when the
9's complement of the number is. to be computed. On the other hand, the 9's
complement is easily obtained with the 2421 and the excess-3 codes listed

self-complementing in Table 3-6. These two codes have a self-complementing property which
means that the 9' s complement of a decimal number, when represented in one
of these codes, is easily obtained by changing 1's to O's and O's to l's. This
property is useful when arithmetic operations are done in signed-complement
representation .

weighted code The 2421 is an example of a weighted code. In a weighted code, the bits are
multiplied by the weights indicated and the sum of the weighted bits gives the
decimal digit. For example, the bit combination 1101, when weighted by the
respective digits 2421 , gives the decimal equivalent of 2 x 1 + 4 x 1 + 2 x
0 + 1 + 1 = 7. The BCD code can be assigned the weights 8421 and for this
reason it is sometimes called the 8421 code .

excess-3 code The excess-3 code is a decimal code that has been used in older comput-
ers . This is an unweighted code . Its binary code assignment is obtained from
the corresponding BCD equivalent binary number after the addition of binary
3 (0011).

From Table 3-5 we note that the Gray code is not suited for a decimal code
if we were to choose the first 10 entries in the table. This is because the
transition from 9 back to 0 involves a change of three bits (from 1101 to 0000).
To overcome this difficulty, we choose the 10 numbers starting from the third
entry 0010 up to the twelfth entry 1010. Now the transition from 1010 to 0010
involves a change of only one bit . Since the code has been shifted up three
numbers, it is called the excess-3 Gray. This code is listed with the other
decimal codes in Table 3-6.

Other Alphanumeric Codes
The ASCII code (Table 3-4) is the standard code commonly used for the
transmission of binary information. Each character is represented by a 7-bit
code and usually an eighth bit is inserted for parity (see Sec . 3-6). The code
consists of 128 characters. Ninety-five characters represent graphic symbols that
include upper- and lowercase letters, numerals zero to nine, punctuation
marks, and special symbols. Twenty-three characters represent format effectors,
which are functional characters for controlling the layout of printing or display
devices such as carriage return, line feed, horizontal tabulation, and back

EBCDIC

parity bit

parity generator

parity checker

SECTION 3-6 Error Detection Codes 8 7

space. The other 10 characters are used to direct the data communication flow
and report its status.

Another alphanumeric (sometimes called alphameric) code used in IBM
equipment is the EBCDIC (Extended BCD Interchange Code). It uses eight bits
for each character (and a ninth bit for parity). EBCDIC has the same character
symbols as ASCII but the bit assignment to characters is different.

When alphanumeric characters are used internally in a computer for data
processing (not for transmission purposes) it is more convenient to use a 6-bit
code to represent 64 characters. A 6-bit code can specify the 26 uppercase letters
of the alphabet, numerals zero to nine, and up to 28 special characters. This
set of characters is usually sufficient for data-processing purposes. Using fewer
bits to code characters has the advantage of reducing the memory space needed
to store large quantities of alphanumeric data.

3-6 Error Detection Codes

Binary information transmitted through some form of communication medium
is subject to external noise that could change bits from 1 to 0, and vice versa.
An error detection code is a binary code that detects digital errors during
transmission. The detected errors cannot be corrected but their presence is
indicated. The usual procedure is to observe the frequency of errors. If errors
occur infrequently at random, the particular erroneous information is transmit­
ted again. If the error occurs too often, the system is checked for malfunction.

The most common error detection code used is the parity bit . A parity bit
is an extra bit included with a binary message to make the total number of 1's
either odd or even. A message of three bits and two possible parity bits is
shown in Table 3-7. The P(odd) bit is chosen in such a way as to make the sum
of 1's (in all four bits) odd. The P(even) bit is chosen to make the sum of all
1's even. In either case, the sum is taken over the message and the P bit. In
any particular application, one or the other type of parity will be adopted. The
even-parity scheme has the disadvantage of having a bit combination of all O's,
while in the odd parity there is always one bit (of the four bits that constitute
the message and P) that is 1. Note that the P(odd) is the complement of the
P(even).

Dunng rransfer of information from one location to another, the parity
bit is handled as follows. At the sending end, the message (in this case three
bits) is applied to a parity generator, where the required parity bit is generated.
The message, including the parity bit, is transmitted to its destination. At the
receiving end, all the incoming bits (in this case, four) are applied to a parity
checker that checks the proper parity adopted (odd or even). An error is detected
if the checked parity does not conform to the adopted parity. The parity
method detects the presence of one, three, or any odd number of errors. An
even number of errors is not detected.

88 OIAI'TER THI\EE Data R<pr...nto<ion

TABLE 3·7 Parity Bit Gontntion

Message
xyz P(odd) P(even)

000 I 0
001 0 1
010 0 1
011 1 0
100 0 I
101 I 0

110 1 0
111 0 t

Parity generator and checker networl<s are logic circuits constructed with
exclusive-OR functions. This is because, as mentioned in Sec. 1·2, the exclu­
sive-OR function of three or more varia.bles is by definition an odd function.
An odd function is a logic function whose value is binary 1 if, and only if, an
odd number of variables are equal to 1. According to this definition, the P(even)
function is the exclusive-OR of x, y, and l because it is equal to 1 when either
one or all three of the variables are equal to I (Table 3-7). The P(odd) function
is the complement of the P(even) function.

As an example, consider a 3-bit me&Sllge to be transmitted with an odd
parity bit. At the sending end, the odd·parity bit is generated by a parity

Sowoc
x �--------------------T-------------------- x

Pariryc:hoc:k<r

SECllON J-6 Error Detection Codes 89

generator circuit. As shown in Fig. 3-3, this circuit consists of one exclusive-OR
and one exclusive-NOR gate. Since P(even) is the exclusive-OR of x, y, z, and
P(odd) is the complement of P(even), it is necessary to employ an exclusive­
NOR gate for the needed complementation. The message and the odd-parity
bit are transmitted to their destination where they are applied to a parity
checker. An error has occurred during transmission if the parity of the four bits
received is even, since the binary infonnation transmitted was originally odd.
The output of the parity checker would be 1 when an error occurs, that is, when
the number of l's in the four inputs is even. Since the exclusive-OR function
of the four inputs is an odd function, we again need to complement the output
by using an exclusive-NOR gate . .

It is worth noting that the parity generator can use the same circuit as the
parity checker if the fourth input is permanently held at a logic-Q value. The
advantage of this is that the same circuit can be used for both parity generation
and parity checking.

It is evident from the example above that even-parity generators and
checkers can be implemented with exclusive-OR functions. Odd-parity net­
works need an exclusive-NOR at the output to complement the function.

PROBLEMS

3-1. Convert the following binary numbers to decimal: 101110; 1110101; and
110110100.

3-2. Convert the following numbers with the indicated bases to decimal: (12121)3;
(4310)s; (SO),; and (198)u.

3-3. Convert the following decimal numbers to binary: 1231; 673; and 1998.

3-4. Convert the following decimal numbers to the bases indicated.
a. 7562 to octal
b. 1938 to hexadecimal
c. 175 to binary

3-5. Convert the hexadecimal number F3A7C2 to binary and octal.

3-6. What is the radix of the numbers if the solution to the quadratic equation
r2 - lOr + 31 = 0 is x = 5 and r = 8?

3-7. Show the value of all bits of a 12-bit register that hold the number equivalent
to dedmal215 in (a) binary; (b) bi.nary-coded octal; (c) binary�ed hexadec­
imal; (d) binary�ed decimal (BCD).

3-8. Show the bit configuration of a 24-bit register when its content represents
the decimal equivalent of 295: (a) in binary; (b) in BCD; (c) in ASCU using
eight bits with even parity.

3-9. Write your name in ASCII using an 8-bil code with the leftmost bit always
0. Include a space between names and a period after a middle initiaL

90 CHAPTER THREE Data Representation

3-10. Decode the following ASCII code:

1001010 1001111 1001000 1001 110 0100000 1000100 1001 1 1 1 1000101

3-11. Obtain the 9's complement of the following eight-digit decimal numbers:
12349876; 00980100; 90009951; and 00000000.

3-12. Obtain the 10's complement of the following six-digit decimal numbers:
123900; 090657; 100000; and 000000.

3-13. Obtain the l's and 2's complements of the following eight-digit binary
numbers: 10101 1 10; 10000001; 10000000; 00000001; and 00000000.

3-14. Perform the subtraction with the following unsigned decimal numbers by
taking the 10's complement of the subtrahend.
a. 5250 - 1321 b. 1753 - 8640
c. 20 - 100 d. 1200 - 250

3-15. Perform the subtraction with the following unsigned binary numbers by
taking the 2's complement of the subtrahend.
a. 11010 - 10000 b. 1 1010 - 1101
c. 100 - 110000 d. 1010100 - 1010100

3-16. Perform the arithmetic operations (+42) + (- 13) and (-42) - (- 13) in bi­
nary using signed-2's complement representation for negative numbers.

3-17. Perform the arithmetic operations (+70) + (+80) and (-70) + (-80) with
binary numbers in signed-2's complement representation. Use eight bits to
accommodate each number together with its sign. Show that overflow oc­
curs in both cases, that the last two carries are unequal, and that there is a
sign reversal.

3-18. Perform the following arithmetic operations with the decimal numbers using
signed-lO's complement representation for negative numbers.
a. (-638) + (+785)
b. (-638) - (+ 185)

3-19. A 36-bit floating-point binary number has eight bits plus sign for the expo­
nent and 26 bits plus sign for the mantissa. The mantissa is a normalized
fraction. Numbers in the mantissa and exponent are in signed-magnitude
representation. What are the largest and smallest positive quantities that can
be represented, excluding zero?

3-20. Represent the number (+46.5), as a floating-point binary number with
24 bits. The normalized fraction mantissa has 16 bits and the exponent has
8 bits.

3-21. The Gray code is sometimes called a reflected code because the bit values are
reflected on both sides of any 2" value. For example, as shown in Table 3-5,
the values of the three low-order bits are reflected over a line drawn between
7 and 8. Using this property of the Gray code, obtain:
a. The Gray code numbers for 16 through 31 as a continuation of Table 3-5 .
b. The excess-3 Gray code for decimals 10 to 19 as a continuation of the list

in Table 3-6.

3-22. Represent decimal number 8620 in (a) BCD; (b) excess-3 code; (c) 2421 code;
(d) as a binary number.

SECTJa< J.o Error o-ttion Codes 91

3-23. Ust the 10 BCD digits with an even parity In the leftmost position (total of
five bits per digit). Repeat with an odd-parity bit.

3-24. Represent decimal 3984 In the 2421 code of Table l-6. Complement all bits
of the coded number and show that the result is the 9' s romplement of 3984
in the 2421 code.

3-25. Show thattheexclusive..QRfunctionx = AE!lBEllCEllDisanodd function.
One way to show tiUs is to obtain the truth table for y = A Ell B and for
z = CE!lDandthenfonnulatethetruthtablefor.r = yE!lz.Showthatx = 1
only when the total number of l's in A, B. C, and D is odd.

3-26. Derive the circuits for a 3-bit parity generator and 4-bit parity checker using
an even-parity bit. (The circuits of Fig. 3-3 use odd parity.)

REFERENCES

1. Hill, F.) . , and C. It Peterson, lntrodlldion to Switdting 11rt«y ond Logical Dtsign, Jrd
ed. New York: john Wiley. 1981.

2. Langholz, C., J. Francionl, and A. Kandel, £1cncrts of Q)mputer Org<lnimion.
Englewood Clif fs, N): Prentioe Hall. 1989.

3. Lewin. M. H., Logic D<sign and ComputtT Organization. R.eading. MA: Addison­
Wesley, 1983.

4. Mano, M. M., Digital D<sign, 2nd ed. Englewood OiHs, N): Pmltic:e Hall, 1991.
5. Roth, C. H., FundommiDit of l.Dgic D<sign, 3rd ed. St. Paul, MN: West Publishif18.

1985.

6. Sandige, R. S .. Modtrn Digillll D<sign. New York: McGraw-Hill. 1990.

7. Shiva, S. C., Introduction to l.Dgic D<sign. Glenview, 0: Scott, Foresman. 1968.

8. Tomek, 1., Introduction to Computer �aniuo tion. Rodcville, MD: Computer Sdm«
Press, 1981.

9. Wal<erly, J. F., MicnxtJmpultr Archit<cturt ond Programming. New York: John Wiley,
1981.

10. Ward .• S. A., and R. H. Halstead, Jr., CompulllfUJn St...ctum. Cambridge. MA: MIT
Press, 1990.

CHAPTER F O UR

Register Transfer
and M icrooperations

IN nns CHAPTER

+ 1 Regi$ter Tr-ansftt �
+2 Register T rarufer
+3 Bus and Memory Transfers
+-4 Arithmetic: Microopentioru
+5 Logie Microopentions
+6 Shlft Microopentioru
.... 7 Aritlunuic: Logic: Shift Unit

4·1 Register Transfer Language

A digital system Is an interconnection of digital hardware module. that at'ClOin­
pl.lsh a specific Wormation-proceaslna taslc. Digital systems vary in size and
complexi.ty &om a few integrated circuits to a complex of interconnected and
interacting digital computers. Digital system design invariably UBeS a modular
approach. The modules are constructed &om such digital components as
registet&, decoders, arithmetic elements, and control logic. The various mod­
ules are interconnected with common data and control paths to fonn a digital
computer system.

Digital modules are best defined by the registet& they contain and the
operations that are performed on the data stored in them. The operations
executed on data stored in reglstet& are called miaooperations. A mlaooper­
ation is an elementaxy operation perfonned on the infonNtion stored in one
or more registers. The result of the operation may replace the previous binary
infonNition of a register or may be tnmsferred to another register. Examples
of mlcrooperations are shift, count, clear, and load. Some of the digital com­
ponents introduced in Chap. 2 are registet& that implement mic:rooperations.
For example, a counter with parallel load is capable of performing the micro-

93

94 CHAPTER FOUR Register Transfer and Microoperations

register transfer
language

operations increment and load. A bidirectional shift register is capable of
performing the shift right and shift left microoperations.

The internal hardware organization of a digital computer is best defined
by specifying:

1. The set of registers it contains and their function.

2. The sequence of microoperations performed on the binary information
stored in the registers.

3. The control that initiates the sequence of microoperations.

It is possible to specify the sequence of microoperations in a computer by
explaining every operation in words, but this procedure usually involves a
lengthy descriptive explanation. It is more convenient to adopt a suitable
symbology to describe the sequence of transfers between registers and the
various arithmetic and logic microoperations associated with the transfers. The
use of symbols instead of a narrative explanation provides an organized and
concise manner for listing the microoperation sequences in registers and the
control functions that initiate them.

The symbolic notation used to describe the microoperation transfers
among registers is called a register transfer language. The term "register
transfer" implies the availability of hardware logic circuits that can perform a
stated microoperation and transfer the result of the operation to the same or
another register. The word "language" is borrowed from programmers, who
apply this term to programming languages. A programming language is a
procedure for writing symbols to specify a given computational process. Sim­
ilarly, a natural language such as English is a system for writing symbols and
combining them into words and sentences for the purpose of communication
between people. A register transfer language is a system for expressing in
symbolic form the microoperation sequences among the registers of a digital
module. It is a convenient tool for describing the internal organization of digital
computers in concise and precise manner. It can also be used to facilitate the
design process of digital systems.

The register transfer language adopted here is believed to be as simple
as possible, so it should not take very long to memorize. We will proceed to
define symbols for various types of microoperations, and at the same time,
describe associated hardware that can implement the stated microoperations.
The symbolic designation introduced in this chapter will be utilized in subse­
quent chapters to specify the register transfers, the microoperations, and the
control functions that describe the internal hardware organization of digital
computers. Other symbology in use can easily be learned once this language
has become familiar, for most of the differences between register transfer
languages consist of variations in detail rather than in overall purpose.

registers

register transfer

4-2 Register Transfer

SECTION 4-2 Register Transfer 95

Computer registers are designated by capital letters (sometimes followed by
numerals) to denote the function of the register. For example, the register that
holds an address for the memory unit is usually called a memory address
register and is designated by the name MAR. Other designations for registers
are PC (for program counter), IR (for instruction register, and R 1 (for processor
register). The individual flip-flops in an n-bit register are numbered in se­
quence from 0 through n - 1, starting from 0 in the rightmost position and
increasing the numbers toward the left. Figure 4-1 shows the representation
of registers in block diagram form. The most common way to represent a
register is by a rectangular box with the name of the register inside, as in
Fig. 4-1(a). The individual bits can be distinguished as in (b). The numbering
of bits in a 16-bit register can be marked on top of the box as shown in (c). A
16-bit register is partitioned into two parts in (d). Bits 0 through 7 are assigned
the symbol L (for low byte) and bits 8 through 15 are assigned the symbol H
(for high byte). The name of the 16-bit register is PC . The symbol PC(0-7) or
PC(L) refers to the low-order byte and PC(S-15) or PC(H) to the high-order
byte.

Information transfer from one register to another is designated in sym­
bolic form by means of a replacement operator. The statement

R2 <-- R1

denotes a transfer of the content of register R1 into register R2. It designates
a replacement of the content of R2 by the content of R l . By definition, the
content of the source register R1 does not change after the transfer.

A statement that specifies a register transfer implies that circuits are
available from the outputs of the source register to the inputs of the destination
register and that the destination register has a parallel load capability. Nor-

Figure 4� 1 Block diagram of register.

RI 7 6 5 4 3 2 I 0

(a) Register R (b) Showing individual bits

15 15 8 7 0

I R2 PC (H) PC (L) I
(c) Numbering of bits (d) Divided into two parts

96 CHAPTI:R FOUR Register Transfer and Microoperations

control function

mally, we want the transfer to occur only under a predetermined control
condition. This can be shown by means of an if-then statement.

If (P = 1) then (R2 <-- R1)

where P is a control signal generated in the control section. It is sometimes
convenient to separate the control variables from the register transfer operation
by specifying a control function. A control function is a Boolean variable that is
equal to 1 or 0. The control function is included in the statement as follows:

P: R2 <-- R1

The control condition is terminated with a colon. It symbolizes the requirement
that the transfer operation be executed by the hardware only if P = 1 .

Every statement written in a register transfer notation implies a hardware
construction for implementing the transfer. Figure 4-2 shows the block dia­
gram that depicts the transfer from R1 to R2. The n outputs of register R1 are
connected to the n inputs of register R2. The letter n will be used to indicate
any number of bits for the register. It will be replaced by an actual number
when the length of the register is known. Register R2 has a load input that is
activated by the control variable P. It is assumed that the control variable is
synchronized with the same clock as the one applied to the register. As shown

Figure 4·2 Transfer from Rl to R2 when P = I .

(a) Block diagram

t + I

(b) Timing diagram

common bus

SECTION 4-l Bus and Memory Transfers 97

in the timing diagram, P is activated in the control section by the rising edge
of a clock pulse at time t. The next positive transition of the clock at time t + 1
finds the load input active and the data inputs of R2 are then loaded into the
register in parallel. P may go back to 0 at time t + 1; otherwise, the transfer
will occur with every clock pulse transition while P remains active.

Note that the clock is not included as a variable in the register transfer
statements. It is assumed that all transfers occur during a clock edge transition.
Even though the control condition such as P becomes active just after time t,
the actual transfer does not occur until the register is triggered by the next
positive transition of the clock at time t + 1 .

The basic symbols o f the register transfer notation are listed in Table 4-1 .
Registers are denoted by capital letters, and numerals may follow the letters.
Parentheses are used to denote a part of a register by specifying the range of
bits or by giving a symbol name to a portion of a register. The arrow denotes
a transfer of information and the direction of transfer. A comma is used to
separate two or more operations that are executed at the same time. The
statement

T: R2 +- R1, R1 +- R2

denotes an operation that exchanges the contents of two registers during one
common clock pulse provided that T = 1. This simultaneous operation is
possible with registers that have edge-triggered flip-flops.

TABLE 4# 1 Basic Symbols for Register Transfers

Symbol

Letters
(and numerals)

Parentheses ()
Arrow +­
Comma ,

Description

Denotes a register

Denotes a part of a register
Denotes transfer of information
Separates two microoperations

4-3 Bus and Memory Transfers

Examples

MAR, R2

R2(0-7), R2(L)
R2 +- Rl
R2 +- Rl, Rl +- R2

A typical digital computer has many registers, and paths must be provided to
transfer information from one register to another. The number of wires will be
excessive if separate lines are used between each register and all other registers
in the system. A more efficient scheme for transferring information between
registers in a multiple-register configuration is a common bus system. A bus
structure consists of a set of common lines, one for each bit of a register,
through which binary information is transferred one at a time. Control signals

98 CHAPTER FOUR Register Transfer and Microoperations

s,

So

4-
--

3

3

4 x l
MUX 3

2 I

determine which register is selected by the bus during each particular register
transfer.

One way of constructing a common bus system is with multiplexers. The
multiplexers select the source register whose binary information is then placed
on the bus. The construction of a bus system for four registers is shown in
Fig. 4-3. Each register has four bits, numbered 0 through 3. The bus consists
of four 4 x 1 multiplexers each having four data inputs, 0 through 3, and two
selection inputs, S1 and S0• In order not to complicate the diagram with 16 lines
crossing each other, we use labels to show the connections from the outputs
of the registers to the inputs of the multiplexers. For example, output 1 of
register A is connected to input 0 of MUX 1 because this input is labeled A1.
The diagram shows that the bits in the same significant position in each register
are connected to the data inputs of one multiplexer to form one line of the bus.
Thus MUX 0 multiplexes the four 0 bits of the registers, MUX 1 multiplexes the
four 1 bits of the registers, and similarly for the other two bits.

Figure 4 .. 3 Bus system for four registers.

4- line
comma

bus

I r I

4- 4 x l 4- 4 x l '-" 4 x l

� MUX 2 -- MUX I � MUX O

0 3 2 I 0 3 2 I 0 3 2 I 0

t t t t t t t t t t t t
D2 C2 82 A2 D1 C1 81 A 1 Do Co Bo Ao

D2 D, D0 I r t' r B2 B1 Bo A2 A, Ao

t t t t t t t t t
2 I 0 3 2 I 0 3 2 I 0 3 2 I 0

Register D Register C Register S Register A

bus selection

SECTION 4-3 Bus and Memory Transfers 99

The two selection lines S1 and S0 are connected to the selection inputs of
all four multiplexers. The selection lines choose the four bits of one register and
transfer them into the four-line common bus. When S1S0 = 00, the 0 data
inputs of all four multiplexers are selected and applied to the outputs that form
the bus. This causes the bus lines to receive the content of register A since the
outputs of this register are connected to the 0 data inputs of the multiplexers.
Similarly, register B is selected if S1S0 = 01, and so on. Table 4-2 shows the
register that is selected by the bus for each of the four possible binary value
of the selection lines.

TABLE 4-2 Function Table for Bus of Fig. 4-3

s, s, Register selected

0 A
1 B
0 c

D

In general, a bus system will multiplex k registers of n bits each to produce
an n-line common bus. The number of multiplexers needed to construct the
bus is equal to n , the number of bits in each register. The size of each multi­
plexer must be k x 1 since it multiplexes k data lines. For example, a common
bus for eight registers of 16 bits each requires 16 multiplexers, one for each line
in the bus. Each multiplexer must have eight data input lines and three
selection lines to multiplex one significant bit in the eight registers.

The transfer of information from a bus into one of many destination
registers can be accomplished by connecting the bus lines to the inputs of all
destination registers and activating the load control of the particular destina­
tion register selected. The symbolic statement for a bus transfer may mention
the bus or its presence may be implied in the statement. When the bus is
includes in the statement, the register transfer is symbolized as follows:

BUS +- C, R1 +- BUS

The content of register C is placed on the bus, and the content of the bus is
loaded into register R 1 by activating its load control input. If the bus is known
to exist in the system, it may be convenient just to show the direct transfer.

R1 +- C

From this statement the designer knows which control signals must be acti­
vated to produce the transfer through the bus.

100 CHAPTER FOUR Register Transfer and Microoperations

three-state gate

high-impedance

buffer

bus system

Three-State Bus Buffers
A bus system can be constructed with three-state gates instead of multiplexers.
A three-state gate is a digital circuit that exhibits three states. Two of the states
are signals equivalent to logic 1 and 0 as in a conventional gate. The third state
is a high-impedance state. The high-impedance state behaves like an open circuit,
which means that the output is disconnected and does not have a logic signif­
icance. Three-state gates may perform any conventional logic, such as AND or
NAND. However, the one most commonly used in the design of a bus system
is the buffer gate.

The graphic symbol of a three-state buffer gate is shown in Fig. 4-4. It is
distinguished from a normal buffer by having both a normal input and a control
input. The control input determines the output state. When the control input
is equal to 1, the output is enabled and the gate behaves like any conventional
buffer, with the output equal to the normal input. When the control input is
0, the output is disabled and the gate goes to a high-impedance state, regard­
less of the value in the normal input. The high-impedance state of a three-state
gate provides a special feature not available in other gates. Because of this
feature, a large number of three-state gate outputs can be connected with wires
to form a common bus line without endangering loading effects.

The construction of a bus system with three-state buffers is demonstrated
in Fig. 4-5. The outputs of four buffers are connected together to form a single
bus line. (It must be realized that this type of connection cannot be done with
gates that do not have three-state outputs .) The control inputs to the buffers
determine which of the four normal inputs will communicate with the bus line .
No more than one buffer may be in the active state at any given time. The
connected buffers must be controlled so that only one three-state buffer
has access to the bus line while all other buffers are maintained in a high­
impedance state.

One way to ensure that no more than one control input is active at any
given time is to use a decoder, as shown in the diagram. When the enable input
of the decoder is 0, all of its four outputs are 0, and the bus line is in a
high-impedance state because all four buffers are disabled. When the enable
input is active, one of the three-state buffers will be active, depending on the
binary value in the select inputs of the decoder. Careful investigation will
reveal that Fig. 4-5 is another way of constructing a 4 x 1 multiplexer since the
circuit can replace the multiplexer in Fig. 4-3 .

To construct a common bus for four registers of n bits each using three-

Figure 4-4 Graphic symbols for three�state buffer.

Nonnal input A ---f>--- Output Y = A if C = I

____:j
High-impedance if C = 0

Control input C

memory read

memory write

Select {
Enable

Ao

s,

SECTION 4-3 Bus and Memory Transfers 1 0 1

So 2 x 4 I
decoder 2 1-----'

E

Figure 4-5 Bus line with three state-buffers.

state buffers, we need n circuits with four buffers in each as shown in Fig. 4-5.
Each group of four buffers receives one significant bit from the four registers.
Each common output produces one of the lines for the common bus for a total
of n lines. Only one decoder is necessary to select between the four registers.

Memory Transfer
The operation of a memory unit was described in Sec. 2-7. The transfer of
information from a memory word to the outside environment is called a read
operation. The transfer of new information to be stored into the memory is
called a write operation. A memory word will be symbolized by the letter M .
The particular memory word among the many available i s selected by the
memory address during the transfer. It is necessary to specify the address of
M when writing memory transfer operations. This will be done by enclosing
the address in square brackets following the letter M .

Consider a memory unit that receives the address from a register, called
the address register, symbolized by AR . The data are transferred to another
register, called the data register, symbolized by DR . The read operation can
be stated as follows:

Read: DR +- M[AR]

This causes a transfer of information into DR from the memory word M
selected by the address in AR .

The write operation transfers the content of a data register to a memory
word M selected by the address. Assume that the input data are in register Rl

binary adtkr

SECTION .; . .; Arithmetic Microoperations 1 03

R3 +-- R1 + R2 + 1

R2 is the symbol for the 1' s complement of R2. Adding 1 to the 1' s complement
produces the 2' s complement. Adding the contents of R 1 to the 2' s complement
of R2 is equivalent to R1 - R2.

TABLE 4 .. 3 Arithmetic Microoperations

Symbolic
designation

R3 <--- R1 + R2
R3 <--- R 1 - R2
R2 <--- R2
R2 <--- R2 + 1
R3 <--- R1 + R2 + 1
R1 <--- R1 + 1
R1 <--- R 1 - 1

Description

Contents of R 1 plus R2 transferred to R3
Contents of R 1 minus R2 transferred to R3
Complement the contents of R2 (1's complement)
2's complement the contents of R2 (negate)
R1 plus the 2's complement of R2 (subtraction)
Increment the contents of R 1 by one
Decrement the contents of R 1 by one

The increment and decrement microoperations are symbolized by plus­
one and minus-one operations, respectively. These microoperations are imple­
mented with a combinational circuit or with a binary up-down counter.

The arithmetic operations of multiply and divide are not listed in Table 4-
3. These two operations are valid arithmetic operations but are not included
in the basic set of microoperations. The only place where these operations can
be considered as microoperations is in a digital system, where they are imple­
mented by means of a combinational circuit. In such a case, the signals that
perform these operations propagate through gates, and the result of the oper­
ation can be transferred into a destination register by a clock pulse as soon as
the output signal propagates through the combinational circuit. In most com­
puters, the multiplication operation is implemented with a sequence of add
and shift microoperations. Division is implemented with a sequence of subtract
and shift microoperations. To specify the hardware in such a case requires a
list of statements that use the basic microoperations of add, subtract, and shift
(see Chapter 10).

Binary Adder
To implement the add microoperation with hardware, we need the registers
that hold the data and the digital component that performs the arithmetic
addition. The digital circuit that forms the arithmetic sum of two bits and a
previous carry is called a full-adder (see Fig. 1-17). The digital circuit that
generates the arithmetic sum of two binary numbers of any length is called a
binary adder. The binary adder is constructed with full-adder circuits con-

1 04 CHAPTER FOUR Register Transfer and Microoperations

full-adder

adder-subtractor

c, s, s, s, So

Figure 4·6 4-bit binary adder.

nected in cascade, with the output carry from one full-adder connected to the
input carry of the next full-adder. Figure 4-6 shows the interconnections of four
full-adders (FA) to provide a 4-bit binary adder. The augend bits of A and the
addend bits of B are designated by subscript numbers from right to left, with
subscript 0 denoting the low-order bit. The carries are connected in a chain
through the full-adders. The input carry to the binary adder is C0 and the
output carry is C,. The S outputs of the full-adders generate the required sum
bits.

An n-bit binary adder requires n full-adders. The output carry from each
full-adder is connected to the input carry of the next-high-order full-adder. The
n data bits for the A inputs come from one register (such as R1), and the n data
bits for the B inputs come from another register (such as R2). The sum can be
transferred to a third register or to one of the source registers (R 1 or R2),
replacing its previous content.

Binary Adder-Subtractor
The subtraction of binary numbers can be done most conveniently by means
of complements as discussed in Sec. 3-2. Remember that the subtraction A - B
can be done by taking the 2's complement of B and adding it to A. The 2's
complement can be obtained by taking the 1' s complement and adding one to
the least significant pair of bits. The 1's complement can be implemented with
inverters and a one can be added to the sum through the input carry.

The addition and subtraction operations can be combined into one com­
mon circuit by including an exclusive-OR gate with each full-adder. A 4-bit
adder-subtractor circuit is shown in Fig. 4-7. The mode input M controls the
operation. When M = 0 the circuit is an adder and when M = 1 the circuit
becomes a subtractor. Each exclusive-OR gate receives input M and one of the
inputs of B. When M = 0, we have B a1 0 = B. The full-adders receive the
value of B, the input carry is O, and the circuit performs A plus B . When M = 1,
we have B a1 1 = B' and C0 = 1. The B inputs are all complemented and a 1
is added through the input carry. The circuit performs the operation A plus the

figure 4-7 4-bit add<Nub<ractor.

2's complement of B. For unsigned numbers, this gives A - B if A '" B or the
2's complement of (8 - A) if A < B. For signed numbers, the result is A - B
provided that there Is no overflow.

Binary lncrementer
The increment microoperation adds one to a number in a register. For example,
if a 4-bit register has a binary value 0110, it will go toO! II afterit is incremented.
This microoperation is easily implemented with a binary counter (see Fig. 2·10�
Every time the count enable is active, the clock pulse transition increments the
content of the register by one. There may be occasions when the increment
microoperation must be done with a combinational circuit independent of a
particular register. This can be accomplished by means of half-adders (see
Fig. 1·16) connected in cascade.

The diagram of a 4-bit combinational drcuit incrementer is shown in
Fig. 4-8. One of the inputs to the least significant half-adder (HA) is connected
to logic-1 and the other input is connected to the least significant bit of the
number to be incremented. The output carry from one half-adder is connected
to one of the inputs of the next-higher-1>rder half-adder. The circuit receives
the four bits from A, through A,. adds one to it, and generates the incremented
output in S. through S,. The output carry C, wiD be 1 only after incrementing
binary 1111. This also causes outputs S. through S, to go to 0.

The circuit of Fig. 4-8 can be extended to an n-bit binary incrementer by
extending the diagram to include n half-adders. The least significant bit must
have one input connected to logic-1. The other inputs receive the number to
be incremented or the carry from the previous stage.

1 06 CHAPTER FOUR Register Transfer and Microoperations

arithmetic circuit

input carry

Figure 4 .. 8 4�bit binary incrementer.

Arithmetic Circuit
The arithmetic microoperations listed in Table 4-3 can be implemented in one
composite arithmetic circuit. The basic component of an arithmetic circuit is the
parallel adder. By controlling the data inputs to the adder, it is possible to
obtain different types of arithmetic operations.

The diagram of a 4-bit arithmetic circuit is shown in Fig. 4-9. It has four
full-adder circuits that constitute the 4-bit adder and four multiplexers for
choosing different operations. There are two 4-bit inputs A and B and a 4-bit
output D. The four inputs from A go directly to the X inputs of the binary
adder. Each of the four inputs from B are connected to the data inputs of the
multiplexers. The multiplexers data inputs also receive the complement of B .
The other two data inputs are connected to logic-0 and logic-1 . Logic-0 i s a fixed
voltage value (0 volts for TTL integrated circuits) and the logic-1 signal can be
generated through· an inverter whose input is 0. The four multiplexers are
controlled by two selection inputs, S1 and 50• The input carry C'" goes to the
carry input of the FA in the least significant position. The other carries are
connected from one stage to the next.

The output of the binary adder is calculated from the following arithmetic
sum:

D = A + Y + C'"

where A is the 4-bit binary number at the X inputs and Y is the 4-bit binary
number at the Y inputs of the binary adder. C'" is the input carry, which can
be equal to 0 or 1. Note that the symbol + in the equation above denotes an
arithmetic plus. By controlling the value of Y with the two selection inputs S1
and So and making C'" equal to 0 or 1, it is possible to generate the eight
arithmetic microoperations listed in Table 4-4.

Ao

Bo

L[)

Y>

L[)

L[) 0�1

� s,
-� so

0

I

2

3

f- s,
-� so

0

I

2

3

f- s,
-� so

0

I

2

3

'-- s,
'--- s,

0

I

2

3

SECTION 4-4 Arithmetic Microoperations 1 07

Xo Co

FA r-- Do
4 x l c,
MUX

Yo

x, c,

FA r--

4 X I c,
MUX Y,

x, c,

FA r-- D,

4 x l Y, c,
MUX

x, c,

FA r-- D,

4 X I c,
MUX

Y,

Figure 4 .. 9 4-bit arithmetic circuit.

108 CHAPTER FOUR Register Transfer and Microoperations

addition

subtraction

increment

decrement

TABLE 4-4 Arithmetic Circuit Function Table

Select
Input Output

s, So c." y D = A + Y + C," Microoperation

0 0 0 B D = A + B Add
0 0 1 B D = A + B + 1 Add with carry
0 0 B D = A + B Subtract with borrow
0 1 1 B D = A + B + 1 Subtract

0 0 0 D = A Transfer A
0 1 0 D = A + 1 Increment A

0 D = A - 1 Decrement A
D = A Transfer A

When S1S0 = 00, the value of B is applied to the Y inputs of the adder.
If Cin = O, the output D = A + B . If Cin = 1, output D = A + B + l. Both cases
perform the add microoperation with or without adding the input carry.

When S1S0 = 01, the complement of B is applied to the Y inputs of the
adder. If Cin = 1, then D = A + B + 1. This produces A pius the 2's comple­
ment of B, which is equivalent to a subtraction of A - B. When Cm = 0, then
D = A + B. This is equivalent to a subtract with borrow, that is, A - B - 1.

When S1S0 = 10, the inputs from B are neglected, and instead, all O's are
inserted into the Y inputs. The output becomes D = A + 0 + Cm· This gives
D = A when Cm = 0 and D = A + 1 when Cin = 1. In the first case we have
a direct transfer from input A to output D. In the second case, the value of A
is incremented by 1.

When S1So = 11, all 1' s are inserted into the Y inputs of the adder to
produce the decrement operation D = A - 1 when Cm = 0. This is because a
number with all 1's is equal to the 2's complement of 1 (the 2's complement
of binary 0001 is 1111). Adding a number A to the 2's complement of 1 produces
F = A + 2's complement of 1 = A - 1. When Cin = 1, then D = A - 1 + 1 =
A, which causes a direct transfer from input A to output D. Note that the
microoperation D = A is generated twice, so there are only seven distinct
microoperations in the arithmetic circuit.

4-5 Logic Microoperations

Logic microoperations specify binary operations for strings of bits stored in
registers. These operations consider each bit of the register separately and treat
them as binary variables. For example, the exclusive-OR microoperation with
the contents of two registers R 1 and R2 is symbolized by the statement

P: R1 +- R1 Ell R2

special symbols

SECTION 4-5 Logic Microoperations 109

It specifies a logic microoperation to be executed on the individual bits of the
registers provided that the control variable P = 1. As a numerical example,
assume that each register has four bits. Let the content of R1 be 1010 and the
content of R2 be 1 100. The exclusive-OR microoperation stated above symbol­
izes the following logic computation:

1010 Content of R 1
1 100 Content of R2
0110 Content of R 1 after P = 1

The content of R 1 , after the execution of the microoperation, is equal to the
bit-by-bit exclusive-OR operation on pairs of bits in R2 and previous values of
Rl. The logic microoperations are seldom used in scientific computations, but
they are very useful for bit manipulation of binary data and for making logical
decisions.

Special symbols will be adopted for the logic microoperations OR, AND,
and complement, to distinguish them from the corresponding symbols used
to express Boolean functions. The symbol V will be used to denote an OR
microoperation and the symbol 1\ to denote an AND microoperation. The
complement microoperation is the same as the 1's complement and uses a bar
on top of the symbol that denotes the register name. By using different
symbols, it will be possible to differentiate between a logic microoperation and
a control (or Boolean) function. Another reason for adopting two sets of
symbols is to be able to distinguish the symbol + , when used to symbolize
an arithmetic plus, from a logic OR operation. Although the + symbol has two
meanings, it will be possible to distinguish between them by noting where the
symbol occurs. When the symbol + occurs in a microoperation, it will denote
an arithmetic plus. When it occurs in a control (or Boolean) function, it will
denote an OR operation. We will never use it to symbolize an OR microoper­
ation. For example, in the statement

P + Q: R1 +- R2 + R3, R4 <- R5 V R6

the + between P and Q is an OR operation between two binary variables of a
control function. The + between R2 and R3 specifies an add microoperation.
The OR microoperation is designated by the symbol V between registers R5
and R6.

List of Logic Microoperations
There are 16 different logic operations that can be performed with two binary
variables. They can be determined from all possible truth tables obtained with
two binary variables as shown in Table 4-5. In this table, each of the 16 columns
F0 through F15 represents a truth table of one possible Boolean function for the

1 1 0 CHAPTER FOUR Register Transfer and M icrooperations

TABLE 4·5 Truth Tables for 16 Functions of Two Variables

X y Fo F, F, F, F, F, F, F, F, F, F, F., F, F, F,. F.,

0 0 0 0 0 0 0 0 0 0 I 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1
0 0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0

two variables x and y. Note that the functions are determined from the 16
binary combinations that can be assigned to F.

The 16 Boolean functions of two variables x and y are expressed in
algebraic form in the first column of Table 4-6. The 16 logic microoperations are
derived from these functions by replacing variable x by the binary content of
register A and variable y by the binary content of register B. It is important to
realize that the Boolean functions listed in the first column of Table 4-6 repre­
sent a relationship between two binary variables x and y. The logic micro­
operations listed in the second column represent a relationship between the
binary content of two registers A and B . Each bit of the register is treated as
a binary variable and the microoperation is performed on the string of bits
stored in the registers.

TABLE 4 .. 6 Sixteen Logic Microoperations

Boolean function Microoperation Name

Fo = 0 F<-0 Clear
F. = xy F<-A A B AND
F, = xy ' F +- A A B

FJ = x F<-A Transfer A
F4 = x 'y F <-A A B
Fs = y F +- B Transfer B
F, = x E!ly F<-A E!l B Exclusive-OR
F, = X + y F<-A V B OR
F, = (x + y) ' F<-A V B NOR
F, = (x E!ly)' F<-A E!l B Exclusive-NOR

F1o = y ' F +-B Complement B
Fn = X + y ' F+-A V B

F12 = x ' F <-A Complement A
FtJ = x' + y F <-A V B
F,. = (xy)' F<-A A B NAND
Fts = 1 F <- all l's Set to all 1 's

logic circuit

Hardware Implementation

SECTION 4-5 Logic Microoperations 1 1 1

The hardware implementation of logic rnicrooperations requires that logic
gates be inserted for each bit or pair of bits in the registers to perform the
required logic function. Although there are 16 logic rnicrooperations, most
computers use only four-AND, OR, XOR (exclusive-OR), and complement­
from which all others can be derived.

Figure 4-10 shows one stage of a circuit that generates the four basic logic
rnicrooperations . It consists of four gates and a multiplexer. Each of the four
logic operations is generated through a gate that performs the required logic.
The outputs of the gates are applied to the data inputs of the multiplexer. The
two selection inputs 51 and 50 choose one of the data inputs of the multiplexer
and direct its value to the output. The diagram shows one typical stage with
subscript i. For a logic circuit with n bits, the diagram must be repeated n times
for i = 0, 1, 2, . . . , n - 1. The selection variables are applied to all stages. The
function table in Fig. 4-10(b) lists the logic rnicrooperations obtained for each
combination of the selection variables.

Some Applications
Logic microoperations are very useful for manipulating individual bits or a
portion of a word stored in a register. They can be used to change bit values,
delete a group of bits, or insert new bit values into a register. The following
examples show how the bits of one register (designated by A) are manipulated

A;
B;

Figure 4 .. 10 One stage of logic circuit.

4 x l
MUX

(a) Logic diagram

E;

s, So Output Operation

E = A A B AND

E = A v B OR

E = A ffJ B XOR

E = A Complement

(b) Function table

1 1 2 CHAPTER FOUR Register Transfer and Microoperations

selective-set

by logic rnicrooperations as a function of the bits of another register (designated
by B). In a typical application, register A is a processor register and the bits of
register B constitute a logic operand extracted from memory and placed in
register B .

The selective-set operation sets t o 1 the bits in register A where there are
corresponding 1's in register B . It does not affect bit positions that have D's in
B. The following numerical example clarifies this operation:

1010 A before
1100 B (logic operand)
1110 A after

The two leftmost bits of B are 1' s, so the corresponding bits of A are set to 1 .
One o f these two bits was already set and the other has been changed from
0 to I. The two bits of A with corresponding 0' s in B remain unchanged. The
example above serves as a truth table since it has all four possible combinations
of two binary variables. From the truth table we note that the bits of A after
the operation are obtained from the logic-OR operation of bits in B and previ­
ous values of A . Therefore, the OR rnicrooperation can be used to selectively
set bits of a register.

sekctive-complement The selective-complement operation complements bits in A where there are

selective-clear

corresponding l's in B . It does not affect bit positions that have D's in B . For
example:

1010 A before
1100 B (logic operand)
0110 A after

Again the two leftmost bits of B are 1's, so the corresponding bits of A are
complemented. This example again can serve as a truth table from which one
can deduce that the selective-complement operation is just an exclusive-OR
rnicrooperation. Therefore, the exclusive-OR rnicrooperation can be used to
selectively complement bits of a register.

The selective-clear operation clears to 0 the bits in A only where there are
corresponding 1's in B. For example:

1010 A before
1100 B (logic operand)
0010 A after

Again the two leftmost bits of B are 1' s, so the corresponding bits of A are
cleared to 0. One can deduce that the Boolean operation performed on the
individual bits is AB ' . The corresponding logic rnicrooperation is

A +- A /\ B

SECTION 4-5 Logic Microoperations 1 1 3

The mask operation is similar to the selective-clear operation except that
the bits of A are cleared only where there are corresponding 0' s in B. The mask
operation is an AND micro operation as seen from the following numerical
example:

1010 A before
1100 B (logic operand)
1000 A after masking

The two rightmost bits of A are cleared because the corresponding bits of B are
0' s. The two leftmost bits are left unchanged because the corresponding bits
of B are 1's. The mask operation is more convenient to use than the selective­
clear operation because most computers provide an AND instruction, and few
provide an instruction that executes the microoperation for selective-clear.

The insert operation inserts a new value into a group of bits. This is done
by first masking the bits and then ORing them with the required value. For
example, suppose that an A register contains eight bits, 0110 1010. To replace
the four leftmost bits by the value 1001 we first mask the four unwanted bits:

0110 1010
0000 1111
0000 1010

and then insert the new value:

0000 1010
1001 0000
1001 1010

A before
B (mask)
A after masking

A before
B (insert)
A after insertion

The mask operation is an AND microoperation and the insert operation is an
OR microoperation.

The clear operation compares the words in A and B and produces an all
0' s result if the two numbers are equal. This operation is achieved by an
exclusive-OR microoperation as shown by the following example:

1010 A
1010 B
0000 A <-A EB B

When A and B are equal, the two corresponding bits are either both 0 or both
1. In either case the exclusive-OR operation produces a 0. The all-O's result is
then checked to determine if the two numbers were equal.

1 1 4 CHAPTER FOUR Register Transfer and Microoperations

logical shift

circular shift

arithmetic shift

4-6 Shift Microoperations

Shift rnicrooperations are used for serial transfer of data . They are also used
in conjunction with arithmetic, logic, and other data-processing operations.
The contents of a register can be shifted to the left or the right. At the same
time that the bits are shifted, the first flip-flop receives its binary information
from the serial input. During a shift-left operation the serial input transfers a
bit into the rightmost position. During a shift-right operation the serial input
transfers a bit into the leftmost position. The information transferred through
the serial input determines the type of shift. There are three types of shifts:
logical, circular, and arithmetic.

A logical shift is one that transfers 0 through the serial input. We will adopt
the symbols shl and shr for logical shift-left and shift-right rnicrooperations. For
example:

R1 +- shl R1

R2 +- shr R2

are two rnicrooperations that specify a 1-bit shift to the left of the content of
register R 1 and a 1-bit shift to the right of the content of register R2. The register
symbol must be the same on both sides of the arrow. The bit transferred to the
end position through the serial input is assumed to be 0 during a logical shift.

The circular shift (also known as a rotate operation) circulates the bits of
the register around the two ends without loss of information. This is accom­
plished by connecting the serial output of the shift register to its serial input.
We will use the symbols cil and cir for the circular shift left and right, respec­
tively. The symbolic notation for the shift rnicrooperations is shown in Ta­
ble 4-7.

TABLE 4-7 Shift Microoperations

Symbolic designation

R +- shl R
R +- shr R
R +-ci! R
R +-cir R
R +-ashl R
R +-ashr R

Description

Shift-left register R
Shift-right register R
Circular shift-left register R
Circular shift-right register R
Arithmetic shift-left R
Arithmetic shift-right R

An arithmetic shift is a rnicrooperation that shifts a signed binary number
to the left or right. An arithmetic shift-left multiplies a signed binary number
by 2. An arithmetic shift-right divides the number by 2. Arithmetic shifts must
leave the sign bit unchanged because the sign of the number remains the same

shifter

SECTION 4-6 Shift Microoperations 1 1 5

c:{j2-_-, '� -R-, -_ ,-.-----------.--R-,-.--R-,-,
Sign
bit

Figure 4 .. 11 Arithmetic shift right.

when it is multiplied or divided by 2. The leftmost bit in a register holds the
sign bit, and the remaining bits hold the number. The sign bit is 0 for positive
and I for negative. Negative numbers are in 2's complement form. Figure 4-11
shows a typical register of n bits. Bit R, _ 1 in the leftmost position holds the
sign bit. R, _ 2 is the most significant bit of the number and Ro is the least
significant bit. The arithmetic shift-right leaves the sign bit unchanged and
shifts the number (including the sign bit) to the right. Thus R, _ 1 remains the
same, R, _ 2 receives the bit from R, _ " and so on for the other bits in the
register. The bit in Ro is lost.

The arithmetic shift-left inserts a 0 into R,, and shifts all other bits to the
left. The initial bit of R, _ 1 is lost and replaced by the bit from R, _ 2• A sign
reversal occurs if the bit in R, _ 1 changes in value after the shift. This happens
if the multiplication by 2 causes an overflow. An overflow occurs after an
arithmetic shift left if initially, before the shift, R, _ 1 is not equal to R, _ 2 • An
overflow flip-flop V, can be used to detect an arithmetic shift-left overflow.

If V, = 0, there is no overflow, but if V, = I, there is an overflow and a sign
reversal after the shift. V, must be transferred into the overflow flip-flop with
the same clock pulse that shifts the register.

Hardware Implementation
A possible choice for a shift unit would be a bidirectional shift register with
parallel load (see Fig. 2-9). Information can be transferred to the register in
parallel and then shifted to the right or left. In this type of configuration, a clock
pulse is needed for loading the data into the register, and another pulse is
needed to initiate the shift. In a processor unit with many registers it is more
efficient to implement the shift operation with a combinational circuit. In this
way the content of a register that has to be shifted is first placed onto a common
bus whose output is connected to the combinational shifter, and the shifted
number is then loaded back into the register. This requires only one clock pulse
for loading the shifted value into the register.

A combinational circuit shifter can be constructed with multiplexers as
shown in Fig. 4-12. The 4-bit shifter has four data inputs, A0 through A,, and
four data outputs, H0 through H3• There are two serial inputs, one for shift left

1 1 6 CHAPTER FOUR Register Transfer and Microoperations

ALU

A o

Serial
input (/R)

I

-

I
Serial

input (/d

Select
0 for shift right (down)
I for shift left (up)

t-- s

0 MUX r- Ho
I

L � s

- o MUX - Function table
H ,

I Select Output

Ho H, H, H,

� s
IR Ao A , A ,

0 MUX - H, A , A , A , h
I

� s

0 MUX -

I

Figure 4 .. 12 4 .. bit combinational circuit shifter.

(IL) and the other for shift right (h). When the selection input S = 0, the input
data are shifted right (down in the diagram). When S = 1, the input data are
shifted left (up in the diagram). The function table in Fig. 4-12 shows which
input goes to each output after the shift. A shifter with n data inputs and
outputs requires n multiplexers. The two serial inputs can be controlled by
another multiplexer to provide the three possible types of shifts.

4-7 Arithmetic Logic Shift Unit

Instead of having individual registers performing the microoperations directly,
computer systems employ a number of storage registers connected to a com­
mon operational unit called an arithmetic logic unit, abbreviated ALU. To

SfC'T'IGI 4-7 Aridunetic Loeic Shift Unit 117

perform a miaooperation, the contents of specified registers are placed in the
inputs of the common AW. The AW performs an operation and the result of
the operation is then transferred to a destination register. The AW is a
combinational circuit so that the entire register transfer operation from the
source registers through the ALU and into the destination register can be
performed during one clock pulse period. The shift microoperations are often
performed in a separate unit, but sometimes the shift unit is made part of the
overall ALU.

The arithmetic, logic, and shift circuits introduced in previous sections
can be combined into one ALU with common selection variables. One stage
of an arithmetic logic shift unit is shown in Fig. 4-13. The subscript i designates
a typical stage. Inputs A.1 and 81 are applied to both the arithmetic and logic

s,

Sz

s,

So

8;

A;

-

r-

1-r-

1-1-

'-
-

- I

+ I

r
Onr ... ol

........,
<in:tM

(f'll.49)

0 � C, + J

o..,.ol

==

o,

'---Sdn:t

0 4><1
MUX -

I
F;

r---l
'

E,

slar

sit/

1 18 CHAPTER FOUR Register Transfer and Microoperations

units. A particular microoperation is selected with inputs 51 and 50• A 4 x 1
multiplexer at the output chooses between an arithmetic output in E; and a logic
output in H;. The data in the multiplexer are selected with inputs 53 and 52•
The other two data inputs to the multiplexer receive inputs A; _ 1 for the
shift-right operation and A; + 1 for the shift-left operation. Note that the diagram
shows just one typical stage. The circuit of Fig. 4-13 must be repeated n times
for an n-bit ALU. The output carry C; + 1 of a given arithmetic stage must be
connected to the input carry C; of the next stage in sequence. The input carry
to the first stage is the input carry C;,., which provides a selection variable for
the arithmetic operations.

The circuit whose one stage is specified in Fig. 4-13 provides eight arith­
metic operation, four logic operations, and two shift operations. Each opera­
tion is selected with the five variables 53, 52, 51, 50, and C.,. The input carry C.,
is used for selecting an arithmetic operation only.

Table 4-B lists the 14 operations of the ALU. The first eight are arithmetic
operations (see Table 4-4) and are selected with 5352 = 00. The next four are
logic operations (see Fig. 4-10) and are selected with 5352 = 01. The input carry
has no effect during the logic operations and is marked with don't-care x's .
The last two operations are shift operations and are selected with S,S, = 10 and
11 . The other three selection inputs have no effect on the shift.

TABLE 4 .. 8 Function Table for Arithmetic Logic Shift Unit

Operation select

s, s, S, So c., Operation Function

0 0 0 0 0 F = A Transfer A
0 0 0 0 1 F = A + 1 Increment A
0 0 0 1 0 F = A + B Addition
0 0 0 1 1 F = A + B + 1 Add with carry
0 0 1 0 0 F = A + lf Subtract with borrow
0 0 1 0 1 F = A + lf + 1 Subtraction
0 0 1 1 0 F = A - 1 Decrement A
0 0 1 1 I F = A Transfer A
0 1 0 0 X F = A A B AND
0 1 0 1 X F = A V B OR
0 1 0 X F = A ff! B XOR
0 1 1 X F = A Complement A
1 0 X X X F = shr A Shift right A into F
1 1 X X X F = shl A Shift left A into F

SECTlON •·I Ar!tluntrk UJcic Shift Unit 119

PROBLEMS

4-1. Show the block diagram ol the hardware (similar to Fig. 4-2a) that imple­
ments the following register transfer statement:

4-2. The outputs of four registers, RO, Rl, R2. and R3, are c:xmne<.ted through
4-tc>-1-line multipleJ<erS to the inputs of a fifth register, RS. Each register is
eight bits long. The required transfers are dictated by four timing variables
To through T, as foUows:

To: RS+-RO
To: RS<-Rl
T,: R5<-R2
T,: RS+-R3

The timing variables are mutuaUy e>cclusive, which means that only one
variable is equal to I at any given time, while the other tlwe are equal to
0. Draw a block diagram showing the hanfware Implementation of the
register transfers. Include the connections nettSSoll)' from the four timing
variables to the selection inputs of the multiplexers and to the load input of
register RS.

4-3. Represent the following conditional control statement by two register trans­
fer statements with rontrol functions.

If (P • I) then (RI +-R2) else If (Q • I) then (RI<-R3)

4-4. What has to be done to the bus system of Fig. 4-3 to be able to transfer
ill.lormation from any register to any other register? Specifically, show the
connections that must be illcluded to provide a path from the outputs of
register C to the Inputs of register .1\.

4-S. Draw a diagram of a bus system limllar to the one shown ill Fig. 4-3, but use
three-stale buffers and a decoder instead of the multiplexers.

t-6. A digital computer has a common bus system for 16 registers of 32 bits eaeh.
The bus Is oonstructed with multiplexers.
a. How many selection illputs are there ill eaeh multiplexer?
b. What size of multiplexers are needed?
c. How many multiple><ers are there ill the bus?

4-7. The following transfer statements specify a memory. Explain the memory
operation in eam case.
a. R2+-M[.I\R]
b. M[.I\R}+-R3
c. RS-M[RS}

120 CHAPTER FOUR Register Transfer and Microoperations

4-8. Draw the block diagram for the hardware that implements the following
statements:

x + yz : AR +- AR + BR

where AR and BR are two n-bit registers and x, y, and z are control variables.
Include the logic gates for the control function. (Remember that the sym­
bol + designates an OR operation in a control or Boolean function but that
it represents an arithmetic plus in a microoperation.)

4-9. Show the hardware that implements the following statement. Include the
logic gates for the control function and a block diagram for the binary counter
with a count enable input.

ryT, + T, + y 'T,: AR +- AR + 1

4-10. Consider the following register transfer statements for two 4-bit registers R1
and R2.

xT: R1 +- R 1 + R2
x'T: R1 +- R2

Every time that variable T = 1, either the content of R2 is added to the
content of Rl if x = 1, or the content of R2 is transferred to R1 if x = 0. Draw
a diagram showing the hardware implementation of the two statements. Use
block diagrams for the two 4-bit registers, a 4-bit adder, and a quadruple
2-to-1-llne multiplexer that selects the inputs to R l . In the diagram, show
how the control variables x and T select the inputs of the multiplexer and
the load input of register R l .

4-11. Using a 4-bit counter with parallel load as in Fig. 2-11 and a 4-bit adder as
in Fig. 4-6, draw a block diagram that shows how to implement the following
statements:

x : R1 +- R 1 + R2
x 'y : R1 +-R1 + 1

Add R2 to R1
Increment R 1

where R1 is a counter with parallel load and R2 is a 4-bit register.

4-12. The adder-subtractor circuit of Fig. 4-7 has the following values for input
mode M and data inputs A and B. In each case, determine the values of the
outputs: 53, 52, 51, 50, and C4•

M A B

a. 0 0111 0110
b. 0 1000 1001
c. 1 1100 1000
d. 1 0101 1010
e. 0000 0001

SECTION 4-7 Arithmetic Logic Shift Unit 1 2 1

4-13. Design a 4-bit combinational circuit decrementer using four full-adder cir­
cuits.

4-14. Assume that the 4-bit arithmetic circuit of Fig. 4-9 is enclosed in one IC
package. Show the connections among two such lCs to form an 8-bit arith­
metic circuit.

4-15. Design an arithmetic circuit with one selection variable S and two n-bit data
inputs A and B. The circuit generates the following four arithmetic opera­
tions in conjunction with the input carry CLn. Draw the logic diagram for the
first two stages.

s

0 D � A + B (add) D � A + 1 (increment)
D � A - 1 (decrement) D � A + lf + 1 (subtract)

4-16. Derive a combinational circuit that selects and generates any of the 16 logic
functions listed in Table 4-5.

4-17. Design a digital circuit that performs the four logic operations of exclusive­
OR, exclusive-NOR, NOR, and NAND. Use two selection variables. Show
the logic diagram of one typical stage.

4-18. Register A holds the 8-bit binary 11011001 . Determine the B operand and the
logic microoperation to be performed in order to change the value in A to:
·- 01101101
b. 1111 1101

4-19. The 8-bit registers AR, BR, CR, and DR initially have the following values:

AR 11110010
BR 11111111
CR 10111001
DR 11101010

Determine the 8-bit values in each register after the execution of the follow­
ing sequence of microoperations.

AR <- AR + BR
CR <- CR 1\ DR, BR <- BR + 1
AR <-AR - CR

Add BR to AR
AND DR to CR, increment BR
Subtract CR from AR

4-20. An 8-bit register contains the binary value 10011100. What is the register
value after an arithmetic shift right? Starting from the initial number
10011 100, determine the register value after an arithmetic shift left, and state
whether there is an overflow.

4-21. Starting from an initial value of R � 11011101, determine the sequence of
binary values in R after a logical shift-left, followed by a circular shift-right,
followed by a logical shift-right and a circular shift-left.

122 CHAJ>Te\ F<XJR Rqisrer Transfer and Mlcroopmltions

4-22.. What is the value ol output H in Fig. 4-12 if input A is 1001, S = 1, 1- = 1,
and It = 0?

4-23. What is wrong with the following register transfer sl3tements?
a. :rT: AR -AR", AR �o
b. yT: R1�R2. R1+-R3
c. zT: PC+-AR, PC+-PC + I

REFERENCES

1. BeU, C. G., J. C. Mudge, and J. E. McNamara, Computn-f.ngin«ring. Bedford. MA:
Digital Press, 1980.

2. Booth, T. L., lntrod�U:Iion to ComputtT Enginming, 3rd ed. New York: John Wiley,
1984.

3. Hays,). P., Computer llrdtiltdurund Orga:rriz.otiort, 2nd ed. New York: McGraw-HilL
1988.

4. Hill, F. J., and G. R. Peterson, DigiW Systrms: HllrdWtUr Orglmi:Jition and Dtsign. 3rd
ed. New York: John Wiley, 1987.

5. Mano, M. M., CompultT Engineering: Hl>rdwarr O.Sign. En� Oil!s, NJ: Pren­
tice HaU, 1988.

6. Patterson, D. A.,andJ. L Hennessy,ComputaArdtitl'diiTt:AQ..Antil<l liwApprood!.
San Mateo, CA: �n Kaufmann Publishers, 1990.

7. Prosser, F. P.,ond D. E. Winkel, TheArtofDigii<IIDtsign, 2nded. �Oilfa,
NJ: Prentice Hall. 1987.

8. Sandige, R. S., Modan Digital Dtlign. New York: MtCnw·Hill, 1990.

9. Shlv11, S. G., Compultr O.Sign and Arclrit«<urr, 2nd ed. New York: HuperColllns
PubUshera, 1991.

10. Tomek, 1., Introduction to Computer �tiort. Rockville, MD: Computer Science
Press, 1981.

11. Ward, S. A., and R.H. Halstc.td, Jr., Compul<ltion Structvm. Cambridge, MA: MrT
Press, 1990.

C H A P T E R F I V E

Basic Computer
Organization
and Design

IN TinS CHAPTER

s-1 Instruction Codes

S-2 Computer Rqlstttt
S-3 Compurrr lnsauctions
S-4 Timing and Control

5-S Instruction Cyele
S-6 Memory·Rdermce lnsauctions
S-7 Input-Output and Interrupt
S-8 Complete Computer Description
S-9 Oeaiin d Balle Computer
S-10 Design d Accumulator Logic

5·1 Instruction Codes

In this chapter we introduce a basic computer and show how its operation can
be specified with register transfer statements. The otganization of the com­
puter is defined by its internal registers, the limirlg and control structure,
and the set of instructions that It uses. The design of the computer is then
carried out in detall. Although the basic computer presented in this chapter is
very small compared to commercial computers, It has the advantage of being
simple enough so we can demonstrate the design process without too many
complications.

The internal organization of a digital system is defined by the sequence
of rrUcrooperations it performs on data stored in its regislera. The general­
piJ1'j)O&e digital computer is capable of executing various miaooperations and,
in addition., can be instructed as to what specific sequence of operations it must
perform. The user of a computer can control the process by means of a
program. A program is a set of instructions that specify the operations,

123

1 24 CHAPTER AVE Basic Computer Organization and Design

instmction code

"Peration cod£

operands, and the sequence by which processing has to occur. The data­
processing task may be altered by specifying a new program with different
instructions or specifying the same instructions with dilferent data.

A computer instruction is a binary code that specifies a sequence of
microoperations for the computer. Instruction codes together with data are
stored in memory. The computer reads each instruction from memory and
places it in a control register. The control then interprets the binary code of the
instruction and proceeds to execute it by issuing a sequence of microopera­
tions. Every computer has its own unique instruction set. The ability to store
and execute instructions, the stored program concept, is the most important
property of a general-purpose computer .

An instruction code is a group of bits that instruct the computer to
perform a specific operation. It is usually divided into parts, each having its
own particular interpretation. The most basic part of an instruction code is its
operation part. The operation code of an instruction is a group of bits that
define such operations as add, subtract, multiply, shift, and complement. The
number of bits required for the operation code of an instruction depends on
the total number of operations available in the computer. The operation code
must consist of at least n bits for a given 2" (or less) distinct operations. As an
illustration, consider a computer with 64 distinct operations, one of them being
an ADD operation. The operation code consists of six bits, with a bit configu­
ration 110010 assigned to the ADD operation . When this operation code is
decoded in the control unit, the computer issues control signals to read an
operand from memory and add the operand to a processor register.

At this point we must recognize the relationship between a computer
operation and a microoperation. An operation is part of an instruction stored
in computer memory. It is a binary code that tells the computer to perform a
specific operation. The control unit receives the instruction from memory and
interprets the operation code bits. It then issues a sequence of control signals
to initiate microoperations in internal computer registers. For every operation
code, the control issues a sequence of microoperations needed for the hard­
ware implementation of the specified operation. For this reason, an operation
code is sometimes called a macrooperation because it specifies a set of micro­
operations.

The operation part of an instruction code specifies the operation to be
performed. This operation must be performed on some data stored in proces­
sor registers or in memory. An instruction code must therefore specify not only
the operation but also the registers or the memory words where the operands
are to be found, as well as the register or memory word where the result is to
be stored. Memory words can be specified in instruction codes by their ad­
dress. Processor registers can be specified by assigning to the instruction
another binary code of k bits that specifies one of 2' registers. There are many
variations for arranging the binary code of instructions, and each computer has
its own particular instruction code format. Instruction code formats are con-

opcode

SECTION 5-1 Instruction Codes 125

ceived by computer designers who specify the architecture of the computer.
In this chapter we choose a particular instruction code to explain the basic
organization and design of digital computers.

Stored Program Organization
The simplest way to organize a computer is to have one processor register and
an instruction code format with two parts. The first part specifies the operation
to be performed and the second specifies an address. The memory address tells
the control where to find an operand in memory. This operand is read from
memory and used as the data to be operated on together with the data stored
in the processor register.

Figure 5-1 depicts this type of organization. Instructions are stored in one
section of memory and data in another. For a memory unit with 4096 words
we need 12 bits to specify an address since 212 = 4096. If we store each instruc­
tion code in one 16-bit memory word, we have available four bits for the
operation code (abbreviated opcode) to specify one out of 16 possible opera­
tions, and 12 bits to specify the address of an operand. The control reads a
16-bit instruction from the program portion of memory. It uses the 12-bit
address part of the instruction to read a 16-bit operand from the data portion
of memory. It then executes the operation specified by the operation code.

Figure 5 .. 1 Stored program organization.

1 5 1 2 I I

()p<:ode Address

Instruction fonnat

1 5

Binary operand

Memory
4096 X 1 6

r-----------�

Instructions
(program)

()p<:rands
(data)

L-.--_____ __.J

Processor register
(accumulator or AC)

1 26 CHAPTER FIVE Basic Computer Organization and Design

accumulator (AC)

immediate
instmction

effective address

Computers that have a single-processor register usually assign to it the name
accumulator and label it AC. The operation is performed with the memory
operand and the content of AC.

If an operation in an instruction code does not need an operand from
memory, the rest of the bits in the instruction can be used for other purposes.
For example, operations such as clear AC, complement AC, and increment AC
operate on data stored in the AC register. They do not need an operand from
memory. For these types of operations, the second part of the instruction code
(bits 0 through 11) is not needed for specifying a memory address and can be
used to specify other operations for the computer.

Indirect Address
It is sometimes convenient to use the address bits of an instruction code not
as an address but as the actual operand. When the second part of an instruction
code specifies an operand, the instruction is said to have an immediate
operand. When the second part specifies the address of an operand, the
instruction is said to have a direct address. This is in contrast to a third
possibility called indirect address, where the bits in the second part of the
instruction designate an address of a memory word in which the address of
the operand is found. One bit of the instruction code can be used to distinguish
between a direct and an indirect address.

As an illustration of this configuration, consider the instruction code
format shown in Fig. 5-2(a). It consists of a 3-bit operation code, a 12-bit
address, and an indirect address mode bit designated by I. The mode bit is 0
for a direct address and 1 for an indirect address. A direct address instruction
is shown in Fig. 5-2(b). It is placed in address 22 in memory. The I bit is 0, so
the instruction is recognized as a direct address instruction. The opcode speci­
fies an ADD instruction, and the address part is the binary equivalent of 457.
The control finds the operand in memory at address 457 and adds it to the
content of AC. The instruction in address 35 shown in Fig. 5-2(c) has a mode
bit I = 1. Therefore, it is recognized as an indirect address instruction. The
address part is the binary equivalent of 300. The control goes to address 300
to find the address of the operand. The address of the operand in this case is
1350. The operand found in address 1350 is then added to the content of AC.
The indirect address instruction needs two references to memory to fetch an
operand. The first reference is needed to read the address of the operand; the
second is for the operand itself. We define the effective address to be the address
of the operand in a computation-type instruction or the target address in a
branch-type instruction. Thus the effective address in the instruction of Fig.
5-2(b) is 457 and in the instruction of Fig 5-2(c) is 1350.

The direct and indirect addressing modes are used in the computer
presented in this chapter. The memory word that holds the address of the
operand in an indirect address instruction is used as a pointer to an array of

1 5 14

I I Opoode

Memory

22 0 ADD 457

1 2 I I

SECTION ;.2 Computer Registers 1 2 7

0

Address I
(a) Instruction format

Memory

35 I ADD

300 1 350

300

457 Operand

(b) Direct address (c) Indirect address

Figure 5�2 Demonstration of direct and indirect address.

data. The pointer could be placed in a processor register instead of memory
as done in commercial computers.

5-2 Computer Registers

Computer instructions are normally stored in consecutive memory locations
and are executed sequentially one at a time. The control reads an instruction
from a specific address in memory and executes it. It then continues by reading
the next instruction in sequence and executes it, and so on. This type of
instruction sequencing needs a counter to calculate the address of the next
instruction after execution of the current instruction is completed. It is also
necessary to provide a register in the control unit for storing the instruction

128 CHAPTER F1VE Basic Computer Organization and Design

program
counter (PO

code after it is read from memory. The computer needs processor registers for
manipulating data and a register for holding a memory address. These require­
ments dictate the register configuration shown in Fig. 5-3. The registers are also
listed in Table 5-1 together with a brief description of their function and the
number of bits that they contain.

The memory unit has a capacity of 4096 words and each word contains
16 bits. Twelve bits of an instruction word are needed to specify the address
of an operand. This leaves three bits for the operation part of the instruction
and a bit to specify a direct or indirect address. The data register (DR) holds
the operand read from memory. The accumulator (AC) register is a general­
purpose processing register. The instruction read from memory is placed in the
instruction register (IR). The temporary register (TR) is used for holding tem­
porary data during the processing.

Register
symbol

DR
AR
AC
IR
PC
TR
INPR
OUTR

TABLE 5�1 List of Registers for the Basic Computer

Number
of bits

16
12
16
16
12
16
8

Register name

Data register
Address register
Accumulator
Instruction register
Program counter
Temporary register
Input register
Output register

Function

Holds memory operand
Holds address for memory
Processor register
Holds instruction code
Holds address of instruction
Holds temporary data
Holds input character
Holds output character

The memory address register (AR) has 12 bits since this is the width of
a memory address. The program counter (PC) also has 12 bits and it holds the
address of the next instruction to be read from memory after the current
instruction is executed. The PC goes through a counting sequence and causes
the computer to read sequential instructions previously stored in memory.
Instruction words are read and executed in sequence unless a branch instruc­
tion is encountered. A branch instruction calls for a transfer to a nonconsecu­
tive instruction in the program. The address part of a branch instruction is
transferred to PC to become the address of the next instruction. To read an
instruction, the content of PC is taken as the address for memory and a memory
read cycle is initiated. PC is then incremented by one, so it holds the address
of the next instruction in sequence.

Two registers are used for input and output. The input register (INPR)
receives an 8-bit character from an input device. The output register (OUTR)
holds an 8-bit character for an output device.

load (LD)

I I

PC

I I

AR

1 5

IR

1 5

TR

0

OUTR I I JNPR

0

0

I
0

0

SECTION ;_z Computer Registers 1 29

Memory
4096 words

16 bits per word

1 5

DR

1 5 0

AC

Figure 5-3 Basic computer registers and memory.

Common Bus System
The basic computer has eight registers, a memory unit, and a control unit (to
be presented in Sec. 5-4). Paths must be provided to transfer information from
one register to another and between memory and registers. The number of
wires will be excessive if connections are made between the outputs of each
register and the inputs of the other registers. A more efficient scheme for
transferring information in a system with many registers is to use a common
bus. We have shown in Sec. 4-3 how to construct a bus system using multiplex­
ers or three-state buffer gates. The connection of the registers and memory of
the basic computer to a common bus system is shown in Fig. 5-4.

The outputs of seven registers and memory are connected to the common
bus. The specific output that is selected for the bus lines at any given time is
determined from the binary value of the selection variables S2, S1, and 50• The
number along each output shows the decimal equivalent of the required binary
selection. For example, the number along the output of DR is 3. The 16-bit
outputs of DR are placed on the bus lines when S2S1S0 = 011 since this is the
binary value of decimal 3. The lines from the common bus are connected to the
inputs of each register and the data inputs of the memory. The particular
register whose LD (load) input is enabled receives the data from the bus during
the next clock pulse transition. The memory receives the contents of the bus
when its write input is activated. The memory places its 16-bit output onto the
bus when the read input is activated and S2S1S0 = 111 .

Four registers, DR, AC, IR, and TR, have 16 bits each. Two registers, AR

s, _ hj s,
,..... I l s.

Memaeyllllil I 7

I -10!16,.16
Address I I

Write Reod

All A I
T I I
lD IJifR CLR

PC
A

2

T I I L_
lD I'IR CLR

DR
A 3

l �R I L_ CLR

�
M:

A
•

IJR c� L_ I
LO

INn l
Ill s

I T_
U>

7JI 6

I I I L_
LO INR a.R

oura I
I
lD Clodc

- 16-loil-- -

130

memory address

SECTION 5-2 Computer Registers 1 3 1

and PC, have 1 2 bits each since they hold a memory address. When the
contents of AR or PC are applied to the 16-bit common bus, the four most
significant bits are set to O's. When AR or PC receive information from the bus,
only the 12 least significant bits are transferred into the register.

The input register INPR and the output register OUTR have 8 bits each
and communicate with the eight least significant bits in the bus. INPR is
connected to provide information to the bus but OUTR can only receive infor­
mation from the bus. This is because INPR receives a character from an input
device which is then transferred to AC . OUTR receives a character from AC and
delivers it to an output device. There is no transfer from OUTR to any of the
other registers.

The 16 lines of the common bus receive information from six registers and
the memory unit. The bus lines are connected to the inputs of six registers and
the memory. Five registers have three control inputs: LD (load), INR (incre­
ment), and CLR (clear). This type of register is equivalent to a binary counter
with parallel load and synchronous clear similar to the one shown in Fig. 2-1 1 .
The increment operation i s achieved b y enabling the count input o f the coun­
ter. Two registers have only a LD input. This type of register is shown in
Fig. 2-7.

The input data and output data of the memory are connected to the
common bus, but the memory address is connected to AR . Therefore, AR must
always be used to specify a memory address. By using a single register for the
address, we eliminate the need for an address bus that would have been
needed otherwise. The content of any register can be specified for the memory
data input during a write operation. Similarly, any register can receive the data
from memory after a read operation except AC .

The 16 inputs of AC come from an adder and logic circuit. This circuit has
three sets of inputs. One set of 16-bit inputs come from the outputs of AC . They
are used to implement register rnlcrooperations such as complement AC and
shift AC . Another set of 16-bit inputs come from the data register DR. The
inputs from DR and AC are used for arithmetic and logic rnlcrooperations, such
as add DR to AC or AND DR to AC . The result of an addition is transferred
to AC and the end carry-out of the addition is transferred to flip-flop E (ex­
tended AC bit). A third set of 8-bit inputs come from the input register INPR .
The operation of INPR and OUTR is explained in Sec. 5-7.

Note that the content of any register can be applied onto the bus and an
operation can be performed in the adder and logic circuit during the same clock
cycle. The clock transition at the end of the cycle transfers the content of the
bus into the designated destination register and the output of the adder and
logic circuit into AC . For example, the two rnlcrooperations

DR +-- AC and AC +-- DR

can be executed at the same time. This can be done by placing the content of
AC on the bus (with 525150 = 100), enabling the LD (load) input of DR, trans-

132 CHAPTER FIVE Basic Computer Organization and Design

Instruction format

ferring the content of DR through the adder and logic circuit into AC, and
enabling the LD (load) input of AC, all during the same clock cycle. The two
transfers occur upon the arrival of the clock pulse transition at the end of the
clock cycle.

5-3 Computer Instructions

The basic computer has three instruction code formats, as shown in Fig. 5-5.
Each format has 16 bits. The operation code (opcode) part of the instruction
contains three bits and the meaning of the remaining 13 bits depends on the
operation code encountered. A memory-reference instruction uses 12 bits to
specify an address and one bit to specify the addressing mode I. I is equal to
0 for direct address and to 1 for indirect address (see Fig. 5-2}. The register­
reference instructions are recognized by the operation code Ill with a 0 in the
leftmost bit (bit 15) of the instruction. A register-reference instruction specifies
an operation on or a test of the AC register. An operand from memory is not
needed; therefore, the other 12 bits are used to specify the operation or test to
be executed. Similarly, an input-output instruction does not need a reference
to memory and is recognized by the operation code Ill with a 1 in the leftmost
bit of the instruction. The remaining 12 bits are used to specify the type of
input-output operation or test performed.

The type of instruction is recognized by the computer control from the four
bits in positions 12 through 15 of the instruction. If the three opcode bits in
positions 12 though 14 are not equal to I l l , the instruction is a memory-reference
type and the bit in position 15 is taken as the addressing mode I. If the 3-bit opcode
is equal to Ill, control then inspects the bit in position 15. If this bit is 0, the

Figure 5-S Basic computer instruction formats.

15 14 1 2 I I

Address

(a) Memory - reference instruction

0

1 5 1 2 I I 0

(Opoode = 000 through I 10)

0 I I I Register operation (Opcode = I l l , I = 0)

(b) Register - reference instruction

1 5 12 I I

1/0 operation

(c) Input - output instruction

(Opcode = I l l , I = I)

SECflON 5-3 Computer Instructions 133

instruction is a register-reference type. If the bit i s 1, the instruction is an
input--<mtput type. Note that the bit in position 15 of the instruction code is
designated by the symbol I but is not used as a mode bit when the operation
code is equal to 111 .

Only three bits of the instruction are used for the operation code. I t may
seem that the computer is restricted to a maximum of eight distinct operations.
However, since register-reference and input--<mtput instructions use the remain­
ing 12 bits as part of the operation code, the total number of instructions can
exceed eight . In fact, the total number of instructions chosen for the basic
computet ·ls equa'\ 'to 25.

The instructions for the computer are listed in Table 5-2. The symbol
designation is a three-letter word and represents an abbreviation intended for

TABLE 5-2 Basic Computer Instructions

Hexadecimal code

Symbol I � O I � I Description

AND Oxxx 8xxx AND memory word to AC
ADD lxxx 9xxx Add memory word to AC
LOA 2xxx Axxx Load memory word to A C
STA 3xxx Bxxx Store content of AC in memory
BUN 4xxx Cxxx Branch unconditionally
BSA 5xxx Dxxx Branch and save return address
ISZ 6xxx Exxx Increment and skip if zero

CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer

INP F800 Input character to AC
OUT F400 Output character from AC
SKI F200 Skip on input flag
SKO FIOO Skip on output flag
ION F080 Interrupt on
!OF F040 Interrupt off

1 34 CHAPTER FIVE Basic Computer Organization and Design

hexadecimal code programmers and users. The hexadecimal code is equal to the equivalent hexa­
decimal number of the binary code used for the instruction. By using the
hexadecimal equivalent we reduced the 16 bits of an instruction code to four digits
with each hexadecimal digit being equivalent to four bits . A memory-reference
instruction has an address part of 12 bits. The address part is denoted by three
x's and stand for the three hexadecimal digits corresponding to the 12-bit address.
The last bit of the instruction is designated by the symbol I. When I = 0, the last
four bits of an instruction have a hexadecimal digit equivalent from 0 to 6 since
the last bit is 0. When I = I, the hexadecimal digit equivalent of the last four
bits of the instruction ranges from 8 to E since the last bit is I.

Register-reference instructions use 16 bits to specify an operation. The
leftmost four bits are always 0111, which is equivalent to hexadecimal 7. The
other three hexadecimal digits give the binary equivalent of the remaining 12
bits. The input-output instructions also use all 16 bits to specify an operation.
The last four bits are always 1111 , equivalent to hexadecimal F.

Instruction Set Completeness
Before investigating the operations performed by the instructions, let us dis­
cuss the type of instructions that must be included in a computer. A computer
should have a set of instructions so that the user can construct machine
language programs to evaluate any function that is known to be computable.
The set of instructions are said to be complete if the computer includes a
sufficient number of instructions in each of the following categories:

1. Arithmetic, logical, and shift instructions

2. Instructions for moving information to and from memory and processor
registers

3. Program control instructions together with instructions that check
status conditions

4. Input and output instructions

Arithmetic, logical, and shift instructions provide computational capabil­
ities for processing the type of data that the user may wish to employ. The bulk
of the binary information in a digital computer is stored in memory, but all
computations are done in processor registers. Therefore, the user must have
the capability of moving information between these two units. Decision­
making capabilities are an important aspect of digital computers. For example,
two numbers can be compared, and if the first is greater than the second, it
may be necessary to proceed differently than if the second is greater than the
first. Program control instructions such as branch instructions are used to
change the sequence in which the program is executed. Input and output
instructions are needed for communication between the computer and the

clock pulses

SECTION 5-4 Timing and Control 1 3 5

user. Programs and data must be transferred into memory and results of
computations must be transferred back to the user.

The instructions listed in Table 5-2 constitute a minimum set that provides
all the capabilities mentioned above. There is one arithmetic instruction, ADD,
and two related instructions, complement AC(CMA) and increment AC(INC).
With these three instructions we can add and subtract binary numbers when
negative numbers are in signed-2's complement representation. The circulate
instructions, CIR and CIL, can be used for arithmetic shifts as well as any other
type of shifts desired. Multiplication and division can be performed using
addition, subtraction, and shifting. There are three logic operations: AND,
complement AC(CMA), and clear AC(CLA). The AND and complement
provide a NAND operation. It can be shown that with the NAND operation
it is possible to implement all the other logic operations with two variables
(listed in Table 4-6). Moving information from memory to AC is accomplished
with the load AC(LDA) instruction. Storing information from AC into memory
is done with the store AC(STA) instruction. The branch instructions BUN, BSA,
and ISZ, together with the four skip instructions, provide capabilities for
program control and checking of status conditions. The input (lNP) and output
(OUT) instructions cause information to be transferred between the computer
and external devices.

Although the set of instructions for the basic computer is complete, it is
not efficient because frequently used operations are not performed rapidly. An
efficient set of instructions will include such instructions as subtract, multiply,
OR, and exclusive-OR. These operations must be programmed in the basic
computer. The programs are presented in Chap. 6 together with other pro­
gramming examples for the basic computer. By using a limited number of
instructions it is possible to show the detailed logic design of the computer.
A more complete set of instructions would have made the design too complex.
In this way we can demonstrate the basic principles of computer organization
and design without going into excessive complex details. ln Chap. 8 we present
a complete list of computer instructions that are included in most commercial
computers.

The function of each instruction listed in Table 5-2 and the microopera­
tions needed for their execution are presented in Sees. 5-5 through 5-7. We
delay this discussion because we must first consider the control unit and
understand its internal organization.

5-4 Timing and Control

The timing for all registers in the basic computer is controlled by a master clock
generator. The clock pulses are applied to all flip-flops and registers in the
system, including the flip-flops and registers in the control unit. The clock
pulses do not change the state of a register unless the register is enabled by

136 CHAPTER FIVE Basic Computer Organization and Design

hardwired ccmtrol

microprogrammed
ccmtrol

control unit

timing signals

a control signal. The control signals are generated in the control unit and
provide control inputs for the multiplexers in the common bus, control inputs
in processor registers, and microoperations for the accumulator.

There are two major types of control organization: hardwired control and
microprogrammed control. In the hardwired organization, the control logic is
implemented with gates, flip-flops, decoders, and other digital circuits. It has
the advantage that it can be optimized to produce a fast mode of operation.
In the microprogrammed organization, the control information is stored in a
control memory. The control memory is programmed to initiate the required
sequence of microoperations. A hardwired control, as the name implies, re­
quires changes in the wiring among the various components if the design has
to be modified or changed. In the microprogrammed control, any required
changes or modifications can be done by updating the microprogram in control
memory. A hardwired control for the basic computer is presented in this
section. A microprogrammed control unit for a similar computer is presented
in Chap. 7.

The block diagram of the control unit is shown in Fig. 5-6. It consists of
two decoders, a sequence counter, and a number of control logic gates. An
instruction read from memory is placed in the instruction register (IR). The
position of this register in the common bus system is indicated in Fig. 5-4. The
instruction register is shown again in Fig. 5-6, where it is divided into three
parts: the I bit, the operation code, and bits 0 through 1 1 . The operation code
in bits 12 through 14 are decoded with a 3 x 8 decoder. The eight outputs of
the decoder are designated by the symbols D0 through D7• The subscripted
decimal number is equivalent to the binary value of the corresponding opera­
tion code. Bit 15 of the instruction is transferred to a flip-flop designated by the
symbol I. Bits 0 through 11 are applied to the control logic gates. The 4-bit
sequence counter can count in binary from 0 through 15. The outputs of the
counter are decoded into 16 timing signals T0 through T15• The internal logic
of the control gates will be derived later when we consider the design of the
computer in detail.

The sequence counter SC can be incremented or cleared synchronously
(see the counter of Fig. 2-11). Most of the time, the counter is incremented to
provide the sequence of timing signals out of the 4 x 16 decoder. Once in
awhile, the counter is cleared to 0, causing the next active timing signal to be
To. As an example, consider the case where SC is incremented to provide timing
signals T0, Tv T2, T3, and T4 in sequence. At time T4, SC is cleared to 0 if decoder
output D3 is active. This is expressed symbolically by the statement

D3T4: SC <- 0

The timing diagram of Fig. 5-7 shows the time relationship of the control
signals. The sequence counter SC responds to the positive transition of the
clock. Initially, the CLR input of SC is active. The first positive transition of the

3x8
�

4X 16
-

Tn

. · flcure 5-6 Conacl unit of buic CX>rtlpller.

clock clears SC to 0, which in tum activates the timing signal T0 out of the
decoder. T0isactiveduringonedockcyde. Thepositivedocktransilionabeled
T0 in the dagram will trigger only those registers whose control inputs are
connected to timing signal To. SC is increlnrnted with every positive dod<
transition, unless its O.R input is active. This produces the sequence of timing
signals To. T,, T:z, T,.. T., and so on, as shown in the dagram. (Note the
remtionship between the timing sigN) and its corresponding positive dod<
transition.)If SC is not cleared, the timing signals wiD continue witli T,_ T., up
to T15 and back to T ..

1 3 8 CHAPTER FIVE Basic Computer Organization and Design

Clock

T,

T,

v,

CLR
sc

-

-

-

T, T,

� � � � �

1-

..----

Figure 5 .. 7 Example of control timing signals.

i1_ rL
IL--

The last three waveforms in Fig. 5-7 show how SC is cleared when
D3T4 = I. Output D3 from the operation decoder becomes active at the end of
timing signal T2• When timing signal T4 becomes active, the output of the AND
gate that implements the control function D3T4 becomes active. This signal is
applied to the CLR input of SC. On the next positive clock transition (the one
marked T, in the diagram) the counter is cleared to 0. This causes the timing
signal To to become active instead of T5 that would have been active if SC were
incremented instead of cleared.

A memory read or write cycle will be initiated with the rising edge of a
timing signal. It will be assumed that a memory cycle time is less than the clock
cycle time. According to this assumption, a memory read or write cycle ini­
tiated by a timing signal will be completed by the time the next clock goes
through its positive transition. The clock transition will then be used to load
the memory word into a register. This timing relationship is not valid in many
computers because the memory cycle time is usually longer than the processor
clock cycle. In such a case it is necessary to provide wait cycles in the processor

SECTION 5-5 Instruction Cycle 139

until the memory word i s available. To facilitate the presentation, w e will
assume that a wait period is not necessary in the basic computer.

To fully comprehend the operation of the computer, it is crucial that one
understands the timing relationship between the clock transition and the
timing signals. For example, the register transfer statement

T0: AR +-- PC

specifies a transfer of the content of PC into AR if timing signal To is active. T0
is active during an entire clock cycle intervaL During this time the content of
PC is placed onto the bus (with 525150 = 010) and the LD (load) input of AR
is enabled. The actual transfer does not occur until the end of the clock cycle
when the clock goes through a positive transition. This same positive clock
transition increments the sequence counter SC from 0000 to 0001 . The next
clock cycle has T1 active and T0 inactive.

5-5 Instruction Cycle

A program residing in the memory unit of the computer consists of a sequence
of instructions. The program is executed in the computer by going through a
cycle for each instruction. Each instruction cycle in turn is subdivided into a
sequence of subcycles or phases . In the basic computer each instruction cycle
consists of the following phases:

1. Fetch an instruction from memory.

2. Decode the instruction.

3. Read the effective address from memory if the instruction has an indi­
rect address.

4. Execute the instruction.

Upon the completion of step 4, the control goes back to step 1 to fetch, decode,
and execute the next instruction. This process continues indefinitely unless a
HALT instruction is encountered.

Fetch and Decode
Initially, the program counter PC is loaded with the address of the first instruc­
tion in the program. The sequence counter SC is cleared to 0, providing a
decoded timing signal To. After each clock pulse, SC is incremented by one,
so that the timing signals go through a sequence T0, T1, T2, and so on. The
rnicrooperations for the fetch and decode phases can be specified by the
following register transfer statements.

140 CHAPTER AVE Basic Computer Organization and Design

T0: AR <- PC
T,: IR <-M[AR], PC <- PC + 1
T2: D0, • • • , D7 <- Decode IR(12-14), AR <--- IR(0-11), 1 <--- IR(lS)

Since only AR is connected to the address inputs of memory, it is neces­
sary to transfer the address from PC to AR during the clock transition associ­
ated with timing signal T0• The instruction read from memory is then placed
in the instruction register IR with the clock transition associated with timing

T,

To

I Memory unit

I

-=D
AR

-=D-!o

PC

-.....__. INR

IR

..
LD

Common bus

=D-
s,

S 1 Bus v-
I =z._r _: -

7

I
Address t Read

I
A

2

I__

5 "

I Clock

Figure 5 .. 8 Register transfers for the fetch phase.

SECfiON 5-5 Instruction Cycle 1 4 1

signal T1• At the same time, PC is incremented by one to prepare it for the
address of the next instruction in the program. At time T2, the operation code
in IR is decoded, the indirect bit is transferred to flip-flop I, and the address
part of the instruction is transferred to AR . Note that SC is incremented after
each clock pulse to produce the sequence To, T1, and T2•

Figure 5-8 shows how the first two register transfer statements are imple­
mented in the bus system. To provide the data path for the transfer of PC to
AR we must apply timing signal T0 to achieve the following connection:

1. Place the content of PC onto the bus by making the bus selection inputs
525150 equal to 010.

2. Transfer the content of the bus to AR by enabling the LD input of AR .

The next clock transition initiates the transfer from PC to AR since T0 = 1. In
a-d'CY" ,tJ' .LiJT�h:Jrarr liter S&:ond stfNi?meat

T1: IR <-M[AR], PC <- PC + 1

it is necessary to use timing signal T1 to provide the following connections in
the bus system.

1. Enable the read input of memory.

2. Place the content of memory onto the bus by making 525150 = I l l .
3. Transfer the content o f the bus to IR by enabling the LD input of

_
JR .

4. Increment PC by enabling the INR input of PC .

The next clock transition initiates the read and increment operations since
T, = 1 .

Figure 5-8 duplicates a portion o f the bus system and shows how T0 and
T, are connected to the control inputs of the registers, the memory, and the
bus selection inputs. Multiple input OR gates are included in the diagram
because there are other control functions that will initiate similar operations.

Determine the Type of Instruction

The timing signal that is active after the decoding is T3• During time T,, the
control unit determines the type of instruction that was just read from memory.
The flowchart of Fig. 5-9 presents an initial configuration for the instruction
cycle and shows how the control determines the instruction type after the
decoding. The three possible instruction types available in the basic computer
are specified in Fig. 5-5.

Decoder output D, is equal to 1 if the operation code is equal to binary
Il l . From Fig. 5-5 we determine that if D7 = I, the instruction must be a

142 CHAPTER AVE Basic Computer Organization and Design

T,

Decode operation code in IR (1 2 - 14)
AR +- IR (0 - I I), I +- IR (1 5)

Execute
input-output
instruction

sc +- 0

T, T,

Execute
register-reference

instruction
SC +- 0

Execute
memory-reference

instruction
sc +- 0

Figure 5�9 Flowchart for instruction cycle (initial configuration).

register-reference or input-<>utput type. If D, = 0, the operation code must be
one of the other seven values 000 through 110, specifying a memory-reference
instruction. Control then inspects the value of the first bit of the instruction,
which is now available in flip-flop I. If D7 = 0 and I = 1, we have a memory­
reference instruction with an indirect address. It is then necessary to read the

indirect address

SECTION 5·5 Instruction Cycle 1 43

effective address from memory. The microoperation for the indirect address
condition can be symbolized by the register transfer statement

AR +- M [AR]

Initially, AR holds the address part of the instruction. This address is used
during the memory read operation. The word at the address given by AR is
read from memory and placed on the common bus. The LD input of AR is then
enabled to receive the indirect address that resided in the 12 least significant
bits of the memory word.

The three instruction types are subdivided into four separate paths. The
selected operation is activated with the clock transition associated with timing
signal T3• This can be symbolized as follows:

D7 IT3: AR +-M[AR]
D7 I 'T3: Nothing
D7 I 'T3: Execute a register-reference instruction
D7IT3: Execute an input-output instruction

When a memory-reference instruction with I = 0 is encountered, it is not
necessary to do anything since the effective address is already in AR. However,
the sequence counter SC must be incremented when D;T, = 1, so that the
execution of the memory-reference instruction can be continued with timing
variable T4• A register-reference or input-output instruction can be executed
with the clock associated with timing signal T3. After the instruction is executed,
SC is cleared to 0 and control returns to the fetch phase with T0 = 1 .

Note that the sequence counter SC is either incremented or cleared to 0
with every positive clock transition. We will adopt the convention that if SC
is incremented, we will not write the statement SC <- SC + 1, but it will be
implied that the control goes to the next timing signal in sequence. When SC
is to be cleared, we will include the statement SC <- 0.

The register transfers needed for the execution of the register-reference
instructions are presented in this section. The memory-reference instructions
are explained in the next section. The input-output instructions are included in
Sec. 5-7.

Register-Reference Instructions
Register-reference instructions are recognized by the control when 07 = 1 and
I = 0. These instructions use bits 0 through 11 of the instruction code to specify
one of 12 instructions. These 12 bits are available in IR(0-11). They were also
transferred to AR during time T2•

The control functions and microoperations for the register-reference in-

1 44 CHAPTER FIVE Basic Computer Organization and Design

structions are. listed in Table 5-3. These instructions are executed with the clock
transition associated with timing variable T3• Each control function needs the
Boolean relation D7I 'T3, which we designate for convenience by the symbol r .
The control function is distinguished by one o f the bits in IR(0-11). By assigning
the symbol B, to bit i of IR, all control functions can be simply denoted by rB; .
For example, the instruction CLA has the hexadecimal code 7800 (see Table 5-2),
which gives the binary equivalent 011I 1000 0000 0000. The first bit is a zero
and is equivalent to I ' . The next three bits constitute the operation code and
are recognized from decoder output D7• Bit 11 in IR is I and is recognized from
811 • The control function that initiates the rnicrooperation for this instruction
is D7I 'T3B11 = rB1 1 • The execution of a register-reference instruction is com­
pleted at time T3• The sequence counter SC is cleared to 0 and the control goes
back to fetch the next instruction with timing signal T0•

The first seven register-reference instructions perform clear, comple­
ment, circular shift, and increment rnicrooperations on the AC or E registers.
The next four instructions cause a skip of the next instruction in sequence when
a stated condition is satisfied. The skipping of the instruction is achieved by
incrementing PC once again (in addition, it is being incremented during the
fetch phase at time T1). The condition control statements must be recognized
as part of the control conditions . The AC is positive when the sign bit in
AC(IS) = 0; it is negative when AC(IS) = I. The content of AC is zero (AC = 0)
if all the flip-flops of the register are zero. The HLT instruction clears a
start-stop flip-flop S and stops the sequence counter from counting. To restore
the operation of the computer, the start-stop flip-flop must be set manually.

TABLE 5 .. 3 Execution of Register .. Reference Instructions

D7l'T3 = r (common to all register-reference instructions)
IR(i) = B, [bit in /R(0-11) that specifies the operation)

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

SC <-- 0
AC <-- 0
E <-- 0
AC <-AC
E <- E
AC <- shr AC, AC(I5) <- E , E <-AC(O)
AC <- shl AC, AC(O) <- E , E <-AC(I5)
AC<-AC + I
If (AC(I5) = 0) then (PC <- PC + I)
If (AC(I5) = I) then (PC <-PC + I)
If (AC = 0) then PC <- PC + I)
If (E = 0) then (PC <-- PC + I)
S <-- 0 (S is a start-stop flip-flop)

Clear SC
Clear AC
Clear E
Complement AC
Complement E
Circulate right
Circulate left
Increment AC
Skip if positive
Skip if negative
Skip if A C zero
Skip if E zero
Halt computer

effective address

SECTION 5-6 Memory�Reference Instructions 1 45

5-6 Memory-Reference Instructions

In order to specify the rnicrooperations needed for the execution of each
instruction, it is necessary that the function that they are intended to perform
be defined precisely. Looking back to Table 5-2, where the instructions are
listed, we find that some instructions have an ambiguous description. This is
because the explanation of an instruction in words is usually lengthy, and not
enough space is available in the table for such a lengthy explanation. We will
now show that the function of the memory-reference instructions can be
defined precisely by means of register transfer notation.

Table 5-4 lists the seven memory-reference instructions. The decoded
output D; for i = 0, 1, 2, 3, 4, 5, and 6 from the operation decoder that belongs
to each instruction is included in the table. The effective address of the instruc­
tion is in the address register AR and was placed there during timing signal
T2 when I = 0, or during timing signal T3 when I = 1. The execution of the
memory-reference instructions starts with timing signal T4• The symbolic de­
scription of each instruction is specified in the table in terms of register transfer
notation. The actual execution of the instruction in the bus system will require
a sequence of rnicrooperations. This is because data stored in memory cannot
be processed directly. The data must be read from memory to a register where
they can be operated on with logic circuits. We now explain the operation of
each instruction and list the control functions and rnicrooperations needed for
their execution. A flowchart that summarizes all the rnicrooperations is pre­
sented at the end of this section.

Symbol

AND
ADD
LOA
STA
BUN
BSA
ISZ

AND to AC

TABLE 5,4 Memory,Reference Instructions

Operation
decoder Symbolic description

Do AC<-AC 1\ M[AR]
D, AC <-AC + M[AR]. E <- C""'
D, AC +-M[AR]
D, M[AR] <-AC
D, PC +-AR
D5 M[AR] <- PC, PC <-AR + 1
D, M[AR] <- M[AR] + 1 ,

If M[AR] + 1 = 0 then PC <- PC + 1

This is an instruction that performs the AND logic operation on pairs of bits
in AC and the memory word specified by the effective address. The result of

1 46 CHAPTER FIVE Basic Computer Organization and Design

the operation is transferred to AC . The rnicrooperations that execute this
instruction are:

D0T4: DR <-M[AR]
D0T5: AC <- AC /\ DR, SC <--- 0

The control function for this instruction uses the operation decoder D0 since
this output of the decoder is active when the instruction has an AND operation
whose binary code value is 000. Two timing signals are needed to execute the
instruction. The clock transition associated with timing signal T4 transfers the
operand from memory into DR. The clock transition associated with the next
timing signal T5 transfers to AC the result of the AND logic operation between
the contents of DR and AC. The same clock transition clears SC to 0, transfer­
ring control to timing signal T0 to start a new instruction cycle.

ADD to AC
This instruction adds the content of the memory word specified by the effective
address to the value of AC . The sum is transferred into AC and the output carry
C,., is transferred to the E (extended accumulator) flip-flop. The rnicroopera­
tions needed to execute this instruction are

DIT,: DR <--- M[AR]
D1T5: AC <--- AC + DR, E <--- C,.,, SC <--- 0

The same two timing signals, T, and T5, are used again but with operation
decoder D1 instead of D0, which was used for the AND instruction. After the
instruction is fetched from memory and decoded, only one output of the
operation decoder will be active, and that output determines the sequence of
rnicrooperations that the control follows during the execution of a memory-ref­
erence instruction.

LDA: Load to AC
This instruction transfers the memory word specified by the effective address
to AC. The rnicrooperations needed to execute this instruction are

D2T4: DR <--- M [AR]
D2T5: AC <--- DR, SC <--- 0

Looking back at the bus system shown in Fig. 5-4 we note that there is no direct
path from the bus into AC. The adder and logic circuit receive information from
DR which can be transferred into AC . Therefore, it is necessary to read the

SECTION 5-6 Memory-Reference Instructions 14 7

memory word into DR first and then transfer the content of DR into AC. The
reason for not connecting the bus to the inputs of AC is the delay encountered
in the adder and logic circuit. It is assumed that the time it takes to read from
memory and transfer the word through the bus as well as the adder and logic
circuit is more than the time of one clock cycle. By not connecting the bus to
the inputs of AC we can maintain one clock cycle per rnicrooperation.

STA: Store AC
This instruction stores the content of AC into the memory word specified by
the effective address. Since the output of AC is applied to the bus and the data
input of memory is connected to the bus, we can execute this instruction with
one microoperation:

D3T4: M [AR] <-- AC, SC <-- 0

BUN: Branch Unconditionally
This instruction transfers the program to the instruction specified by the
effective address. Remember that PC holds the address of the instruction to be
read from memory in the next instruction cycle. PC is incremented at time T1
to prepare it for the address of the next instruction in the program sequence.
The BUN instruction allows the programmer to specify an instruction out of
sequence and we say that the program branches (or jumps) unconditionally.
The instruction is executed with one rnicrooperation:

D4T4: PC <-- AR, SC <-- 0

The effective address from AR is transferred through the common bus to PC .
Resetting SC to 0 transfers control to T0• The next instruction is then fetched
and executed from the memory address given by the new value in PC .

BSA: Branch and Save Return Address
This instruction is useful for branching to a portion of the program called a
subroutine or procedure. When executed, the BSA instruction stores the ad­
dress of the next instruction in sequence (which is available in PC) into a
memory location specified by the effective address. The effective address plus
one is then transferred to PC to serve as the address of the first instruction in
the subroutine. This operation was specified in Table 5-4 with the following
register transfer:

M[AR] <-- PC, PC <-- AR + I

148 CHAPTER FIVE Basic Computer Organization and Design

return address

subroutine call

A numerical example that demonstrates how this instruction is used with
a subroutine is shown in Fig. 5-10. The BSA instruction is assumed to be in
memory at address 20. The I bit is 0 and the address part of the instruction has
the binary equivalent of 135. After the fetch and decode phases, PC contains
21, which is the address of the next instruction in the program (referred to as
the return address). AR holds the effective address 135. This is shown in part
(a) of the figure. The BSA instruction performs the following numerical oper­
ation:

M[135] +-- 21, PC +-- 135 + 1 = 136

The result of this operation is shown in part (b) of the figure. The return address
21 is stored in memory location 135 and control continues with the subroutine
program starting from address 136. The return to the original program (at
address 21) is accomplished by means of an indirect BUN instruction placed
at the end of the subroutine. When this instruction is executed, control goes
to the indirect phase to read the effective address at location 135, where it finds
the previously saved address 21. When the BUN instruction is executed, the
effective address 21 is transferred to PC . The next instruction cycle finds PC
with the value 21, so control continues to execute the instruction at the return
address.

The BSA instruction performs the function usually referred to as a sub­
routine call. The indirect BUN instruction at the end of the subroutine performs
the function referred to as a subroutine return. In most commercial computers,
the return address associated with a subroutine is stored in either a processor

Figure 5� 10 Example of BSA instruction execution.

Memory Memory

20 20 0 BSA 1 35

Next instruction PC = 2 1 2 1

AR = 135 1 35

Subroutine 1 36 PC = I 36

1
I BUN 135

0 BSA

Next instruction

2 1

Subroutine

1
I BUN

135

135

(a) Memory, PC, and AR at time T4 (b) Memory and PC after execution

SECTION 5-6 Memory-Reference Instructions 149

register or in a portion of memory called a stack. This is discussed in more detail
in Sec. 8-7.

It is not possible to perform the operation of the BSA instruction in one
clock cycle when we use the bus system of the basic computer. To use the
memory and the bus properly, the BSA instruction must be executed With a
sequence of two microoperations:

D5T4: M[AR] <-- PC, AR <-- AR + 1
D5T5: PC <-- AR, SC <-- 0

Timing signal T4 initiates a memory write operation, places the content of PC
onto the bus, and enables the INR input of AR . The memory write operation
is completed and AR is incremented by the time the next clock transition
occurs. The bus is used at T5 to transfer the content of AR to PC .

ISZ: Increment and Skip if Zero
This instruction increments the word specified by the effective address, and
if the incremented value is equal to 0, PC is incremented by 1. The programmer
usually stores a negative number (in 2's complement) in the memory word. As
this negative number is repeatedly incremented by one, it eventually reaches
the value of zero. At that time PC is incremented by one in order to skip the
next instruction in the program.

Since it is not possible to increment a word inside the memory, it is
necessary to read the word into DR, increment DR, and store the word back
into memory. This is done with the following sequence of microoperations:

D6T4: DR <-- M [AR]
D6T5: DR <-- DR + 1
D,T,: M[AR] <-- DR, if (DR = 0) then (PC <-- PC + 1), SC <-- 0

Control Flowchart
A flowchart showing all microoperations for the execution of the seven mem­
ory-reference instructions is shown in Fig. 5-11. The control functions are
indicated on top of each box. The microoperations that are performed during
time T4, T5, or T, depend on the operation code value. This is indicated in the
flowchart by six different paths, one of which the control takes after the
instruction is decoded. The sequence counter SC is cleared to 0 with the last
timing signal in each case. This causes a transfer of control to timing signal T0
to start the next instruction cycle.

Note that we need only seven timing signals to execute the longest
instruction (ISZ). The computer can be designed with a 3-bit sequence counter.
The reason for using a 4-bit counter for SC is to provide additional timing
signals for other instructions that are presented in the problems section.

150 CHAPTER FIVE Basic Computer Organization and Design

Memory - reference instruction

M [AR] <- DR
lf (DR = O)
then (PC +- PC + I)

SC <- 0

Figure 5# 1 1 Flowchart for memory#reference instructions.

5-7 Input-Output and Interrupt

A computer can serve no useful purpose unless it communicates with the
external environment. Instructions and data stored in memory must come
from some input device. Computational results must be transmitted to the user
through some output device. Commercial computers include many types of

input register

SECTION 5-7 Input-Output and Interrupt 1 5 1

input and output devices. To demonstrate the most basic reqttirements for
input and output communication, we will use as an illustration a terminal unit
with a keyboard and printer. Input-output organization is dicsussed further in
Chap. 1 1 .

Input-Output Configuration
The terminal sends and receives serial information. Each quantity of informa­
tion has eight bits of an alphanumeric code. The serial information from the
keyboard is shifted into the input register INPR . The serial information for the
printer is stored in the output register OUTR . These two registers communicate
with a communication interface serially and with the AC in parallel. The
input-output configuration is shown in Fig. 5-12. The transmitter interface re­
ceives serial information from the keyboard and transmits it to INPR. The re­
ceiver interface receives information from OUTR and sends it to the printer
serially. The operation of the serial communication interface is explained in
Sec. 11-3.

The input register INPR consists of eight bits and holds an alphanumeric
input information. The 1-bit input flag FGI is a control flip-flop. The flag bit is

Input - output
terminal

Figure 5# 12 lnput#output configuration.

Serial
communication

interface

Computer
registers and

flip-flops

OUTR

AC

152 CHAPTER F1VE Basic Computer Organization and Design

output register

set to 1 when new information is available in the input device and is cleared
to 0 when the information is accepted by the computer. The flag is needed to
synchronize the timing rate difference between the input device and the
computer. The process of information transfer is as follows. Initially, the input
flag FGI is cleared to 0. When a key is struck in the keyboard, an 8-bit alphanu­
meric code is shifted into INPR and the input flag FGI is set to 1. As long as
the flag is set, the information in INPR cannot be changed by striking another
key. The computer checks the flag bit; if it is 1, the information from INPR is
transferred in parallel into AC and FGI is cleared to 0. Once the flag is cleared,
new information can be shifted into INPR by striking another key.

The output register OUTR works similarly but the direction of informa­
tion flow is reversed. Initially, the output flag FGO is set to 1. The computer
checks the flag bit; if it is 1, the information from AC is transferred in parallel
to OUTR and FGO is cleared to 0. The output device accepts the coded infor­
mation, prints the corresponding character, and when the operation is com­
pleted, it sets FGO to 1 . The computer does not load a new character into OUTR
when FGO is 0 because this condition indicates that the output device is in the
process of printing the character.

Input-Output Instructions
Input and output instructions are needed for transferring information to and
from AC register, for checking the flag bits, and for controlling the interrupt
facility. Input-output instructions have an operation code 1111 and are recog­
nized by the control when D7 = 1 and I = 1. The remaining bits of the instruc­
tion specify the particular operation. The control functions and microopera­
tions for the input-output instructions are listed in Table 5-5 . These instructions
are executed with the clock transition associated with timing signal T,. Each
control function needs a Boolean relation D7IT3, which we designate for con­
venience by the symbol p. The control function is distinguished by one of the
bits in IR(6-11). By assigning the symbol B, to bit i of IR, all control functions

TABLE 5-5 Input-Output Instructions

D,IT, = p (common to all input-output instructions)
/R(i) = B, [bit in /R(6-ll) that specifies the instruction]

INP
OUT
SKI
SKO
ION
!OF

p :
pBn :
pBto!
pB,:
pB,:
pB,:
pB,:

SC +-0
AC(0-7) +-INPR , FGI +-0
OUTR +-AC(0-7), FG0 +-0
If (FGI = 1) then (PC +-PC + 1)
If (FGO = 1) then (PC +-PC + 1)
IEN +- 1
IEN +-0

Clear SC
Input character
Output character
Skip on input flag
Skip on output flag
Interrupt enable on
Interrupt enable off

SECTION 5-7 Input-Output and Interrupt 1 5 3

can b e denoted b y pB; for i = 6 though I I . The sequence counter S C i s cleared
to 0 when p = D71T3 = I .

The IN P instruction transfers the input information from lNPR into the
eight low-order bits of AC and also clears the input flag to 0. The OUT
instruction transfers the eight least significant bits of AC into the output register
OUTR and clears the output flag to 0. The next two instructions in Table 5-5
check the status of the flags and cause a skip of the next instruction if the flag
is I. The instruction that is skipped will normally be a branch instruction to
return and check the flag again. The branch instruction is not skipped if the
flag is 0. If the flag is I, the branch instruction is skipped and an input or output
instruction is executed. (Examples of input and output programs are given
in Sec. 6-8 .) The last two instructions set and clear an interrupt enable flip­
flop lEN. The purpose of lEN is explained in conjunction with the interrupt
operation.

Program Interrupt
The process of communication just described is referred to as programmed
control transfer. The computer keeps checking the flag bit, and when it finds
it set, it initiates an information transfer. The difference of information flow
rate between the computer and that of the input-<Jutput device makes this type
of transfer inefficient. To see why this is inefficient, consider a computer that can
go through an instruction cycle in l fJ.S. Assume that the input-<Jutput device can
transfer information at a maximum rate of 10 characters per second. This is
equivalent to one character every 100,000 fLS. Two instructions are executed when
the computer checks the flag bit and decides not to transfer the information. This
means that at the maximum rate, the computer will check the flag 50,000 times
between each transfer. The computer is wasting time while checking the flag
instead of doing some other useful processing task.

An alternative to the programmed controlled procedure is to let the external
device inform the computer when it is ready for the transfer. In the meantime the
computer can be busy with other tasks. This type of transfer uses the interrupt
facility. While the computer is running a program, it does not check the flags.
However, when a flag is set , the computer is momentarily interrupted from
proceeding with the current program and is informed of the fact that a flag has
been set. The computer deviates momentarily from what it is doing to take care
of the input or output transfer. It then returns to the current program to continue
what it was doing before the interrupt.

The interrupt enable flip-flop lEN can be set and cleared with two instruc­
tions. When lEN is cleared to 0 (with the !OF instruction), the flags cannot
interrupt the computer. When lEN is set to 1 (with the ION instruction), the
computer can be interrupted. These two instructions provide the programmer
with the capability of making a decision as to whether or not to use the
interrupt facility.

1 54 CHAPTER FIVE Basic Computer Organization and Design

interrupt cycle

Store return address
in location 0
M [O] � PC

Figure 5-13 Flowchart for interrupt cycle.

The way that the interrupt is handled by the computer can be explained
by means of the flowchart of Fig. 5-13. An interrupt flip-flop R is included in
the computer. When R = 0, the computer goes through an instruction cycle.
During the execute phase of the instruction cycle lEN is checked by the control.
If it is 0, it indicates that the programmer does not want to use the interrupt,
so control continues with the next instruction cycle. If lEN is 1, control checks
the flag bits. If both flags are 0, it indicates that neither the input nor the output
registers are ready for transfer of information. In this case, control continues
with the next instruction cycle. If either flag is set to 1 while lEN = 1, flip-flop
R is set to 1. At the end of the execute phase, control checks the value of R ,
and if i t is equal to 1, i t goes to an interrupt cycle instead of an instruction cycle.

The interrupt cycle is a hardware implementation of a branch and save
return address operation. The return address available in PC is stored in a
specific location where it can be found later when the program returns to the
instruction at which it was interrupted. This location may be a processor

SECTION 5-7 Input-Output and Interrupt 155

register, a memory stack, o r a specific memory location. Here w e choose the
memory location at address 0 as the place for storing the return address.
Control then inserts address 1 into PC and clears lEN and R so that no more
interruptions can occur until the interrupt request from the flag has been
serviced.

An example that shows what happens during the interrupt cycle is shown
in Fig. 5-14. Suppose that an interrupt occurs and R is set to 1 while the control
is executing the instruction at address 255. At this time, the return address 256
is in PC . The programmer has previously placed an input-<>utput service
program in memory starting from address 1120 and a BUN 1120 instruction at
address 1 . This is shown in Fig. 5-14(a).

When control reaches timing signal T0 and finds that R = 1, it proceeds
with the interrupt cycle. The content of PC (256) is stored in memory location
0, PC is set to 1, and R is cleared to 0. At the beginning of the next instruction
cycle, the instruction that is read from memory is in address 1 since this is the
content of PC. The branch instruction at address 1 causes the program to
transfer to the input-<>utput service program at address 1120. This program
checks the flags, determines which flag is set , and then transfers the required input
or output information. Once this is done , the instruction ION is executed to set
lEN to 1 (to enable further interrupts), and the program returns to the location
where it was interrupted. This is shown in Fig. 5-14(b).

The instruction that returns the computer to the original place in the main
program is a branch indirect instruction with an address part of 0. This instruc­
tion is placed at the end of the UO service program. After this instruction is

Figure 5-14 Demonstration of the interrupt cycle.

255
PC = 256

1 120

Memory

0 BUN l l20

Main
program

l/0
program

1 BUN 0

(a) Before interrupt

PC = 1

255
256

1 120

Memory

256

0 BUN 1 1 20

Main
program

l/0
program

1 BUN 0

(b) After interrupt cycle

1 56 CHAPTER F1VE Basic Computer Organization and Design

read from memory during the fetch phase, control goes to the indirect phase
(because I = 1) to read the effective address. The effective address is in location
0 and is the return address that was stored there during the previous interrupt
cycle. The execution of the indirect BUN instruction results in placing into PC
the return address from location 0.

Interrupt Cycle
We are now ready to list the register transfer statements for the interrupt cycle.
The interrupt cycle is initiated after the last execute phase if the interrupt
flip-flop R is equal to 1. This flip-flop is set to 1 if lEN = 1 and either FGI or
FGO are equal to 1. This can happen with any clock transition except when
timing signals T0, Tv or T2 are active. The condition for setting flip-flop R to
1 can be expressed with the following register transfer statement:

nT!T2(IEN)(FGI + FGO): R +- 1

The symbol + between FGI and FGO in the control function designates a logic
OR operation. This is ANDed with lEN and nT;T; .

modified fetch phase We now modify the fetch and decode phases of the instruction cycle.
Instead of using only timing signals T0, Tv and T2 (as shown in Fig. 5-9) we
will AND the three timing signals with R' so that the fetch and decode phases
will be recognized from the three control functions R'T0, R 'Tv and R ' T2• The
reason for this is that after the instruction is executed and SC is cleared to 0,
the control will go through a fetch phase only if R = 0. Otherwise, if R = 1,
the control will go through an interrupt cycle. The interrupt cycle stores the
return address (available in PC) into memory location 0, branches to memory
location 1, and clears lEN, R, and SC to 0. This can be done with the following
sequence of microoperations:

RT0: AR +- 0, TR +-PC
RT1: M [AR] +- TR, PC +-0
RT2: PC +- PC + 1, IEN <-0, R <- 0, SC +- 0

During the first timing signal AR is cleared to 0, and the content o f PC is
transferred to the temporary register TR . With the second timing signal, the
return address is stored in memory at location 0 and PC is cleared to 0. The
third timing signal increments PC to 1, clears lEN and R, and control goes back
to T0 by clearing SC to 0. The beginning of the next instruction cycle has the
condition R'T0 and the content of PC is equal to 1. The control then goes
through an instruction cycle that fetches and executes the BUN instruction in
location 1 .

flowchart for basic
computer

SECTION 5-9 Design of Basic Computer 1 5 7

5-8 Complete Computer Description

The final flowchart of the instruction cycle, including the interrupt cycle for the
basic computer, is shown in Fig. 5-15. The interrupt flip-flop R may be set at
any time during the indirect or execute phases. Control returns to timing signal
T0 after SC is cleared to 0. If R = 1, the computer goes through an interrupt
cycle. If R = 0, the computer goes through an instruction cycle. If the instruc­
tion is one of the memory-reference instructions, the computer first checks if
there is an indirect address and then continues to execute the decoded instruc­
tion according to the flowchart of Fig. 5-1 L If the instruction is one of the
register-reference instructions, it is executed with one of the microoperations
listed in Table 5-3. If it is an input-<>utput instruction, it is executed with one of
the microoperations listed in Table 5-5 .

Instead of using a flowchart, we can describe the operation of the computer
with a list of register transfer statements. This is done by accumulating all the
control functions and microoperations in one table. The entries in the table are
taken from Figs. 5-11 and 5-15, and Tables 5-3 and 5-5 .

The control functions and microoperations for the entire computer are
summarized in Table 5-6. The register transfer statements in this table describe
in a concise form the internal organization of the basic computer. They also give
all the information necessary for the design of the logic circuits of the computer.
The control functions and conditional control statements listed in the table
formulate the Boolean functions for the gates in the control unit. The list of
microoperations specifies the type of control inputs needed for the registers and
memory. A register transfer language is useful not only for describing the internal
organization of a digital system but also for specifying the logic circuits needed
for its design.

5-9 Design of Basic Computer

The basic computer consists of the following hardware components:

1. A memory unit with 4096 words of 16 bits each

2. Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC

3. Seven flip-flops: I, S, E, R, lEN, FGI, and FGO

4. Two decoders: a 3 x 8 operation decoder and a 4 x 16 timing decoder

5. A 16-bit common bus

6. Control logic gates

7. Adder and logic circuit connected to the input of AC

The memory unit is a standard component that can be obtained readily
from a commercial source. The registers are of the type shown in Fig. 2-11 and

158 CHAPTER FIVE Basic Computer Organization and Design

Start
SC <-- 0, /EN <-- O, R <-- 0

Execute
input-output
instruction
(Table 5-5)

(Register or l/0) = I

Execute
register-reference

instruction
(Table 5-3)

R
= 1 (interrupt cycle)

= 0 (Memory - reference)

Execute
memory - reference

instruction
(Fig 5- 1 1)

Figure 5 .. 15 Flowchart for computer operation.

SECTION S-9 Design of Basic Computer 1 5 9

TABLE 5 .. 6 Control Functions and Microoperations for the Basic Computer

Fetch AR - PC
IR - M[AR) , PC - PC + I

Decode

Indirect D7/T3:

D0, • • • , D, +- Decode /R(12-14),
AR - IR(0-1 1), I - IR(IS)
AR - M[AR)

Interrupt:
T,TiT;(IEN)(FGI + FGO): R - 1

Memory-reference:
AND

ADD

LDA

STA
BUN
BSA

ISZ

Register-reference:

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

Input-output:

INP
OUT
SKI
SKO
ION
!OF

RTo:
RT1 :
RTz:

DoT�:
DoTs:
Dt T�:
Dt Ts:
DzT�:
DzTs:
D3T�:
D�T4:
DsT4:
DsTs:
D6T4:
D6Ts:
D6T6:

AR +-0, TR +- PC
M[AR) - TR , PC - O
PC +- PC + l , IEN +-0, R +- 0, SC +- 0

DR - M[AR)
AC -AC f\ DR , sc -o
DR - M[AR)
AC +-AC + DR , £ +- Coul. sc - o
DR - M[AR)
A C - DR , SC - O
M[AR) -AC, sc - o
PC +-AR, SC +- 0
M[AR) - PC, AR -AR + I
PC -AR, sc - o
DR - M[AR)
DR - DR + I
M[AR) - DR , if (DR = O) then (PC - PC + 1), SC -O

D,l' T3 = r (common to all register-reference instructions)
/R(i) = B, (i = 0, I, 2, . . . , 1 1)

r: sc - o
rBu : A C +- 0
rBto: E +- 0
rB9: AC +-AC
rBa: E +- E
rB,: A C - shr AC, AC(IS) -E, E -AC(O)
rB,: AC - shl AC, AC(O) - E , E -AC(IS)
rB5: AC+-AC + 1
rB,: If (AC(IS) = 0) then (PC - PC + I)
rB,: If (AC(IS) = 1) then (PC - PC + 1)
rB,: If (AC = 0) then PC - PC + 1)
rB, : I f (E = 0) then (PC - PC + I)
rBo: S +- 0

D,JT3 = p (common to a ll input-output instructions)
/R(i) = B, (i = 6, 7, 8, 9, 10, 1 1)

p : sc - o
pB, : AC(0-1) -INPR, FGI - o
pB.,: OUTR -AC(0-1), FGO - O
pB,: If (FGI = I) then (PC - PC + I)
pB,: If (FGO = I) then (PC - PC + 1)
pB1: IEN +- 1
pB,: /EN -0

160 CHAPTER F1 VE Basic Computer Organization and Design

c011trol rmit

are similar to integrated circuit type 74163. The flip-flops can be either of the
D or JK type, as described in Sec. 1-6. The two decoders are standard compo­
nents similar to the ones presented in Sec. 2-2. The common bus system can
be constructed with sixteen 8 x 1 multiplexers in a configuration similar to the
one shown in Fig. 4-3. We are now going to show how to design the control
logic gates. The next section deals with the design of the adder and logic circuit
associated with AC.

Control Logic Gates
The block diagram of the control logic gates is shown in Fig. 5-6. The inputs
to this circuit come from the two decoders, the I flip-flop, and bits 0 through
11 of IR . The other inputs to the control logic are: AC bits 0 through 15 to check
if AC = 0 and to detect the sign bit in AC(15); DR bits 0 through 15 to check if
DR = 0; and the values of the seven flip-flops.

The outputs of the control logic circuit are:

1. Signals to control the inputs of the nine registers

2. Signals to control the read and write inputs of memory

3, Signals to set, clear, or complement the flip-flops

4. Signals for 52, 51, and 50 to select a register for the bus

5. Signals to control the AC adder and logic circuit

The specifications for the various control signals can be obtained directly from
the list of register transfer statements in Table 5-6.

Control of Registers and Memory
The registers of the computer connected to a common bus system are shown
in Fig. 5-4. The control inputs of the registers are LD (load), INR (increment),
and CLR (clear). Suppose that we want to derive the gate structure associated
with the control inputs of AR. We scan Table 5-6 to find all the statements that
change the content of AR:

R 'T0: AR +- PC
R 'T2: AR +-IR(0-11)

D7IT3: AR +-M[AR]
RT0: AR +- 0

D5T4: AR +-AR + 1

The first three statements specify transfer of information from a register
or memory to AR . The content of the source register or memory is placed on

SECTION 5-9 Design of Basic Computer 1 6 1

the bus and the content o f the bus is transferred into A R b y enabling its LD
control input. The fourth statement clears AR to 0. The last statement incre­
ments AR by 1. The control functions can be combined into three Boolean
expressions as follows:

LD(AR) = R'To + R ' T, + D;IT,
CLR(AR) = RTo
INR(AR) = D5T,

where LD(AR) is the load input of AR, CLR(AR) is the clear input of AR, and
INR(AR) is the increment input of AR . The control gate logic associated with
AR is shown in Fig. 5-16.

In a similar fashion we can derive the control gates for the other registers
as well as the logic needed to control the read and write inputs of memory. The
logic gates associated with the read input of memory is derived by scanning
Table 5-6 to find the statements that specify a read operation. The read oper­
ation is recognized from the symbol <-M[AR] .

Read = R ' T1 + D;IT3 + (Do + D 1 + 0, + D6)T,

The output of the logic gates that implement the Boolean expression above
must be connected to the read input of memory.

Figure 5-16 Control gates associated with AR.

From bus

R

� -i----�--L__/
Ds --l---+--1
� _, ____ _, __ L__/

12 12
AR To bus

'------ Clock

INR CLR

162 CHAPTER FIVE Basic Computer Organization and Design

Control of Single Flip-flops
The control gates for the seven flip-flops can be determined in a similar
manner. For example, Table 5-6 shows that lEN may change as a result of the
two instructions ION and !OF.

pB7: lEN +- 1
pB6: lEN +- 0

where p = D71T3 and B , and B , are bits 7 and 6 o f lR, respectively. Moreover,
at the end of the interrupt cycle lEN is cleared to 0.

RT2: lEN +- 0

I f we use a JK flip-flip for lEN, the control gate logic will b e a s shown in
Fig. 5-17.

Control of Common Bus
The 16-bit common bus shown in Fig. 5-4 is controlled by the selection inputs
S2, S1, and 50• The decimal number shown with each bus input specifies the
equivalent binary number that must be applied to the selection inputs in order
to select the corresponding register. Table 5-7 specifies the binary numbers for
S2S1S0 that select each register. Each binary number is associated with a Boolean
variable x1 through x7, corresponding to the gate structure that must be active
in order to select the register or memory for the bus. For example, when x1 = 1,
the value of S2S1S0 must be 001 and the output of AR will be selected for the
bus. Table 5-7 is recognized as the truth table of a binary encoder. The place­
ment of the encoder at the inputs of the bus selection logic is shown in Fig.
5-18. The Boolean functions for the encoder are

D,
I

T,

So = Xt + X3 + Xs + X7
St = Xz + X3 + X6 + X7
52 = X4 + Xs + X6 + X7

Figure 5� 17 Control inputs for lEN.

/EN

SECTION 5-9 Design of Basic Computer 1 63

TABLE 5�7 Encoder for Bus Selection Circuit

Inputs Outputs Register
selected

x, x, x, x, Xs x, x, s, s, So for bus

0 0 0 0 0 0 0 0 0 0 None
1 0 0 0 0 0 0 0 0 1 AR
0 1 0 0 0 0 0 0 0 PC
0 0 1 0 0 0 0 0 1 1 DR
0 0 0 1 0 0 0 0 0 AC
0 0 0 0 1 0 0 0 1 IR
0 0 0 0 0 1 0 0 TR
0 0 0 0 0 0 Memory

To determine the logic for each encoder input, it is necessary to find the
control functions that place the corresponding register onto the bus. For exam­
ple, to find the logic that makes x1 = I, we scan all register transfer statements
in Table 5-6 and extract those statements that have AR as a source.

D4T4: PC +-AR
D5T5: PC +-AR

Therefore, the Boolean function for x1 is

x1 = D,T, + D5T5

The data output from memory are selected for the bus when x7 = 1 and
S2S1S0 = Ill. The gate logic that generates x7 must also be applied to the read
input of memory. Therefore, the Boolean function for x7 is the same as the one
derived previously for the read operation.

x, = R'T1 + D7IT3 + (Do + D1 + 02 + D6)T4

In a similar manner we can determine the gate logic for the other registers.

Figure 5-18 Encoder for bus selection inputs.

Encoder
Multiplexer
bus select

inputs

1 64 CHAPTER AVE Basic Computer Organization and Design

5-10 Design of Accumulator Logic

The circuits associated with the AC register are shown in Fig. 5-19. The adder
and logic circuit has three sets of inputs. One set of 16 inputs comes from the
outputs of AC . Another set of 16 inputs comes from the data register DR . A
third set of eight inputs comes from the input register INPR . The outputs of
the adder and logic circuit provide the data inputs for the register. In addition,
it is necessary to include logic gates for controlling the LD, INR, and CLR in
the register and for controlling the operation of the adder and logic circuit.

In order to design the logic associated with AC, it is necessary to go over
the register transfer statements in Table 5-6 and extract all the statements that
change the content of AC.

D0T5: AC <-AC 1\ DR AND with DR
D1T5: AC <- AC + DR Add with DR
D2T5: AC <- DR Transfer from DR
pBn: AC(0-7) <-- INPR Transfer from INPR
r89: AC <-AC Complement
r87: AC <- shr AC, AC(15) <- E Shift right
r86: AC <- shl AC, AC(O) <- E Shift left

rBn: AC <-- 0 Oear
r85: AC <-AC + 1 Increment

From this list we can derive the control logic gates and the adder and logic
circuit.

Figure 5�19 Circuits associated with AC.

G_
From

Adder and AccumulalOr 16 _;t_. !6
DR � logic register

8 circuit (AC) To bus
PR � From IN

1\

LD 1NR CLR I
Clock

Control
gates

Control of AC Register

SECTION 5-10 Design of Accumulator Logic 165

The gate structure that controls the LD, INR, and CLR inputs of AC is shown
in Fig. 5-20. The gate configuration is derived from the control functions in the
list above. The control function for the clear microoperation is rBn, where
r = D7l 'T3 and Bn = IR(ll). The output of the AND gate that generates this
control function is connected to the CLR input of the register. Similarly, the
output of the gate that implements the increment microoperation is connected
to the INR input of the register. The other seven microoperations are generated
in the adder and logic circuit and are loaded into AC at the proper time. The
outputs of the gates for each control function is marked with a symbolic name.
These outputs are used in the design of the adder and logic circuit.

Fignre 5-20 Gate structure for controlling the LD, lNR, and CLR of AC.

From adder 1 6

and logic AC To bus

Clock
Do INR CLR
Ts

D J

D , D R
Ts

p INPR
81 1

COM
8,

SHR
8,

SHL
8,

INC
8s

CLR
81 1

166 CHAPTER FIVE Basic Computer Organization and Design

adder and
logic circuit

Adder and Logic Circuit
The adder and logic circuit can be subdivided into 16 stages, with each stage
corresponding to one bit of AC . The internal construction of the register is as
shown in Fig. 2-11 . Looking back at that figure we note that each stage has a
JK flip-flop, two OR gates, and two AND gates. The load (LD) input is con­
nected to the inputs of the AND gates. Figure 5-21 shows one such AC register
stage (with the OR gates removed). The input is labeled I; and the output AC(i).
When the LD input is enabled, the 16 inputs I, for i = 0, 1, 2, . . . , 15 are
transferred to AC (0-15).

One stage of the adder and logic circuit consists of seven AND gates, one
OR gate and a full-adder (FA), as shown in Fig. 5-21 . The inputs of the gates with
symbolic names come from the outputs of gates marked with the same symbolic
name in Fig. 5-20. For example, the input marked ADD in Fig. 5-21 is connected
to the output marked ADD in Fig. 5-20.

The AND operation is achieved by ANDing AC(i) with the corresponding
bit in the data register DR(i). The ADD operation is obtained using a binary
adder similar to the one shown in Fig. 4-6. One stage of the adder uses a

DR (i) AC (l}

Figure 5 .. 21 One stage of adder and logic circuit.

(Output of OR gate in Fig. 5-20)
LD

Clock

SfCTION S-10 O..;gn of Acc:umubror Locic 16 7

full-adder with the corresponding input and output carries. The transfer from
INPR to AC is only for bits 0 through 7. The complement miaooperation is
obtained by inverting the bit value in AC. The shift-right operation transfers
the bit from AC(i + 1), and the shift-left operation transfers the bit from
AC(i - 1). The complete adder and logic circuit consists of 16 stages connected
together.

PROBLEMS

5-1. A computer uses a memory unit with 2561< words of 32 bits each. A bina.ry
instruction code is stored in one word oi memory. The instruction has four
parts: an indirect bit. an operation code, a registu code part to specify one
of 64 registers, and an address part.
a. How many bits are there in the operation code, the register code part,

and the address part?
b. Draw the instruction word format and indicate the numberolbits in each

part.
c. How many bits are there in the data and address inputs oi the memory?

5-2. What is the difference between a dired and an indirect address instruction?
How many references to memory are needed for uch type oi instruction to
bring an operand into a processor registet?

w. The foUowins control inputs are active in the bus system shown in Fig. 5-4.
For each case, specify the register transfer that-will be executed during the
next dock transition.

s, s, s. LO oi resister Memory Adder

... I I IR Read
b. I I 0 PC
c. 1 0 0 DR Write
d. 0 0 0 AC Add

5-4. The foUowing register transfers are to be executed in the system of Fig. H.
For each transfer, specify: (I) the binary value that must be applied to bus
select inputs S,. S,, and So; (2) the register whose I.D cont:tol input must be
active (if any); (3) a memory read or write operation (if needed); and (4) the
operation in the adder and logic clreuit (iJ any).
a. A.R -PC
b. /R -MIARI
c. M(AR)-TR
d. AC-DR, DR-AC (done simultaneously)

5-5. Explain why each of the following miaooperations cannot be executed

168 CHAPTIR FIVE Basic Computer Organization and Design

during a single clock pulse in the system shown in Fig. 5-4. Specify a
sequence of microoperations that will perform the operation.
a. IR +-M[PC]
b. AC +- AC + TR
c. DR +- DR + AC (AC does not change)

5-6. Consider the instruction formats of the basic computer shown in Fig. 5-5 and
the list of instructions given in Table 5-2. For each of the following 16-bit
iitstructions, give the equivalent four-digit hexadecimal code and explain in
your own words what it is that the instruction is going to perform.
a. 0001 0000 0010 0100
b. 1011 0001 0010 0100
c. 0111 0000 0010 0000

5-7. What are the two instructions needed in the basic computer in order to set
the E flip-flop to 1?

5-8. Draw a timing diagram similar to Fig. 5-7 assuming that SC is cleared to 0
at time T3 if control signal c, is active.

C,T,: SC +-0

. C, is activated with the positive clock transition associated with T, .

5-9. The content of AC in the basic computer is hexadecimal A937 and the initial
value of E is 1 . Determine the contents of AC, E, PC, AR, and IR in hexadec­
imal after the execution of the CLA instruction. Repeat 11 more times,
starting from each one of the register-reference instructions. The initial value
of PC is hexadecimal 021 .

5-10. An instruction at address 021 in the basic computer has I = 0, an operation
code of the AND instruction, and an address part equal to 083 (all numbers
are in hexadecimal� The memory word at address 083 contains the operand
B8F2 and the content of AC is A937. Go over the instruction cycle and
determine the contents of the following registers at the end of the execute
phase: PC, AR, DR, AC, and lR. Repeat the problem six more times starting
with an operation code of another memory-reference instruction.

5-11. Show the contents in hexadecimal of registers PC, AR, DR, IR, and SC of
the basic computer when an ISZ indirect instruction is fetched from memory
and executed. The initial content of PC is 7FF. The content of memory at
address 7FF is EA9F. The content of memory at address A9F is OC35. The
content of memory at address C35 is FFFF. Give the answer in a table with
five columns, one for each register and a row for each timing signal. Show
the contents of the registers after the positive transition of each clock pulse.

5-12. The content of PC in the basic computer is 3AF (all numbers are in hexadec­
imal). The content of AC is 7EC3. The content of memory at address 3AF is
932E. The content ofmemory ataddress 32E is 09AC. The content of memory
at address 9AC is 8B9F.
a. What is the instruction that will be fetched and executed next?
b. Show the binary operation that will be performed in the AC when the

instruction is executed.

SECTION 5-10 Design of Accumulator Logic 169

c. Give the contents of registers PC, AR, DR, AC, and IR in hexadecimal
and the values of E, I, and the sequence counter SC in binary at the end
of the instruction cycle.

5-13. Assume that the first six memory-reference instructions in the basic com­
puter listed in Table 5-4 are to be changed to the instructions specified in the
following table. EA is the effective address that resides in AR during time
T,. Assume that the adder and logic circuit in Fig. 5-4 can perform the
exclusive-OR operation AC +-AC Ell DR . Assume further that the adder and
logic circuit cannot perform subtraction directly. The subtraction must be
done using the 2' s complement of the subtrahend by complementing and
incrementing AC. Give the sequence of register transfer statements needed
to execute each of the listed instructions starting from timing T,. Note that
the value in AC should not change unless the instruction specifies a change
in its content. You can use TR to store the content of AC temporary or you
can exchange DR and AC.

Symbol Ope ode Symbolic designation Description in words

XOR 000 AC+-ACEB M[EA] Exclusive-OR to AC
ADM 001 M[EA] +- M[EA] + AC Add AC to memory
SUB 010 AC+-AC - M[EA] Subtract memory from AC
XCH 011 A C +- M[EA] , M[EA] +-AC Exchange AC and memory
SEQ 100 If (M[EA] = AC) then Skip on equal

(PC +- PC + 1)
BPA 101 If (AC > 0) then (PC +- EA) Branch i f AC positive and

non-zero

5-14. Make the following changes to the basic computer.
1. Add a register to the bus system CTR (count register) to be selected with

s,s,s, = 000.
2. Replace the ISZ instruction with an instruction that loads a number into

CTR.

LDC Address CTR +-M[Address]

3. Add a register reference instruction ICSZ: Increment CTR and skip next
instruction if zero. Discuss the advantage of this change.

5-15. The memory unit of the basic computer shown in Fig. 5-3 is to be changed
to a 65,536 x 16 memory, requiring an address of 16 bits. The instruction
format of a memory-reference instruction shown in Fig. 5-S(a) remains the
same for I = 1 (indirect address) with the address part of the instruction
residing in positions 0 through 11 . But when I = 0 (direct address), the
address of the instruction is given by the 16 bits in the next word following
the instruction. Modify the microoperations during time T,, T,, (and T, if
necessary) to conform with this configuration.

1 70 CHAPTER FIVE Basic Computer Organization and Design

5-16. A computer uses a memory of 65,536 words with eight bits in each word.
It has the following registers: PC, AR, TR (16 bits each), and AC, DR, IR
(eight bits each). A memory-reference instruction consists of three words: an
8-bit operation-code (one word) and a 16-bit address (in the next two words).
All operands are eight bits. There is no indirect bit.
a. Draw a block diagram of the computer showing the memory and registers

as in Fig. 5-3. (Do not use a common bus).
b. Draw a diagram showing the placement in memory of a typical three­

word instruction and the corresponding 8-bit operand.
c. List the sequence of microoperations for fetching a memory reference

instruction and then placing the operand in DR . Start from timing sig­
nal To.

5-17. A digital computer has a memory unit with a capacity of 16,384 words, 40
bits per word. The instruction code format consists of six bits for the oper­
ation part and 14 bits for the address part (no indirect mode bit). Two
instructions are packed in one memory word� and a 40-bit instruction regis­
ter IR is available in the control unit. Formulate a procedure for fetching and
executing instructions for this computer.

5-18. An output program resides in memory starting from address 2300. It is
executed after the computer recognizes an interrupt when FGO becomes a
1 (while lEN = 1).
a. What instruction must be placed at address 1?
b. What must be the last two instructions of the output program?

5-19. The register transfer statements for a register R and the memory in a com­
puter are as follows (the x�s are control functions that occur at random):

X; X,: R +-M[AR]
Xi X,: R +-AC
Xi X.: M[AR] +-R

Read memory word into R
Transfer AC to R
Write R to memory

The memory has data inputs, data outputs, address inputs, and control
inputs to read and write as in Fig. 2-12. Draw the hardware implementation
of R and the memory in block diagram form. Show how the control functions
X, through X. select the load control input of R, the select inputs of multi­
plexers that you include in the diagram, and the read and write inputs of
the memory.

5-20. The operations to be performed with a flip-flop F (not used in the basic
computer) are specified by the following register transfer statements:

xTJ: F +- 1
yT,: F +-0
zT2: F +-F

wTs: F +-G

Set F to 1
Clear F to 0
Complement F
Transfer value of G to F

Otherwise, the content of F must not change. Draw the logic diagram
showing the connections of the gates that form the control functions and the
inputs of flip-flop F. Use a JK flip-flop and minimize the number of gates.

SECTICI>I S-10 DesiR�> of AccumularO< Locic 171

!>-21. Derive the control gates associated with the program coutlter PC in the t.osic
computer.

5-22. Derive the control gates for the write input of the memery in the basic
computer.

!>-23. Show the complete logic of the interrupt flip-flops R in the basic computer.
Use a JK fllp-'flop and minimize the number of gates.

5·24. Derive the Boolean logic expression for "' (see Table 5-7). Show that x. can
be generated with one AND gate and one OR gate.

5-25. Derive the Boolean expression for the gate structure that dears the sequence
counter SC to 0. Draw the logic diagram of the gates and show how the
output is connected to the lNR and a..R inputs of SC (see Fig. 5-6). Minimize
the number of gates.

REFERENCES

1. Bell. C. G., J. C. Mudge, and). E. McNaman, Computer Engineering. Bedford,
MA: Digital Press, 1980.

2. Booth, T. L., lntrodudion to Compute E.ngin«ring, 3rd ed. New Yori<: john Wiley,
1984.

3. Gibson, G. A., Compute Systmrs Qmcrpls•nd D<sign. Englewood Cliffs, N): l'Jentic:r
HaU, 1991.

4. Gray, N. A. 8., Introduction to Compute Systmrs. Englewood Cliffs, NJ: l'Jentlce
HaU, 198?.

5. Hill, F. J ., and G. R. Peterson, Digit•! Systtms: Hordu»rt Orgoniz4lion •nd Ot$1g.t, 3rd
ed. New York: John Wiley, 198?.

6. Lewin, M. H. Logic Otsig.t •nd O>mpltltr Orgoniution. Readlng, MA: Addison­
Wesley, 1983.

7. Mono, M. M., O>mpultr E.nginttring: Hordw<lrt Ot$ig.t. Englewood Clif&, N): Pren­
tice Hall, 1988.

8. Patterson, D. A. and). L. Hennessy, O>mputtr Ardoittdure: A Qw>ntitGtiPtAJ'I"CCIdd.
Son Mateo, CA: Morgan Kaufmann Publl$hers, 1990.

9. Prosser, F. P .. and D. E. Winkel, The Art of DigitGI Ot$ig.., 2nd ed. Englewood Oiffs,
N): l'Jentlce HaU, 198?.

10. Shlva, S. G., O>mputu Ot$ign Gnd Ardlil.chtrt, 2nd ed. New York: HarperCollins
Publishers, 1991.

C H A P T E R S I 'X

Programming
the Basic Computer

IN 1HIS CHAPTER

6-1 lnaoduction
6-2 Machine language

6-3 Assanbly language
6-4 The Assanbler
6-S l'rotlram Loops
6-6 Proerammlne Arithmetic and Logic Opentioos
6-7 Subroutines
6-8 Input-Output Propamming

6--1 Introduction

A total computer system includes both hllrdwtzrt and so{twttrt. Hudware con­
sists of the physical components and all associated equipment. Software refers
to the programs that are written foe the computer. It is possible to be familiar
with various aspects of computer software without being con<.ftned with
details of how the computer hardware operates. It is also possible to design
parts of the hardware without a knowledge of its software capabilities. How·
ever, those concerned with computer architecture should have a knowledge of
both hardware and software because the two branches in£luenoe each other.

Writing a program for a computer consists of specifying, din!ctly or
indirectly, a sequence of machine instructions. Machine instructions inlide the
computer form a binary pattern which is difficult, if not Impossible, for people
to work with and understand. It is preferable to write programs with the more
flu:nllW symbols of the alphanumeric character set . . As a consequence, tllere
is a need for translating user-oriented symbolic programs into binary programs
recognized by the hardware.

A program written by a user may be either dependent or independent oi

173

1 7 4 CHAPTER SIX Programming the Basic Computer

instruction set

the physical computer that runs his program. For example, a program written
in standard Fortran is machine independent because most computers provide
a translator program that converts the standard Fortran program to the binary
code of the computer available in the particular installation. But the translator
program itself is machine dependent because it must translate the Fortran
program to the binary code recognized by the hardware of the particular
computer used.

This chapter introduces some elementary programming concepts and
shows their relation to the hardware representation of instructions. The first
part presents the basic operation and structure of a program that translates a
user's symbolic program into an equivalent binary program. The discussion
emphasizes the important concepts of the translator rather than the details of
actually producing the program itself. The usefulness of various machine
instructions is then demonstrated by means of several basic programming
examples.

The instruction set of the basic computer, whose hardware organization
was explored in Chap. 5, is used in this chapter to illustrate many of the
techniques commonly used to program a computer. In this way it is possible
to explore the relationship between a program and the hardware operations
that execute the instructions.

The 25 instructions of the basic computer are repeated in Table 6-1 to
provide an easy reference for the programming examples that follow. Each
instruction is assigned a three-letter symbol to facilitate writing symbolic pro­
grams. The first seven instructions are memory-reference instructions and the
other 18 are register-reference and input-cutput instructions. A memory­
reference instruction has three parts: a mode bit, an operation code of three
bits, and a 12-bit address. The first hexadecimal digit of a memory-reference
instruction includes the mode bit and the operation code. The other three digits
specify the address. In an indirect address instruction the mode bit is 1 and the
first hexadecimal digit ranges in value from 8 to E. In a direct mode, the range
is from 0 to 6. The other 18 instructions have a 16-bit operation code. The code
for each instruction is listed as a four-digit hexadecimal number. The first digit
of a register-reference instruction is always 7. The first digit of an input-cutput
instruction is always F. The symbol m used in the description column denotes
the effective address. The letter M refers to the memory word (operand) found
at the effective address.

6-2 Machine Language

A program is a list of instructions or statements for directing the computer to
perform a required data-processing task. There are various types of program­
ming languages that one may write for a computer, but the computer can execute
programs only when they are represented internally in binary form. Programs

Symbol

AND
ADD
LDA
STA
BUN
BSA
ISZ
CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT
INP
OUT
SKI
SKO
ION
!OF

SECTION 6-2 Machine Language 1 7 5

TABLE 6 .. 1 Computer Instructions

Hexadecimal
code Description

0 or 8 AND M to A C
I o r 9 Add M to A C, carry to E
2 or A Load AC from M
3 or B Store A C in M
4 or C Branch unconditionally to m
5 or D Save return address in m and branch to m + 1
6 or E Increment M and skip if zero
7800 Clear A C
7400 Clear E
7200 Complement A C
7 1 00 Complement E
7080 Circulate right E and A C
7040 Circulate left E and A C
7020 Increment A C,
7010 Skip if A C is positive
7008 Skip if A C is negative
7004 Skip if AC is zero
7002 Skip if E is zero
7001 Halt computer
F800 Input information and clear flag
F400 Output information and clear flag
F200 Skip if input flag is on
FIOO Skip if output flag is on
F080. Turn interrupt on
F040 Turn interrupt off

written in any other language must be translated to the binary representation
of instructions before they can be executed by the computer. Programs written
for a computer may be in one of the following categories:

1. Binary code. This is a sequence of instructions and operands in binary
that list the exact representation of instructions as they appear in com­
puter memory.

2. Octal or hexadecimal code . This is an equivalent translation of the binary
code to octal or hexadecimal representation.

3. Symbolic code. The user employs symbols (letters, numerals, or special
characters) for the operation part, the address part, and other parts of
the instruction code. Each symbolic instruction can be translated into
one binary coded instruction. This translation is done by a special
program called an assembler. Because an assembler translates the sym-

1 7 6 CHAPTER SIX Programming the Basic Computer

assembly language

machine language

bois, this type of symbolic program is referred to as an assembly language
program.

4. High-level programming languages . These are special languages developed
to reflect the procedures used in the solution of a problem rather than
be concerned with the computer hardware behavior. An example of a
high-level programming language is Fortran . It employs problem­
oriented symbols and formats. The program is written in a sequence of
statements in a form that people prefer to think in when solving a
problem. However, each statement must be translated into a sequence
of binary instructions before the program can be executed in a com­
puter. The program that translates a high-level language program to
binary is called a compiler.

Strictly speaking, a machine language program is a binary program of
category 1. Because of the simple equivalency between binary and octal or
hexadecimal representation, it is customary to refer to category 2 as machine
language. Because of the one-to-one relationship between a symbolic instruc­
tion and its binary equivalent, an assembly language is considered to be a
machine-level language.

We now use the basic computer to illustrate the relation between binary
and assembly languages. Consider the binary program listed in Table 6-2. The
first column gives the memory location (in binary) of each instruction or
operand. The second column lists the binary content of these memory loca­
tions. (The location is the address of the memory word where the instruction
is stored. It is important to differentiate it from the address part of the instruc­
tion itself.) The program can be stored in the indicated portion of memory, and
then executed by the computer starting from address 0. The hardware of the
computer will execute these instructions and perform the intended task. How­
ever, a person looking at this program will have a difficult time understanding
what is to be achieved when this program is executed. Nevertheless, the
computer hardware recognizes only this type of instruction code.

TABLE 6-Z Binary Program to Add Two Numbers

Location Instruction code

0 0010 0000 0000 0100
1 0001 0000 0000 0101

10 0011 0000 0000 0110
11 0111 0000 0000 0001

100 0000 0000 0101 0011
101 1111 1111 1110 1001
110 0000 0000 0000 0000

hexadecimal code

SECfiON 6-2 Machine Language 177

TABLE 6 .. 3 Hexadecimal Program t o Add Two Numbers

Location Instruction

000 2004
001 1005
002 3006
003 7001
004 0053
005 FFE9
006 0000

Writing 16 bits for each instruction is tedious because there are too many
digits. We can reduce the number of digits per instruction if we write the octal
equivalent of the binary code. This will require six digits per instruction. On
the other hand, we can reduce each instruction to four digits jf we write the
equivalent hexadecimal code as shown in Table 6-3. The hexadecimal represen­
tation is convenient to use ; howevet', one must realize that each hexadecimal
\:o..:E,�-.. n n..&:;::.-..� VC "\ .. ."VU 'O' \.: rl.'\:'\:l �v n..-;:, l:"'lUlVd.lt:l11.. �vn IlUlllOt:!'f Wnt:!'n lnt:! program IS
entered into the computer. The advantage of writing binary programs in
equivalent octal or hexadecimal form should be evident from this example.

The program in Table 6-4 uses the symbolic names of instructions (listed
in Table 6-1) instead of their binary or hexadecimal equivalent. The address
parts of memory-reference instructions, as well as operands, remain in their
hexadecimal value. Note that location 005 has a negative operand because the
sign bit in the leftmost position is 1. The inclusion of a column for comments
provides some means for explaining the function of each instruction. Symbolic
programs are easier to handle, and as a consequence, it is preferable to write
programs with symbols. These symbols can be converted to their binary code
equivalent to produce the binary program.

We can go one step further and replace each hexadecimal address by a

TABLE 6-4 Program with Symbolic Operation Codes

Location

000
001
002
003
004
005
006

Instruction

LDA 004
ADD 005
STA 006
HLT
0053
FFE9
0000

Comments

Load first operand into AC
Add second operand to AC
Store sum in location 006
Halt computer
First operand
Second operand (negative)
Store sum here

1 78 CHAPTER SIX Programming the Basic Computer

TABLE 6-5 Assembly language Program to Add Two Numbers

A,
B,
C,

ORG O
LDA A
ADD B
STA C
HLT
DEC B3
DEC -23
DEC O
END

/Origin of program is location 0
/Load operand from location A
I Add operand from location B
/Store sum in location C
!Halt computer
/Decimal operand
/Decimal operand
/Sum stored in location C
/End of symbolic program

symbolic address and each hexadecimal operand by a decimal operand. This
is convenient because one usually does not know exactly the numeric memory
location of operands while writing a program. If the operands are placed in
memory following the instructions, and if the length of the program is not
known in advance, the numerical location of operands is not known until the
end of the program is reached. In addition, decimal numbers are more familiar
than their hexadecimal equivalents.

The program in Table 6-5 is the assembly-language program for adding
two numbers. The symbol ORG followed by a number is not a machine
instruction. Its purpose is to specify an origin , that is, the memory location of
the next instruction below it. The next three lines have symbolic addresses.
Their value is specified by their being present as a label in the first column.
Decimal operands are specified following the symbol DEC. The numbers may
be positive or negative, but if negative, they must be converted to binary in the
signed-2's complement representation. The last line has the symbol END
indicating the end of the program. The symbols ORG, DEC, and END, called
pseudoinstructions, are defined in the next section. Note that all comments are
preceded by a slash.

The equivalent Fortran program for adding two integer numbers is listed
in Table 6-6. The two values for A and B may be specified by an input statement
or by a data statement. The arithmetic operation for the two numbers is
specified by one simple statement. The translation of this Fortran program into
a binary program consists of assigning three memory locations, one each for
the augend, addend, and sum, and then deriving the sequence of binary

TABLE 6-6 Fortran Program to Add Two Numbers

I N T E G E R A ,
D A T A A , 8 3

C = A + B

E N D

B , C
B , - 2 3

symbolic address

SECTION 6-3 Assembly Language 1 79

instructions that form the sum. Thus a compiler program translates the sym­
bols of the Fortran program into the binary values listed in the program of
Table 6-2.

6-3 Assembly Language

A programming language is defined by a set of rules. Users must conform with
all format rules of the language if they want their programs to be translated
correctly. Almost every commercial computer has its own particular assembly
language. The rules for writing assembly language programs are documented
and published in manuals which are usually available from the computer
manufacturer.

The basic unit of an assembly language program is a line of code. The
specific language is defined by a set of rules that specify the symbols that can
be used and how they may be combined to form a line of code. We will now
formulate the rules of an assembly language for writing symbolic programs for
the basic computer.

Rules of the Language
Each line of an assembly language program is arranged in three columns called
fields. The fields specify the following information.

1. The label field may be empty or it may specify a symbolic address.

2. The instruction field specifies a machine instruction or a pseudoin­
struction.

3. The comment field may be empty or it may include a comment.

A symbolic address consists of one, two, or three, but not more than three
alphanumeric characters. The first character must be a letter; the next two may
be letters or numerals. The symbol can be chosen arbitrarily by the pro­
grammer. A symbolic address in the label field is terminated by a comma so
that it will be recognized as a label by the assembler.

The instruction field in an assembly language program may specify one
of the following items:

1. A memory-reference instruction (MRI)

2. A register-reference or input-output instruction (non-MRI)

3. A pseudoinstruction with or without an operand

A memory-reference instruction occupies two or three symbols separated
by spaces. The first must be a three-letter symbol defining an MRI operation

180 CHAPTER SIX Programming the Basic Computer

pseudoinstruction

code from Table 6-1 . The second is a symbolic address. The thlrd symbol, which
may or may not be present, is the letter I. If I is missing, the line denotes a direct
address instruction. The presence of the symbol I denotes an indirect address
instruction.

A non-MRI is defined as an instruction that does not have an address
part. A non-MRI is recognized in the instruction field of a program by any one
of the three-letter symbols listed in Table 6-1 for the register-reference and
input-output instructions.

The following is an illustration of the symbols that may be placed in the
instruction field of a program.

C L A n o n - M R I
A D D O P R
ADD P T R I

d i rect a d d ress M R I
i n d i rect a d d re s s M R I

The first three-letter symbol in each line must be one of the instruction symbols
of the computer and must be listed in Table 6-1 . A memory-reference instruc­
tion, such as ADD, must be followed by a symbolic address. The letter I may
or may not be present.

A symbolic address in the instruction field specifies the memory location
of an operand. This location must be defined somewhere in the program by
appearing again as a label in the first column. To be able to translate an
assembly language program to a binary program, it is absolutely necessary that
each symbolic address that is mentioned in the instruction field must occur
again in the label field.

A pseudoinstruction is not a machine instruction but rather an instruction
to the assembler giving information about some phase of the translation. Four
pseudoinstructions that are recognized by the assembler are listed in Table 6-7.
(Other assembly language programs recognize many more pseudoinstruc­
tions.) The ORG (origin) pseudoinstruction informs the assembler that the
instruction or operand in the following line is to be placed in a memory location
specified by the number next to ORG. It is possible to use ORG more than once
in a program to specify more than one segment of memory. The END symbol

Symbol

ORG N

END
DEC N
HEX N

TABLE 6 .. 7 Definition of Pseudoinstructions

Information for the Assembler

Hexadecimal number N is the memory location for the instruction or
operand listed in the following line

Denotes the end of symbolic program
Signed decimal number N to be converted to binary
Hexadecimal number N to be converted to binary

SECTION 6·3 Assembly Language 1 8 1

i s placed a t the end o f the program t o inform the assembler that the program
is terminated. The other two pseudoinstructions specify the radix of the
operand and tell the assembler how to convert the listed number to a binary
number.

The third field in a program is reserved for comments. A line of code may
or may not have a comment, but if it has, it must be preceded by a slash for
the assembler to recognize the beginning of a comment field. Comments are
useful for explaining the program and are helpful in understanding the step­
by-step procedure taken by the program. Comments are inserted for explana­
tion purposes only and are neglected during the binary translation process.

An Example
The program of Table 6-8 is an example of an assembly language program. The
first line has the pseudoinstruction ORG to define the origin of the program
at memory location (100)16. The next six lines define machine instructions, and
the last four have pseudoinstructions. Three symbolic addresses have been
used and each is listed in column 1 as a label and in column 2 as an address
of a memory-reference instruction. Three of the pseudoinstructions specify
operands, and the last one signifies the END of the program.

When the program is translated into binary code and executed by the
computer it will perform a subtraction between two numbers. The subtraction
is performed by adding the minuend to the 2' s complement of the subtrahend.
The subtrahend is a negative number. It is converted into a binary number in
signed-2's complement representation because we dictate that all negative
numbers be in their 2's complement form. When the 2's complement of the
subtrahend is taken (by complementing and incrementing the AC), -23 con­
verts to +23 and the difference is 83 + (2's complement of -23) = 83 +
23 = 106.

TABLE 6·8 Assembly Language Program to Subtract Two Numbers

MIN,
SUB,
DJF,

ORG lOO
LDA SUB
CMA
INC
ADD MIN
STA DJF
HLT
DEC B3
DEC -23
HEX O
END

/Origin of program is location 100
/Load subtrahend to AC
/Complement AC
!Increment AC
/Add minuend to AC
/Store difference
/Halt computer
!Minuend
/Subtrahend
!Difference stored here
!End of symbolic program

182 CHAPTER SIX Programming the Basic Computer

assembler

Translation to Binary
The translation of the symbolic program into binary is done by a special
program called an assembler. The tasks performed by the assembler will be
better understood if we first perform the translation on paper. The translation
of the symbolic program of Table 6-8 into an equivalent binary code may be
done by scanning the program and replacing the symbols by their machine
code binary equivalent. Starting from the first line, we encounter an ORG
pseudoinstruction. This tells us to start the binary program from hexadecimal
location 100. The second line has two symbols. It must be a memory-reference
instruction to be placed in location 100. Since the letter I is missing, the first
bit of the instruction code must be 0. The symbolic name of the operation is
LOA. Checking Table 6-1 we find that the first hexadecimal digit of the instruc­
tion should be 2. The binary value of the address part must be obtained from
the address symbol SUB. We scan the label column and find this symbol in line
9. To determine its hexadecimal value we note that line 2 contains an instruc­
tion for location 100 and every other line specifies a machine instruction or an
operand for sequential memory locations. Counting lines, we find that label
SUB in line 9 corresponds to memory location 107. So the hexadecimal address
of the instruction LOA must be 107. When the two parts of the instruction are
assembled, we obtain the hexadecimal code 2107. The other lines representing
machine instructions are translated in a similar fashion and their hexadecimal
code is listed in Table 6-9.

Two lines in the symbolic program specify decimal operands with the
pseudoinstruction DEC. A third specifies a zero by means of a HEX pseudo­
instruction (DEC could be used as well). Decimal 83 is converted to binary and
placed in location 106 in its hexadecimal equivalent. Decimal -23 is a negative
number and must be converted into binary in signed-2's complement form.

TABLE 6-9 Listing of T rnnslated Program of Table 6-8

Hexadecimal code

Location Content Symbolic program

ORG 100
100 2107 LDA SUB
101 7200 CMA
102 7020 INC
103 1106 ADD MIN
104 3108 STA DIF
105 7001 HLT
106 0053 MIN, DEC 83
107 FFE9 SUB, DEC -23
108 0000 DIF, HEX O

END

SECTION 6-4 The Assembler 183

The hexadecimal equivalent of the binary number is placed in location 107. The
END symbol signals the end of the symbolic program telling us that there are
no more lines to translate.

address symbol table The translation process can be simplified if we scan the entire symbolic
program twice. No translation is done during the first scan. We merely assign
a memory location to each machine instruction and operand. The location
assignment will define the address value of labels and facilitate the translation
process during the second scan. Thus in Table 6-9, we assign location 100 to
the first instruction after ORG. We then assign sequential locations for each line
of code that has a machine instruction or operand up to the end. of the program.
(ORG and END are not assigned a numerical location because they do not
represent an instruction or an operand.) When the first scan is completed, we
associate with each label its location number and form a table that defines the
hexadecimal value of each symbolic address. For this program, the address
symbol table is as follows:

Address symbol

MIN
SUB
DIF

Hexadecimal address

106
107
108

During the second scan of the symbolic program we refer to the address
symbol table to determine the address value of a memory-reference instruc­
tion. For example, the line of code LOA SUB is translated during the second
scan by getting the hexadecimal value of LOA from Table 6-1 and the hexadec­
imal value of SUB from the address-symbol table listed above. We then assem­
ble the two parts into a four-digit hexadecimal instruction. The hexadecimal
code can be easily converted to binary if we wish to know exactly how this
program resides in computer memory.

When the translation from symbols to binary is done by an assembler
program, the first scan is called the first pass, and the second is called the second
pass.

6-4 The Assembler

An assembler is a program that accepts a symbolic language program and
produces its binary machine language equivalent. The input symbolic program
is called the source program and the resulting binary program is called the object
program . The assembler is a program that operates on character strings and
produces an equivalent binary interpretation.

184 CHAPTER S I X Programming the Basic Computer

line of code

Representation of Symbolic Program in Memory
Prior to starting the assembly process, the symbolic program must be stored
in memory. The user types the symbolic program on a terminal. A loader
program is used to input the characters of the symbolic program into memory.
Since the program consists of symbols, its representation in memory must use
an alphanumeric character code. In the basic computer, each character is
represented by an 8-bit code. The high-order bit is always 0 and the other seven
bits are as specified by ASCII. The hexadecimal equivalent of the character set
is listed in Table 6-10. Each character is assigned two hexadecimal digits which
can be easily converted to their equivalent 8-bit code. The last entry in the table
does not print a character but is associated with the physical movement of the
cursor in the terminal. The code for CR is produced when the return key
is depressed. This causes the "carriage" to return to its initial position to start
typing a new line. The assembler recognizes a CR code as the end of a line of
code.

A line of code is stored in consecutive memory locations with two char­
acters in each location. Two characters can be stored in each word since a
memory word has a capacity of 16 bits. A label symbol is terminated with a
comma. Operation and address symbols are terminated with a space and the
end of the line is recognized by the CR code. For example, the following line
of code:

P L 3 ,

Character

A
B
c
D
E
F
G
H
I
J
K
L
M
N
0
p

LD A S U B I

TABLE 6-10 Hexadecimal Character Code

Code Character

41 Q
42 R
43 s
44 T
45 u
46 v
47 w
48 X
49 y
4A z
4B 0
4C
4D
4E
4F 4
50 5

Code

51
52
53
54
55
56
57
58
59
SA
30
31
32
33
34
35

Character Code

36
37
38

9 39
space 20

(28
) 29

2A
+ 2B

2C
2D
2E
2F
3D

CR OD (carriage
return)

SECTION 6-4 The Assembler 1 85

TABLE 6- 1 1 Computer Representation of the Line of Cod., PL3 , LDA SUB I

Memory
word

4
5
6
7

Symbol

P L
3 '
L D
A
s u
B
I CR

Hexadecimal
code Binary representation

50 4C 0101 ()()()() 0100 1100
33 2C 0011 0011 0010 1100
4C 44 0100 1100 0100 0100
41 20 0100 0001 0010 0000
53 55 0101 0011 0101 0101
42 20 0100 0010 0010 0000
49 OD 0100 1001 ()()()() 1101

is stored in seven consecutive memory locations, as shown in Table 6-11 . The
label PL3 occupies two words and is terminated by the code for comma (2C).
The instruction field in the line of code may have one or more symbols. Each
symbol is terminated by the code for space (20) except for the last symbol,
which is terminated by the code of carriage return (00). If the line of code has
a comment, the assembler recognizes it by the code for a slash (2F). The
assembler neglects all characters in the comment field and keeps checking for
a CR code. When this code is encountered, it replaces the space code after the
last symbol in the line of code.

The input for the assembler program is the user's symbolic language
program in ASCII. This input is scanned by the assembler twice to produce the
equivalent binary program. The binary program constitutes the output gener­
ated by the assembler. We will now describe briefly the major tasks that must
be performed by the assembler during the translation process.

First Pass
A two-pass assembler scans the entire symbolic program twice. During the first
pass, it generates a table that correlates all user-defined address symbols with
their binary equivalent value. The binary translation is done during the second
pass. To keep track of the location of instructions, the assembler uses a memory

location counter (LC) word called a location counter (abbreviated LC). The content of LC stores the
value of the memory location assigned to the instruction or operand presently
being processed. The ORG pseudoinstruction initializes the location counter
to the value of the first location. Since instructions are stored in sequential
locations, the content of LC is incremented by 1 after processing each line of
code. To avoid ambiguity in case ORG is missing, the assembler sets the
location counter to 0 initially.

The tasks performed by the assembler during the first pass are described
in the flowchart of Fig. 6-1 . LC is initially set to 0. A line of symbolic code is
analyzed to determine if it has a label (by the presence of a comma). If the line

186 CHAPTER SIX Programming the Basic Computer

First pass

Figure 6 .. 1 Flowchart for first pass of assembler.

of code has no label, the assembler checks the symbol in the instruction field.
If it contains an ORG pseudoinstruction, the assembler sets LC to the number
that follows ORG and goes back to process the next line. If the line has an END
pseudoinstruction, the assembler terminates the first pass and goes to the
second pass. (Note that a line with ORG or END should not have a label.) If
the line of code contains a label, it is stored in the address symbol table together
with its binary equivalent number specified by the content of LC. Nothing is
stored in the table if no label is encountered. LC is then incremented by 1 and
a new line of code is processed.

For the program of Table 6-8, the assembler generates the address symbol
table listed in Table 6-12. Each label symbol is stored in two memory locations
and is terminated by a comma. If the label contains less than three characters,
the memory locations are filled with the code for space. The value found in LC
while the line was processed is stored in the next sequential memory location.
The program has three symbolic addresses: MIN, SUB, and DIF. These sym­
bols represent 12-bit addresses equivalent to hexadecimal 106, 107, and 108,

table-lookup

SECTION 6-4 The Assembler 187

TABLE 6-12 Address Symbol Table for Program in Table 6-8

Memory Symbol Hexadecimal
word or (LC)* code Binary representation

1 M I 4D 49 0100 1101 0100 1001
2 N , 4E 2C 0100 1110 0010 1100
3 (LC) 01 06 0000 0001 0000 0110
4 s u 53 55 0101 0011 0101 0101
5 B ' 42 2C 0100 0010 0010 1100
6 (LC) 01 07 0000 0001 0000 0111

D I 44 49 0100 0100 0100 1001
F ' 46 2C 0100 0110 0010 1100

9 (LC) 01 08 0000 0001 0000 1000

• (LC) designates content of location counter.

respectively. The address symbol table occupies three words for each label
symbol encountered and constitutes the output data that the assembler gener­
ates during the first pass.

Second Pass
Machine instructions are translated during the second pass by means of table­
lookup procedures. A table-lookup procedure is a search of table entries to
determine whether a specific item matches one of the items stored in the table.
The assembler uses four tables. Any symbol that is encountered in the program
must be available as an entry in one of these tables; otherwise, the symbol
cannot be interpreted. We assign the following names to the four tables:

1. Pseudoinstruction table.

2. MRI table.

3. Non-MRI table.

4. Address symbol table.

The entries of the pseudoinstruction table are the four symbols ORG,
END, DEC, and HEX. Each entry refers the assembler to a subroutine that
processes the pseudoinstruction when encountered in the program. The MRI
table contains the seven symbols of the memory-reference instructions and
their 3-bit operation code equivalent. The non-MRI table contains the symbols
for the 18 register-reference and input-output instructions and their 16-bit
binary code equivalent. The address symbol table is generated during the first
pass of the assembly process. The assembler searches these tables to find the
symbol that it is currently processing in order to determine its binary value.

The tasks performed by the assembler during the second pass are de-

188 CHAPTER SIX Programming the Basic Computer

error diagnostics

scribed in the flowchart of Fig. 6-2. LC is initially set to 0. Lines of code are then
analyzed one at a time. Labels are neglected during the second pass, so the
assembler goes immediately to the instruction field and proceeds to check the
first symbol encountered. It first checks the pseudoinstruction table. A match
with ORG sends the assembler to a subroutine that sets LC to an initial value.
A match with END terntinates the translation process. An operand pseudo­
instruction causes a conversion of the operand into binary. This operand is
placed in the memory location specified by the content of LC. The location
counter is then incremented by 1 and the assembler continues to analyze the
next line of code.

If the symbol encountered is not a pseudoinstruction, the assembler
refers to the MRI table. If the symbol is not found in this table, the assembler
refers to the non-MRI table. A symbol found in the non-MRl table corresponds
to a register reference or input-{)utput instruction. The assembler stores the
16-bit instruction code into the memory word specified by LC. The location
counter is incremented and a new line analyzed.

When a symbol is found in the MRI table, the assembler extracts its
equivalent 3-bit code and inserts it in bits 2 through 4 of a word. A memory
reference instruction is specified by two or three symbols. The second symbol
is a symbolic address and the third, which may or may not be present, is the
letter I. The symbolic address is converted to binary by searching the address
symbol table. The first bit of the instruction is set to 0 or 1, depending on
whether the letter I is absent or present. The three parts of the binary instruc­
tion code are assembled and then stored in the memory location specified by
the content of LC. The location counter is incremented and the assembler
continues to process the next line.

One important task of an assembler is to check for possible errors in the
symbolic program. This is called error diagnostics . One such error may be an
invalid machine code symbol which is detected by its being absent in the MRl
and non-MRI tables. The assembler cannot translate such a symbol because it
does not know its binary equivalent value. In such a case, the assembler prints
an error message to inform the programmer that his symbolic program has an
error at a specific line of code. Another possible error may occur if the program
has a symbolic address that did not appear also as a label. The assembler cannot
translate the line of code properly because the binary equivalent of the symbol
will not be found in the address symbol table generated during the first pass.
Other errors may occur and a practical assembler should detect all such errors
and print an error message for each.

It should be emphasized that a practical assembler is much more compli­
cated than the one explained here. Most computers give the programmer more
flexibility in writing assembly language programs. For example, the user may
be allowed to use either a number or a symbol to specify an address. Many
assemblers allow the user to specify an address by an arithmetic expression.
Many more pseudoinstructions may be specified to facilitate the programming

DECO< HEX

c�\m
__, tobillll)'
ollllll<ft

11\S...-.n.
al'<nb) LC

190 CHAPTER SIX Programming the Basic Computer

compiler

task. As the assembly language becomes more sophisticated, the assembler
becomes more complicated.

6-5 Program Loops

A program loop is a sequence of instructions that are executed many times,
each time with a different set of data. Program loops are specified in Fortran
by a DO statement. The following is an example of a Fortran program that
forms the sum of 100 integer numbers.

D I M E N S I O N A (1 0 0)
I N TE G E R S U M , A
S U M = 0
DO :3 J = 1 , 1 0 0

:3 S U M = S U M + A (J)

Statement number 3 is executed 100 times, each time with a different operand
AG) for J = 1, 2, . . . , 100.

A system program that translates a program written in a high-level
programming language such as the above to a machine language program is
called a compiler. A compiler is a more complicated program than an assembler
and reqillres knowledge of systems programming to fully understand its
operation. Nevertheless, we can demonstrate the basic functions of a compiler
by going through the process of translating the program above to an assembly
language program. A compiler may use an assembly language as an interme­
diate step in the translation or may translate the program directly to binary.

The first statement in the Fortran program is a DIMENSION statement.
This statement instructs the compiler to reserve 100 words of memory for 100
operands. The value of the operands is determined from an input statement
(not listed in the program). The second statement informs the compiler that the
numbers are integers. If they were of the real type, the compiler would have
to reserve locations for floating-point numbers and generate instructions that
perform the subsequent arithmetic with floating-point data. These two state­
ments are nonexecutable and are similar to the pseudoinstructions in an
assembly language. Suppose that the compiler reserves locations (150)r6 to
(1B3)r6 for the 100 operands. These reserved memory words are listed in lines
19 to 118 in the translated program of Table 6-13. This is done by the ORG
pseudoinstruction in line 18, which specifies the origin of the operands. The
first and last operands are listed with a specific decimal number, although
these values are not known during compilation. The compiler just reserves the
data space in memory and the values are inserted later when an input data
statement is executed. The line numbers in the symbolic program are for
reference only and are not part of the translated symbolic program.

The indexing of the DO statement is translated into the instructions in

SECTlON 6·5 Program Loops 191

TABLE 6- 13 Symbolic Program t o Add 100 Numbers

Line

1 ORG 100 /Origin of program is HEX 100
2 LDA ADS /Load first address of operands
3 STA PTR /Store in pointer
4 LDA NBR /Load minus 100
5 STA CfR /Store in counter
6 CLA /Clear accumulator
7 LOP, ADD PTR I I Add an operand to AC
8 ISZ PfR !Increment pointer
9 ISZ CTR !Increment counter

10 BUN LOP /Repeat loop again
11 STA SUM /Store sum
12 HLT /Halt
13 ADS, HEX 150 /First address of operands
14 PTR, HEX 0 ffhis location reserved for a pointer
15 NBR, DEC - 100 /Constant to initialized counter
16 CTR, HEX 0 ffhis location reserved for a counter
17 SUM, HEX 0 /Sum is stored here
18 ORG 150 /Origin of operands is HEX 150
19 DEC 75 /First operand

118 DEC 23 !Last operand
119 END !End of symbolic program

lines 2 through 5 and the constants in lines 13 through 16. The address of the
first operand (150) is stored in location ADS in line 13. The number of times
that Fortran statement number 3 must be executed is 100. So - 100 is stored in
location NBR. The compiler then generates the instructions in lines 2 through
5 to initialize the program loop. The address of the first operand is transferred
to location PTR. This corresponds to setting AO) to A(1). The number - 100 is
then transferred to location CTR . This location acts as a counter with its content
incremented by one every time the program loop is executed. When the value
of the counter reaches zero, the 100 operations will be completed and the
program will exit from the loop.

Some compilers will translate the statement SUM = 0 into a machine
instruction that initializes location SUM to zero. A reference to this location is
then made every time Fortran statement number 3 is executed. A more intel­
ligent compiler will realize that the sum can be formed in the accumulator and
only the final result stored in location SUM. This compiler will produce an
instruction in line 6 to clear the AC. It will also reserve a memory location

192

poinm
crnmm

OIAPTER SIX Programming the Basic Computer

symbolized by SUM (in line 17) for storing the value of this variable at the
termination of the loop.

The program loop specified by the DO statement is translated to the
sequence of instructions listed in lines 7 through 10. Line 7 specifies an indirect
ADD instruction because it has the symbol I. · The address of the current
operand is stored in location PTR . When this location is addressed indirectly
the computer takes the content of PTR to be the address of the operand. As
a result, the operand in location 150 is added to the accumulator. Location PTR
is then incremented with the ISZ instruction in line 8, so its value changes to
the value of the address of the next sequential operand. Location CTR is
incremented in line 9, and if it is not zero, the computer does not skip the next
instruction. The next instruction is a branch (BUN) instruction to the beginning
of the loop, so the computer returns to repeat the loop once again. When
location CTR reaches zero (after the loop is executed 100 times), the next
instruction is skipped and the computer executes the instructions in lines 11
and 12. The sum formed in the accumulator is stored in SUM and the computer
halts. The halt instruction is inserted here for clarity; actually, the program will
branch to a location where it will continue to execute the rest of the program
or branch to the beginning of another program. Note that ISZ in line 8 is used
merely to add 1 to the address pointer PTR . Since the address is a positive
number, a skip will never occur.

The program of Table 6-13 introdtltes the idea of a pointer and a counter
which can be used, together with the indirect address operation, to form a
program loop. The pointer points to the address of the current operand and
the counter counts the number of times that the program loop is executed. 1n
this example we use two memory locations for these functions. In computers
with more than one processor register, it is possible to use one processor
register as a pointer, another as a counter, and a third as an accumulator. When
processor registers are used as pointers and counters they are called index
registers . Index registers are discussed in Sec. 8-5.

6-6 Programming Arithmetic
and Logic Operations

The number of instructions available in a computer may be a few hundred in
a large system or a few dozen in a small one. Some computers perform a given
operation with one machine instruction; others may require a large number of
machine instructions to perform the same operation. As an illustration, con­
sider the four basic arithmetic operations. Some computers have machine
instructions to add, subtract, multiply, and divide. Others, such as the basic
computer, have only one arithmetic instruction, such as ADD. Operations not
included in the set of machine instructions must be implemented by a program.

SECTION 6·6 Programming Arithmetic and Logic Operations 1 93

We have shown in Table 6-8 a program for subtracting two numbers. Programs
for the other arithmetic operations can be developed in a similar fashion.

Operations that are implemented in a computer with one machine in­
struction are said to be implemented by hardware. Operations implemented
by a set of instructions that constitute a program are said to be implemented
by software. Some computers provide an extensive set of hardware instruc­
tions designed to speed up common tasks. Others contain a smaller set of
hardware instructions and depend more heavily on the software implementa­
tion of many operations. Hardware implementation is more costly because of
the additional circuits needed to implement the operation. Software imple­
mentation results in long programs both in number of instructions and in
execution time.

This section demonstrates the software implementation of a few arith­
metic and logic operations. Programs can be developed for any arithmetic
operation and not only for fixed-point binary data but for decimal and floating­
point data as well. The hardware implementation of arithmetic operations is
carried out in Chap. 10.

Multiplication Program
We now develop a program for multiplying two numbers. To simplify the
program, we neglect the sign bit and assume positive numbers. We also
assume that the two binary numbers have no more than eight significant bits
so their product cannot exceed the word capacity of 16 bits. It is possible to
modify the program to take care of the signs or use 16-bit numbers. However,
the product may be up to 31 bits in length and will occupy two words of
memory.

The program for multiplying two numbers is based on the procedure we
use to multiply numbers with paper and pencil. As shown in the numerical
example of Fig. 6-3, the multiplication process consists of checking the bits of
the multiplier Y and adding the multiplicand X as many times as there are 1' s
in Y, provided that the value of X is shifted left from one line to the next. Since
the computer can add only two numbers at a time, we reserve a memory
location, denoted by P, to store intermediate sums. The intermediate sums are
called partial products since they hold a partial product until all numbers are
added. As shown in the numerical example under P, the partial product starts
with zero. The multiplicand X is added to the content of P for each bit of the
multiplier Y that is 1. The value of X is shifted left after checking each bit of
the multiplier. The final value in P forms the product. The numerical example
has numbers with four significant bits. When multiplied, the product contains
eight significant bits. The computer can use numbers with eight significant bits
to produce a product of up to 16 bits.

The flowchart of Fig. 6-3 shows the step-by-step procedure for program-

194 CHAPTER SIX Programming the Basic Computer

X holds the multiplicand
Y holds the multiplier
P fonns the product

Example with four significant digits

X = OOOO I I I I
Y = OOOO 1 0 1 1

0000 I I I I
000 1 1 1 1 0
0000 0000
0 1 1 1 1 000
1 0 1 0 0 1 0 1

p
0000 0000
0000 I I I I
00 1 0 1 1 0 1
00 1 0 1 1 0 1
1 0 1 0 0 1 0 1

Figure 6 .. 3 Flowchart fo r multiplication program.

SECTION 6·6 Programming Arithmetic and Logic Operations 195

ming the multiplication operation. The program has a loop that is traversed
eight times, once for each significant bit of the multiplier. Initially, location X
holds the multiplicand and location Y holds the multiplier. A counter CTR is
set to -8 and location P is cleared to zero.

The multiplier bit can be checked if it is transferred to the E register. This
is done by clearing E, loading the value of Y into the AC, circulating right E
and AC and storing the shifted number back into location Y. This bit stored in
E is the low-order bit of the multiplier. We now check the value of E . If it is
1, the multiplicand X is added to the partial product P. If it is 0, the partial
product does not change. We then shift the value of X once to the left by loading
it into the AC and circulating left E and AC . The loop is repeated eight times
by incrementing location CTR and checking when it reaches zero. When the
counter reaches zero, the program exits from the loop with the product stored
in location P.

The program in Table 6-14 lists the instructions for multiplying two
unsigned numbers. The initialization is not listed but should be included when
the program is loaded into the computer. The initialization consists of bringing
the multiplicand and multiplier into locations X and Y, respectively; initializing
the counter to -8; and initializing location P to zero. If these locations are not

TABLE 6 .. 14 Program to Multiply Two Positive Numbers

LOP ,

ONE,

ZRO,

CTR,
X,
Y,
P,

ORG 100
CLE
LDA Y
OR
STA Y
SZE
BUN ONE
BUN ZRO
LDA X
ADD P
STA P
CLE
LDA X
CIL
STA X
ISZ CTR
BUN LOP
HLT
DEC - 8
H E X OOOF
HEX OOOB
HEX 0
END

/Clear E
/Load multiplier
ffransfer multiplier bit to E
/Store shifted multiplier
/Check if bit is zero
/Bit is one; go to ONE
/Bit is zero; go to ZRO
/Load multiplicand
I Add to partial product
/Store partial product
/Clear E
/Load multiplicand
/Shift left
/Store shifted multiplicand
!Increment counter
/Counter not zero; repeat loop
/Counter is zero; halt
rrhis location serves as a counter
/Multiplicand stored here
/Multiplier stored here
/Product formed here

196 GIAPTER SIX Programming the Basic Computer

initialized, the program may run with incorrect data. The program itself is
straightforward and follows the steps listed in the flowchart. The comments
may help in following the step-by-step procedure.

This example has shown that if a computer does not have a machine
instruction for a required operation, the operation can be programmed by a
sequence of machine instructions. Thus we have demonstrated the software
implementation of the multiplication operation. The corresponding hardware
implementation is presented in Sec. 10-3.

Double-Precision Addition
When two 16-bit unsigned numbers are multiplied, the result is a 32-bit
product that must be stored in two memory words. A number stored in two
memory words is said to have double precision. When a partial product is
computed, it is necessary that a double-precision number be added to the
shifted multiplicand, which is also a double-precision number. For greater
accuracy, the programmer may wish to employ double-precision numbers and
perform arithmetic with operands that occupy two memory words. We now
develop a program that adds two double-precision numbers.

One of the double-precision numbers is placed in two consecutive mem­
ory locations, AL and AH, with AL holding the 16 low-order bits. The other
number is placed in BL and BH. The program is listed in Table 6-15. The two
low-order portions are added and the carry transferred into E . The AC is
cleared and the bit in E is circulated into the least significant position of the AC.
The two high-order portions are then added to the carry and the double­
precision sum is stored in CL and CH.

TABLE 6- 15 Program to Add Two Double-Precision Numbers

AL,
AH,
BL,
BH,
CL,
CH,

LDA AL
ADD BL
STA CL
CLA
C1L
ADD AH
ADD BH
STA CH
HLT

/Load A low
/Add B low, carry in E
!Store in C low
/Clear AC
/Circulate to bring carry into AC(l6)
I Add A high and carry
/Add B high
/Store in C high

!Location of operands

Logic Operations

SECTION 6-6 Programming Arithmetic and Logic Operations 197

The basic computer has three machine instructions that perform logic opera­
tions: AND, CMA, and CLA. The LOA instruction may be considered as a logic
operation that transfers a logic operand into the AC. In Sec. 4-5 we listed 16
different logic operations. All 16 logic operations can be implemented by
software means because any logic function can be implemented using the AND
and complement operations. For example, the OR operation is not available as
a machine instruction in the basic computer. From DeMorgan's theorem we
recognize the relation x + y = (x 'y ') ' . The second expression contains only
AND and complement operations. A program that forms the OR operation of
two logic operands A and B is as follows:

L D A A L o a d f i r s t o p e r a n d A

C M A C o m p l e m e n t to g e t A
S T A T M P S tore i n a t e m p o r a r y l o c a t i o n

L D A B L o a d seco n d o p e r a n d B
C M A C o m p l e m e n t to g e t B
A N D T M P A N D w i t h A to g e t A 1\ B
C M A C o m p l e m e n t a g a i n to g e t A v B

The other logic operations can be implemented by software in a similar
fashion.

Shift Operations
The circular-shift operations are machine instructions in the basic computer.
The other shifts of interest are the logical shifts and arithmetic shifts. These two
shifts can be programmed with a small number of instructions.

The logical shift requires that zeros be added to the extreme positions.
This is easily accomplished by clearing E and circulating the AC and E. Thus
for a logical shift-right operation we need the two instructions

CLE
C I R

For a logical shift-left operation we need the two instructions

CLE
C I L

The arithmetic shifts depend o n the type of representation o f negative
numbers. For the basic computer we have adopted the signed-2's complement
representation. The rules for arithmetic shifts are listed in Sec. 4-6. For an
arithmetic right-shift it is necessary that the sign bit in the leftmost position
remain unchanged. But the sign bit itself is shifted into the hlgh-order bit

198 CHAPTER SIX Programming the Basic Computer

position of the number. The program for the arithmetic right-shili requires that
we set E to the same value as the sign bit and circulate right, thus:

CLE /C l e a r E to 0
S P A /Skip if A C is p o s i t i v e ; E r e m a i n s o
CME /A C is n e g a t i v e ; s e t E to 1
C I R /C i r c u late E a n d A C

For arithmetic shift-left it is necessary that the added bit in the least significant
position be 0. This is easily done by clearing E prior to the circulate-left
operation. The sign bit must not change during this shift. With a circulate
instruction, the sign bit moves into E . It is then necessary to compare the sign
bit with the value of E after the operation. If the two values are equal, the
arithmetic shift has been correctly implemented. If they are not equal, an
overflow occurs. An overflow indicates that the unshifted number was too
large. When multiplied by 2 (by means of the shift), the number so obtained
exceeds the capacity of the AC .

6-7 Subroutines

Frequently, the same piece of code must be written over again in many different
parts of a program. Instead of repeating the code every time it is needed, there
is an obvious advantage if the common instructions are written only once. A
set of common instructions that can be used in a program many times is called
a subroutine. Each time that a subroutine is used in the main part of the
program, a branch is executed to the beginning of the subroutine. After the
subroutine has been executed, a branch is made back to the main program.

A subroutine consists of a self-contained sequence of instructions that
carries out a given task. A branch can be made to the subroutine from any part
of the main program. This poses the problem of how the subroutine knows
which location to return to, since many different locations in the main program
may make branches to the same subroutine . It is therefore necessary to store
the return address somewhere in the computer for the subroutine to know
where to return. Because branching to a subroutine and returning to the main
program is such a common operation, all computers provide special instruc­
tions to facilitate subroutine entry and return.

In the basic computer, the link between the main program and a sub­
routine is the BSA instruction (branch and save return address). To explain how
this instruction is used, let us write a subroutine that shifts the content of the
accumulator four times to the left. Shifting a word four times is a useful
operation for processing binary-coded decimal numbers or alphanumeric char­
acters. Such an operation could have been included as a machine instruction
in the computer. Since it is not included, a subroutine is formed to accomplish
this task. The program of Table 6-16 starts by loading the value of X into the

SECTION 6-7 Subroutines 199

TABLE 6 .. 16 Program to Demonstrate the Use of Subroutines

Location

ORG lOO /Main program
100 LDA X /Load X
101 BSA SH4 /Branch to subroutine
102 STA X /Store shifted number
103 LDA Y /Load Y
104 BSA SH4 /Branch to subroutine again
105 STA Y /Store shifted number
106 HLT
107 X, HEX 1234

108 Y, HEX 4321
/Subroutine to shift left 4 times

109 SH4, HEX O /Store return address here
lOA CIL /Circulate left once
lOB CIL
lOC CIL
100 CIL /Circulate left fourth time
10E AND MSK /Set AC(l3-16) to zero
10F BUN SH4 1 /Return to main program
110 MSK, HEX FFFO /Mask operand

END

AC . The next instruction encountered is BSA SH4. The BSA instruction is in
location 101 . Subroutine SH4 must return to location 102 after it finishes its
task. When the BSA instruction is executed, the control unit stores the return
address 102 into the location defined by the symbolic address SH4 (which is
109). It also transfers the value of SH4 + 1 into the program counter. After this
instruction is executed, memory location 109 contains the binary equivalent of
hexadecimal 102 and the program counter contains the binary equivalent of
hexadecimal lOA. This action has saved the return address and the subroutine
is now executed starting from location lOA (since this is the content of PC in
the next fetch cycle).

The computation in the subroutine circulates the content of AC four times
to the left. In order to accomplish a logical shift operation, the four low-order
bits must be set to zero. This is done by masking FfFO with the content of AC .
A mask operation is a logic AND operation that clears the bits of the AC where
the mask operand is zero and leaves the bits of the AC unchanged where the
mask operand bits are l's.

The last instruction in the subroutine returns the computer to the main
program. This is accomplished by the indirect branch instruction with an
address symbol identical to the symbol used for the subroutine name. The
address to which the computer branches is not SH4 but the value found in

ZOO CHAPTER SIX Programming the Basic Computer

location SH4 because this is an indirect address instruction. What is found in
location SH4 is the return address 102 which was previously stored there by
the BSA instruction. The computer returns to execute the instruction in loca­
tion 102. The main program continues by storing the shifted number into
location X. A new number is then loaded into the AC from location Y, and
another branch is made to the subroutine. This time location SH4 will contain
the return address 105 since this is now the location of the next instruction after
BSA. The new operand is shifted and the subroutine returns to the main
program at location 105.

From this example we see that the first memory location of each sub­
routine serves as a link between the main program and the subroutine . The
procedure for branching to a subroutine and returning to the main program
is referred to as a subroutine linkage. The BSA instruction performs an opera­
tion commonly called subroutine call . The last instruction of the subroutine
performs an operation commonly called subroutine return .

The procedure used in the basic computer for subroutine linkage is
commonly found in computers with only one processor register. Many com­
puters have multiple processor registers and some of them are assigned the
name index registers . In such computers, an index register is usually employed
to implement the subroutine linkage. A branch-to-subroutine instruction
stores the return address in an index register. A return-from-subroutine in­
struction is effected by branching to the address presently stored in the index
register.

Subroutine Parameters and Data Linkage
When a subroutine is called, the main program must transfer the data it wishes
the subroutine to work with. In the previous example, the data were trans­
ferred through the accumulator. The operand was loaded into the AC prior to
the branch. The subroutine shifted the number and left it there to be accepted
by the main program. In general, it is necessary for the subroutine to have
access to data from the calling program and to return results to that program.
The accumulator can be used for a single input parameter and a single output
parameter. In computers with multiple processor registers, more parameters
can be transferred this way. Another way to transfer data to a subroutine is
through the memory. Data are often placed in memory locations following the
call. They can also be placed in a block of storage. The first address of the block
is then placed in the memory location following the call. In any case, the return
address always gives the link information for transferring data between the
main program and the subroutine.

As an illustration, consider a subroutine that performs the logic OR
operation. Two operands must be transferred to the subroutine and the sub­
routine must return the result of the operation. The accumulator can be used

SECTION 6-7 Subroutines 201

to transfer one operand and to receive the result. The other operand is inserted
in the location following the BSA instruction. This is demonstrated in the
program of Table 6-17. The first operand in location X is loaded into the AC .
The second operand is stored in location 202 following the BSA instruction.
After the branch, the first location in the subroutine holds the number 202.
Note that in thls case, 202 is not the return address but the address of the
second operand. The subroutine starts performing the OR operation by com­
plementing the first operand in the AC and storing it in a temporary location
TMP. The second operand is loaded into the AC by an indirect instruction at
location OR. Remember that location OR contains the number 202. When the
instruction refers to it indirectly, the operand at location 202 is loaded into the
AC . This operand is complemented and then ANDed with the operand stored
in TMP. Complementing the result forms the OR operation.

The return from the subroutine must be manipulated so that the main
program continues from location 203 where the next instruction is located. This
is accomplished by incrementing location OR with the ISZ instruction. Now
location OR holds the number 203 and an indirect BUN instruction causes a
return to the proper place.

It is possible to have more than one operand following the BSA instruc-

Location

200
201
202
203
204
205
206
207
208
209
20A
20B
20C
200
20E
20F
210

TABLE 6r 17 Program to Demonstrate Parameter Linkage

X,
Y,
OR,

TMP,

ORG 200
LDA X
BSA OR
HEX 3AF6
STA Y
HLT
HEX 7B95
HEX O
HEX O
CMA
STA TMP
LDA OR I
CMA
AND TMP
CMA
ISZ OR
BUN OR !
HEX O
END

/Load first operand into AC
!Branch to subroutine OR
/Second operand stored here
/Subroutine returns here

/First operand stored here
/Result stored here
/Subroutine OR
/Complement first operand
/Store in temporary location
!Load second operand
/Complement second operand
lAND complemented first operand
/Complement again to get OR
!Increment return address
/Return to main program
ffemporary storage

202 CHAPTER SIX Programming the Basic Computer

lion. The subroutine must increment the return address stored in its first
location for each operand that it extracts from the calling program. Moreover,
the calling program can reserve one or more locations for the subroutine to
return results that are computed. The first location in the subroutine must be
incremented for these locations as well, before the return. If there is a large
amount of data to be transferred, the data can be placed in a block of storage
and the address of the first item in the block is then used as the linking
parameter.

A subroutine that moves a block of data starting at address 100 into a block
starting with address 200 is listed in Table 6-18. The length of the block is 16
words. The first introduction is a branch to subroutine MVE. The first part of
the subroutine transfers the three parameters 100, 200 and - 16 from the main
program and places them in its own storage location. The items are retrieved
from their blocks by the use of two pointers. The counter ensures that only 16
items are moved. When the subroutine completes its operation, the data
required is in the block starting from the location 200. The return to the main
program is to the HLT instruction.

TABLE 6-18 Subroutine to Move a Block of Data

BSA MVE
HEX 100
HEX 200
DEC -16
HLT

MVE, HEX O

LOP,

PTl ,
PT2,
CTR,

LDA MVE I
STA PTl
ISZ MVE
LDA MVE I
STA PT2
ISZ MVE
LDA MVE I
STA CTR
ISZ MVE
LDA PTl I
STA PT2 I
ISZ PTl
ISZ PT2
ISZ CTR
BUN LOP
BUN MVE I

/Main program
/Branch to subroutine
/First address of source data
/First address of destination data
/Number of items to move

/Subroutine MVE
/Bring address of source
/Store in first pointer
!Increment return address
/Bring address of destination
/Store in second pointer
!Increment return address
/Bring number of items
/Store in counter
!Increment return address
/Load source item
/Store in destination
!Increment source pointer
!Increment destination pointer
!Increment counter
/Repeat 16 times
/Return to main program

SECTION 6-8 Input-Output Programming 203

6-8 Input-Output Programming

Users of the computer write programs with symbols that are defined by the
programming language employed. The symbols are strings of characters and
each character is assigned an 8-bit code so that it can be stored in computer
memory. A binary-coded character enters the computer when an INP (input)
instruction is executed. A binary-coded character is transferred to the output
device when an OUT (output) instruction is executed. The output device
detects the binary code and types the corresponding character.

Table 6-19(a) lists the instructions needed to input a character and store
it in memory. The SKI instruction checks the input flag to see if a character is
available for transfer. The next instruction is skipped if the input flag bit is 1 .
The INP instruction transfers the binary-coded character into AC(0-7). The
character is then printed by means of the OUT instruction. A terminal unit that
communicates directly with a computer does not print the character when a
key is depressed. To type it, it is necessary to send an OUT instruction for the
printer. In this way, the user is ensured that the correct transfer has occurred.
If the SKI instruction finds the flag bit at 0, the next instruction in sequence
is executed. This instruction is a branch to return and check the flag bit again.
Because the input device is much slower than the computer, the two instruc­
tions in the loop will be executed many times before a character is transferred
into the accumulator.

Table 6-19(b) lists the instructions needed to print a character initially
stored in memory. The character is first loaded into the AC. The output flag
is then checked. If it is 0, the computer remains in a two-instruction loop
checking the flag bit. When the flag changes to 1, the character is transferred
from the accumulator to the printer.

TABLE 6-19 Programs to Input and Output One Character

(a) Input a character:
CIF, SKI

CHR,

BUN CIF
INP
OUT
STA CHR
HLT

(b) Output one character:
LDA CHR

COF, SKO

CHR,

BUN COF
OUT
HLT
HEX 0057

/Check input flag
!Flag=O, branch to check again
/Flag= 1 , input character
/Print character
/Store character

/Store character here

/Load character into AC
/Check output flag
/Flag=O, branch to check again
/Flag= 1, output character

/Character is "W"

204 CHAPTER SIX Programming the Basic Computer

Character Manipulation
A computer is not just a calculator but also a symbol manipulator. The binary­
coded characters that represent symbols can be manipulated by computer
instructions to achieve various data-processing tasks. One such task may be
to pack two characters in one word. This is convenient because each character
occupies 8 bits and a memory word contains 16 bits. The program in Table 6-20
lists a subroutine named IN2 that inputs two characters and packs them into
one 16-bit word. The packed word remains in the accumulator. Note that
subroutine SH4 (Table 6-16) is called twice to shift the accumulator left eight
times.

In the discussion of the assembler it was assumed that the symbolic
program is stored in a section of memory which is sometimes called a buffer.
The symbolic program being typed enters through the input device and is
stored in consecutive memory locations in the buffer. The program listed in
Table 6-21 can be used to input a symbolic program from the keyboard, pack
two characters in one word, and store them in the buffer. The first address of
the buffer is 500. The first double character is stored in location 500 and all
characters are stored in sequential locations. The program uses a pointer for
keeping track of the current empty location in the buffer. No counter is used
in the program, so characters will be read as long as they are available or until
the buffer reaches location 0 (after location FFFF). In a practical situation it may
be necessary to limit the size of the buffer and a counter may be used for this
purpose. Note that subroutine IN2 of Table 6-20 is called to input and pack the
two characters.

In discussing the second pass of the assembler in Sec. 6-4 it was men­
tioned that one of the most common operations of an assembler is table lookup.
This is an operation that searches a table to find out if it contains a given
symbol. The search may be done by comparing the given symbol with each of
the symbols stored in the table. The search terminates when a match occurs

TABLE 6,20 Subroutine to Input and Pack Two Characters

IN2,
FST,

SCD,

SKI
BUN FST
INP
OUT
BSA SH4
BSA SH4
SKI
BUN SCD

/Subroutine entry

/Input first character

/Shift left four times
/Shift left four more times

INP /Input second character
OUT
BUN IN2 I /Return

SECTION 6-8 Input-Output Programming 205

TABLE 6 .. 21 Program to Store Input Characters in a Buffer

LOP,

ADS,
PTR,

LDA ADS
STA PTR
BSA IN2
STA PTR I
ISZ PTR
BUN LOP
HLT
HEX 500
HEX O

!Load first address of buffer
/Initialize pointer
/Go to subroutine IN2 (Table 6-20)
/Store double character word in buffer
/Increment pointer
/Branch to input more characters

/First address of buffer
/Location for pointer

or if none of the symbols match. When a match occurs, the assembler retrieves
the equivalent binary value. A program for comparing two words is listed in
Table 6-22. The comparison is accomplished by forming the 2's complement of
a word (as if it were a number) and arithmetically adding it to the second word.
If the result is zero, the two words are equal and a match occurs. If the result
is not zero, the words are not the same. This program can serve as a subroutine
in a table-lookup program.

Program Interrupt
The running time of input and output programs is made up primarily of the
time spent by the computer in waiting for the external device to set its flag. The
waiting loop that checks the flag keeps the computer occupied with a task that
wastes a large amount of time. This waiting time can be eliminated if the
interrupt facility is used to notify the computer when a flag is set. The advan­
tage of using the interrupt is that the information transfer is initiated upon
request from the external device. In the meantime, the computer can be busy
performing other useful tasks. Obviously, if no other program resides in
memory, there is nothing for the computer to do, so it might as well check for

TABLE 6-22 Program to Compare Two Words

WDl,
WD2,

LDA WDl
CMA
INC
ADD WD2
SZA
BUN UEQ
BUN EQL

/Load first word

/Fonn 2's complement
I Add second word
/Skip if AC is zero
!Branch to "unequal" routine
/Branch to "equal" routine

206 CHAPTER SIX Programming the Basic Computer

the flags. The interrupt facility is useful in a multiprogram environment when
two or more programs reside in memory at the same time.

Only one program can be executed at any given time even though two
or more programs may reside in memory. The program currently being exe­
cuted is referred to as the running program. The other programs are usually
waiting for input or output data. The function of the interrupt facility is to take
care of the data transfer of one (or more) program while another program is
currently being executed. The running program must include an ION instruc­
tion to turn the interrupt on. If the interrupt facility is not used, the program
must include an !OF instruction to turn it off. (The start switch of the computer
should also turn the interrupt off.)

The interrupt facility allows the running program to proceed until the
input or output device sets its ready flag. Whenever a flag is set to 1, the
computer completes the execution of the instruction in progress and then
acknowledges the interrupt. The result of this action is that the return address
is stored in location 0. The instruction in location 1 is then performed; this
initiates a service routine for the input or output transfer. The service routine
can be stored anywhere in memory provided a branch to the start of the routine
is stored in location 1. The service routine must have instructions to perform
the following tasks:

1. Save contents of processor registers.

2. Check which flag is set.

3. Service the device whose flag is set.

4. Restore contents of processor registers.

5. Turn the interrupt facility on.

6. Return to the running program.

The contents of processor registers before the interrupt and after the
return to the running program must be the same; otherwise, the running
program may be in error. Since the service routine may use these registers, it
is necessary to save their contents at the beginning of the routine and restore
them at the end. The sequence by which the flags are checked dictates the
priority assigned to each device. Even though two or more flags may be set at
the same time, the devices nevertheless are serviced one at a time. The device
with higher priority is serviced first followed by the one with lower priority.

The occurrence of an interrupt disables the facility from further inter­
rupts. The service routine must turn the interrupt on before the return to the
running program. This will enable further interrupts while the computer is
executing the running program. The interrupt facility should not be turned on
until after the return address is inserted into the program counter.

An example of a program that services an interrupt is listed in Table 6-23.

SECTION 6-8 lnput�Output Programming 207

TABLE 6-ZJ Program to Service an Interrupt

Location

ZRO, /Return address stored here
1 BUN SRV /Branch to service routine

100 CLA /Portion of running program
101 ION rrurn on interrupt facility
102 LDA X
103 ADD Y /Interrupt occurs here
104 STA Z /Program returns here after interrupt

/Interrupt service routine
200 SRV, STA SAC /Store content of AC

CIR /Move E into AC(1)
STA SE /Store content of E
SKI /Check input flag
BUN NXT /Flag is off, check next flag
INP /Flag is on, input character
OUT /Print character
STA PT1 I /Store it in input buffer
ISZ PT1 !Increment input pointer

NXT, SKO /Check output flag
BUN EXT /Flag is off, exit
LDA PT2 I /Load character from output buffer
OUT /Output character
ISZ PT2 !Increment output pointer

EXT, LDA SE /Restore value of AC(1)
CIL /Shift it to E
LDA SAC /Restore content of AC
ION rrum interrupt on
BUN ZRO I /Return to running program

SAC, I AC is stored here
SE, IE is stored here
PT1, /Pointer of input buffer
PT2, /Pointer of output buffer

Location 0 is reserved for the return address. Location 1 has a branch instruc·
tion to the beginning of the service routine SRV. The portion of the running
program listed has an ION instruction that turns the interrupt on. Suppose that
an interrupt occurs while the computer is executing the instruction in location
103. The interrupt cycle stores the binary equivalent of hexadecimal 104 in
location 0 and branches to location 1. The branch instruction in location 1 sends
the computer to the service routine SRV.

The service routine performs the six tasks mentioned above. The contents
of AC and E are stored in special locations. (These are the only processor
registers in the basic computer.) The flags are checl<ed sequentially, the input
flag first and the output flag sec;ond. If any or both flags are set, an item of data
is transferred to or from the corresponding memory buffer. Before returning
to the running program the previous contents of E and AC are restored and
the interrupt fac;ility is turned on. The last instruction causes a branch to the
address stored in location 0. This is the return address stored there previously
during the interrupt cycle. Hence the running program will continue from
IO<;ation 104, where it was interrupted.

A typical compulel: may have many more input and output devices
co_nnected to the interrupt "facility. Furthermore, interrupt sources are not
Limited to input and output transfers. Interrupts can be used for other pur·
poses, such as internal processing errors or special alarm conditions. Further
diScussion of interrupts and some advanced concepts concerning this impor·
tant subject can be found in Sec. 11-5.

PROBLEMS

�1." The folloWing p�am is stcnd In the memory unit ol the bask computer.
Show the conten.ts ol the .IIC, PC, aruflR (111 hexaclocimal). at the mel,�
each lnstnlction is executed. All numbers listed below ""' In hexadecimal.

Location lnstructioo

010 Q.A
011 ADD016
Oil BUN014
013 HLT
014 AND0!7
OlS BuN 013
016 CIAS
017 93C6

.4-z. The foUowlng program Is a list of inslnlction$ In hexadecimal code. The
c-omputer executes the lnslnlctions starting from address 100. What an! the
c-ontent of .IIC and the memory word at address 103 when the computer
halts?

SECTION 6-8 Input-Output Programming 209

Location Instruction

100 5103
101 7200
102 7001
103 0000
104 7800
105 7020
106 C103

6-3. Ust the assembly language program (of the equivalent binary instructions)
generated by a compiler froin the following Fortran program. �ssume in­
teger variables.

S U,M = 0

S U M = S U M + A + B
D I F = D I F - C

S U M = S U M + D I F

6-4. Can the Jetted be used as a symbolic address . in the assembly language
program defined for the basic computer? Justify the answer.

6-5. What happens during the first pass of the assembler (Fig. 6-1) if the line of
code that has a pseudoinstruction ORG or END also has a label? Modify the
floWchart to include an error message if this occurs.

6-6. A line of code in an assembly language program is as follows:

D E C - 3 5

a . Show that four memory words are required to store the line of code and
give their binary content.

b; Show that o�e memory word stores the binary translated code and give
its binary content.

6-7. a. Obtain the address symbol table generated for the program of Table 6-13
during the first pass of the assembler.

b. Ust the translated program in hexadecimaL

6-8. The pseudoinstruction BSS N (block started by symbol) is sometimes em­
ployed to reserve N memory words for a group of operands. For example,
the line of code

A , B S S 1 0

informs the assembler. that a block of 1 0 (decimal) locations is to be left free,
starting from location A. This is silnilar to the Fortran statement DIMEN­
SION A(10). Modify the flowchart of Fig. 6-1 to process this pseudoinstruc-
tion.

·

210 CHAPTER SIX Programming the Basic Computer

6-9. Modify the flowchart of Fig. 6-2 to include an error message when a symbolic
address is not defined by a label.

6-10. Show how the MRI and non-MRI tables can be stored in memory.

6-11. Ust the assembly language program (of the equivalent binary instructions)
generated by a compiler for the following IF statement:

6-12.

6-13.

6-14.

6-15.

I F (A - B) 1 0 , 2 0 , 3 0

The program branches to statement 1 0 if A - B < 0; to statement 20 if
A - B = 0; and to statement 30 if A - B > 0.

a. Explain in words what the following program accomplishes when it is
executed. What is the value of location CTR when the computer halts?

b. Ust the address symbol table obtained during the first pass of the
assembler.

c. Ust the hexadecimal code of the translated program.

O R G 1 0 0

CLE
CLA
STA CTR
L D A liRD

S Z A

B U N ROT
B U N STP

R O T , C I L

S Z E
B U N A G N

B U N R O T

A G N , CLE
I S Z CTR
S Z A

B U N R O T
S T P , H L T

C T R , H E X 0

li R D , H E X 6 2 C 1
E N D

Write a program loop, using a pointer and a counter, that dears i'o 0 the
contents of hexadecimal locations 500 through 5FF.

Write a program to multiply two positive numbers by a repeated addition
method. For example, to multiply 5 X 4, the program evaluates the product
by adding 5 four times, or 5 + 5 + 5 + 5.

The multiplication program of Table 6-14 is not initialized. After the pro­
gram is executed once, location erR will be left with zero. Show that if
the program is executed again starting from location 100, the loop will
be traversed 65536 times. Add the needed instructions to initialize the
program.

6-16.

6-17.

_.. 6-18.

/ 6-19.

6-20.

6-21.

6-22.

6-23.

6-24.

6-25.

6-26.

6-27.

6-28.

SECTION 6·8 Input-Output Programming 2 1 1

Write a program to multiply two unsigned positive numbers, each with 16
significant bits, to produce an unsigned double-precision product.

Write a program to multiply two signed numbers with negative numbers
being initially in signed-2's complement representation. The product should
be single-precision and signed-2's complement representation if negative.

Write a program to subtract two double-precision numbers.

Write a program that evaluates the logic exclusive-OR of two logic operands.

Write a program for the arithmetic shift-left operation. Branch to OVF if an
overflow occurs.

Write a subroutine to subtract two numbers. In the calling program, the
BSA instruction is followed by the subtrahend and minuend. The difference
is returned to the main program in the third location following the BSA
instruction.

Write a subroutine to complement each word in a block of data. In the calling
program, the BSA instruction is followed by two parameters: the starting
address of the block and the number of words in the block.

Write a subroutine to circulate E andAC four times to the right. If AC contains
hexadecimal 079C and E = 1, what are the contents of AC and E after the
subroutine is executed?

Write a program to accept input characters, pack two characters in one word
and store them in consecutive locations in a memory buffer. The first address
of the buffer is (400),.. The size of the buffer is (512)., words. If the buffer
overflows, the computer should halt.

Write a program to unpack two characters from location WRD and store
them in bits 0 through 7 of locations CH 1 and CH2. Bits 9 through 15 should
contain zeros.

Obtain a flowchart for a program to check for a CR code (hexadecimal OD)
in a memory buffer. The buffer contains two characters per word. When the
code for CR is encountered, the program transfers it to bits 0 through 7 of . . ,
location LNE without disturbing bits 8 through 15.

Translate the service routine SRV from Table 6-23 to its equivalent hexadec­
imal code. Assume that the routine is stored starting from location 200.

Write an interrupt service routine that performs all the required functions
but the input device is serviced only if a special location, MOD, contains all
1's. The output device is serviced only if location MOD contains all O's.

I REFERENCES ·· I
1. Booth, T. L., Introduction to Computer Engineering, 3rd ed. New York: John Wiley,

1984.

2. Gear, C. W., Computer Organization and Programming, 3rd ed. New York: McGraw­
Hill, 1980.

2 1 2 CHAPTER SIX Programming the Basic Computer

3. Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJ: Prentice
Hall, 1991.

4. Gray, N. A. B., Introduction to Computer Systems. Englewood Cliffs, NJ: Prentice
Hall, 1987.

5. Levy, H. M., and R. H. Eckhouse, Jr. , Computer Programming and Architecture: The
VAX-11 . Bedford, MA: Digital Press, 1980.

6. Lewin, M. H., wgic Design and Computer Organization. Reading, MA: Addison­
Wesley, 1983.

7. Prosser, F. P., and D. E. Winkel, The Art of Digital Design, 2nd ed. Englewood Cliffs,
NJ: Prentice Hall, 1987.

8. Shiva, S. G., Computer Design and Architecture, 2nd ed. New York: HarperCollins
Publishers, 1991 .

9. Tanenbaum, A. S., Structured Computer Organization, 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1990.

10. Wakerly, J. F. , Microcomputer Architecture and Programming. New York: John Wiley,
1981 .

amtro/ wort/

C H A P T E R S E V E N

Microprogrammed
Control

IN nus CHAPTER

7-1 Conaol Memory
7-2 Address &quendng

7-3 Microprognm Example
7-4 Design oCConuol Un.it

7-1 Control Memory

The function of the control unit in a digital computer is to initiate sequences
of microoperations. The nu.mber of different types of microoperations that are
available in a given system is finite. The complexity of the digital system is
derived from the number of sequences of microoperations that are performed.
When the control signals are generated by hardware using conventional logic
design techniques, the control unit is said to be hllrdwired. Microprogramming
is a second alternative for designing the control unit of a digital computer. The
principle of microprogramming is an elegant and systematic method for con·
trolling the microoperation sequences in a digita.l computer.

The control function that specifies a microoperation is a binary variable.
When it is in one binary state, the corresponding rnicrooperation is executed.
A control variable in the opposite binary state does not change the state of the
registers in the system. The active state of a control variable may be either the
1 state or the 0 state, depending on the application. In a bus-organized system,
the control signals that specify microoperations are groups of bits that select
the paths in multiplexers, decoders, and arithmetic logic units.

The control unit initiates a series of sequential steps of rnicrooperations.
During any given time, certain microoperations are to be initiated, while others
remain idle. The control variables at any given time can be represented by a
string of l's and O's called a control word. As such, control words can be
programmed to perform various operations on the components of the system.
A control unit who� binary control variables are stored in memory is called

213

2 1 4 CHAPTER SEVEN Microprogrammed Control

microinstruction

microprogram

control memory

a microprogrammed control unit . Each word in control memory contains within
it a microinstruction . The microinstruction specifies one or more microopera­
tions for the system. A sequence of microinstructions constitutes a micropro­
gram . Since alterations of the microprogram are not needed once the control
unit is in operation, the control memory can be a read-only memory (ROM).
The content of the words in ROM are fixed and cannot be altered by simple
programming since no writing capability is available in the ROM. ROM words
are made permanent during the hardware production of the unit. The use of
a microprogram involves placing all control variables in words of ROM for use
by the control unit through successive read operations. The content of the word
in ROM at a given address specifies a microinstruction.

A more advanced development known as dynamic microprogramming
permits a microprogram to be loaded initially from an auxiliary memory such
as a magnetic disk. Control units that use dynamic microprogramming employ
a writable control memory. This type of memory can be used for writing (to
change the microprogram) but is used mostly for reading. A memory that is
part of a control unit is referred to as a control memory.

A computer that employs a microprogrammed control unit will have two
separate memories: a main memory and a control memory. The main memory
is available to the user for storing the programs. The contents of main memory
may alter when the data are manipulated and every time that the program is
changed. The user's program in main memory consists of machine instructions
and data. In contrast, the control memory holds a fixed microprogram that
cannot be altered by the occasional user. The microprogram consists of mi­
croinstructions that specify various internal control signals for execution of
register microoperations. Each machine instruction initiates a series of microin­
structions in control memory. These microinstructions generate the microop­
erations to fetch the instruction from main memory; to evaluate the effective
address, to execute the operation specified by the instruction, and to return
control to the fetch phase in order to repeat the cycle for the next instruction.

The general configuration of a microprogrammed control unit is demon­
strated in the block diagram of Fig. 7-1 . The control memory is assumed to be
a ROM, within which all control information is permanently stored. The

Figure 7 .. 1 Microprogrammed control organization.

Next ­
address

generator
(sequencer)

Control
address
register

Control
memory
(ROM)

Next-address information

Control
data

register

control address
register

sequencer

pipeline register

SECTION J.J Control Memory 2 1 5

control memory address register specifies the address o f the microinstruction,
and the control data register holds the microinstruction read from memory.
The microinstruction contains a control word that specifies one or more micro­
operations for the data processor. Once these operations are executed, the
control must determine the next address. The location of the next microinstruc­
tion may be the one next in sequence, or it may be located somewhere else in
the control memory. For this reason it is necessary to use some bits of the
present microinstruction to control the generation of the address of the next
microinstruction. The next address may also be a function of external input
conditions. While the microoperations are being executed, the next address is
computed in the next address generator circuit and then transferred into the
control address register to read the next microinstruction. Thus a microinstruc­
tion contains bits for initiating microoperations in the data processor part and
bits that determine the address sequence for the control memory.

The next address generator is sometimes called a microprogram sequencer,
as it determines the address sequence that is read from control memory. The
address of the next microinstruction can be specified in several ways, depend­
ing on the sequencer inputs. Typical functions of a microprogram sequencer
are incrementing the control address register by one, loading into the control
address register an address from control memory, transferring an external
address, or loading an initial address to start the control operations.

The control data register holds the present microinstruction while the
next address is computed and read from memory. The data register is some­
times called a pipeline register. It allows the execution of the microoperations
specified by the control word simultaneously with the generation of the next
microinstruction. This configuration requires a two-phase clock, with one clock
applied to the address register and the other to the data register.

The system can operate without the control data register by applying a
single-phase clock to the address register. The control word and next-address
information are taken directly from the control memory. It must be realized that
a ROM operates as a combinational circuit, with the address value as the input
and the corresponding word as the output. The content of the specified word
in ROM remains in the output wires as long as its address value remains in the
address register. No read signal is needed as in a random-access memory. Each
clock pulse will execute the microoperations specified by the control word and
also transfer a new address to the control address register. In the example that
follows we assume a single-phase clock and therefore we do not use a control
data register. In this way the address register is the only component in the
control system that receives clock pulses. The other two components: the
sequencer and the control memory are combinational circuits and do not need
a clock.

The main advantage of the microprogrammed control is the fact that once
the hardware configuration is established, there should be no need for further
hardware or wiring changes. If we want to establish a different control se-

2 1 6 CHAPTER SEVEN Microprogrammed Control

hardwired control

routine

mapping

quence for the system, all we need to do is specify a different set of microin­
structions for control memory. The hardware configuration should not be
changed for different operations; the only thing that must be changed is the
microprogram residing in control memory.

It should be mentioned that most computers based on the reduced in­
struction set computer (RISC) architecture concept (see Sec. 8-8) use hardwired
control rather than a control memory with a microprogram. An example of a
hardwired control for a simple computer is presented in Sec. 5-4.

7-2 Address Sequencing

Microinstructions are stored in control memory in groups, with each group
specifying a routine. Each computer instruction has its own microprogram
routine in control memory to generate the microoperations that execute the
instruction. The hardware that controls the address sequencing of the control
memory must be capable of sequencing the microinstructions within a routine
and be able to branch from one routine to another. To appreciate the address
sequencing in a microprogram control unit, let us enumerate the steps that the
control must undergo during the execution of a single computer instruction.

An initial address is loaded into the control address register when power
is turned on in the computer. This address is usually the address of the first
microinstruction that activates the instruction fetch routine. The fetch routine
may be sequenced by incrementing the control address register through the
rest of its microinstructions. At the end of the fetch routine, the instruction is
in the instruction register of the computer.

The control memory next must go through the routine that determines
the effective address of the operand. A machine instruction may have bits that
specify various addressing modes, such as indirect address and index regis­
ters. The effective address computation routine in control memory can be
reached through a branch microinstruction, which is conditioned on the status
of the mode bits of the instruction. When the effective address computation
routine is completed, the address of the operand is available in the memory
address register.

The next step is to generate the microoperations that execute the instruc­
tion fetched from memory. The microoperation steps to be generated in proc­
essor registers depend on the operation code part of the instruction. Each
instruction has its own microprogram routine stored in a given location of
control memory. The transformation from the instruction code bits to an
address in control memory where the routine is located is referred to as a
mapping process. A mapping procedure is a rule that transforms the instruction
code into a control memory address. Once the required routine is reached, the
microinstructions that execute the instruction may be sequenced by increment­
ing the control address register, but sometimes the sequence of microopera-

special bits

branch logic

SECTION 7-2 Address Sequencing 2 1 7

lions will depend on values of certain status bits in processor registers .
Microprograms that employ subroutines will require an external register for
storing the return address. Return addresses cannot be stored in ROM because
the unit has no writing capability.

When the execution of the instruction is completed, control must return
to the fetch routine. This is accomplished by executing an unconditional branch
microinstruction to the first address of the fetch routine. In summary, the
address sequencing capabilities required in a control memory are:

1. Incrementing of the control address register.
2. Unconditional branch or conditional branch, depending on status bit

conditions.
3. A mapping process from the bits of the instruction to an address for

control memory.
4. A facility for subroutine call and return.

Figure 7-2 shows a block diagram of a control memory and the associated
hardware needed for selecting the next microinstruction address. The microin­
struction in control memory contains a set of bits to initiate microoperations
in computer registers and other bits to specify the method by which the next
address is obtained. The diagram shows four different paths from which the
control address register (CAR) receives the address. The incrementer incre­
ments the content of the control address register by one, to select the next
microinstruction in sequence. Branching is achieved by specifying the branch
address in one of the fields of the microinstruction. Conditional branching is
obtained by using part of the microinstruction to select a specific status bit in
order to determine its condition. An external address is transferred into control
memory via a mapping logic circuit. The return address for a subroutine is
stored in a special register whose value is then used when the microprogram
wishes to return from the subroutine.

Conditional Branching
The branch logic of Fig. 7-2 provides decision-making capabilities in the control
unit. The status conditions are special bits in the system that provide parameter
information such as the carry-out of an adder, the sign bit of a number, the
mode bits of an instruction, and input or output status conditions. Information
in these bits can be tested and actions initiated based on their condition:
whether their value is 1 or 0. The status bits, together with the field in the
microinstruction that specifies a branch address, control the conditional branch
decisions generated in the branch logic.

The branch logic hardware may be implemented in a variety of ways. The
simplest way is to test the specified condition and branch to the indicated
address if the condition is met; otherwise, the address register is incremented.

2 1 8 CHAPTER SEVEN Microprogrammed Control

Status
bits

Clock

Select a status
bit

Branch address

Control address register
(CAR)

Control memory

Microoperations

Figure 7�2 Selection of address for control memory.

This can be implemented with a multiplexer. Suppose that there are eight
status bit conditions in the system. Three bits in the microinstruction are used
to specify any one of eight status bit conditions. These three bits provide the
selection variables for the multiplexer. If the selected status bit is in the 1 state,
the output of the multiplexer is 1; otherwise, it is 0. A 1 output in the multi­
plexer generates a control signal to transfer the branch address from the
microinstruction into the control address register. A 0 output in the multiplexer
causes the address register to be incremented. In this configuration, the
microprogram follows one of two possible paths, depending on the value of
the selected status bit.

SECTION 7-2 Address Sequencing 2 1 9

An unconditional branch microinstruction can b e implemented b y load­
ing the branch address from control memory into the control address register.
This can be accomplished by fixing the value of one status bit at the input of
the multiplexer, so it is always equal to 1. A reference to this bit by the status
bit select lines from control memory causes the branch address to be loaded
into the control address register unconditionally.

Mapping of Instruction
A special type of branch exists when a microinstruction specifies a branch to
the first word in control memory where a microprogram routine for an instruc­
tion is located. The status bits for this type of branch are the bits in the operation
code part of the instruction. For example, a computer with a simple instruction
format as shown in Fig. 7-3 has an operation code of four bits which can specify
up to 16 distinct instructions. Assume further that the control memory has 128
words, requiring an address of seven bits. For each operation code there exists
a microprogram routine in control memory that executes the instruction. One
simple mapping process that converts the 4-bit operation code to a 7-bit
address for control memory is shown in Fig. 7-3 . This mapping consists of
placing a 0 in the most significant bit of the address, transferring the four
operation code bits, and clearing the two least significant bits of the control
address register. This provides for each computer instruction a microprogram
routine with a capacity of four microinstructions. If the routine needs more
than four microinstructions, it can use addresses 1000000 through 1111111 . If
it uses fewer than four microinstructions, the unused memory locations would
be available for other routines.

One can extend this concept to a more general mapping rule by using a
ROM to specify the mapping function. In this configuration, the bits of the
instruction specify the address of a mapping ROM. The contents of the map­
ping ROM give the bits for the control address register. In this way the
microprogram routine that executes the instruction can be placed in any de­
sired location in control memory. The mapping concept provides flexibility for
adding instructions for control memory as the need arises.

Figure 7 #3 Mapping from instruction code to microinstruction address.

Opcode

Computer instruction: I 0 I I

Mapping bits: 0 X X X X 0 Q

Microinstruction address: j 0 I 0 1 I 0 0 j

address I

220 CHAPTER SEVEN Microprogrammed Control

subroutine register

The mapping function is sometimes implemented by means of an inte­
grated circuit called programmable logic device or PLD. A PLD is similar to
ROM in concept except that it uses AND and OR gates with internal electronic
fuses. The interconnection between inputs, AND gates, OR gates, and outputs
can be programmed as in ROM. A mapping function that can be expressed in
terms of Boolean expressions can be implemented conveniently with a PLD.

Subroutines
Subroutines are programs that are used by other routines to accomplish a
particular task. A subroutine can be called from any point within the main body
of the microprogram. Frequently, many microprograms contain identical sec­
tions of code. Microinstructions can be saved by employing subroutines that
use common sections of microcode. For example, the sequence of microoper­
ations needed to generate the effective address of the operand for an instruc­
tion is common to all memory reference instructions. This sequence could be
a subroutine that is called from within many other routines to execute the
effective address computation.

Microprograms that use subroutines must have a provision for storing the
return address during a subroutine call and restoring the address during a
subroutine return. This may be accomplished by placing the incremented
output from the control address register into a subroutine register and branch­
ing to the beginning of the subroutine. The subroutine register can then
become the source for transferring the address for the return to the main
routine. The best way to structure a register file that stores addresses for
subroutines is to organize the registers in a last-in, first-out (LIFO) stack. The
use of a stack in subroutine calls and returns is explained in more detail in
Sec. 8-7.

7-3 Microprogram Example

Once the configuration of a computer and its microprogrammed control unit
is established, the designer's task is to generate the microcode for the control
memory. This code generation is called microprogramming and is a process
similar to conventional machine language programming. To appreciate this
process, we present here a simple digital computer and show how it is mi­
croprogrammed. The computer used here is similar but not identical to the
basic computer introduced in Chap. 5.

Computer Configuration
The block diagram of the computer is shown in Fig. 7-4. It consists of two
memory units: a main memory for storing instructions and data, and a control
memory for storing the microprogram. Four registers are associated with the
processor unit and two with the control unit. The processor registers are

sa::nan' Mic:ropropm Example 221

6 0

�

program counter PC, address register AR, data register DR, and accumulator
register AC. The function of these registers is similar to the basic computer
introduced in Chap. 5 (see Fig. S-3� The conhOI unit has a control address
register CAR and a subroutine register SBR. The control memory and its
registers are organized as a microprogrammed conhOI unit, as shown in
Fig. 7-2.

Tile transfer of information among the registers in the processor is done
through multiplexers rather than a common bus. DR can receive information
from AC, PC, or memory. AR can receive information from PC or DR. PC can
receive information only from AR. The arithmetic, logic, and shift unit per-

222 CHAPTER SEVEN Microprogrammed Control

instruction format

microinstruction
fonnat

forms microoperations with data from AC and DR and places the result in AC.
Note that memory receives its address from AR . Input data written to memory
come from DR, and data read from memory can go only to DR .

The computer instruction format is depicted in Fig. 7-S(a). It consists of
three fields: a 1-bit field for indirect addressing symbolized by I, a 4-bit oper­
ation code (opcode), and an 11-bit address field. Figure 7-S(b) lists four of the
16 possible memory-reference instructions. The ADD instruction adds the
content of the operand found in the effective address to the content of AC . The
BRANCH instruction causes a branch to the effective address if the operand
in AC is negative. The program proceeds with the next consecutive instruction
if AC is not negative. The AC is negative if its sign bit (the bit in the leftmost
position of the register) is a 1. The STORE instruction transfers the content of
AC into the memory word specified by the effective address. The EXCHANGE
instruction swaps the data between AC and the memory word specified by the
effective address.

It will be shown subsequently that each computer instruction must be
microprogrammed. In order not to complicate the microprogramming exam­
ple, only four instructions are considered here. It should be realized that 12
other instructions can be included and each instruction must be micropro­
grammed by the procedure outlined below.

Microinstruction Format
The microinstruction format for the control memory is shown in Fig. 7-6 . The
20 bits of the microinstruction are divided into four functional parts. The three
fields F1, F2, and F3 specify microoperations for the computer. The CD field

Figure 7 #5 Computer instructions.

15 14

Ope ode

Symbol

ADD

BRANCH

STORE

EXCHANGE

I I 10

Address

(a) Instruction format

Opcode

0000
0001
0010

001 1

Description

AC +- AC + M lEA)

If (AC < 0) then (PC +-- EA)

M [EA) +- AC

AC +-- M[EAl. M[EAl +-- AC

EA is the effective address

(b) Four computer instructions

microoperations

condition field

Fl F2 F3 CD

SECTION 7-J Microprogram Example 223

BR AD

F l . F2, F3: Microoperation fields

CD: Condition for branching

BR: Branch field

AD: Address field

Figure 7 .. 6 Microinstruction code format (20 bits).

selects status bit conditions. The BR field specifies the type of branch to be
used. The AD field contains a branch address. The address field is seven bits
wide, since the control memory has 128 = 27 words.

The microoperations are subdivided into three fields of three bits each.
The three bits in each field are encoded to specify seven distinct microopera­
tions as listed in Table 7-1 . This gives a total of 21 microoperations. No more
than three microoperations can be chosen for a microinstruction, one from each
field. If fewer than three microoperations are used, one or more of the fields
will use the binary code 000 for no operation. As an illustration, a microinstruc­
tion can specify two simultaneous microoperations from F2 and F3 and none
from Fl.

DR <- M [AR]

and PC <- PC + 1

with F2 = 100

with F3 = 101

The nine bits of the microoperation fields will then be 000 100 101. It is
important to realize that two or more conflicting microoperations cannot be
specified simultaneously. For example, a microoperation field 010 001 000 has
no meaning because it specifies the operations to clear AC to 0 and subtract DR
from AC at the same time.

Each microoperation in Table 7-1 is defined with a register transfer state­
ment and is assigned a symbol for use in a symbolic microprogram. All
transfer-type microoperations symbols use five letters. The first two letters
designate the source register, the third letter is always a T, and the last two
letters designate the destination register. For example, the microoperation that
specifies the transfer AC <- DR (F1 = 100) has the symbol DRTAC, which
stands for a transfer from DR to AC .

The CD (condition) field consists of two bits which are encoded to specify
four status bit conditions as listed in Table 7-1 . The first condition is always a
1, so that a reference to CD = 00 (or the symbol U) will always find the
condition to be true. When this condition is used in conjunction with the BR
(branch) field, it provides an unconditional branch operation. The indirect bit

TABLE 7-1 Symbols and Binary Code for Microinstruction Fields

F1 Microoperation Symbol

000 None NOP
001 AC+-AC + DR ADD
010 AC +-0 CLRAC
011 AC+-AC + I INCAC
100 AC +-DR DRTAC
101 AR +-DR(0-10) DRTAR
110 AR +-PC PCTAR
111 M[AR] +-DR WRITE

F2 Microoperation Symbol

000 None NOP
001 AC +-AC - DR SUB
010 AC +-AC V DR OR
011 AC+-AC /\ DR AND
100 DR +-M[AR] READ
101 DR +-AC ACTOR
110 DR +-DR + I IN CDR
111 DR(0-10) +-PC PCTDR

F3 Microoperation Symbol

000 None NOP
001 AC +-AC (f) DR XOR
010 AC +-AC COM
011 AC +-shl AC SHL
100 AC +-shr AC SHR

' 101 PC +-PC + I INCPC
110 PC +-AR ARTPC
111 Reserved

CD Condition Symbol Comments

00 Always = I u Unconditional branch
01 DR(I5) I Indirect address bit
10 AC(I5) s Sign bit of AC
11 AC = O z Zero value in AC

BR Symbol Function

00 JMP

01 CALL

10 RET
11 MAP

CAR +--AD if condition = 1
CAR +-CAR + I if condition = 0
CAR +-AD , SBR +- CAR + I if condition = I
CAR +- CAR + I if condition = 0
CAR +-SBR (Return from subroutine)
CAR(2-5) +-DR(11-14), CAR(0,1,6) +-0

224

branch field

SECTION 7-3 Microprogram Example 225

I is available from bit 15 of DR after an instruction is read from memory. The
sign bit of AC provides the next status bit. The zero value, symbolized by Z,
is a binary variable whose value is equal to 1 if all the bits in AC are equal to
zero. We will use the symbols U, I, S, and Z for the four status bits when we
write microprograms in symbolic form.

The BR (branch) field consists of two bits. It is used, in conjunction with
the address field AD, to choose the address of the next microinstruction. As
shown in Table 7-1, when BR = 00, the control performs a jump GMP) opera­
tion (which is similar to a branch), and when BR = 01, it performs a call to
subroutine (CALL) operation. The two operations are identical except that a
call microinstruction stores the return address in the subroutine register SBR _
The jump and call operations depend on the value of the CD field. If the status
bit condition specified in the CD field is equal to 1, the next address in the AD
field is transferred to the control address register CAR _ Otherwise, CAR is
incremented by 1 .

The return from subroutine i s accomplished with a B R field equal t o 10.
This causes the transfer of the return address from SBR to CAR . The mapping
from the operation code bits of the instruction to an address for CAR is
accomplished when the BR field is equal to 1 1 . This mapping is as depicted in
Fig. 7-3 . The bits of the operation code are in DR(ll-14) after an instruction
is read from memory. Note that the last two conditions in the BR field are
independent of the values in the CD and AD fields.

Symbolic Microinstructions
The symbols defined in Table 7-1 can be used to specify microinstructions in
symbolic form. A symbolic microprogram can be translated into its binary
equivalent by means of an assembler. A microprogram assembler is similar in
concept to a conventional computer assembler as defined in Sec. 6-3. The
simplest and most straightforward way to formulate an assembly language for
a microprogram is to define symbols for each field of the microinstruction and
to give users the capability for defining their own symbolic addresses.

Each line of the assembly language microprogram defines a symbolic
microinstruction. Each symbolic microinstruction is divided into five fields:
label, microoperations, CD, BR, and AD. The fields specify the following
information.

1. The label field may be empty or it may specify a symbolic address. A
label is terminated with a colon (:).

2. The microoperations field consists of one, two, or three symbols, sep­
arated by commas, from those defined in Table 7-1 . There may be no
more than one symbol from each F field. The NOP symbol is used when
the microinstruction has no microoperations. This will be translated by
the assembler to nine zeros.

226 CHAPTER SEVEN Microprogrammed Control

address field

ORG

fetch and decode

3. The CD field has one of the letters U, I, S, or Z.

4. The BR field contains one of the four symbols defined in Table 7-1 .
5. The AD field specifies a value for the address field of the microinstruc­

tion in one of three possible ways:
a. With a symbolic address, which must also appear as a label.
b. With the symbol NEXT to designate the next address in sequence.
c. When the BR field contains a RET or MAP symbol, the AD field is

left empty and is converted to seven zeros by the assembler.

We will use also the pseudoinstruction ORG to define the origin, or first
address, of a microprogram routine. Thus the symbol ORG 64 informs the
assembler to place the next microinstruction in control memory at decimal
address 64, which is equivalent to the binary address 1000000.

The Fetch Routine
The control memory has 128 words, and each word contains 20 bits. To
microprogram the control memory, it is necessary to determine the bit values
of each of the 128 words. The first 64 words (addresses 0 to 63) are to be
occupied by the routines for the 16 instructions. The last 64 words may be used
for any other purpose. A convenient starting location for the fetch routine is
address 64. The microinstructions needed for the fetch routine are

AR <- PC

DR <- M[AR], PC <- PC + 1

AR <- DR(0-10), CAR(2-5) <- DR(ll-14), CAR(0,1,6) <- 0

The address of the instruction is transferred from PC to AR and the instruction
is then read from memory into DR . Since no instruction register is available,
the instruction code remains in DR . The address part is transferred to AR and
then control is transferred to one of 16 routines by mapping the operation code
part of the instruction from DR into CAR .

The fetch routine needs three microinstructions, which are placed in
control memory at addresses 64, 65, and 66. Using the assembly language
conventions defined previously, we can write the symbolic microprogram for
the fetch routine as follows:

F E T C H :
O R G 6 £;
P C T A R
READ , I N C P C
D R T A R

u
u
u

J M P
J M P
M A P

NE X T
NE X T

The translation o f the symbolic microprogram t o binary produces the
following binary microprogram. The bit values are obtained from Table 7-1 .

Binary
Address F1

1000000 110
1000001 000
1000010 101

SECTION 7-J Microprogram Example 22 7

F2 F3 CD

000 000 00
100 101 00
000 000 00

BR AD

00 1000001
00 1000010
1 1 0000000

The three microinstructions that constitute the fetch routine have been
listed in three different representations. The register transfer representation
shows the internal register transfer operations that each microinstruction im­
plements. The symbolic representation is useful for writing microprograms in
an assembly language format. The binary representation is the actual internal
content that must be stored in control memory. It is customary to write
microprograms in symbolic form and then use an assembler program to obtain
a translation to binary.

Symbolic Microprogram
The execution of the third (MAP) microinstruction in the fetch routine results
in a branch to address OxxxxOO, where xxxx are the four bits of the operation
code. For example, if the instruction is an ADD instruction whose operation
code is 0000, the MAP microinstruction will transfer to CAR the address
0000000, which is the start address for the ADD routine in control memory. The
first address for the BRANCH and STORE routines are 0 0001 00 (decimal 4)
and 0 0010 00 (decimal 8), respectively. The first address for the other 13
routines are at address values 12, 16, 20, . . . , 60. This gives four words in
control memory for each routine.

In each routine we must provide microinstructions for evaluating the
effective address and for executing the instruction. The indirect address mode
is associated with all memory-reference instructions. A saving in the number
of control memory words may be achieved if the microinstructions for the
indirect address are stored as a subroutine. This subroutine, symbolized by
INDRCT, is located right after the fetch routine, as shown in Table 7-2. The table
also shows the symbolic microprogram for the fetch routine and the microin­
struction routines that execute four computer instructions.

To see how the transfer and return from the indirect subroutine occurs,
assume that the MAP microinstruction at the end of the fetch routine caused
a branch to address 0, where the ADD routine is stored. The first microinstruc­
tion in the ADD routine calls subroutine INDRCT, conditioned on status bit
I. If I = 1, a branch to INDRCT occurs and the return address (address 1 in this
case) is stored in the subroutine register SBR. The INDRCT subroutine has two
microinstructions:

I N D R C T : READ
D R T A R

u
u

J M P
R E T

NE X T

228 CHAPTER SEVEN Microprogrammed Control

execulicm of
instructions

TABLE 7-2 Symbolic Microprogram (Partial)

Label Microoperations CD BR AD

ORG O
ADD: NOP I CALL INDRCT

READ u JMP NEXT
ADD u JMP FETCH

ORG 4
BRANCH: NOP s JMP OVER

NOP u JMP FETCH
OVER: NOP I CALL INDRCT

ARTPC u JMP FETCH

ORG 8
STORE: NOP I CALL INDRCT

ACTOR u JMP NEXT
WRITE u JMP FETCH

ORG 12
EXCHANGE: NOP I CALL INDRCT

READ u JMP NEXT
ACTOR, DRTAC u JMP NEXT
WRITE u JMP FETCH

ORG 64
FETCH: PCTAR u JMP NEXT

READ, INCPC u JMP NEXT
DRTAR u MAP

INDRCT: READ u JMP NEXT
DR TAR u RET

Remember that an indirect address considers the address part of the
instruction as the address where the effective address is stored rather than the
address of the operand. Therefore, the memory has to be accessed to get the
effective address, which is then transferred to AR. The return from subroutine
(RET) transfers the address from SBR to CAR, thus returning to the second
microinstruction of the ADD routine.

The execution of the ADD instruction is carried out by the microinstruc­
tions at addresses 1 and 2. The first microinstruction reads the operand from
memory into DR . The second microinstruction performs an add microopera­
tion with the content of DR and AC and then jumps back to the beginning of
the fetch routine.

The BRANCH instruction should cause a branch to the effective address

control memory

SECTION 7-3 Microprogram Example 229

if AC < 0. The AC will be less than zero if its sign is negative, which is detected
from status bit S being a 1 . The BRANCH routine in Table 7-2 starts by checking
the value of S . If S is equal to 0, no branch occurs and the next microinstruction
causes a jump back to the fetch routine without altering the content of PC. If
S is equal to 1, the first JMP microinstruction transfers control to location
OVER. The microinstruction at this location calls the INDRCT subroutine if
l = 1. The effective address is then transferred from AR to PC and the mi­
croprogram jumps back to the fetch routine.

The STORE routine again uses the INDRCT subroutine if l = 1. The
content of AC is transferred into DR . A memory write operation is initiated to
store the content of DR in a location specified by the effective address in AR .

The EXCHANGE routine reads the operand from the effective address
and places it in DR . The contents of DR and AC are interchanged in the third
microinstruction. This interchange is possible when the registers are of the
edge-triggered type (see Fig. 1-23). The original content of AC that is now in
DR is stored back in memory.

Note that Table 7-2 contains a partial list of the microprogram. Only four
out of 16 possible computer instructions have been microprogrammed. Also,
control memory words at locations 69 to 127 have not been used. Instructions
such as multiply, divide, and others that require a long sequence of micro­
operations will need more than four microinstructions for their execution.
Control memory words 69 to 127 can be used for this purpose.

Binary Microprogram
The symbolic microprogram is a convenient form for writing microprograms
in a way that people can read and understand. But this is not the way that the
microprogram is stored in memory. The symbolic microprogram must be
translated to binary either by means of an assembler program or by the user
if the microprogram is simple enough as in this example.

The equivalent binary form of the microprogram is listed in Table 7-3. The
addresses for control memory are given in both decimal and binary. The binary
content of each microinstruction is derived from the symbols and their equiv­
alent binary values as defined in Table 7-1 .

Note that address 3 has no equivalent in the symbolic microprogram since
the ADD routine has only three microinstructions at addresses 0, 1, and 2. The
next routine starts at address 4. Even though address 3 is not used, some binary
value must be specified for each word in control memory. We could have
specified all 0' s in the word since this location will never be used. However,
if some unforeseen error occurs, or if a noise signal sets CAR to the value of
3, it will be wise to jump to address 64, which is the beginning of the fetch
routine.

The binary microprogram listed in Table 7-3 specifies the word content
of the control memory. When a ROM is used for the control memory, the

230 CHAPTER SEVEN Microprogrammed Control

TABLE 7-3 Binary Microprogram for Control Memory (Partial)

Address Binary Microinstruction
Micro

Routine Decimal Binary Fl F2 F3 CD BR AD

ADD 0 0000000 000 000 000 01 01 100001 1
I 0000001 000 100 000 00 00 0000010
2 0000010 001 000 000 00 00 1000000
3 000001 1 000 000 000 00 00 1000000

BRANCH 4 0000100 000 000 000 10 00 0000110
5 0000101 000 000 000 00 00 1000000
6 0000110 000 000 000 01 01 1000011
7 00001 1 1 000 000 110 00 00 1000000

STORE 8 0001000 000 000 000 01 01 100001 1
9 0001001 000 101 000 00 00 0001010

10 0001010 1 1 1 000 000 00 00 1000000
1 1 0001011 000 000 000 00 00 1000000

EXCHANGE 12 0001 100 000 000 000 01 01 1000011
13 0001101 001 000 000 00 00 0001110
14 0001 110 100 101 000 00 00 0001 1 1 1
1 5 0001 1 1 1 I l l 000 000 00 00 1000000

FETCH 64 1000000 110 000 000 00 00 1000001
65 1000001 000 100 101 00 00 1000010
66 1000010 101 000 000 00 1 1 0000000

INDRCT 67 1000011 000 100 000 00 00 1000100
68 1000100 101 000 000 00 10 0000000

microprogram binary list provides the truth table for fabricating the unit. This
fabrication is a hardware process and consists of creating a mask for the ROM
so as to produce the l's and D's for each word. The bits of ROM are fixed once
the internal links are fused during the hardware production. The ROM is made
of IC packages that can be removed if necessary and replaced by other pack­
ages. To modify the instruction set of the computer, it is necessary to generate
a new microprogram and mask a new ROM. The old one can be removed and
the new one inserted in its place.

If a writable control memory is employed, the ROM is replaced by a RAM .

The advantage of employing a RAM for the control memory is that the mi­
croprogram can be altered simply by writing a new pattern of l'.s and D's
without resorting to hardware procedures. A writable control memory pos­
sesses the flexibility of choosing the instruction set of a computer dynamically
by changing the microprogram under processor control. However, most mi­
croprogrammed systems use a ROM for the control memory because it is

decoding of F fields

arithmeHc logic
shift unit

SECTION 7-4 Design of Control Unit 23 1

cheaper and faster than a RAM and also to prevent the occasional user from
changing the architecture of the system.

7-4 Design of Control Unit

The bits of the microinstruction are usually divided into fields, with each field
defining a distinct, separate function. The various fields encountered in in­
struction formats provide control bits to initiate microoperations in the system,
special bits to specify the way that the next address is to be evaluated, and an
address field for branching. The number of control bits that initiate microop­
erations can be reduced by grouping mutually exclusive variables into fields
and encoding the k bits in each field to provide 2' microoperations. Each field
requires a decoder to produce the corresponding control signals. This method
reduces the size of the microinstruction bits but requires additional hardware
external to the control memory. It also increases the delay time of the control
signals because they must propagate through the decoding circuits.

The encoding of control bits was demonstrated in the programming
example of the preceding section. The nine bits of the microoperation field are
divided into three subfields of three bits each. The control memory output
of each subfield must be decoded to provide the distinct microoperations. The
outputs of the decoders are connected to the appropriate inputs in the proces­
sor unit.

Figure 7-7 shows the three decoders and some of the connections that
must be made from their outputs. Each of the three fields of the microinstruc­
tion presently available in the output of control memory are decoded with a
3 x 8 decoder to provide eight outputs. Each of these outputs must be con­
nected to the proper circuit to initiate the corresponding microoperation as
specified in Table 7-1 . For example, when F1 = 101 (binary 5), the next clock
pulse transition transfers the content of DR(0-10) to AR (symbolized by DRTAR
in Table 7-1). Similarly, when F1 = 110 (binary 6) there is a transfer from PC
to AR (symbolized by PCTAR). As shown in Fig. 7-7, outputs 5 and 6 of decoder
f1 are connected to the load input of AR so that when either one of these
outputs is active, information from the multiplexers is transferred to AR . The
multiplexers select the information from DR when output 5 is active and from
PC when output 5 is inactive. The transfer into AR occurs with a clock pulse
transition only when output 5 or output 6 of the decoder are active. The other
outputs of the decoders that initiate transfers between registers must be con­
nected in a similar fashion.

The arithmetic logic shift unit can be designed as in Figs. 5-19 and 5-20.
Instead of using gates to generate the control signals marked by the symbols
AND, ADD, and DR in Fig. 5-19, these inputs will now come from the outputs
of the decoders associated with the symbols AND, ADD, and DRTAC, respec-

23 2 CHAPTIR SEVEN Microprogrammed Control

F l F2

ADD
DRTAC

"' "' < < From From

�
.... "' PC DR (0 - 1 0) Q

Select
Multiplexers

Figure 7-7 Decoding of microoperation fields.

F3

tively, as shown in Fig. 7-7. The other outputs of the decoders that are asso­
ciated with an AC operation must also be connected to the arithmetic logic shift
unit in a similar fashion.

Microprogram Sequencer
The basic components of a microprogrammed control unit are the control
memory and the circuits that select the next address. The address selection part
is called a microprogram sequencer. A microprogram sequencer can be con­
structed with digital functions to suit a particular application. However, just
as there are large ROM units available in integrated circuit packages, so are
general-purpose sequencers suited for the construction of microprogram con­
trol units. To guarantee a wide range of acceptability, an integrated circuit
sequencer must provide an internal organization that can be adapted to a wide
range of applications.

SECTION 7-4 Design of Control Unit 23 3

The purpose of a microprogram sequencer is to present an address to the
control memory so that a microinstruction may be read and executed. The
next-address logic of the sequencer determines the specific address source to
be loaded into the control address register. The choice of the address source
is guided by the next-address information bits that the sequencer receives from
the present microinstruction. Commercial sequencers include within the unit
an internal register stack used for temporary storage of addresses during
microprogram looping and subroutine calls. Some sequencers provide an
output register which can function as the address register for the control
memory.

To illustrate the internal structure of a typical microprogram sequencer
we will show a particular unit that is suitable for use in the microprogram
computer example developed in the preceding section. The block diagram of
the microprogram sequencer is shown in Fig. 7-8. The control memory is
included in the diagram to show the interaction between the sequencer and the
memory attached to it. There are two multiplexers in the circuit. The first
multiplexer selects an address from one of four sources and routes it into a
control address register CAR . The second multiplexer tests the value of a
selected status bit and the result of the test is applied to an input logic circuit.
The output from CAR provides the address for the control memory. The
content of CAR is incremented and applied to one of the multiplexer inputs and
to the subroutine register SBR . The other three inputs to multiplexer number
1 come from the address field of the present microinstruction, from the output
of SBR, and from an external source that maps the instruction. Although the
diagram shows a single subroutine register, a typical sequencer will have a
register stack about four to eight levels deep. In this way, a number of subrou­
tines can be active at the same time. A push and pop operation, in conjunction
with a stack pointer, stores and retrieves the return address during the call and
return microinstructions.

The CD (condition) field of the microinstruction selectgs one of the status
bits in the second multiplexer. If the bit selected is equal to 1, the T (test)
variable is equal to 1; otherwise, it is equal to 0. The T value together with the
two bits from the BR (branch) field go to an input logic circuit. The input logic
in a particular sequencer will determine the type of operations that are available
in the unit. Typical sequencer operations are: increment, branch or jump, call
and return from subroutine, load an external address, push or pop the stack,
and other address sequencing operations. With three inputs, the sequencer
can provide up to eight address sequencing operations. Some commercial
sequencers have three or four inputs in addition to the T input and thus provide
a wider range of operations.

design of input logic The input logic circuit in Fig. 7-8 has three inputs, l0, l1, and T, and three
outputs, S0, S1, and L . Variables So and S, select one of the source addresses
for CAR . Variable L enables the load input in SBR . The binary values of the two
selection variables determine the path in the multiplexer. For example, with
S1 So = 10, multiplexer input number 2 is selected and establishes a transfer

234 CHAPTER SEVEN Microprogrammed Control

Fll"rt 7·8 Mie10pC'Ctrl.m >equeneer for 1 c;)nnol mcmoty.

path from SBR to CAR. Note that each of the four inputs as well as the output
of MUX 1 contains a 7-bit address.

The truth table for the input logic circuit is shown in Table 7-4. Inputs 11
a.nd 10 are Identical to the bit values in the BR field. The function listed in each
entry was defined in Table 7·1. The bit values for 51 and So are determined &om
the stated function and the path in the multiplexer that establishes the required
transfer. The subroutine register is loaded with the incremented value of CAR
during a call microinstruction (BR ; 01) provided that the status bit condition
is satisfied (T ; 1). The truth table can be used to obtain the simplified Boolean
functions for the input logic circuit:

s,; 1,

So= 1,1., + 1jT
L = l!!,T

SECTION 1-4 O..iift of Conuol Unit 235

TABLE 7-4 lnpur logic Tnnh Table for M� Scqucnca

BR Input MUX I Load SBR

riCid I, lo T s, s. L

0 0 0 0 0 0 0 0
0 0 0 0 I 0 I 0
0 I 0 I 0 0 0 0
0 I 0 I 0 I I

0 0 X 0 0
X 0

The circuit can be constructed with three AND gates, an OR gate, and an
inverter.

Note that the incrementer circuit in the sequencer of Fig. 7·8 is not a
counter constructed with flip-flops but rather a combinati.onal circuit con·
structed with gates. A combinational circuit incrementer can be designed by
cascading a series of half-adder circuits (see Fig. 4--8). The output carry from
one stage must be appUed to the input of the next stage. One input in the first
least significant stage must be equal to 1 to provide the increment-by-one
operation.

PROBLEMS

7·1. What is th� dl(fert'nce be�n a mlcroprOCI!S50f and a microprogram? Is it
possible to design a microprocessor without a microprogram? � aU mi­
croprogrammed computers also microprocessors?

7·2. Explain tM difference be�n hardwired control and microprogTal'r\lN<I
control. Is II possible to have a hardwired control asaodated with a control
memory?

7-3. Define the loUowing: (a) microoperalion; (b) microinstruction; (c) micro­
program; (d) microcode.

1-4. The microprogrammed oonllol organization shown in Fig. 7·1 has the fol·
lowing propagation delay limes. 40 ns to generate the next address, 10 ns
to transfer the address into the control address register, 40 ns to a<.'CeSS the
control memory ROM, 10 ns to transfer the microinstruction into the control
data register, and 40 ns to perform the required microoperations spedfied
by the control word. What is the maximum clock frequency that the control
can use? What would the clock frequency be if the control data register is
not used?

7-5. The system shown in Fig. 7·2 uses a control memory of 1024 words of 32 bits
each. The mlcroinstruction has three fields as shown In the diagram. The
microoperations field has 16 bits.
a. How many bits are there in the branch address field and the select field?

236 CHAPTIR SEVEN Microprogrammed Control

b. If there are 16 status bits in the system, how many bits of the branch logic
are used to select a status bit?

c. How many bits are left to select an input for the multiplexers?

7-6. The control memory in Fig. 7-2 has 4096 words of 24 bits each.
a. How many bits are there in the control address register?
b. How many bits are there in each of the four inputs shown going into the

multiplexers?
c. What are the number of inputs in each multiplexer and how many

multiplexers are needed?

7-7. Using the mapping procedure described in Fig. 7-3, give the first microin­
struction address for the following operation code: (a) 0010; (b) 1011 ; (c) 1 1 1 1 .

7-8. Formulate a mapping procedure that provides eight consecutive microin­
structions for each routine. The operation code has six bits and the control
memory has 2048 words.

7-9. Explain how the mapping from an instruction code to a microinstruction
address can be done by means of a read-only memory. What is the advantage
of this method compared to the one in Fig. 7-3?

7-10. Why do we need the two multiplexers in the computer hardware configura­
tion shown in Fig. 7-4? Is there another way that information from multiple
sources can be transferred to a common destination?

7-11. Using Table 7-1 , give the 9-bit microoperation field for the following micro­
operations:
a. AC +--AC + I , DR +-- DR + I
b. PC +-- PC + I , DR +--M[AR]
c. DR +--AC, AC +-- DR

7-12. Using Table 7-1 , convert the following symbolic microoperations to register
transfer statements and to binary.
a. READ, INCPC
b. AcrDR, DRTAC
c. ARTPC, DRTAC, WRITE

7-13. Suppose that we change the ADD routine listed in Table 7-2 to the following
two microinstructions.

A D D : R E A D

A D D

I

u
What should be subroutine INDR2?

C A L L

J M P

I N D R 2

F E T C H

7-14. The following is a symbolic microprogram for an instruction in the computer
defined in Sec. 7-3.

O R G � 0

N O P

N O P

N O P

A R T P C

s
z
I

u

J M P

J M P

C A L L

J M P

F E T C H

F E T C H

I N D R C T

FE T C H

a . Specify the operation performed when the instruction i s executed.
b. Convert the four microinstructions into their equivalent binary form.

SECTION 7·4 Design of Control Unit 23 7

7-15. The computer of Sec. 7-3 has the following binary microprogram:

Address Binary Microprogram

60
61
62
63

1 0 0 0 1 0 0 0 1 0 0 0 0 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 0

a. Translate it to a symbolic microprogram as in Table 7-2. (FETCH is in
address 64 and INDRCf in address 67.)

b. List all the things that will be wrong when this microprogram is executed
in the computer.

7-16. Add the following instructions to the computer of Sec 7-3 (EA is the effective
address). Write the symbolic microprogram for each routine as in Table 7-2.
(Note that AC must not change in value unless the instruction specifies a
change in AC.)

Symbol Opcode Symbolic Function Description

AND 0100 AC <-AC 1\ M[EA] AND
SUB 0101 AC <-AC - M(EA] Subtract
ADM 0110 M(EA] <- M(EA] + AC Add to memory
BTCL 0111 AC<-AC 1\ M[EA] Bit clear
BZ 1000 If (AC � 0) then (PC <- EA) Branch if AC zero
SEQ 1001 If (AC � M[EA]) then (PC <- PC + 1) Skip if equal
BPNZ 1010 If (AC > 0) then (PC <- EA) Branch if positive

and nonzero

7-17. Write a symbolic microprogram routine for the ISZ (increment and skip if
zero) instruction defined in Chap. 5 (Table 5-4). Use the microinstruction
format of Sec. 7-3. Note that DR � 0 status condition is not available in the
CD field of the computer defined in Sec. 7-3. However, you can exchange
AC and DR and check if AC � 0 with the Z bit.

7-18. Write the symbolic microprogram routines for the BSA (branch and save
address) instructions defined in Chap. 5 (Table 5-4). Use the microinstruction
format of Sec. 7-3. Minimize the number of microinstructions.

7-19. Show how outputs 5 and 6 of decoder F3 in Fig. 7-7 are to be connected to
the program counter PC.

7-20. Show how a 9-bit microoperation field in a microinstruction can be divided
into subfields to specify 46 microoperations. How many microoperations can
be specified in one microinstruction?

238 CHAPTER SEVEN Microprognmmed Con <rOt

7-21- A computer has 16 registets, an ALU (arithmetic logk unil) with 32 opera­
tions, and a shifter with eight operations, all connected to a common bus
system.
a. Formulate a c:ontrol word for a mio'ooperalion.
b. Specify the number of bits in each field of the control word and give a

general encoding scheme.
c. Show the bits of the control word that specify the mkroope<alion

R4-R5 + R6.

7-22. Assume that the input logic of the microprogram sequencer of Fig. 7-8 has
four inputs, I,. /1, I,. T(test), and three outputs, S,, S,.andL. The operations
that are performed ln the unit are listed in the following table. Design the
input logic circuit using a minimum number of gi'les.

t, t, lo Operation

0 0 0 Increment CAR if T • 1, jump to AD if T • 0
X 0 I Jump to liD unconditionally
1 0 0 Increment CAR unconditionally
0 0 Jump to AD if T e l, inc:n:ment CAR if T = 0
I 0 Call subroutine if T • I, increment CAR if T • 0
0 I Return from subroutine unconditionally
I 1 Map external address unconditionally

7-23. Design a 7-bit combinational circuit lncre.menter for the microp<OgTam �
quencer of Fig. 7-8 (see fig. 4-8). Modify the incrementer by including a
control input D. When D • 0, the circuit increments by one, but when
D • 1, the circuit increments by two.

7-14. Insert an exclusive-OR &>te between MUX 2 and the ln.put logic of fig. 7·8.
One input to the &>te comes from the rut output of the multiplexer. The
other Input to the gate comes from a bit labeled P (for polarity) in the
microinstruction from control memory. The output of the gate goes to the
input T of the input logic. What does the polarity control P aa:omplish?

REFERENCES

1. Dasgupta, S., Computtr JlrchiUJc!IUt: A MDdtrrt Syntlrnis. Vol. 1. New Yorlo;: John
Wiley, 1989.

2. Gorsline, G. W., Computu Org411ization: Hltnlwan/Softwan, 2nd ed. Englewood
CliJfs, NJ: Prentice Hall. 1986.

3. Hamadler, V. C., Z. G. Vranesic. and S. G. Zaky, Computu OtgtlnW.tion, 3rd ed.
New York: McGraw-HilL 1990.

SECTION 7-4 Design of Control Unit 239

4. Hays,) . F. , Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill,
1988.

5. Langholz, G.,). Francioni, and A. Kandel, Elements of Computer Organization.
Englewood Oiffs, NJ: Prentice Hall, 1989.

6. Lewin, M. H., Logic Design and Computer Organization. Reading, MA: Addison­
Wesley, 1983.

7. Mano, M. M. , Computer Engineering: Hardware Design . Englewood Cliffs, NJ: Pren­
tice Hall, 1988.

8. Rafiquzzaman, M., and R. Chandra, Modern Computer Architecture. St Paul, MN:
West Publishing, 1988.

9. Stallings, W., Computer Organization and Architecture, 2nd ed. New York: Macmillan,
1989.

10. Tanenbaum, A. 5., Structured Computer Organization, 3rd ed. Englewood Oiffs, NJ:
Prentice Hall, 1990.

11. Ward, 5. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.

CPU

C H A P T E R E I G H T

Central Processing
Unit

IN TillS CHAPTER

8-1 Introduction

8-2 �ral Register Or:ganitation
8-3 Stack Olganitadon

8-4 lrutruction Formats

8-S Addressing Modes

8-6 Data Transfer and Manipulation

8-7 Propm Control

8-8 Reduced lnsuuction Set Computer

8-1 Introduction

The part of the computer that performs the bull< of data-processing operations
is called the central processing unit and is referred to as the CPU. The CPU is
made up of three major parts, as shown in Fig. 8-I. The register set stores
intermediate data used during the execution of the instructions. The arithmetic
logic unit (ALU) performs the required microoperations for executing the
instructions. The control unit supervises the transfer of informatio.n among the
registers and instructs the ALU as to which operation to perform.

The CPU performs a variety of functions dictated by the type of in·
structions that are incorporated in the computer. Computer architecture is
sometimes defined as the computer structure and behavior as seen by the
programme.r that uses machine language instructions. This includes the in·
struction formats, addressing modes, the instruction set, and the general
organization of the CPU registers.

One boundary where the computer designer and the computer pro­
grammer see the same machine is the part of the CPU associated with the
instruction set. From the designer's point of view, the computer instruction set
provides the specifications for the design of the CPU. The design of a CPU is

241

242 CHAPTER EIGHT Central Processing Unit

bus system

Figure 8·1 Major components of CPU.

a task that in large part involves choosing the hardware for implementing the
machine instructions. The user who programs the computer in machine or
assembly language must be aware of the register set, the memory structure,
the type of data supported by the instructions, and the function that each
instruction performs.

Design examples of simple CPUs are carried out in Chaps. 5 and 7. This
chapter describes the organization and architecture of the CPU with an empha­
sis on the user's view of the computer. We briefly describe how the registers
communicate with the ALU through buses and explain the operation of the
memory stack. We then present the type of instruction formats available, the
addressing modes used to retrieve data from memory, and typical instructions
commonly incorporated in computers. The last section presents the concept of
reduced instruction set computer (RISQ.

s,z General Register Organization

In the programming examples of Chap. 6, we have shown that memory
locations are needed for storing pointers, counters, return addresses, tempo­
rary results, and partial products during multiplication. Having to refer to
memory locations for such applications is time consuming because memory
access is the most time-consumin\;, oqerati!lR i.R � <:.<'-w..�\'1!1. . \\).1; more conve­
nlent and more efficient to store these intermediate values in processor regis­
ters. When a large number of registers are included in the CPU, it is most
efficient to connect them through a common bus system. The registers commu­
nicate with each other not only for direct data transfers, but also while perform­
ing various microoperations. Hence it is necessary to provide a common unit
that can perform all the arithmetic, logic, and shift microoperations in the
processor.

A bus organization for seven CPU registers is shown in Fig. 8-2. The
output of each register is connected to two multiplexers (MUX) to form the two
buses A and B. The selection lines in each multiplexer select one register or the
input data for the particular bus. The A and B buses form the inputs to a

- Rl
,_ RZ

..._ R3

- R4
,_. RS
,_. R6
>-- R1

Load
(71i,..)

3x8
-

ttt
sao

[:: OPR ::

3 3 3

I SF.I..A I SELl! I SEI.D I OPR

(b)C<nrolwml

Bblll

l"ipft 8-2 Reciau .., with common ALU.

}saB

244 CHAPTER EIGHT Central Processing Unit

control word

common arithmetic logic unit (ALU). The operation selected in the ALU deter­
mines the arithmetic or logic microoperation that is to be performed. The result
of the microoperation is available for output data and also goes into the inputs
of all the registers. The register that receives the information from the output
bus is selected by a decoder. The decoder activates one of the register load
inputs, thus providing a transfer path between the data in the output bus and
the inputs of the selected destination register.

The control unit that operates the CPU bus system directs the information
flow through the registers and ALU by selecting the various components in the
system. For example, to perform the operation

R1 <-- R2 + R3

the control must provide binary selection variables to the following selector
inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A .

2 . MUX B selector (SELB): to place the content o f R 3 into bus B .

3 . ALU operation selector (OPR): to provide the arithmetic addition
A + B .

4. Decoder destination selector (SELD): to transfer the content of the
output bus into R 1 .

The four control selection variables are generated i n the control unit and
must be available at the beginning of a clock cycle. The data from the two source
registers propagate through the gates in the multiplexers and the ALU, to the
output bus, and into the inputs of the destination register, all during the clock
cycle interval. Then, when the next clock transition occurs, the binary informa­
tion from the output bus is transferred into R 1. To achieve a fast response time,
the ALU is constructed with high-speed circuits. The buses are implemented
with multiplexers or three-state gates, as shown in Sec. 4-3.

Control Word
There are 14 binary selection inputs in the unit, and their combined value
specifies a control word. The 14-bit control word is defined in Fig. 8-2(b). It
consists of four fields. Three fields contain three bits each, and one field has
five bits. The three bits of SELA select a source register for the A input of the
ALU. The three bits of SELB select a register for the B input of the ALU. The
three bits of SELD select a destination register using the decoder and its seven
load outputs. The five bits of OPR select one of the operations in the ALU. The
14-bit control word when applied to the selection inputs specify a particular
microoperation.

The encoding of the register selections is specified in Table 8-1 . The 3-bit

ALU

SECTION 8-2 General Register Organization 245

TABLE 8 .. 1 Encoding of Register Selection Fields

Binary
Code SELA SELB SELD

000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 R6 R6
111 R7 R7 R7

binary code listed in the first column of the table specifies the binary code for
each of the three fields. The register selected by fields SELA, SELB, and SELD
is the one whose decimal number is equivalent to the binary number in the
code. When SELA or SELB is 000, the corresponding multiplexer selects the
external input data. When SELD = 000, no destination register is selected but
the contents of the output bus are available in the external output.

The ALU provides arithmetic and logic operations. In addition, the CPU
must provide shift operations. The shifter may be placed in the input of the
ALU to provide a preshift capability, or at the output of the ALU to provide
postshifting capability. In some cases, the shift operations are included with
the ALU. An arithmetic logic and shift unit was designed in Sec. 4-7. The
function table for this ALU is listed in Table 4-8. The encoding of the ALU
operations for the CPU is taken from Sec. 4-7 and is specified in Table 8-2. The
OPR field has five bits and each operation is designated with a symbolic name.

TABLE 8-2 Encoding of ALU Operations

OPR
Select Operation Symbol

00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A + B ADD
00101 Subtract A - B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR A and B OR
01100 XOR A and B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

246 CHAPTIR EIGHT Centtal Processing Unit

Examples of Microoperations
A control word of 14 bits is needed to specify a rnicrooperation in the CPU. The
control word for a given microoperation can be derived from the selection
variables. For example, the subtract rnicrooperation given by the statement

R1 <-R2 - R3

specifies R2 for the A input of the ALU, R3 for the B input of the ALU, R1 for
the destination register, and an ALU operation to subtract A - B. Thus the
control word is specified by the four fields and the corresponding binary value
for each field is obtained from the encoding listed in Tables 8-1 and 8-2. The
binary control word for the subtract rnicrooperation is 010 011 001 00101 and
is obtained as follows:

Field:
Symbol:
Control word:

SELA SELB SELD OPR
R2 R3 R1 SUB
010 011 001 00101

The control word for this rnicrooperation and a few others are listed in
Table 8-3.

The increment and transfer rnicrooperations do not use the B input of the
ALU. For these cases, the B field is marked with a dash. We assign 000 to any
unused field when formulating the binary control word, although any other
binary number may be used. To place the content of a register into the output
terminals we place the content of the register into the A input of the ALU, but
none of the registers are selected to accept the data. The ALU operation TSFA
places the data from the register, through the ALU, into the output terminals.
The direct transfer from input to output is accomplished with a control word

TABLE 8�3 Examples of Microoperations for the CPU

Microoperation SELA

R1 <-- R2 - R3 R2
R4 <-- R4 V R5 R4
R6 <-- R6 + 1 R6
R7 <-- R 1 R 1
Output <-- R2 R2
Output <-- lnput Input
R4 <-- sh1 R4 R4
RS <-- 0 RS

Symbolic Designation

SELB

R3
R5

RS

SELD

R1
R4
R6
R7
None
None
R4
RS

OPR Control Word

SUB 010 011 001 00101
OR 100 101 100 01010
INCA 110 000 110 00001
TSFA 001 000 111 00000
TSFA 010 000 000 00000
TSFA 000 000 000 00000
SHLA 100 000 100 11000
XOR 101 101 101 01100

UFO

stack pointer

SECTION 8-3 Scack Organizarion 24 7

of all 0' s (making the B field 000). A register can be cleared to 0 with an
exclusive-OR operation. This is because x Ell x = 0.

It is apparent from these examples that many other microoperations can
be generated in the CPU. The most efficient way to generate control words with
a large number of bits is to store them in a memory unit. A memory unit that
stores control words is referred to as a control memory. By reading consecutive
control words from memory, it is possible to initiate the desired sequence of
microoperations for the CPU. This type of control is referred to as micropro­
grammed controL A microprogrammed control unit is shown in Fig. 7-8. The
binary control word for the CPU will come from the outputs of the control
memory marked "micro-ops."

8-3 Stack Organization

A useful feature that is included in the CPU of most computers is a stack or
last-in, first-out (UFO) list. A stack is a storage device that stores information
in such a manner that the item stored last is the first item retrieved. The
operation of a stack can be compared to a stack of trays. The last tray placed
on top of the stack is the first to be taken off.

The stack in digital computers is essentially a memory unit with an
address register that can count only (after an initial value is loaded into it). The
register that holds the address for the stack is called a stack pointer (SP) because
its value always points at the top item in the stack. Contrary to a stack of trays
where the tray itself may be taken out or inserted, the physical registers of a
stack are always available for reading or writing. It is the content of the word
that is inserted or deleted.

The two operations of a stack are the insertion and deletion of items. The
operation of insertion is called push (or push-down) because it can be thought
of as the result of pushing a new item on top. The operation of deletion is called
pop (or pop-up) because it can be thought of as the result of removing one item
so that the stack pops up. However, nothing is pushed or popped in a com­
puter stack. These operations are simulated by incrementing or decrementing
the stack pointer register.

Register Stack
A stack can be placed in a portion of a large memory or it can be organized as
a collection of a finite number of memory words or registers. Figure 8-3 shows
the organization of a 64-word register stack. The stack pointer register SP
contains a binary number whose value is equal to the address of the word that
is currently on top of the stack. Three items are placed in the stack: A, B, and
C, in that order. Item C is on top of the stack so that the content of SP is now
3. To remove the top item, the stack is popped by reading the memory word

Z4!:! CHAP'ffiR EIGHT Central Processing Uni<

push

Address

t
63

L I EMTY I

I SP c

B

A

DR

Figure s .. 3 Block diagram of a 64�word stack.

at address 3 and decrementing the content of SP . Item B is now on top of the
stack since SP holds address 2. To insert a new item, the stack is pushed by
incrementing SP and writing a word in the next-higher location in the stack.
Note that item C has been read out but not physically removed. This does not
matter because when the stack is pushed, a new item is written in its place.

In a 64-word stack, the stack pointer contains 6 bits because 26 = 64. Since
SP has only six bits, it cannot exceed a number greater than 63 (111111 in
binary). When 63 is incrementedby 1, the result is 0 since 111111 + 1 = 1000000
in binary, but SP can accommodate only the six least significant bits. Similarly,
when 000000 is decremented by 1, the result is 111111 . The one-bit register
FULL is set to 1 when the stack is full, and the one-bit register EMTY is set to
1 when the stack is empty of items. DR is the data register that holds the binary
data to be written into or read out of the stack.

Initially, SP is cleared to 0, EMTY is set to 1, and FULL is cleared to 0, so
that SP points to the word at address 0 and the stack is marked empty and not
full. If the stack is not full (if FULL = 0), a new item is inserted with a push
operation. The push operation is implemented with the following sequence of
microoperations;

SP <- SP + 1

M [SP] <- DR

Increment stack pointer

Write item on top of the stack

pop

If (SP = 0) then (FULL <-- 1)

EMTY <-- 0

SECTION 8-3 Stack Organization 249

Check if stack is full

Mark the stack not empty

The stack pointer is incremented so that it points to the address of the
next-higher word. A memory write operation inserts the word from DR into
the top of the stack. Note that SP holds the address of the top of the stack and
that M[SP] denotes the memory word specified by the address presently
available in SP. The first item stored in the stack is at address L The last item
is stored at address 0. If SP reaches 0, the stack is full of items, so FULL is set
to L This condition is reached if the top item prior to the last push was in
location 63 and, after incrementing SP, the last item is stored in location 0. Once
an item is stored in location 0, there are no more empty registers in the stack.
If an item is written in the stack, obviously the stack cannot be empty, so EMTY
is cleared to 0.

A new item is deleted from the stack if the stack is not empty (if
EMTY = 0). The pop operation consists of the following sequence of micro­
operations:

DR <-- M[SP]

SP <-- SP - 1

If (SP = 0) then (EMTY <-- 1)

FULL <-- 0

Read item from the top of stack

Decrement stack pointer

Check if stack is empty

Mark the stack not full

The top item is read from the stack into DR . The stack pointer is then
decremented. If its value reaches zero, the stack is empty, so EMTY is set to
L This condition is reached if the item read was in location L Once this item
is read out, SP is decremented and reaches the value 0, which is the initial value
of SP. Note that if a pop operation reads the item from location 0 and then SP
is decremented, SP changes to 111111 , which is equivalent to decimal 63 . In
this configuration, the word in address 0 receives the last item in the stack.
Note also that an erroneous operation will result if the stack is pushed when
FULL = 1 or popped when EMTY = L

Memory Stack
A stack can exist as a stand-alone unit as in Fig. 8-3 or can be implemented in
a random-access memory attached to a CPU. The implementation of a stack
in the CPU is done by assigning a portion of memory to a stack operation and
using a processor register as a stack pointer. Figure 8-4 shows a portion of
computer memory partitioned into three segments: program, data, and stack.
The program counter PC points at the address of the next instruction in the
program. The address register AR points at an array of data. The stack pointer

250 CHAPTER EIOHT Cenml Processing Unit

I 1'C

I All

I Sl'

Prosr>m
(�)

Dala
(opcnndo)

Sllocl

I'R

2000

3000

3997
)998
)999
4000
4001

Ficute 8-4 Computer memooy with P<"tR"'· daa, and sack wcmm ...

SP points at the top of the stack. The three registers are connected to a common
address bus, and either one can provide an address for memory. PC is used
during the fetch phase to read an instruction. AR is used during the execute
phase to read an operand. SP is used to push or pop items into or &om the
stack.

As shown in Fig. 8-4, the initial value of SP is 4001 and the stack grows
with decreasing addresses. Thus the first item stored in the stack is at address
4000, the second item is stored at address 3999, and the last address that can
be used for the stack Is 3000. No provisions are available for stack limjt checks.

stack limits

SECTION 8-3 Stack Otganization 25 1

We assume that the items in the stack communicate with a data register
DR . A new item is inserted with the push operation as follows:

SP <- SP - 1

M[SP] <- DR

The stack pointer is decremented so that it points at the address of the next
word. A memory write operation inserts the word from DR into the top of the
stack. A new item is deleted with a pop operation as follows:

DR <-M [SP]

SP <- SP + 1

The top item is read from the stack into DR . The stack pointer is then incre­
mented to point at the next item in the stack.

Most computers do not provide hardware to check for stack overflow (full
stack) or underflow (empty stack). The stack limits can be checked by using two
processor registers: one to hold the upper limit (3000 in this case), and the other
to hold the lower limit (4001 in this case). After a push operation, SP is
compared with the upper-limit register and after a pop operation, SP is com­
pared with the lower-limit register.

The two microoperations needed for either the push or pop are (1) an
access to memory through SP, and (2) updating SP. Which of the two micro­
operations is done first and whether SP is updated by incrementing or decre­
menting depends on the organization of the stack. In Fig. 8-4 the stack grows
by decreasing the memory address. The stack may be constructed to grow by
increasing the memory address as in Fig. 8-3. In such a case, SP is incremented
for the push operation and decremented for the pop operation. A stack may
be constructed so that SP points at the next empty location above the top of the
stack. In this case the sequence of microoperations must be interchanged.

A stack pointer is loaded with an initial value. This initial value must be
the bottom address of an assigned stack in memory. Henceforth, SP is automat­
ically decremented or incremented with every push or pop operation. The
advantage of a memory stack is that the CPU can refer to it without having to
specify an address, since the address is always available and automatically
updated in the stack pointer.

Reverse Polish Notation
A stack organization is very effective for evaluating arithmetic expressions. The
common mathematical method of writing arithmetic expressions imposes dif­
ficulties when evaluated by a computer. The common arithmetic expressions

25 2 CHAPTER EIGHT Central Processing Unit

RPN

are written in infix notation, with each operator written between the operands.
Consider the simple arithmetic expression

A • B + C • D

The star (denoting multiplication) is placed between two operands A and B or
C and D. The plus is between the two products. To evaluate this arithmetic
expression it is necessary to compute the product A • B, store this product
while computing C • D, and then sum the two products. From this example we
see that to evaluate arithmetic expressions in infix notation it is necessary to
scan back and forth along the expression to determine the next operation to
be performed.

The Polish mathematician Lukasiewicz showed that arithmetic expres­
sions can be represented in prefix notation . This representation, often referred
to as Polish notation, places the operator before the operands. The postfix
notation, referred to as reverse Polish notation (RPN), places the operator after the
operands. The following examples demonstrate the three representations:

A + B Infix notation

+ AB Prefix or Polish notation

AB + Postfix or reverse Polish notation

The reverse Polish notation is in a form suitable for stack manipulation. The
expression

A • B + C • D

is written in reverse Polish notation as

AB • CD • +

and is evaluated as follows: Scan the expression from left to right. When an
operator is reached, perform the operation with the two operands found on
the left side of the operator. Remove the two operands and the operator and
replace them by the number obtained from the result of the operation. Con­
tinue to scan the expression and repeat the procedure for every operator
encountered until there are no more operators.

For the expression above we find the operator • after A and B. We
perform the operation A • B and replace A, B, and • by the product to obtain

(A • B) CD • +

where (A • B) is a single quantity obtained from the product. The next operator

conversion to RPN

SECTION 8-3 Stack Organization 25 3

is a • and its previous two operands are C and D, so we perform C • D and
obtain an expression with two operands and one operator:

(A • B) (C • D) +

The next operator is + and the two operands to be added are the two products,
so we add the two quantities to obtain the result.

The conversion from infix notation to reverse Polish notation must take
into consideration the operational hierarchy adopted for infix notation. This
hierarchy dictates that we first perform all arithmetic inside inner parentheses,
then inside outer parentheses, and do multiplication and division operations
before addition and subtraction operations. Consider the expression

(A + B) • [C • (D + E) + f]

To evaluate the expression we must first perform the arithmetic inside the
parentheses (A + B) and (D + E). Next we must calculate the expression
inside the square brackets. The multiplication of C • (D + E) must be done
prior to the addition ofF since multiplication has precedence over addition. The
last operation is the multiplication of the two terms between the parentheses
and brackets. The expression can be converted to reverse Polish notation,
without the use of parentheses, by taking into consideration the operation
hierarchy. The converted expression is

AB + DE + C • F + •

Proceeding from left to right, we first add A and B, then add D and E . At this
point we are left with

(A + B)(D + E)C • f + •

where (A + B) and (D + E) are each a single number obtained from the sum.
The two operands for the next • are C and (D + E). These two numbers are
multiplied and the product added to F. The final • causes the multiplication
of the two terms.

Evaluation of Arithmetic Expressions
Reverse Polish notation, combined with a stack arrangement of registers, is the
most efficient way known for evaluating arithmetic expressions. This proce­
dure is employed in some electronic calculators and also in some computers.
The stack is particularly useful for handling long, complex problems involving
chain calculations. It is based on the fact that any arithmetic expression can be
expressed in parentheses-free Polish notation.

254 CHAPTIR EIGHT Central Processing Unit

stack operations

The procedure consists of first converting the arithmetic expression into
its equivalent reverse Polish notation. The operands are pushed into the stack
in the order in which they appear. The initiation of an operation depends on
whether we have a calculator or a computer. In a calculator, the operators are
entered through the keyboard. In a computer, they must be initiated by
instructions that contain an operation field (no address field is required). The
following rnicrooperations are executed with the stack when an operation is
entered in a calculator or issued by the control in a computer: (1) the two
topmost operands in the stack are used for the operation, and (2) the stack is
popped and the result of the operation replaces the lower operand. By pushing
the operands into the stack continuously and performing the operations as
defined above, the expression is evaluated in the proper order and the final
result remains on top of the stack.

The following numerical example may clarify this procedure. Consider
the arithmetic expression

(3 * 4) + (5 * 6)

In reverse Polish notation, it is expressed as

34 • 56 • +

Now consider the stack operations shown in Fig. 8-5. Each box represents one
stack operation and the arrow always points to the top of the stack. Scanning
the expression from left to right, we encounter two operands. First the number
3 is pushed into the stack, then the number 4. The next symbol is the multi­
plication operator • . This causes a multiplication of the two topmost items in
the stack. The stack is then popped and the product is placed on top of the
stack, replacing the two original operands. Next we encounter the two
operands 5 and 6, so they are pushed into the stack. The stack operation that
results from the next • replaces these two numbers by their product. The last
operation causes an arithmetic addition of the two topmost numbers in the
stack to produce the final result of 42.

Scientific calculators that employ an internal stack require that the user
convert the arithmetic expressions into reverse Polish notation. Computers
that use a stack-organized CPU provide a system program to perform the

Figure s .. s Scack operations to evaluate 3 • 4 + 5 • 6.

register address

SECTION 8-4 Instruction Formats 25 5

conversion for the user. Most compilers, irrespective of their CPU organiza­
tion, convert all arithmetic expressions into Polish notation anyway because
this is the most efficient method for translating arithmetic expressions into
machine language instructions. So in essence, a stack-organized CPU may be
more efficient in some applications than a CPU without a stack.

8-4 Instruction Formats

The physical and logical structure of computers is normally described in refer­
ence manuals provided with the system. Such manuals explain the internal
construction of the CPU, including the processor registers available and their
logical capabilities. They list all hardware-implemented instructions, specify
their binary code format, and provide a precise definition of each instruction.
A computer will usually have a variety of instruction code formats. It is the
function of the control unit within the CPU to interpret each instruction code
and provide the necessary control functions needed to process the instruction.

The format of an instruction is usually depicted in a rectangular box
symbolizing the bits of the instruction as they appear in memory words or in
a control register. The bits of the instruction are divided into groups called
fields. The most common fields found in instruction formats are:

1. An operation code field that specifies the operation to be performed.
2. An address field that designates a memory address or a processor

register.
3. A mode field that specifies the way the operand or the effective address

is determined.

Other special fields are sometimes employed under certain circumstances, as
for example a field that gives the number of shifts in a shift-type instruction.

The operation code field of an instruction is a group of bits that define
various processor operations, such as add, subtract, complement, and shift.
The most common operations available in computer instructions are enumer­
ated and discussed in Sec. 8-6. The bits that define the mode field of an
instruction code specify a variety of alternatives for choosing the operands
from the given address. The various addressing modes that have been formu­
lated for digital computers are presented in Sec. 8-5. In this section we are
concerned with the address field of an instruction format and consider the
effect of including multiple address fields in an instruction.

Operations specified by computer instructions are executed on some data
stored in memory or processor registers. Operands residing in memory are
specified by their memory address. Operands residing in processor registers
are specified with a register address. A register address is a binary number of
k bits that defines one of 'l!' registers in the CPU. Thus a CPU with 16 processor

256 CHAPTIR EIGHT Central Processing Unit

registers RO through R15 will have a register address field of four bits. The
binary number 0101, for example, will designate register RS.

Computers may have instructions of several different lengths containing
varying number of addresses. The number of address fields in the instruction
format of a computer depends on the internal organization of its registers. Most
computers fall into one of three types of CPU organizations:

1. Single accumulator organization.
2. General register organization.
3. Stack organization.

An example of an accumulator-type organization is the basic computer
presented in Chap. 5. All operations are performed with an implied accumu­
lator register. The instruction format in this type of computer uses one address
field. For example, the instruction that specifies an arithmetic addition is
defined by an assembly language instruction as

A D D X

where X is the address of the operand. The ADD instruction in this case results
in the operation AC <--AC + M [X]. AC is the accumulator register and M [X]
symbolizes the memory word located at address X.

An example of a general register type of organization was presented in
Fig. 7-1 . The instruction format in this type of computer needs three register
address fields. Thus the instruction for an arithmetic addition may be written
in an assembly language as

A D D R 1 , R 2 , R 3

t o denote the operation R 1 <--- R2 + R 3 . The number o f address fields in the
instruction can be reduced from three to two if the destination register is the
same as one of the source registers. Thus the instruction

A D D R 1 , R 2

would denote the operation R 1 <--- R 1 + R2. Only register addresses for R 1 and
R2 need be specified in this instruction.

Computers with multiple processor registers use the move instruction
with a mnemonic MOV to symbolize a transfer instruction. Thus the instruc­
tion

M O V R 1 , R 2

denotes the transfer R 1 <-- R2 (or R2 <-- R1, depending o n the particular com­
puter). Thus transfer-type instructions need two address fields to specify the
source and the destination.

General register-type computers employ two or three address fields in

SECTION 8-4 Instruction Formats 25 7

their instruction format. Each address field may specify a processor register or
a memory word. An instruction symbolized by

ADD R 1 , X

would specify the operation Rl <-- Rl + M [X] . It has two address fields, one
for register R 1 and the other for the memory address X.

The stack-organized CPU was presented in Fig. 8-4. Computers with
stack organization would have PUSH and POP instructions which require an
address field. Thus the instruction

P U S H X

will push the word at address X to the top of the stack. The stack pointer is
updated automatically. Operation-type instructions do not need an address
field in stack-organized computers. This is because the operation is performed
on the two items that are on top of the stack. The instruction

ADD

in a stack computer consists of an operation code only with no address field.
This operation has the effect of popping the two top numbers from the stack,
adding the numbers, and pushing the sum into the stack. There is no need to
specify operands with an address field since all operands are implied to be in
the stack.

Most computers fall into one of the three types of organizations that have
just been described. Some computers combine features from more than one
organizational structure. For example, the Intel 8080 microprocessor has seven
CPU registers, one of which is an accumulator register. As a consequence, the
processor has some of the characteristics of a general register type and some
of the characteristics of an accumulator type. All arithmetic and logic instruc­
tions, as well as the load and store instructions, use the accumulator register,
so these instructions have only one address field. On the other hand, instruc­
tions that transfer data among the seven processor registers have a format that
contains two register address fields. Moreover, the Intel 8080 processor has a
stack pointer and instructions to push and pop from a memory stack. The
processor, however, does not have the zero-address-type instructions which
are characteristic of a stack-organized CPU.

To illustrate the influence of the number of addresses on computer pro­
grams, we will evaluate the arithmetic statement

X = (A + B) • (C + D)

using zero, one, two, or three address instructions. We will use the symbols
ADD, SUH, MUL, and DIV for the four arithmetic operations; MOV for
the transfer-type operation; and LOAD and STORE for transfers to and

258 CHAPTIR EIGHT Central Processing Unit

from memory and AC register. We will assume that the operands are in
memory addresses A, B, C, and D, and the result must be stored in memory
at address X.

Three-Address Instructions
Computers with three-address instruction formats can use each address field
to specify either a processor register or a memory operand. The program in
assembly language that evaluates X = (A + B) • (C + D) is shown below, to­
gether with comments that explain the register transfer operation of each
instruction.

A D D
A D D
M O L

R 1 , A , B
R 2 , C , D
X , R 1 , R 2

R 1 <-- M [A] + M [B]
R 2 <-- M [C] + M [D]
M [X] <-- R 1 • R 2

It is assumed that the computer has two processor registers, R 1 and R2. The
symbol M [A] denotes the operand at memory address symbolized by A .

The advantage o f the three-address format i s that i t results i n short
programs when evaluating arithmetic expressions. The disadvantage is that
the binary-coded instructions require too many bits to specify three addresses.
An example of a commercial computer that uses three-address instructions is
the Cyber 170. The instruction formats in the Cyber computer are restricted to
either three register address fields or two register address fields and one
memory address field.

Two-Address Instructions
Two-address instructions are the most common in commercial computers.
Here again each address field can specify either a processor register or a
memory word. The program to evaluate X = (A + B) • (C + D) is as follows:

M O V
A D D
M O V
A D D
M O L
M O V

R 1 , A
R 1 , B
R 2 , C
R 2 , D
R 1 , R 2
X , R 1

R 1 <-- M [A]
R 1 <-- R 1 + M [B]
R 2 <-- M [C]
R 2 <-- R 2 + M [D]
R 1 <-- R 1 • R 2
M [X] <-- R 1

The MOV instruction moves o r transfers the operands t o and from memory
and processor registers. The first symbol listed in an instruction is assumed to
be both a source and the destination where the result of the operation is
transferred.

One-Address Instructions

SECTION 8-4 Instruction Formats 259

One-address instructions use an implied accumulator (AC) register for al l data
manipulation. For multiplication and division there is a need for a second
register. However, here we will neglect the second register and assume that
the AC contains the result of all operations. The program to evaluate
X = (A + B) • (C + D) is

LOAD
A D D
S T O R E
LOAD
A D D
M O L
S T O R E

A
B
T
c
D
T
X

A C <- M[A J
A C <-AC + M[B]
M [T] <- A C
A C <- M [C]
A C <- A C + M [D]
A C <- A C • M [T]
M [X] <- A C

All operations are done between the AC register and a memory operand.
T is the address of a temporary memory location required for storing the
intermediate result.

Zero-Address Instructions
A stack-organized computer does not use an address field for the instructions
ADD and MUL. The PUSH and POP instructions, however, need an address
field to specify the operand that communicates with the stack. The following
program shows how X = (A + B) • (C + D) will be written for a stack­
organized computer. (TOS stands for top of stack.)

P U S H A T O S <- A
P U S H B T O S <- B
ADD TO S <- (A + B)
P U S H C T O S <- C
P U S H D T O S <- D
ADD TO S <- (C + D)

M O L TO S <- (C + D) • (A + B)

P O P X M [X] <- T O S

To evaluate arithmetic expressions in a stack computer, i t is necessary to
convert the expression into reverse Polish notation. The name "zero-address"
is given to this type of computer because of the absence of an address field in
the computational instructions.

RISC Instructions
The advantages of a reduced instruction set computer (RISC) architecture are
explained in Sec. 8-8. The instruction set of a typical RISC processor is restricted

260 CHAPTER EIGHT Central Processing Unit

to the use of load and store instructions when communicating between mem­
ory and CPU. All other instructions are executed within the registers of the
CPU without referring to memory. A program for a RISC-type CPU consists
of LOAD and STORE instructions that have one memory and one register
address, and computational-type instructions that have three addresses with
all three specifying processor registers. The following is a program to evaluate
X = (A + B) • (C + D).

L O A D R 1 , A R 1 <-- M [A]
L O A D R 2 , B R 2 <-- M [B]
L O A D R 3 , c R3 <-- M [C]
LOAD RL; , D RL; <-- M [D]
A D D R 1 , R 1 , R 2 R 1 <-- R 1 + R 2
A D D R 3 , R 3 , R 2 R 3 <-- R 3 + R L;
M O L R 1 , R 1 , R 3 R 1 <-- R 1 • R 3
S T O R E X , R 1 M [X] <-- R 1

The load instructions transfer the operands from memory to CPU registers.
The add and multiply operations are executed with data in the registers
without accessing memory. The result of the computations is then stored in
memory with a store instruction.

8-5 Addressing Modes

The operation field of an instruction specifies the operation to be performed.
This operation must be executed on some data stored in computer registers or
memory words. The way the operands are chosen during program execution
is dependent on the addressing mode of the instruction. The addressing mode
specifies a rule for interpreting or modifying the address field of the instruction
before the operand is actually referenced. Computers use addressing mode
techniques for the purpose of accommodating one or both of the following
provisions:

1. To give programming versatility to the user by providing such facilities
as pointers to memory, counters for loop control, indexing of data, and
program relocation.

2. To reduce the number of bits in the addressing field of the instruction.

The availability of the addressing modes gives the experienced assembly
language programmer flexibility for writing programs that are more efficient
with respect to the number of instructions and execution time.

To understand the various addressing modes to be presented in this
section, it is imperative that we understand the basic operation cycle of the

SECTION 8-5 Addressing Modes 261

computer. The control unit of a computer is designed to go through an instruc­
tion cycle that is divided into three major phases:

1. Fetch the instruction from memory.
2. Decode the instruction.
3. Execute the instruction.

program counter (PC) There is one register in the computer called the program counter or PC that
keeps track of the instructions in the program stored in memory. PC holds the
address of the instruction to be executed next and is incremented each time an
instruction is fetched from memory. The decoding done in step 2 determines
the operation to be performed, the addressing mode of the instruction, and the
location of the operands. The computer then executes the instruction and
returns to step 1 to fetch the next instruction in sequence.

In some computers the addressing mode of the instruction is specified
with a distinct binary code, just like the operation code is specified. Other
computers use a single binary code that designates both the operation and the
mode of the instruction. Instructions may be defined with a variety of address­
ing modes, and sometimes, two or more addressing modes are combined in
one instruction.

An example of an instruction format with a distinct addressing mode field
is shown in Fig. 8-6. The operation code specifies the operation to be per-

mode field formed. The mode field is used to locate the operands needed for the opera­
tion. There may or may not be an address field in the instruction. If there is
an address field, it may designate a memory address or a processor register.
Moreover, as discussed in the preceding section, the instruction may have
more than one address field, and each address field may be associated with
its own particular addressing mode.

Although most addressing modes modify the address field of the instruc­
tion, there are two modes that need no address field at all. These are the
implied and immediate modes.

Implied Mode: In this mode the operands are specified implicitly in the
definition of the instruction. For example, the instruction "complement accu­
mulator" is an implied-mode instruction because the operand in the accumu­
lator register is implied in the definition of the instruction. In fact, all register
reference instructions that use an accumulator are implied-mode instructions.

Figure 8 .. 6 Instruction format with mode field.

Opcode Mode Address

262 CHAPTIR EIGHT Central Processing Unir

effective address

Zero-address instructions in a stack-organized computer are implied-mode
instructions since the operands are implied to be on top of the stack.

Immediate Mode: In this mode the operand is specified in the instruction
itself. In other words, an immediate-mode instruction has an operand field
rather than an address field. The operand field contains the actual operand to
be used in conjunction with the operation specified in the instruction. Imme­
diate-mode instructions are useful for initializing registers to a constant value.

It was mentioned previously that the address field of an instruction may
specify either a memory word or a processor register. When the address field
specifies a processor register, the instruction is said to be in the register mode.

Register Mode: In this mode the operands are in registers that reside within
the CPU. The particular register is selected from a register field in the instruc­
tion. A k-bit field can specify any one of 2' registers.

Register Indirect Mode: In this mode the instruction specifies a register in the
CPU whose contents give the address of the operand in memory. In other
words, the selected register contains the address of the operand rather than
the operand itself. Before using a register indirect mode instruction, the pro­
grammer must ensure that the memory address of the operand is placed in the
processor register with a previous instruction. A reference to the register is
then equivalent to specifying a memory address. The advantage of a register
indirect mode instruction is that the address field of the instruction uses fewer
bits to select a register than would have been required to specify a memory
address directly.

Autoincrement or Autodecrement Mode: This is similar to the register in­
direct mode except that the register is incremented or decremented after (or
before) its value is used to access memory. When the address stored in the
register refers to a table of data in memory, it is necessary to increment or
decrement the register after every access to the table. This can be achieved by
using the increment or decrement instruction. However, because it is such a
common requirement, some computers incorporate a special mode that auto­
matically increments or decrements the content of the register after data access.

The address field of an instruction is used by the control unit in the CPU
to obtain the operand from memory. Sometimes the value given in the address
field is the address of the operand, but sometimes it is just an address from
which the address of the operand is calculated. To differentiate among the
various addressing modes it is necessary to distinguish between the address
part of the instruction and the effective address used by the control when
executing the instruction. The effective address is defined to be the memory
address obtained from the computation dictated by the given addressing
mode. The effective address is the address of the operand in a computational-

SECTION 8-5 Addressing Modes 263

type instruction. It is the address where control branches in response to a
branch-type instruction. We have already defined two addressing modes in
Chap. 5. They are summarized here for reference.

Direct Address Mode: In this mode the effective address is equal to the
address part of the instruction. The operand resides in memory and its address
is given directly by the address field of the instruction. In a branch-type
instruction the address field specifies the actual branch address.

Indirect Address Mode: In this mode the address field of the instruction
gives the address where the effective address is stored in memory. Control
fetches the instruction from memory and uses its address part to access mem­
ory again to read the effective address. The indirect address mode is also
explained in Sec. 5-1 in conjunction with Fig. 5-2.

A few addressing modes require that the address field of the instruction
be added to the content of a specific register in the CPU. The effective address
in these modes is obtained from the following computation:

effective address = address part of instruction + content of CPU register

The CPU register used in the computation may be the program counter, an
index register, or a base register. In either case we have a different addressing
mode which is used for a different application.

Relative Address Mode: In this mode the content of the program counter is
added to the address part of the instruction in order to obtain the effective
address. The address part of the instruction is usually a signed number (in 2' s
complement representation) which can be either positive or negative. When
this number is added to the content of the program counter, the result pro­
duces an effective address whose position in memory is relative to the address
of the next instruction. To clarify with an example, assume that the program
counter contains the number 825 and the address part of the instruction
contains the number 24. The instruction at location 825 is read from memory
during the fetch phase and the program counter is then incremented by one
to 826. The effective address computation for the relative address mode is
826 + 24 = 850. This is 24 memory locations forward from the address of the
next instruction. Relative addressing is often used with branch-type instruc­
tions when the branch address is in the area surrounding the instruction word
itself. It results in a shorter address field in the instruction format since the
relative address can be specified with a smaller number of bits compared to the
number of bits required to designate the entire memory address.

Indexed Addressing Mode: In this mode the content of an index register is
added to the address part of the instruction to obtain the effective address. The

264 CHAPTER EIGHT Central Processing Unit

index register is a special CPU register that contains an index value. The
address field of the instruction defines the beginning address of a data array
in memory. Each operand in the array is stored in memory relative to the
beginning address. The distance between the beginning address and the
address of the operand is the index value stored in the index register. Any
operand in the array can be accessed with the same instruction provided that
the index register contains the correct index value. The index register can be
incremented to facilitate access to consecutive operands. Note that if an index­
type instruction does not include an address field in its format, the instruction
converts to the register indirect mode of operation.

Some computers dedicate one CPU register to function solely as an index
register. This register is involved implicitly when the index-mode instruction
is used. In computers with many processor registers, any one of the CPU
registers can contain the index number. In such a case the register must be
specified explicitly in a register field within the instruction format.

Base Register Addressing Mode: In this mode the content of a base register
is added to the address part of the instruction to obtain the effective address.
This is similar to the indexed addressing mode except that the register is now
called a base register instead of an index register. The difference between the
two modes is in the way they are used rather than in the way that they are
computed. An index register is assumed to hold an index number that is
relative to the address part of the instruction. A base register is assumed to hold
a base address and the address field of the instruction gives a displacement
relative to this base address. The base register addressing mode is used in
computers to facilitate the relocation of programs in memory. When programs
and data are moved from one segment of memory to another, as required in
multiprogramming systems, the address values of instructions must reflect
this change of position. With a base register, the displacement values of
instructions do not have to change. Only the value of the base register requires
updating to reflect the beginning of a new memory segment.

Numerical Example
To show the differences between the various modes, we will show the effect
of the addressing modes on the instruction defined in Fig. 8-7. The two-word
instruction at address 200 and 201 is a "load to AC" instruction with an address
field equal to 500. The first word of the instruction specifies the operation code
and mode, and the second word specifies the address part. PC has the value
200 for fetching this instruction. The content of processor register R 1 is 400,
and the content of an index register XR is 100. AC receives the operand after
the instruction is executed. The figure lists a few pertinent addresses and
shows the memory content at each of these addresses.

Address

PC = 200 200

201

Ri = 400 202

XR = 100

399

AC 400

500

600

702

800

SECTION 8-5 Addressing Modes 265

Memory

Load to AC j Mode
Address = 500

Next instruction

450

700

800

900

325

300

Figure 8� 7 Numerical example for addressing modes.

The mode field of the instruction can specify any one of a number of
modes. For each possible mode we calculate the effective address and the
operand that must be loaded into AC. In the direct address mode the effective
address is the address part of the instruction 500 and the operand to be loaded
into AC is 800. In the immediate mode the second word of the instruction is
taken as the operand rather than an address, so 500 is loaded into AC. (The
effective address in this case is 201 .) In the indirect mode the effective address
is stored in memory at address 500. Therefore, the effective address is 800 and
the operand is 300. In the relative mode the effective address is 500 + 202 =

702 and the operand is 325. (Note that the value in PC after the fetch phase and
during the execute phase is 202.) In the index mode the effective address is
XR + 500 = 100 + 500 = 600 and the operand is 900. In the register mode the
operand is in R 1 and 400 is loaded into AC . (There is no effective address in
this case.) In the register indirect mode the effective address is 400, equal to
the content of R 1 and the operand loaded into AC is 700. The autoincrement
mode is the same as the register indirect mode except that R 1 is incremented
to 401 after the execution of the instruction. The autodecrement mode decre­
ments R1 to 399 prior to the execution of the instruction. The operand loaded
into AC is now 450. Table 8-4 lists the values of the effective address and the
operand loaded into AC for the nine addressing modes.

266 CHAPTER EIGHT Central Processing Unit

set of
basic operations

TABLE 8·4 Tabular List of Numerical Example

Addressing Effective Content
Mode Address of AC

Direct address 500 800
Immediate operand 201 500
Indirect address 800 300
Relative address 702 325
Indexed address 600 900
Register 400
Register indirect 400 700
Autoincrement 400 700
Autodecrement 399 450

8-6 Data Transfer and Manipulation

Computers provide an extensive set of instructions to give the user the flexi­
bility to carry out various computational tasks. The instruction set of different
computers differ from each other mostly in the way the operands are deter­
mined from the address and mode fields. The actual operations available in the
instruction set are not very different from one computer to another. It so
happens that the binary code assignments in the operation code field is differ­
ent in different computers, even for the same operation. It may also happen
that the symbolic name given to instructions in the assembly language notation
is different in different computers, even for the same instruction. Nevertheless,
there is a set of basic operations that most, if not all, computers include in their
instruction repertoire. The basic set of operations available in a typical com­
puter is the subject covered in this and the next section.

Most computer instructions can be classified into three categories:

1. Data transfer instructions

2. Data manipulation instructions

3. Program control instructions

Data transfer instructions cause transfer of data from one location to another
without changing the binary information content. Data manipulation instruc­
tions are those that perform arithmetic, logic, and shift operations. Program
control instructions provide decision-making capabilities and change the path
taken by the program when executed in the computer. The instruction set of
a particular computer determines the register transfer operations and control
decisions that are available to the user.

Data Transfer Instructions

SECTION 8-6 Data Transfer and Manipulation 26 7

Data transfer instructions move data from one place in the computer to another
without changing the data content. The most common transfers are between
memory and processor registers, between processor registers and input or
output, and between the processor registers themselves. Table 8-5 gives a list
of eight data transfer instructions used in many computers. Accompanying
each instruction is a mnemonic symbol. It must be realized that different
computers use different mnemonics for the same instruction name.

The load instruction has been used mostly to designate a transfer from
memory to a processor register, usually an accumulator. The store instruction
designates a transfer from a processor register into memory. The move instruc­
tion has been used in computers with multiple CPU registers to designate a
transfer from one register to another. It has also been used for data transfers
between CPU registers and memory or between two memory words. The
exchange instruction swaps information between two registers or a register and
a memory word. The input and output instructions transfer data among proces­
sor registers and input or output terminals. The push and pop instructions
transfer data between processor registers and a memory stack.

It must be realized that the instructions listed in Table 8-5, as well as in
subsequent tables in this section, are often associated with a variety of address­
ing modes. Some assembly language conventions modify the mnemonic sym­
bol to differentiate between the different addressing modes. For example, the
mnemonic for load immediate becomes LDI. Other assembly language conven­
tions use a special character to designate the addressing mode. For example,
the immediate mode is recognized from a pound sign # placed before the
operand. In any case, the important thing is to realize that each instruction can
occur with a variety of addressing modes. As an example, consider the load to
accumulator instruction when used with eight different addressing modes.

TABLE 8-5 Typical Data Transfer
Instructions

Name Mnemonic

Load LD
Store ST
Move MOV
Exchange XCH
Input IN
Output OUT
Push PUSH
Pop POP

268 CHAI'TER EIGHT Central Processing Unit

TABLE 8-6 Eight Addressing Modes for the Load Instruction

Assembly
Mode Convention Register Transfer

Direct address LD ADR A C � M[ADR]
Indirect address LD @ADR AC � M[M[ADR]]
Relative address LD $ADR AC � M[PC + A DR]
Immediate operand LD #NBR AC � NBR
Index addressing LD ADR(X) AC � M[ADR + XR]
Register LD Rl AC � Ri
Register indirect LD (Rl) AC � M[Rl]
Autoincrement LD (Rl) + AC � M[Rl), Rl � Rl + I

Table 8-6 shows the recommended assembly language convention and the
actual transfer accomplished in each case. ADR stands for an address, NBR is
a number or operand, X is an index register, Rl is a processor register, and AC
is the accumulator register. The @ character symbolizes an indirect address.
The $ character before an address makes the address relative to the program
counter PC . The # character precedes the operand in an inunediate-mode
instruction. An indexed mode instruction is recognized by a register that is
placed in parentheses after the symbolic address. The register mode is symbol­
ized by giving the name of a processor register. In the register indirect mode,
the name of the register that holds the memory address is enclosed in paren­
theses. The autoincrement mode is distinguished from the register indirect
mode by placing a plus after the parenthesized register. The autodecrement
mode would use a minus instead. To be able to write assembly language
programs for a computer, it is necessary to know the type of instructions
available and also to be familiar with the addressing modes used in the partic­
ular computer.

Data Manipulation Instructions
Data manipulation instructions perform operations on data and provide the
computational capabilities for the computer. The data manipulation instruc­
tions in a typical computer are usually divided into three basic types:

1. Arithmetic instructions

2. Logical and bit manipulation instructions

3. Shift instructions

A list of data manipulation instructions will look very much like the list of
microoperations given in Chap. 4. It must be realized, however, that each
instruction when executed in the computer must go through the fetch phase

data type

SECllON 8-6 Data Transfer and Manipulation 269

to read its binary code value from memory. The operands must also be brought
into processor registers according to the rules of the instruction addressing
mode. The last step is to execute the instruction in the processor. This last step
is implemented by means of microoperations as explained in Chap. 4 or
through an ALU and shifter as shown in Fig. 8-2. Some of the arithmetic
instructions need special circuits for their implementation.

Arithmetic Instructions
The four basic arithmetic operations are addition, subtraction, multiplication,
and division. Most computers provide instructions for all four operations.
Some small computers have only addition and possibly subtraction instruc­
tions. The multiplication and division must then be generated by means of
software subroutines. The four basic arithmetic operations are sufficient for
formulating solutions to scientific problems when expressed in terms of nu­
merical analysis methods.

A list of typical arithmetic instructions is given in Table 8-7. The increment
instruction adds 1 to the value stored in a register or memory word. One
common characteristic of the increment operations when executed in processor
registers is that a binary number of all 1' s when incremented produces a result
of all 0' s. The decrement instruction subtracts 1 from a value stored in a register
or memory word. A number with all D's, when decremented, produces a
number with all 1's.

The add, subtract, multiply, and divide instructions may be available for
different types of data. The data type assumed ·to be in processor registers
during the execution of these arithmetic operations is included in the definition
of the operation code. An arithmetic instruction may specify fixed-point or
floating-point data, binary or decimal data, single-precision or double-preci­
sion data. The various data types are presented in Chap. 3 .

It is not uncommon to find computers with three or more add instruc-

TABLE 8-7 Typical Arithmetic Instructions

Name

Increment
Decrement
Add
Subtract
Multiply
Divide
Add with carry
Subtract with borrow
Negate (2's complement)

Mnemonic

INC
DEC
ADD
SUB
MUL
DIY
ADDC
SUBB
NEG

Z 70 CHAPTER EIGHT Central Processing Unit

clear selected bits

lions: one for binary integers, one for floating-point operands, and one for
decimal operands. The mnemonics for three add instructions that specify
different data types are shown below.

A D D I A d d two b i n a r y i n t e g e r n u m b e r s
A D D F A d d two f l o a t i n g - p o i n t n u m b e r s
A D D D A d d two d e c i m a l n u m b e r s i n B C D

Algorithms for integer, floating-point, and decimal arithmetic operations are
developed in Chap. 10.

The number of bits in any register is of finite length and therefore the
results of arithmetic operations are of finite precision. Some computers provide
hardware double-precision operations where the length of each operand is
taken to be the length of two memory words. Most small computers provide
special instructions to facilitate double-precision arithmetic. A special carry
flip-flop is used to store the carry from an operation. The instruction "add with
carry" performs the addition on two operands plus the value of the carry from
the previous computation. Similarly, the "subtract with borrow" instruction
subtracts two words and a borrow which may have resulted from a previous
subtract operation. The negate instruction forms the 2' s complement of a
number, effectively reversing the sign of an integer when represented in the
signed-2's complement form.

Logical and Bit Manipulation Instructions
Logical instructions perform binary operations on strings of bits stored in
registers. They are useful for manipulating individual bits or a group of bits
that represent binary-coded information. The logical instructions consider
each bit of the operand separately and treat it as a Boolean variable. By proper
application of the logical instructions it is possible to change bit values, to clear
a group of bits, or to insert new bit values into operands stored in registers or
memory words.

Some typical logical and bit manipulation instructions are listed in Table
8-8 . The clear instruction causes the specified operand to be replaced by D's .
The complement instruction produces the 1's complement by inverting all the
bits of the operand. The AND, OR, and XOR instructions produce the corre­
sponding logical operations on individual bits of the operands. Although they
perform Boolean operations, when used in computer instructions, the logical
instructions should be considered as performing bit manipulation operations.
There are three bit manipulation operations possible: a selected bit can be
cleared to 0, or can be set to 1, or can be complemented. The three logical
instructions are usually applied to do just that.

The AND instruction is used to clear a bit or a selected group of bits of
an operand. For any Boolean variable x, the relationships x bO � O and x b1 � x
dictate that a binary variable ANDed with a 0 produces a 0; but the variable

SECTION 8-6 Data Transfer and Manipulation 2 7 1

TABLE 8-8 Typical Logical and Bit
Manipulation Instructions

Name

Clear
Complement
AND
OR
Exclusive-OR
Clear carry
Set carry
Complement carry
Enable interrupt
Disable interrupt

Mnemonic

CLR
COM
AND
OR
XOR
CLRC
SETC
COMC
El
Dl

does not change in value when ANDed with a 1. Therefore, the AND instruc­
tion can be used to clear bits of an operand selectively by ANDing the operand
with another operand that has 0' s in the bit positions that must be cleared. The
AND instruction is also called a mask because it masks or inserts 0' s in a selected
portion of an operand.

set selected bits The OR instruction is used to set a bit or a selected group of bits of an
operand. Forany Boolean variable x, the relationships x + 1 = 1 and x + 0 = x
dictate that a binary variable ORed with a 1 produces a 1; but the variable does
not change when ORed with a 0. Therefore, the OR instruction can be used
to selectively set bits of an operand by ORing it with another operand with 1' s
in the bit positions that must be set to 1 .

complement selected Similarly, the XOR instruction i s used t o selectively complement bits of
bits an operand. This is because of the Boolean relationships x Ell 1 = x' and

x E!l O = x. Thus a binary variable is complemented when XORed with a 1 but
does not change in value when XORed with a 0. Numerical examples showing
the three logic operations are given in Sec. 4-5.

A few other bit manipulation instructions are included in Table 8-8.
Individual bits such as a carry can be cleared, set, or complemented with
appropriate instructions. Another example is a flip-flop that controls the inter­
rupt facility and is either enabled or disabled by means of bit manipulation
instructions.

Shift Instructions
Instructions to shift the content of an operand are quite useful and are often
provided in several variations. Shifts are operations in which the bits of a word
are moved to the left or right. The bit shifted in at the end of the word
determines the type of shift used. Shift instructions may specify either logical

2 72 CHAPTER EIGHT Central Processing Unit

shifts, arithmetic shifts, or rotate-type operations. In either case the shift may
be to the right or to the left.

Table 8-9 lists four types of shift instructions. The logical shift inserts 0
to the end bit position. The end position is the leftmost bit for shift right and
the rightmost bit position for the shift left. Arithmetic shifts usually con­
form with the rules for signed-2' s complement numbers. These rules are given
in Sec. 4-6. The arithmetic shift-right instruction must preserve the sign bit in
the leftmost position. The sign bit is shifted to the right together with the rest
of the number, but the sign bit itself remains unchanged. This is a shift-right
operation with the end bit remaining the same. The arithmetic shift-left in­
struction inserts 0 to the end position and is identical to the logical shift-left
instruction. For this reason many computers do not provide a distinct arith­
metic shift-left instruction when the logical shift-left instruction is already
available.

The rotate instructions produce a circular shift. Bits shifted out at one end
of the word are not lost as in a logical shift but are circulated back into the other
end. The rotate through carry instruction treats a carry bit as an extension of
the register whose word is being rotated. Thus a rotate-left through carry
instruction transfers the carry bit into the rightmost bit position of the register,
transfers the leftmost bit position into the carry, and at the same time, shifts
the entire register to the left.

Some computers have a multiple-field format for the shift instructions.
One field contains the operation code and the others specify the type of shift
and the number of times that an operand is to be shifted. A possible instruction
code format of a shift instruction may include five fields as follows:

OP R E G T Y P E R L C O U N T

Here O P i s the operation code field; RE G i s a register address that specifies the
location of the operand; TYPE is a 2-bit field specifying the four different types
of shifts; RL is a 1-bit field specifying a shift right or left; and COUNT is a k-bit
field specifying up to 2' - 1 shifts . With such a format, it is possible to specify
the type of shift, the direction, and the number of shifts, all in one instruction.

TABLE 8-9 Typical Shift Instructions

Name

Logical shift right
Logical shift left
Arithmetic shift right
Arithmetic shift left
Rotate right
Rotate left
Rotate right through carry
Rotate left through carry

Mnemonic

SHR
SHL
SHRA
SHLA
ROR
ROL
RORC
ROLC

8-7 Program Control

SECTION 8· 7 Program Control 2 7 3

Instructions are always stored in successive memory locations. When proc­
essed in the CPU, the instructions are fetched from consecutive memory
locations and executed. Each time an instruction is fetched from memory, the
program counter is incremented so that it contains the address of the next
instruction in sequence. After the execution of a data transfer or data manip­
ulation instruction, control returns to the fetch cycle with the program counter
containing the address of the instruction next in sequence. On the other hand,
a program control type of instruction, when executed, may change the address
value in the program counter and cause the flow of control to be altered. In
other words, program control instructions specify conditions for altering the
content of the program counter, while data transfer and manipulation in­
structions specify conditions for data-processing operations. The change in
value of the program counter as a result of the execution of a program con­
trol instruction causes a break in the sequence of instruction execution. This
is an important feature in digital computers, as it provides control over the flow
of program execution and a capability for branching to different program
segments.

Some typical program control instructions are listed in Table 8-10. The
branch and jump instructions are used interchangeably to mean the same
thing, but sometimes they are used to denote different addressing modes. The
branch is usually a one-address instruction. It is written in assembly language
as BR ADR, where ADR is a symbolic name for an address. When executed,
the branch instruction causes a transfer of the value of ADR into the program
counter. Since the program counter contains the address of the instruction to
be executed, the next instruction will come from location ADR

Branch and jump instructions may be conditional or unconditional. An
unconditional branch instruction causes a branch to the specified address with­
out any conditions. The conditional branch instruction specifies a condition
such as branch if positive or branch if zero. If the condition is met, the program
counter is loaded with the branch address and the next instruction is taken

TABLE 8� 10 Typical Program Control Instructions

Branch
Jump
Skip
Call
Return

Name

Compare (by subtraction)
Test (by ANDing)

Mnemonic

BR
JMP
SKP
CALL
RET
CMP
TST

2 7 4 CHAPTIR EIGHT Central Processing Unit

from this address. If the condition is not met, the program counter is not
changed and the next instruction is taken from the next location in sequence.

The skip instruction does not need an address field and is therefore a
zero-address instruction. A conditional skip instruction will skip the next
instruction if the condition is met. This is accomplished by incrementing the
program counter during the execute phase in addition to its being incremented
during the fetch phase. If the condition is not met, control proceeds with the
next instruction in sequence where the programmer inserts an unconditional
branch instruction. Thus a skip-branch pair of instructions causes a branch if
the condition is not met, while a single conditional branch instruction causes
a branch if the condition is met.

The call and return instructions are used in conjunction with subroutines.
Their performance and implementation are discussed later in this section. The
compare and test instructions do not change the program sequence directly.
They are listed in Table 8-10 because of their application in setting conditions
for subsequent conditional branch instructions. The compare instruction per­
forms a subtraction between two operands, but the result of the operation is
not retained. However, oertain status bit conditions are set as a result of the
operation. Similarly, the test instruction performs the logical AND of two
operands and updates certain status bits without retaining the result or chang­
ing the operands. The status bits of interest are the carry bit, the sign bit, a zero
indication, and an overflow condition. The generation of these status bits will
be discussed first and then we will show how they are used in conditional
branch instructions.

Status Bit Conditions
It is sometimes convenient to supplement the ALU circuit in the CPU with a
status register where status bit conditions can be stored for further analysis.
Status bits are also called condition-code bits or flag bits. Figure 8-8 shows the
block diagram of an 8-bit ALU with a 4-bit status register. The four status bits
are symbolized by C. S, Z, and V. The bits are set or cleared as a result of an
operation performed in the ALU.

1. Bit C (carry) is set to 1 if the end carry C8 is 1. It is cleared to 0 if the carry
is 0.

2. Bit S (sign) is set to 1 if the highest-order bit F, is 1. It is set to 0 if the
bit is 0.

3. Bit Z (zero) is set to 1 ifthe output ofthe ALU contains all O's. !t is cleared
to 0 otherwise. In other words, Z = 1 if the output is zero and Z = 0
if the output is not zero.

4. Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries is
equal to 1, and cleared to 0 otherwise. This is the condition for an

SECTION 8-7 Program Control 2 7 5

A B

8-bit ALU

Check for zero output

Output F

Figure 8-8 Status register bits.

overflow when negative numbers are in 2's complement (see Sec. 3-3).
For the 8-bit ALU, V = 1 if the output is greater than + 127 or less than
- 128.

The status bits can be checked after an ALU operation to determine
certain relationships that exist between the values of A and B . If bit V is set after
the addition of two signed numbers, it indicates an overflow condition. If Z is
set after an exclusive-OR operation, it indicates that A = B . This is so because
x E!) x = 0, and the exclusive-OR of two equal operands gives an all-0' s result
which sets the Z bit. A single bit in A can be checked to determine if it is 0 or
1 by masking all bits except the bit in question and then checking the Z status
bit. For example, let A = 101xll00, where x is the bit to be checked. The AND
operation of A with B = 00010000 produces a result OOOxOOOO. If x = 0, the Z
status bit is set, but if x = 1, the Z bit is cleared since the result is not zero. The
AND operation can be generated with the TEST instruction listed in Table 8-10
if the original content of A must be preserved.

Conditional Branch Instructions
Table 8-11 gives a list of the most common branch instructions. Each mnemonic
is constructed with the letter B (for branch) and an abbreviation of the condition
name. When the opposite condition state is used, the letter N (for no) is

276 CHAPTER EIGHT Central Processing Unit

TABLE 8 .. 11 Conditional Branch Instructions

Mnemonic

BZ
BNZ
BC
BNC
BP
BM
BY
BNV

Branch condition

Branch if zero
Branch if not zero
Branch if carry
Branch if no carry
Branch if plus
Branch if minus
Branch if overflow
Branch if no overflow

Unsigned compare conditions (A - B)

BHI Branch if higher
BHE Branch if higher or equal
BLO Branch if lower
BLOE Branch if lower or equal
BE Branch if equal
BNE Branch if not equal

Signed compare conditions (A - B)
BGT Branch if greater than
BGE Branch if greater or equal
BL T Branch if less than
BLE Branch if less or equal
BE Branch if equal
BNE Branch if not equal

Tested condition

Z = l
Z = O
C = l
C = O
s = 0
S = I
V = l
V = O

A > B
A ::?_ B
A < B
A :s;; B
A = B
A * B

A > B
A ::?_ B

A < B
A :s;; B
A = B
A * B

inserted to define the 0 state. Thus BC is Branch on Carry, and BNC is Branch
on No Carry. If the stated condition is true, program control is transferred to
the address specified by the instruction. If not, control continues with the
instruction that follows. The conditional instructions can be associated also
with the jump, skip, call, or return type of program control instructions.

The zero status bit is used for testing if the result of an ALU operation
is equal to zero or not. The carry bit is used to check if there is a carry out of
the most significant bit position of the ALU. It is also used in conjunction with
the rotate instructions to check the bit shifted from the end position of a register
into the carry position. The sign bit reflects the state of the most significant bit
of the output from the ALU. S = 0 denotes a positive sign and S = 1, a negative
sign. Therefore, a branch on plus checks for a sign bit of 0 and a branch on
minus checks for a sign bit of 1. It must be realized, however, that these two
conditional branch instructions can be used to check the value of the most
significant bit whether it represents a sign or not. The overflow bit is used in
conjunction with arithmetic operations done on signed numbers in 2's comple­
ment representation.

numerical example

SECTION 8-7 Program Control 2 7 7

As stated previously, the compare instruction performs a subtraction of
two operands, say A - B. The result of the operation is not transferred into
a destination register, but the status bits are affected. The status register
provides information about the relative magnitude of A and B. Some comput­
ers provide conditional branch instructions that can be applied right after the
execution of a compare instruction. The specific conditions to be tested depend
on whether the two numbers A and B are considered to be unsigned or signed
numbers. Table 8-11 gives a list of such conditional branch instructions. Note
that we use the words higher and lower to denote the relations between
unsigned numbers, and greater and less than for signed numbers. The relative
magnitude shown under the tested condition column in the table seems to be
the same for unsigned and signed numbers. However, this is not the case since
each must be considered separately as explained in the following numerical
example.

Consider an 8-bit ALU as shown in Fig. 8-8 . The largest unsigned number
that can be accommodated in 8 bits is 255. The range of signed numbers is
between + 127 and - 128. The subtraction of two numbers is the same whether
they are unsigned or in signed-2's complement representation (see Chap. 3).
Let A = 11110000 and B = 00010100. To perform A - B, the ALU takes the 2's
complement of B and adds it to A .

A: 11110000
B + 1: + 11101100
A - B: 11011100 C = 1 s = 1 v = 0 z = 0

The compare instruction updates the status bits as shown. C = 1 because there
is a carry out of the last stage. S = 1 because the leftmost bit is 1 . V = 0 because
the last two carries are both equal to 1, and Z = 0 because the result is not equal
to 0.

If we assume unsigned numbers, the decimal equivalent of A is 240 and
that of B is 20. The oubtraction in decimal is 240 - 20 = 220. The binary result
11011100 is indeed the equivalent of decimal 220. Since 240 > 20, we have that
A > B and A * B. These two relations can also be derived from the fact that
status bit C is equal to 1 and bit Z is equal to 0. The instructions that will cause
a branch after this comparison are BHI (branch if higher), BHE (branch if higher
or equal), and BNE (branch if not equal).

If we assume signed numbers, the decimal equivalent of A is -16 . This
is because the sign of A is negative and 11110000 is the 2's complement of
00010000, which is the decimal equivalent of + 16. The decimal equivalent of
B is +20. The subtraction in decimal is (- 16) - (+20) = -36. The binary result
11011100 (the 2' s complement of 001001 00) is indeed the equivalent of decimal
-36. Since (- 16) < (+20) we have that A < B and A * B. These two relations
can also be derived from the fact that status bits S = 1 (negative), V = 0 (no
overflow), and Z = 0 (not zero). The instructions that will cause a branch after
this comparison are BLT (branch if less than), BLE (branch if less or equal), and
BNE (branch if not equal).

278 CHAI'TER EIGHT Central Processing Unit

It should be noted that the instruction BNE and BNZ (branch if not zero)
are identical. Similarly, the two instructions BE (branch if equal) and BZ
(branch if zero) are also identical. Each is repeated three times in Table 8-11 for
the purpose of clarity and completeness.

It should be obvious from the example that the relative magnitude of
two unsigned numbers can be determined (after a compare instruction) from
the values of status bits C and Z (see Pro b. 8-26). The relative magnitude of two
signed numbers can be determined from the values of S, V, and Z (see
Prob. 8-27).

Some computers consider the C bit to be a borrow bit after a subtraction
operation A - B . A borrow does not occur if A � B, but a bit must be borrowed
from the next most significant position if A < B. The condition for a borrow
is the complement of the carry obtained when the subtraction is done by taking
the 2' s complement of B. For this reason, a processor that considers the C bit
to be a borrow after a subtraction will complement the C bit after adding the
2' s complement of the subtrahend and denote this bit a borrow.

Subroutine Call and Return
A subroutine is a self-contained sequence of instructions that performs a given
computational task. During the execution of a program, a subroutine may be
called to perform its function many times at various points in the main pro­
gram. Each time a subroutine is called, a branch is executed to the beginning
of the subroutine to start executing its set of instructions. After the subroutine
has been executed, a branch is made back to the main program.

The instruction that transfers program control to a subroutine is known
by different names. The most common names used are call subroutine, jump to
subroutine, branch to subroutine, or branch and save address . A call subroutine
instruction consists of an operation code together with an address that specifies
the beginning of the subroutine. The instruction is executed by performing two
operations: (1) the address of the next instruction available in the program
counter (the return address) is stored in a temporary location so the subroutine
knows where to return, and (2) control is transferred to the beginning of the
subroutine. The last instruction of every subroutine, commonly called return
from subroutine, transfers the return address from the temporary location into
the program counter. This results in a transfer of program control to the
instruction whose address was originally stored in the temporary location.

Different computers use a different temporary location for storing the
return address. Some store the return address in the first memory location of
the subroutine, some store it in a fixed location in memory, some store it in
a processor register, and some store it in a memory stack. The most efficient
way is to store the return address in a memory stack. The advantage of using
a stack for the return address is that when a succession of subroutines is called,
the sequential return addresses can be pushed into the stack. The return from

SECTION 8-7 Program Control 279

subroutine instruction causes the stack to pop and the contents of the top of
the stack are transferred to the program counter. In this way, the return is
always to the program that last called a subroutine. A subroutine call is
implemented with the following microoperations:

SP <- SP - 1

M [SP] <-PC

PC <- effective address

Decrement stack pointer

Push content of PC onto the stack

Transfer control to the subroutine

If another subroutine is called by the current subroutine, the new return
address is pushed into the stack, and so on. The instruction that returns from
the last subroutine is implemented by the microoperations:

PC <- M [SP]

SP <- SP + 1

Pop stack and transfer to PC

Increment stack pointer

By using a subroutine stack, all return addresses are automatically stored
by the hardware in one unit. The programmer does not have to be concerned
or remember where the return address was stored.

A recursive subroutine is a subroutine that calls itself. If only one register
or memory location is used to store the return address, and the recursive
subroutine calls itself, it destroys the previous return address. This is undesir­
able because vital information is destroyed. This problem can be solved if
different storage locations are employed for each use of the subroutine while
another lighter-level use is still active. When a stack is used, each return
address can be pushed into the stack without destroying any previous values.
This solves the problem of recursive subroutines because the next subroutine
to exit is always the last subroutine that was called.

Program Interrupt
The concept of program interrupt is used to handle a variety of problems that
arise out of normal program sequence. Program interrupt refers to the transfer
of program control from a currently running program to another service pro­
gram as a result of an external or internal generated request. Control returns
to the original program after the service program is executed.

The interrupt procedure is, in principle, quite similar to a subroutine call
except for three variations: (1) The interrupt is usually initiated by an internal
or external signal rather than from the execution of an instruction (except for
software interrupt as explained later); (2) the address of the interrupt service
program is determined by the hardware rather than from the address field of
an instruction; and (3) an interrupt procedure usually stores all the information

280 CHAPTER EIGHT Central Processing Unit

necessary to define the state of the CPU rather than storing only the program
counter. These three procedural concepts are clarified further below.

After a program has been interrupted and the service routine been exe­
cuted, the CPU must return to exactly the same state that it was when the
interrupt occurred. Only if this happens will the interrupted program be able
to resume exactly as if nothing had happened. The state of the CPU at the end
of the execute cycle (when the interrupt is recognized) is determined from:

1. The content of the program counter

2. The content of all processor registers

3. The content of certain status conditions

The collection of all status bit conditions in the CPU is sometimes called
program status word a program status word or PSW. The PSW is stored in a separate hardware register

and contains the status information that characterizes the state of the CPU.
Typically, it includes the status bits from the last ALU operation and it specifies
the interrupts that are allowed to occur and whether the CPU is operating in
a supervisor or user mode. Many computers have a resident operating system
that controls and supervises all other programs in the computer. When the
CPU is executing a program that is part of the operating system, it is said to

supervisor mode be in the supervisor or system mode. Certain instructions are privileged and
can be executed in this mode only. The CPU is normally in the user mode when
executing user programs. The mode that the CPU is operating at any given time
is determined from special status bits in the PSW.

Some computers store only the program counter when responding to an
interrupt. The service program must then include instructions to store status
and register content before these resources are used. Only a few computers
store both program counter and all status and register content in response to
an interrupt. Most computers just store the program counter and the PSW. In
some cases, there exist two sets of processor registers within the computer, one
for each CPU mode. In this way, when the program switches from the user to
the supervisor mode (or vice versa) in response to an interrupt, it is not
necessary to store the contents of processor registers as each mode uses its own
set of registers.

The hardware procedure for processing an interrupt is very similar to the
execution of a subroutine call instruction. The state of the CPU is pushed into
a memory stack and the beginning address of the service routine is transferred
to the program counter. The beginning address of the service routine is deter­
mined by the hardware rather than the address field of an instruction. Some
computers assign one memory location where interrupts are always trans­
ferred. The service routine must then determine what caused the interrupt and
proceed to service it. Some computers assign a memory location for each
possible interrupt. Sometimes, the hardware interrupt provides its own ad­
dress that directs the CPU to the desired service routine. In any case, the CPU

SECTION 8·7 Program Control 28 1

must possess some form of hardware procedure for selecting a branch address
for servicing the interrupt.

The CPU does not respond to an interrupt until the end of an instruction
execution. Just before going to the next fetch phase, control checks for any
interrupt signals. If an interrupt is pending, control goes to a hardware inter­
rupt cycle. During this cycle, the contents of PC and PSW are pushed onto the
stack. The branch address for the particular interrupt is then transferred to PC
and a new PSW is loaded into the status register. The service program can now
be executed starting from the branch address and having a CPU mode as
specified in the new PSW.

The last instruction in the service program is a return from interrupt
instruction. When this instruction is executed, the stack is popped to retrieve
the old PSW and the return address. The PSW is transferred to the status
register and the return address to the program counter. Thus the CPU state
is restored and the original program can continue executing.

Types of Interrupts
There are three major types of interrupts that cause a break in the normal
execution of a program. They can be classified as:

1. External interrupts

2. Internal interrupts

3. Software interrupts

External interrupts come from input-<mtput (l/0) devices, from a timing
device, from a circuit monitoring the power supply, or from any other external
source. Examples that cause external interrupts are l/0 device requesting
transfer of data, l/0 device finished transfer of data, elapsed time of an event,
or power failure. Timeout interrupt may result from a program that is in an
endless loop and thus exceeded its time allocation. Power failure interrupt may
have as its service routine a program that transfers the complete state of the
CPU into a nondestructive memory in the few milliseconds before power
ceases.

Internal interrupts arise from illegal or erroneous use of an instruction or
data. Internal interrupts are also called traps . Examples of interrupts caused by
internal error conditions are register overflow, attempt to divide by zero, an
invalid operation code, stack overflow, and protection violation. These error
conditions usually occur as a result of a premature termination of the instruc­
tion execution. The service program that processes the internal interrupt deter­
mines the corrective measure to be taken.

The difference between internal and external interrupts is that the inter­
nal interrupt is initiated by some exceptional condition caused by the program
itself rather than by an external event. Internal interrupts are synchronous with

282 CHAPTIR EIGHT Central Processing Unit

software interrupt

asc

RISC

the program while external interrupts are asynchronous. If the program is
rerun, the internal interrupts will occur in the same place each time. External
interrupts depend on external conditions that are independent of the program
being executed at the time.

External and internal interrupts are initiated from signals that occur in the
hardware of the CPU. A software interrupt is initiated by executing an instruc­
tion. Software interrupt is a special call instruction that behaves like an inter­
rupt rather than a subroutine call. It can be used by the programmer to initiate
an interrupt procedure at any desired point in the program. The most common
use of software interrupt is associated with a supervisor call instruction. This
instruction provides means for switching from a CPU user mode to the super­
visor mode. Certain operations in the computer may be assigned to the super­
visor mode only, as for example, a complex input or output transfer procedure.
A program written by a user must run in the user mode. When an input or
output transfer is required, the supervisor mode is requested by means of a
supervisor call instruction. This instruction causes a software interrupt that
stores the old CPU state and brings in a new PSW that belongs to the supervisor
mode. The calling program must pass information to the operating system in
order to specify the particular task requested.

8-8 Reduced Instruction Set
Computer (RISC)

An important aspect of computer architecture is the design of the instruction
set for the processor. The instruction set chosen for a particular computer
determines the way that machine language programs are constructed. Early
computers had small and simple instruction sets, forced mainly by the need
to minimize the hardware used to implement them. As digital hardware
became cheaper with the advent of integrated circuits, computer instructions
tended to increase both in number and complexity. Many computers have
instruction sets that include more than 100 and sometimes even more than 200
instructions. These computers also employ a variety of data types and a large
number of addressing modes. The trend into computer hardware complexity
was influenced by various factors, such as upgrading existing models to
provide more customer applications, adding instructions that facilitate the
translation from high-level language into machine language programs, and
striving to develop machines that move functions from software implementa­
tion into hardware implementation. A computer with a large number of in­
structions is classified as a complex instruction set computer, abbreviated CISC.

In the early 1980s, a number of computer designers recommended that
computers use fewer instructions with simple constructs so they can be exe­
cuted much faster within the CPU without having to use memory as often. This
type of computer is classified as a reduced instruction set computer or RISC. In

SECTION 8-8 Reduced Instruction Set Computer (RISC) 283

this section we introduce the major characteristics of CISC and RISC architec­
tures and then present the instruction set and instruction format of a RISC
processor.

CISC Characteristics
The design of an instruction set for a computer must take into consideration
not only machine language constructs, but also the requirements imposed on
the use of high-level programming languages. The translation from high-level
to machine language programs is done by means of a compiler program. One
reason for the trend to provide a complex instruction set is the desire to simplify
the compilation and improve the overall computer performance. The task of
a compiler is to generate a sequence of machine instructions for each hlgh-level
language statement. The task is simplified if there are machine instructions that
implement the statements directly. The essential goal of a CISC archltecture
is to attempt to provide a single machlne instruction for each statement that
is written in a high-level language. Examples of CISC archltectures are the
Digital Equipment Corporation VAX computer and the IBM 370 computer.

Another characteristic of CISC architecture is the incorporation of vari­
able-length instruction formats. Instructions that require register operands
may be only two bytes in length, but instructions that need two memory
addresses may need five bytes to include the entire instruction code. If the
computer has 32-bit words (four bytes), the first instruction occupies half a
word, while the second instruction needs one word in addition to one byte in
the next word. Packing variable instruction formats in a fixed-length memory
word requires special decoding circuits that count bytes within words and
frame the instructions according to their byte length.

The instructions in a typical CISC processor provide direct manipulation
of operands residing in memory. For example, an ADD instruction may specify
one operand in memory through index addressing and a second operand in
memory through a direct addressing. Another memory location may be in­
cluded in the instruction to store the sum. Thls requires three memory refer­
ences during execution of the instruction. Although CISC processors have
instructions that use only processor registers, the availability of other modes
of operations tend to simplify high-level language compilation. However, as
more instructions and addressing modes are incorporated into a computer, the
more hardware logic is needed to implement and support them, and this may
cause the computations to slow down. In summary, the major characteristics
of CISC archltecture are:

1. A large number of instructions-typically from 100 to 250 instructions

2. Some instructions that perform specialized tasks and are used infre­
quently

284 CHAPTIR EIGHT Central Processing Unit

3. A large variety of addressing modes-typically from 5 to 20 different
modes

4. Variable-length instruction formats

5. Instructions that manipulate operands in memory

RISC Characteristics
The concept of RISC architecture involves an attempt to reduce execution time
by simplifying the instruction set of the computer. The major characteristics
of a RISC processor are:

1. Relatively few instructions

2. Relatively few addressing modes

3. Memory access limited to load and store instructions

4. All operations done within the registers of the CPU

5. Fixed-length, easily decoded instruction format

6. Single-cycle instruction execution

7. Hardwired rather than microprogrammed control

The small set of instructions of a typical RISC processor consists mostly
of register-to-register operations, with only simple load and store operations
for memory access. Thus each operand is brought into a processor register with
a load instruction. All computations are done among the data stored in proces­
sor registers. Results are transferred to memory by means of store instructions.
This architectural feature simplifies the instruction set and encourages the
optimization of register manipulation. The use of only a few addressing modes
results from the fact that almost all instructions have simple register address­
ing. Other addressing modes may be included, such as immediate operands
and relative mode.

By using a relatively simple instruction format, the instruction length can
be fixed and aligned on word boundaries. An important aspect of RISC instruc­
tion format is that it is easy to decode. Thus the operation code and register
fields of the instruction code can be accessed simultaneously by the control.
By simplifying the instructions and their format, it is possible to simplify the
control logic. For faster operations, a hardwired control is preferable over a
microprogrammed control. An example of hardwired control is presented in
Chap. 5 in conjunction with the control unit of the basic computer. Examples
of microprogrammed control are presented in Chap. 7.

A characteristic of RISC processors is their ability to execute one instruc­
tion per dock cycle. This is done by overlapping the fetch, decode, and execute
phases of two or three instructions by using a procedure referred to as pipe lin­
ing. A load or store instruction may require two clock cycles because access to

pipe lining

SECTION 8-8 Reduced Instruction Set Computer (RISC) 285

memory takes more time than register operations. Efficient pipelining, as well
as a few other characteristics, are sometimes attributed to RISC. although they
may exist in non-RISC architectures as well. Other characteristics attributed to
RISC architecture are:

1. A relatively large number of registers in the processor unit

2. Use of overlapped register windows to speed-up procedure call and
return

3. Efficient instruction pipeline

4. Compiler support for efficient translation of high-level language pro­
grams into machine language programs

A large number of registers is useful for storing intermediate results and
for optimizing operand references. The advantage of register storage as op­
posed to memory storage is that registers can transfer information to other
registers much faster than the transfer of information to and from memory.
Thus register-to-memory operations can be minimized by keeping the most
frequent accessed operands in registers. Studies that show improved perform­
ance for RISC architecture do not differentiate between the effects of the
reduced instruction set and the effects of a large register file. For this reason
a large number of registers in the processing unit are sometimes associated
with RISC processors. The use of overlapped register windows when trans­
ferring program control after a procedure call is explained below. Instruction
pipeline in RISC is presented in Sec. 9-5 after we explain the concept of
pipelining.

Overlapped Register Windows
Procedure call and return occurs quite often in high-level programming lan­
guages. When translated into machine language, a procedure call produces a
sequence of instructions that save register values, pass parameters needed for
the procedure, and then calls a subroutine to execute the body of the proce­
dure. After a procedure return, the program restores the old register values,
passes results to the calling program, and returns from the subroutine. Saving
and restoring registers and passing of parameters and results involve time­
consuming operations. Some computers provide multiple-register banks, and
each procedure is allocated its own bank of registers. This eliminates the need
for saving and restoring register values. Some computers use the memory stack
to store the parameters that are needed by the procedure, but this requires a
memory access every time the stack is accessed.

A characteristic of some RISC processors is their use of uverlapped register
windows to provide the passing of parameters and avoid the need for saving
and restoring register values. Each procedure call results in the allocation of

286 CHAI'TER EIGHT Central Processing Unit

a new window consisting of a set of registers from the register file for use by
the new procedure. Each procedure call activates a new register window by
incrementing a pointer, while the return statement decrements the pointer and
causes the activation of the previous window. Windows for adjacent proce­
dures have overlapping registers that are shared to provide the passing of
parameters and results.

The concept of overlapped register windows is illustrated in Fig. 8-9. The
system has a total of 74 registers. Registers RO through R9 are global registers
that hold parameters shared by all procedures. The other 64 registers are
divided into four windows to accommodate procedures A, B, C, and D. Each
register window consists of 10 local registers and two sets of six registers
common to adjacent windows. Local registers are used for local variables.
Common registers are used for exchange of parameters and results between
adjacent procedures. The common overlapped registers permit parameters to
be passed without the actual movement of data. Only one register window is
activated at any given time with a pointer indicating the active window. Each
procedure call activates a new register window by incrementing the pointer.
The high registers of the calling procedure overlap the low registers of the
called procedure, and therefore the parameters automatically transfer from
calling to called procedure.

As an example, suppose that procedure A calls procedure B. Registers
R26 through R31 are common to both procedures, and therefore procedure A
stores the parameters for procedure B in these registers. Procedure B uses local
registers R32 through R41 for local variable storage. If procedure B calls pro­
cedure C, it will pass the parameters through registers R 42 through R 47. When
procedure B is ready to return at the end of its computation, the program stores
results of the computation in registers R26 through R31 and transfers back to
the register window of procedure A. Note that registers RIO through R 15 are
common to procedures A and D because the four windows have a circular
organization with A being adjacent to D.

A s mentioned previously, the 10 global registers RO through R9 are
available to all procedures. Each procedure in Fig. 8-9 has available a total of
32 registers while it is active. This includes 10 global registers, 10 local registers,
six low overlapping registers, and six high overlapping registers. Other fixed­
size register window schemes are possible, and each may differ in the size of
the register window and the size of the total register file. In general, the
organization of register windows will have the following relationships:

number of global registers = G

number of local registers in each window = L

number of registers common to two windows = C

number of windows = W

.----
R l 5

r--B-!-L
R73

R64

Proc D

D 0

Global
registers

SECTION 8-8 Reduced Instruction Set Computer (RISC) 287

Common to D and A

Local to D

R63

Common to C and D

R58

R51

Local to C

R48

R47

Common to B and c

R42

Proc C R41

Local to B

R32

R3 1

Common to A and B

R26

Proc B R25

Local to A

R l 6
f---

R l 5

procedures
Common to all Common to A and D

R I O '-----
Proc A

Figure 8�9 Overlapped register windows.

288 CHAYI"ER EIGHT Central Processing Unit

The number of registers available for each window is calculated as follows:

window size = L + 2C + G

The total number of registers needed in the processor is

register file = (L + C)W + G

In the example of Fig. 8-9 we have G = 10, L = 10, C = 6, and W = 4. The
window size is 10 + 12 + 10 = 32 registers, and the register file consists of
(10 + 6) x 4 + 10 = 74 registers.

Berkeley RISC I
One of the first projects intended to show the advantages of RISC architecture
was conducted at the University of California, Berkeley. The Berkeley RISC I
is a 32-bit integrated circuit CPU. It supports 32-bit addresses and either 8-, 16-,
or 32-bit data. It has a 32-bit instruction format and a total of 31 instructions.
There are three basic addressing modes: register addressing, immediate
operand, and relative to PC addressing for branch instructions. It has a register
file of 138 registers arranged into 10 global registers and 8 windows of 32
registers in each. The 32 registers in each window have an organization similar
to the one shown in Fig. 8-9 . Since only one set of 32 registers in a window is

Figure s .. to Berkeley RlSC I instruction formats.

3 1 2 4 2 3 1 9 1 8 14 1 3 1 2 5 4

Opcode Rd Rs Not used 52

(a) Register mode: (52 specifies a register)

3 1 2 4 23 19 1 8 14 1 3 1 2

Opcode R d Rs I I I 52

13

(b) Register-immediate mode; (52 specifies an operand)

31 24 23 19 1 8

Opcode COND y
19

(c) PC relative mode:

SECTION 8-8 Reduced Instruction Set Computer (R!SC) 289

accessed at any given time, the instruction format can specify a processor
register with a register field of five bits.

Figure 8-1D shows the 32-bit instruction formats used for register-to­
register instructions and memory access instructions. Seven of the bits in the
operation code specify an operation, and the eighth bit indicates whether to
update the status bits after an ALU operation. For register-to-register instruc­
tions, the 5-bit Rd field selects one of the 32 registers as a destination for the
result of the operation. The operation is performed with the data specified in
fields Rs and 52. Rs is one of the source registers. If bit 13 of the instruction
is D, the low-order 5 bits of 52 specify another source register. If bit 13 of the
instruction is 1, 52 specifies a sign-extended 13-bit constant. Thus the instruc­
tion has a three-address format, but the second source may be either a register
or an immediate operand. Memory access instructions use Rs to specify a 32-bit
address in a register and 52 to specify an offset. Register RD contains all D's,
so it can be used in any field to specify a zero quantity. The third instruction
format combines the last three fields to form a 19-bit relative address Y and is
used primarily with the jump and call instructions. The COND field replaces
the Rd field for jump instructions and is used to specify one of 16 possible
branch conditions.

The 31 instructions of RlSC I are listed in Table 8-12. They have been
grouped into three categories. Data manipulation instructions perform arith­
metic, logic, and shift operations. The symbols under the opcode and operands
columns are used when writing assembly language programs. The register
transfer and description columns explain the instruction in register transfer
notation and in words. Note that all instructions have three operands. The
second source 52 can be either a register or an immediate operand, symbolized
by the number sign #. Consider, for example, the ADD instruction and how
it can be used to perform a variety of operations.

A D D R 2 2 , R 2 1 , R 2 3

A D D R 2 2 , # 1 5 0 , R 2 3

A D D R O , R 2 1 , R 2 2

A D D R 0 , # 1 5 0 , R 2 2

A D D R 2 2 , # 1 , R 2 2

R 2 3 <--- R 2 2 + R 2 1

R 2 3 <--- R 2 2 + 1 5 0

R 2 2 <--- R 2 1 (M o v e)

R 2 2 <--- 1 5 0 (L o a d i m m e d i at e)

R 2 2 <--- R 2 2 + 1 (I nc r e m e n t)

By using register RD, which always contains D's, it is possible to transfer the
contents of one register or a constant into another register. The increment
operation is accomplished by adding a constant 1 to a register.

The data transfer instructions consist of six load instructions, three store
instructions, and two instructions that transfer the program status word PSW.
The register that holds PSW contains the status of the CPU and includes the
program counter, the status bits from the ALU, pointers used in conjunction
with the register windows, and other information that determines the state of
the CPU.

290 CHAI'TER EIGHT Central Processing Unit

TABLE 8-12 Instruction Set of Berkeley RISC I

Opcode Operands Register Transfer Description

Data manipulation instructions
ADD Rs,S2,Rd Rd <--Rs + S2 Integer add
ADDC Rs,S2,Rd Rd <--Rs + S2 + carry Add with carry
SUB Rs,S2,Rd Rd <--Rs - S2 Integer subtract
SUBC Rs,S2,Rd Rd <--Rs - S2 - carry Subtract with carry
SUBR Rs,S2,Rd Rd <--S2 - Rs Subtract reverse
SUBCR Rs,S2,Rd Rd <--S2 - Rs - carry Subtract with carry
AND Rs,S2,Rd Rd <-- Rs 1\ S2 AND
OR Rs,S2,Rd Rd <--Rs V S2 OR
XOR Rs,S2,Rd Rd <--Rs $ S2 Exclusive-OR
SLL Rs,S2,Rd Rd <--Rs shifted by S2 Shift-left
SRL Rs,S2,Rd Rd <--Rs shifted by S2 Shift-right logical
SRA Rs,S2,Rd Rd <--Rs shifted by S2 Shift-right arithmetic

Data transfer instructions
LDL (Rs)S2,Rd Rd <-- M[Rs + S2] Load long
LDSU (Rs)S2,Rd Rd <-- M[Rs + S2] Load short unsigned
LDSS (Rs)S2,Rd Rd <-- M[Rs + S2] Load short signed
LDBU (Rs)S2,Rd Rd <-- M[Rs + S2] Load byte unsigned
LDBS (Rs)S2,Rd Rd <-- M[Rs + S2] Load byte signed
LDHI Rd,Y Rd <-- Y Load immediate high
STL Rd,(Rs)S2 M[Rs + S2] <--Rd Store long
STS Rd,(Rs)S2 M[Rs + S2] <--Rd Store short
STB Rd,(Rs)S2 M[Rs + S2] <--Rd Store byte
GETPSW Rd Rd <-- PSW Load status word
PUTPSW Rd PSW <--Rd Set status word

Program control instructions
JMP COND, PC <--Rs + S2 Conditional jump

S2(Rs)
JMPR COND,Y PC <-- PC + Y Jump relative
CALL Rd,S2(Rs) Rd <--PC Call subroutine

PC <--Rs + S2 and
CWP <-- CWP - 1 change window

CALLR Rd,Y Rd <-- PC Call relative
PC <-- PC + Y and
CWP <--CWP - 1 change window

RET Rd,S2 PC <--Rd + S2 Return and
CWP - CWP + 1 change window

CALLINT Rd Rd <-- PC Disable interrupts
CWP <-- CWP - 1

RETINT Rd,S2 PC <--Rd + S2 Enable interrupts
CWP <-- CWP + 1

GTLPC Rd Rd <--PC Get last PC

S£CTJa< 1-8 R.:duced lnsauction S.t Computet (RISC) 291

The load and store instructions move data between a register and mem·
ory. The load instructions accornm.odate signed or unsigned data of eight bits
(byte) or 16 bits (short word). The long-word instructions operate on 32-bit
data. Although there appears to be a register plus displacement addressing
mode in data t.Tansfer instructions, register indirect addressing and direct
addressing is also possible. The following are examples of load long instruc·
lions with different addressing modes.

LDL (R22)#lSO,RS
LDL (R22)#0,RS
LDL (RO)#SOO,RS

RS+-lf[R22) + 150
RS-lf[R22)
R5<-JI1[500)

The effective address in the first instruction is evaluated from the contents of
register R22 plus a displacement of 150. The second instruction uses a 0
displacement, which reduces it to a register indirect mode. The third in.struc·
lion uses all O's from register RO to produce a direct address type of instruction.

The program control instructions operate with the program counter PC
to control the program sequence. There are two jump and two call instructions.
One uses an index plus displacement addressing; the second uses a relative
to PC mode with the 19-bit Y value as the relative address. The ca1J and return
instructions use a J..bit CWP (current window pointer) register which points
to the currently active register window. Every time the program calls a new
procedure, CWP is decremented by one to point to the next-lower register
window. After a return instruction CWP is incremented by one to return to the
previous register window.

l'ROfiLEMS

8-1. A bus-organized CPU similar to Fig. 8-2 has 16 registers with 32 bits In <!ach.
an ALU, and a destination decoder.
•· How many multiplexers are there In the A bus, and what is the s1.u ol

each multlple..er?
b. How many selection Inputs are needed for MUX A and MUX 8?
c. How many inputs and outputs are there In the decoder?
d. How many i.nputs and outputs are there in the ALU for data, lnduding

input and output carries?
e. Formulate a control word for the system assuming thai the ALU has 35

operations.
8-2. The bus system of Fig. 8-2 has the following propagation delay tlmu: 30 ns

for the signals to propagate through the multiplexel$, 80 ns to perlorm the
ADD operation in the AW, 20 ns delay In the destination decoder, and 10
ns to clock the data into the destination register. What is the minimum cycle
time that can be used for the dock?

292 CHAPTER EIGHT Central Processing Unir

8-3. Specify the control word that must be applied to the processor of Fig. 8-2 to
implement the following microoperations.
a. R 1 <-- R2 + R3
b. R4 <-- R4
c. RS <-- RS - 1
d. R6 <-- shl R 1
e. R7 <-- input

8-4. Determine the microoperations that will be executed in the processor of Fig.
8-2 when the following 14-bit control words are applied.
a. 00101001 100101
b. 00000000000000
c. 01001001001 100
d. 00000100000010
e. 1 1 1 10001 110000

8-5. Let SP � 000000 in the stack of Fig. 8-3. How many items are there in the
stack if:
a. FULL � 1 and EMTY � 0?
b. FULL � 0 and EMTY � 1?

8-6. A stack is organized such that SP always points at the next empty location
on the stack. This means that SP can be initialized to 4000 in Fig. 8-4 and the
first item in the stack is stored in location 4000. List the microoperations for
the push and pop operations.

8-7. Convert the following arithmetic expressions from infix to reverse Polish
notation.
a. A • B + C • D + E • F

b . A • B + A • (B • D + C • E)
c. A + B • [C • D + E • (F + G)]

d
A • [B + C • (D + E)]

.
f • (G + H)

8-8. Convert the following arithmetic expressions from reverse Polish notation
to infix notation.
a. A B C D E + • - I
b. A B C D E • l - +
c. A B C • l D - E F I +
d. A B C D E F G + • + • + •

8-9. Convert the following numerical arithmetic expression into reverse Polish
notation and show the stack operations for evaluating the numerical result.

(3 + 4)[10(2 + 6) + 8]

8-10. A first-in1 first-out (FIFO) has a memory organization that stores information
in such a manner that the item that is stored first is the first item that is
retrieved. Show how a FIFO memory operates with three counters. A write
counter WC holds the address for writing into memory. A read counter RC
holds the address for reading from memory. An available storage counter
ASC indicates the number of words stored in FIFO. ASC is incremented for
every word stored and decremented for every item that is retrieved.

SECTION 8-8 Reduced Instruction Set Computer (RISC) 293

8-11. A computer has 32-bit instructions and 12-bit addresses. If there are
250 two-address instructions, how many one-address instructions can be
formulated?

8-12. Write a program to evaluate the arithmetic statement:

X =
A - B + C • (D • E - f)

G + H • K

a . Using a general register computer with three address instructions.
b. Using a general register computer with two address instructions.
c. Using an accumulator type computer with one address instructions.
d. Using a stack organized computer with zero-address operation instruc­

tions.

8-13. The memory unit of a computer has 256K words of 32 bits each. The
computer has an instruction format with four fields: an operation code field,
a mode field to specify one of seven addressing modes, a register address
field to specify one of 60 processor registers, and a memory address. Specify
the instruction format and the number of bits in each field if the in instruction
is in one memory word.

8-14. A two-word instruction is stored in memory at an address designated by the
symbol W. The address field of the instruction (stored at W + 1) is desig­
nated by the symbol Y. The operand used during the execution of the
instruction is stored at an address symbolized by Z. An index register
contains the value X. State how Z is calculated from the other addresses if
the addressing mode of the instruction is
a. direct
b. indirect
c. relative
d. indexed

8-15. A relative mode branch type of instruction is stored in memory at an address
equivalent to decimal 750. The branch is made to an address equivalent to
decimal 500.
a. What should be the value of the relative address field of the instruction

(in decimal)?
b. Detennine the relative address value in binary using 12 bits. (Why must

the number be in 2's complement?)
c. Determine the binary value in PC after the fetch phase and calculate the

binary value of 500. Then show that the binary value in PC plus the
relative address calculated in part (b) is equal to the binary value of 500.

8-16. How many times does the control unit refer to memory when it fetches and
executes an indirect addressing mode instruction if the instruction is (a) a
computational type requiring an operand from memory; (b) a branch type.

8-17. What must the address field of an indexed addressing mode instruction be
to make it the same as a register indirect mode instruction?

8-18. An instruction is stored at location 300 with its address field at location 301 .
The address field has the value 400. A processor register R 1 contains the
number 200. Evaluate the effective address if the addressing mode of the

294 CHAPTER EIGHT Central Processing Unit

instruction is (a) direct; (b) immediate; (c) relative; (d) register indirect;
(e) index with R1 as the index register.

8-19. Assuming an 8-bit computer, show the multiple precision addition of the
two 32-bit unsigned numbers listed below using the add with carry instruc­
tion. Each byte is expressed as a two-digit hexadecimal number.

(6E C3 56 7 A) + (13 55 6B SF)

8-20. Perform the logic AND, OR, and XOR with the two binary strings 1001 1100
and 10101010.

8-21. Given the 16-bit value 1001101011001 101 . What operation must be per­
formed in order to:
a. clear to 0 the first eight bits?
b. set to 1 the last eight bits?
c. complement the middle eight bits?

8-22. An 8-bit register contains the value 0 1 1 1 1 0 1 1 and the carry bit is equal to 1 .
Perform the eight shift operations given by the instructions listed i n Ta­
ble 8-9. Each time, start from the initial value given above.

8-23. Represent the following signed numbers in binary using eight bits. +83;
-83; +68; -68.
a. Perform the addition (- 83) + (+68) in binary and interpret the result

obtained.
b. Perform the subtraction (-68) - (+83) in binary and indicate if there is

an overflow.
c. Shift binary -68 once to the right and give the value ofthe shifted number

in decimal.
d. Shift binary -83 once to the left and indicate if there is an overflow.

8-24. Show that the circuit labeled "check for zero output" in Fig. 8-8 is an 8-bit
NOR gate.

8-25. An 8-bit computer has a register R. Determine the values of status bits C,
5, Z, and V (Fig. 8-8) after each of the following instructions. The initial value
of register R in each case is hexadecimal 72. The numbers below are also in
hexadecimal.
a. Add immediate operand C6 to R .
b. Add immediate operand 1 E t o R.
c. Subtract immediate operand 9 A from R .
d . AND immediate operand 8 0 t o R .
e. Exclusive-OR R with R.

8-26. Two unsigned numbers A and B are compared by subtracting A - B. The
carry status bit is considered as a borrow bit after a compare instruction in
most commercial computers, so that C = 1 if A < B. Show that the relative
magnitude of A and B can be determined from inspection of status bits C and
Z as specified in the table for Problem 8-26. (See also Table 8-1 1 .)

8-27. Two signed numbers A and B represented in signed-2's complement form
are compared by subtracting A - B. Status bits 5, Z, and V are set or cleared
depending on the result of the operation. (Note that there is a sign reversal

SECTION 8-8 Reduced Instruction Set Computer (R!SC) 295

Table for Problem 8-26

Relation

A > B
A 2o B
A < B
A s B
A � B
A # B

Condition of Status Bits

c � o anct z � o
c � 0
c � 1
C � 1 or Z � 1
z � 1
z � 0

if an overflow occurs.) Show that the relative magnitude of A and B can be
determined from inspection of the status bits as specified below. (See also
Table 8-1 1 .)

Table for Problem 8-27

Relation

A > B
A ;;, B
A < B
A s B
A � B
A # B

Condition of Status Bits

(S Ell V) � 0 and Z � 0
(S Ell V) � O
(S Ell V) � 1
(S Ell V) � 1 or Z � 1
z � 1
z � 0

8-28. It is necessary to design a digital circuit with four inputs C, S, Z, and V and
10 outputs, one for each of the branch conditions listed in Probs. 8-26 and
8-27. (The equal and unequal conditions are common to both tables .) Draw
the logic diagram of the circuit using two OR gates, one XOR gate, and five
inverters.

8-29. Consider the two 8-bit numbers A � 01000001 and B � 10000100.
a. Give the decimal equivalent of each number assuming that (1) they are

unsigned, and (2) they are signed.
b. Add the two binary numbers and interpret the sum assuming that the

numbers are (1) unsigned, and (2) signed.
c. Determine the values of the C, Z, S, and V status bits after the addition.
d. List the conditional branch instructions from Table 8-1 1 that will have a

true condition.

8-30. The program in a computer compares two unsigned numbers A and B by
performing a subtraction A - B and updating the status bits. Let A �
01000001 and B � 10000100.
a. Evaluate the difference and interpret the binary result.
b. Determine the values of status bits C (borrow) and Z.
c. List the conditional branch instructions from Table 8 - 1 1 that will have a

true condition.

296 CHAPTIR EIGHT Central Processing Unit

8-31. The program in a computer compares two signed numbers A and B by
performing the subtraction A - B and updating the status bits. Let A �
01000001 and B � 10000100.
a. Evaluate the difference and interpret the binary result.
b. Determine the value of status bits 5, Z, and V.
c. List the conditional branch instructions from Table 8-1 1 that will have a

true condition.

8-32. The content of the top of a memory stack is 5320. The content of the stack
pointer SP is 3560. A two-word call subroutine instruction is located in
memory at address 1 120 followed by the address field of 6720 at location
1121 . What are the content of PC, SP, and the top of the stack:
a. Before the call instruction is fetched from memory?
b. After the call instruction is executed?
c. After the return from subroutine?

8-33. What are the basic differences between a branch instruction, a call subrou­
tine instruction, and program interrupt?

8-34. Give five examples of external interrupts and five examples of internal
interrupts. \A/hat is the difference between a software interrupt and a sub­
routine call?

8-35. A computer responds to an interrupt request signal by pushing onto the
stack the contents of PC and the current PSW (program status word). It then
reads a new PSW from memory from a location given by an interrupt address
symbolized by lAD. The first address of the service program is taken from
memory at location !AD + 1 .
a. List the sequence o f microoperations for the interrupt cycle.
b. List the sequence of microoperations for the return from interrupt in­

struction.

8-36. Examples of computers with variable instruction formats are IBM 370, VAX
1 1 , and Intel 386. Compare the variable instruction formats of one of these
computers with the fixed-length instruction format used in RISC I.

8-37. Three computers use register windows with the following characteris­
tics. Detennine the window size and the total number of registers in each
computer.

Computer 1 Computer 2 Computer 3

Global registers 10 8 16
Local registers 10 8 16
Common registers 6 8 16
Number of windows 8 4 16

8-38. Give an example of a RISC I instructions that will perform the following
operations.
a. Decrement a register
b. Complement a register
c. Negate a register

d. Clear a register to 0
e. Divide a signed number by 4
f. No operation

8-39. Write the RISC I insttuctions in assembly language that will cause a jump
to address 3200 iJ the Z (zero) status bit is equal to 1.
a. Using immediate mode
b. Using a relative address mode (assume that PC = 3400)

REFERENCES

1. Gear, C. W., CompullT Org<>niz.ation and Programming, 3rd ed. New York: McCraw·
Hut, 1980.

2. Gorsline, G. W., Computer Organiz.ation: HorthiiGrdScftwart, 2nd ed. Englewood
Cliffs, NJ: Prentke Hall, 1986.

3. Gray, N. A. 8., Introduction to Computer Sysi<Tns. Englewood Olffs, Nj: Prentice
Hall, 1987.

4. Hamacher, V. C., z. G. Vranesic, and S. G. Zaky, Compum Organiz.ation, 3rd ed.
New Yorlc M<Craw-HUL 1990.

5. Hays,). F., Computer.AtdlittclurtandOrganiution, 2nded. NewYorlc M<Craw-HUI,
1988.

6. J..angholz, G.,). Frandonl.. and A. Kindel, Eltm<nts of Comput<r Org!>niutlon.
Englewood Clilfs, Nj: Prentice Hall. 1989.

7. Levy, H. M., and R. H. Eckhouse,)r., Computa Progn>mming •nd Ardoit«<urt: Tht
VAX· II. Bedford, MA: Digital Press, 1980.

8. Uppiatt, A. G., and G. L. Wri3ht, Tht Ardoit«turt of SmGII ComJI"IlT Sys�s. 2nd
ed. Englewood Cliffs, Nj: Prentice HaU, 1985.

9. Mano, M. M., Comput<r Enginming: HardWilrt O<sign. Englewood CUffs, Nj: Pren·
lice Hall, 1988.

10. Murray, W. 0., Computtr anJf Digital Syst<rn Nchit«<urt. Englewood Cliffs, Nj:
Prentice HaU, 1990.

11. Patterson, 0. A., and). L. Hennessy, Computer Arrhit«tun: A Qau'"til4tivt A.pprooc/1.
San Mateo, CA: Morgan Kaufmann Publishers. 1990.

12. Patterson, 0. A., and C. H. Sequin, "A Vl.S1 RISC." fEEE Computtr, September
1982, pp. 8-22.

13. PoUard, L H., Computer O<sign and Arrhittctun. Englewood Olffs, NJ: Prentice
HaU, 1990.

14. Ra8quzzaman, M., and R. Chandra. Mo1krn Computtr Ardoittcturt. St .. Paul. MN:
West Publishers, 1988.

15. Siewiorek, 0., C. G. BeU, and A. Newell, CompullT Slnl<turts: Principles anJf E:Juun­
p/ts. New Yorlc M<Craw-HUI, 1982.

298 CHAPTER EIGHT Central Processing Unit

16. Stallings, W., Computer Organizntion and Architecture, 2nd ed. New York: Macmillan,
1989.

17. Tanenbaum, A. S., Structured Computer Organizntion, 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1990.

18. Tomek, 1., Introduction to Computer Organizntion. Rockville, MD: Computer Science
Press, 1981 .

19 . Toy, W . , and B. Zee, Computer Hardware/Software Architecture. Englewood Cliffs, NJ:
Prentice Hall, 1986.

20. Ward, S. A., and R. H. Halstead,)r., Computation Structures. Cambridge, MA: MIT
Press, 1990.

throughput

C H A P T E R N I N E

Pipeline and Vector
Processing

IN THIS CHAPTER

9·1 Parallel Processing
9-2 Pipelining
9-3 Arithmetic Pipeline
9-4 Instruction P�line
9-5 RISC Pipeline

9-6 Vectu< Processing
9· 7 Amy Processors

9-1 Parallel Processing

Parallel processing is a term used to denote a large class of techniques that are
used to provide simultaneous data-processing tasks for the purpose of inaeas­
ing the computational speed of a computer system. Instead of processing each
instruction sequentially as in a conventional computer, a parallel processing
system i.s able to perform concurrent data processing to achieve faster execu·
tion time. For example, while an instruction is being executed in the ALU, the
next instruction can be read from memory. The system may have two or more
ALUs and be able to execute two or more instructions at the same time.

Furthermore, the system may have two or more processors operating concur·
rently. The purpose of parallel processing is to speed up the computer process­
ing capability and increase its throughput, that i.s, the amount of processing
that can be accomplished during a given interval of time. The amount of
hardware increases with parallel processing. and with it, the cost of the system
increases. However, technological developments have reduCed hardware costs
to the point where parallel processing techniques a.re economicaDy feasible.

Parallel processing can be viewed from various levels of complexity. At
the lowest level, we distinguish between parallel and serial operations by the
type of registers used. Shift registers operate in serial fashion one bit at a time,

299

300 CHAPTER NINE Pipeline and Vector Processing

multiple functional
units

while registers with parallel load operate with all the bits of the word simulta­
neously. Parallel processing at a higher level of complexity can be achieved by
having a multiplicity of functional units that perform identical or different
operations simultaneously. Parallel processing is established by distributing
the data among the multiple functional units. For example, the arithmetic,
logic, and shift operations can be separated into three units and the operands
diverted to each unit under the supervision of a control unit.

Figure 9-1 shows one possible way of separating the execution unit into
eight functional units operating in parallel. The operands in the registers are
applied to one of the units depending on the operation specified by the instruc-

To memory

Figure 9� 1 Processor with multiple functional units.

Processor
registers

SIMD

MIMD

SECTION 9-1 Parallel Processing 30 1

tion associated with the operands. The operation performed in each functional
unit is indicated in each block of the diagram. The adder and integer multiplier
perform the arithmetic operations with integer numbers. The floating-point
operations are separated into three circuits operating in parallel. The logic,
shift, and increment operations can be performed concurrently on different
data. All units are independent of each other, so one number can be shifted
while another number is being incremented. A multifunctional organization
is usually associated with a complex control unit to coordinate all the activities
among the various components.

There are a variety of ways that parallel processing can be classified. It
can be considered from the internal organization of the processors, from the
interconnection structure between processors, or from the flow of information
through the system. One classification introduced by M. J. Flynn considers the
organization of a computer system by the number of instructions and data
items that are manipulated simultaneously. The normal operation of a com­
puter is to fetch instructions from memory and execute them in the processor.
The sequence of instructions read from memory constitutes an instruction
stream . The operations performed on the data in the processor constitutes a data
stream . Parallel processing may occur in the instruction stream, in the data
stream, or in both. Flynn's classification divides computers into four major
groups as follows:

Single instruction stream, single data stream (SISD)

Single instruction stream, multiple data stream (SIMD)

Multiple instruction stream, single data stream (MISD)

Multiple instruction stream, multiple data stream (MIMD)

SISD represents the organization of a single computer containing a con­
trol unit, a processor unit, and a memory unit. Instructions are executed
sequentially and the system may or may not have internal parallel processing
capabilities. Parallel processing in this case may be achieved by means of
multiple functional units or by pipeline processing.

SIMD represents an organization that includes many processing units
under the supervision of a common control unit. All processors receive
the same instruction from the control unit but operate on different items of
data. The shared memory unit must contain multiple modules so that it can
communicate with all the processors simultaneously. MISD structure is only
of theoretical interest since no practical system has been constructed using this
organization. MIMD organization refers to a computer system capable of
processing several programs at the same time. Most multiprocessor and multi­
computer systems can be classified in this category.

Flynn's classification depends on the distinction between the perform­
ance of the control unit and the data-processing unit. It emphasizes the be-

302 CHAPTER NINE Pipeline and Vector Processing

an example

havioral characteristics of the computer system rather than its operational and
structural interconnections. One type of parallel processing that does not fit
Flynn's classification is pipelining. The only two categories used from this
classification are SIMD array processors discussed in Sec. 9-7, and MIMD
multiprocessors presented in Chap. 13.

In this chapter we consider parallel processing under the following main
topics:

1. Pipeline processing

2. Vector processing

3. Array processors

Pipeline processing is an implementation technique where arithmetic suboper­
ations or the phases of a computer instruction cycle overlap in execution.
Vector processing deals with computations involving large vectors and ma­
trices. Array processors perform computations on large arrays of data.

9-2 Pipelining

Pipelining is a technique of decomposing a sequential process into subopera­
tions, with each subprocess being executed in a special dedicated segment that
operates concurrently with all other segments. A pipeline can be visualized as
a collection of processing segments through which binary information flows.
Each segment performs partial processing dictated by the way the task is
partitioned. The result obtained from the computation in each segment is
transferred to the next segment in the pipeline. The final result is obtained after
the data have passed through all segments. The name "pipeline" implies a
flow of information analogous to an industrial assembly line. It is characteristic
of pipelines that several computations can be in progress in distinct segments
at the same time. The overlapping of computation is made possible by associ­
ating a register with each segment in the pipeline. The registers provide
isolation between each segment so that each can operate on distinct data
simultaneously.

Perhaps the simplest way of viewing the pipeline structure is to imagine
that each segment consists of an input register followed by a combinational
circuit. The register holds the data and the combinational circuit performs the
suboperation in the particular segment. The output of the combinational circuit
in a given segment is applied to the input register of the next segment. A clock
is applied to all registers after enough time has elapsed to perform all segment
activity. In this way the information flows through the pipeline one step at a
time.

The pipeline organization will be demonstrated by means of a simple

SECTION 9·2 Pipelining 303

example. Suppose that we want to perform the combined multiply and add
operations with a stream of numbers.

A, • B, + C, for i = 1, 2, 3, . . . , 7

Each suboperation is to be implemented in a segment within a pipeline. Each
segment has one or two registers and a combinational circuit as shown in Fig.
9-2. R 1 through RS are registers that receive new data with every clock pulse.
The multiplier and adder are combinational circuits. The suboperations per­
formed in each segment of the pipeline are as follows:

R 1 <-- A,, R2 <-- B,

R3 <-- R 1 • R2, R4 <-- C,

R5 <-- R3 + R4

Input A, and B,

Multiply and input C,

Add C; to product

The five registers are loaded with new data every clock pulse. The effect of each
clock is shown in Table 9-1 . The first clock pulse transfers A1 and 81 into R 1 and

Figure 9�2 Example of pipeline processing.

A; B, C;

304 CHAPTER NINE Pipeline and Vector Processing

TABLE 9 .. 1 Content of Registers in Pipeline Example

Clock Segment 1 Segment 2 Segment 3
Pulse

Number R l RZ R3 R4 R5

A, B,
2 A, B, A1 * B1 c,
3 A, B, A2 * B2 c, At * Bl + C1
4 A, B, A3 * BJ c, A2 * B2 + C2
5 As Bs A4 * B4 c, Al * Bl + C3
6 A, B, As * Bs c, A4 * B4 + C4
7 A, B, A6 * B6 c, As * Bs + Cs
8 A, * B, c, A6 * B6 + C6
9 A1 * B1 + C,

R2. The second dock pulse transfers the product of R 1 and R2 into R3 and C1
into R4. The same clock pulse transfers A2 and B2 into R 1 and R2. The third
clock pulse operates on all three segments simultaneously. It places A, and B,
into R1 and R2, transfers the product of R1 and R2 into R3, transfers C, into
R4, and places the sum of R3 and R4 into RS. It takes three clock pulses to fill
up the pipe and retrieve the first output from RS. From there on, each dock
produces a new output and moves the data one step down the pipeline. This
happens as long as new input data flow into the system. When no more input
data are available, the clock must continue until the last output emerges out
of the pipeline.

General Considerations
Any operation that can be decomposed into a sequence of suboperations of
about the same complexity can be implemented by a pipeline processor. The
technique is efficient for those applications that need to repeat the same task
many times with clifferent sets of data. The general structure of a four-segment
pipeline is illustrated in Fig. 9-3. The operands pass through all four segments
in a fixed sequence. Each segment consists of a combinational circuit S; that
performs a suboperation over the data stream flowing through the pipe. The
segments are separated by registers R; that hold the intermediate results
between the stages. Information flows between adjacent stages under the
control of a common clock applied to all the registers simultaneously. We

task define a task as the total operation performed going through all the segments
in the pipeline.

space-tiltU! diagram The behavior of a pipeline can be illustrated with a space-time diagram.
This is a cliagram that shows the segment utilization as a function of time. The
space-time cliagram of a four-segment pipeline is demonstrated in Fig. 9-4. The
horizontal axis clisplays the time in clock cycles and the vertical axis gives the

speedup

SECTION 9-2 Pipelining 305

Figure 9�3 Four�segment pipeline.

segment number. The diagram shows six tasks T1 through T6 executed in four
segments. Initially, task 1i is handled by segment 1. After the first clock,
segment 2 is busy with T,, while segment 1 is busy with task T2• Continuing
in this manner, the first task T1 is completed after the fourth clock cycle. From
then on, the pipe completes a task every clock cycle. No matter how many
segments there are in the system, once the pipeline is full, it takes only one
clock period to obtain an output.

Now consider the case where a k-segment pipeline with a clock cycle time
t, is used to execute n tasks. The first task T1 requires a time equal to kt, to
complete its operation since there are k segments in the pipe. The remaining
n - 1 tasks emerge from the pipe at the rate of one task per clock cycle and
they will be completed after a time equal to (n - 1)t, . Therefore, to complete
n tasks using a k-segment pipeline requires k + (n - 1) clock cycles. For exam­
ple, the diagram of Fig. 9-4 shows four segments and six tasks. The time
required to complete all the operations is 4 + (6 - 1) = 9 clock cycles, as
indicated in the diagram.

Next consider a nonpipeline unit that performs the same operation and
takes a time equal to t. to complete each task. The total time required for n tasks
is nt •. The speedup of a pipeline processing over an equivalent nonpipeline
processing is defined by the ratio

I 2

Segment: T, T,

T,

5 =
nt.

(k + n - 1)t,

Figure 9�4 Space�time diagram for pipeline.

3 4 5 6 7 8

T, T, Ts T,

T, T, T, Ts T,

T, T, T, T, Ts T,

T, T, T, T, Ts

9
Clock cycles

T,

306 CHAPTER NINE Pipeline and Vector Processing

As the number of tasks increases, n becomes much larger than k - 1, and
k + n - 1 approaches the value of n. Under this condition, the speedup
becomes

5 = !_,_
t,

If we assume that the time it takes to process a task is the same in the pipeline
and non pipeline circuits, we will have t, = kt,. Including this assumption, the
speedup reduces to

s = � = k
t,

This shows that the theoretical maximum speedup that a pipeline can provide
is k, where k is the number of segments in the pipeline.

To clarify the meaning of the speedup ratio, consider the following
numerical example. Let the time it takes to process a suboperation in each
segment be equal to t, = 20 ns. Assume that the pipeline has k = 4 seg­
ments and executes n = 100 tasks in sequence. The pipeline system will take
(k + n - 1)t, = (4 + 99) x 20 = 2060 ns to complete. Assuming that t, =
kt, = 4 x 20 = 80 ns, a non pipeline system requires nkt, = 100 x 80 = 8000 ns
to complete the 100 tasks. The speedup ratio is equal to 8000/2060 = 3 .88. As
the number of tasks increases, the speedup will approach 4, which is equal to
the number of segments in the pipeline. If we assume that t, = 60 ns, the
speedup becomes 60/20 = 3 .

To duplicate the theoretical speed advantage of a pipeline process by
means of multiple functional units, it is necessary to construct k identical units
that will be operating in parallel. The implication is that a k-segment pipeline
processor can be expected to equal the performance of k copies of an equivalent
nonpipeline circuit under equal operating conditions. This is illustrated in
Fig. 9-5, where four identical circuits are connected in parallel. Each P circuit
performs the same task of an equivalent pipeline circuit. Instead of operating
with the input data in sequence as in a pipeline, the parallel circuits acceptfour
input data items simultaneously and perform four tasks at the same time.
As far as the speed of operation is concerned, this is equivalent to a four
segment pipeline. Note that the four-unit circuit of Fig. 9-5 constitutes a
single-instruction multiple-data (SIMD) organization since the same instruc­
tion is used to operate on multiple data in parallel.

There are various reasons why the pipeline cannot operate at its maxi­
mum theoretical rate. Different segments may take different times to complete
their suboperation. The clock cycle must be chosen to equal the time delay of
the segment with the maximum propagation time. This causes all other seg­
ments to waste time while waiting for the next clock. Moreover, it is not always

I;

P,

SECTION 9-3 Arithmetic Pipeline 307

Figure 9�5 Multiple functional units in parallel.

correct to assume that a nonpipe circuit has the same time delay as that of an
equivalent pipeline circuit. Many of the intermediate registers will not be
needed in a single-unit circuit, which can usually be constructed entirely as a
combinational circuit. Nevertheless, the pipeline technique provides a faster
operation over a purely serial sequence even though the maximum theoretical
speed is never fully achieved.

There are two areas of computer design where the pipeline organization
is applicable. An arithmetic pipeline divides an arithmetic operation into sub­
operations for execution in the pipeline segments. An instruction pipeline oper­
ates on a stream of instructions by overlapping the fetch, decode, and execute
phases of the instruction cycle. The two types of pipelines are explained in the
following sections.

9-3 Arithmetic Pipeline

Pipeline arithmetic units are usually found in very high speed computers. They
are used to implement floating-point operations, multiplication of fixed-point
numbers, and similar computations encountered in scientific problems. A
pipeline multiplier is essentially an array multiplier as described in Fig. 10-10,
with special adders designed to minimize the carry propagation time through
the partial products. Floating-point operations are easily decomposed into
suboperations as demonstrated in Sec. 10-5. We will now show an example of
a pipeline unit for floating-point addition and subtraction.

The inputs to the floating-point adder pipeline are two normalized float­
ing-point binary numbers.

X = A X 2'

Y = 8 X 2'

308 CHAPTER NINE Pipeline and Vector Processing

A and B are two fractions that represent the mantissas and a and b are the
exponents. The floating-point addition and subtraction can be performed in
four segments, as shown in Fig. 9-6. The registers labeled R are placed between
the segments to store intermediate results. The suboperations that are per­
formed in the four segments are:

1. Compare the exponents.

2. Align the mantissas.

3. Add or subtract the mantissas.

4. Normalize the result.

This follows the procedure outlined in the flowchart of Fig. 10-15 but with some
variations that are used to reduce the execution time of the suboperations. The
exponents are compared by subtracting them to determine their difference.
The larger exponent is chosen as the exponent of the result. The exponent
difference determines how many times the mantissa associated with the
smaller exponent must be shifted to the right. This produces an alignment of
the two mantissas. It should be noted that the shift must be designed as a
combinational circuit to reduce the shift time. The two mantissas are added or
subtracted in segment 3. The result is normalized in segment 4. When an
overflow occurs, the mantissa of the sum or difference is shifted right and the
exponent incremented by one. If an underflow occurs, the number of leading
zeros in the mantissa determines the number of left shifts in the mantissa and
the number that must be subtracted from the exponent.

The following numerical example may clarify the suboperations per­
formed in each segment. For simplicity, we use decimal numbers, although
Fig. 9-6 refers to binary numbers. Consider the two normalized floating-point
numbers:

X = 0.9504 X 10'

Y = 0.8200 X 1<J1

The two exponents are subtracted in the first segment to obtain 3 - 2 = 1. The
larger exponent 3 is chosen as the exponent of the result. The next segment
shifts the mantissa of Y to the right to obtain

X = 0.9504 X 103

Y = 0.0820 X 103

This aligns the two mantissas under the same exponent. The addition of the
two mantissas in segment 3 produces the sum

Z = 1 .0324 X 10'

Sepn<rll l;

Scpxor2:

Sqment 3:

$qrncnl4:

-
A

3 10 CHAPTER NINE Pipeline and Vector Processing

insttvction cycle

The sum is adjusted by normalizing the result so that it has a fraction with a
nonzero first digit. This is done by shifting the mantissa once to the right and
incrementing the exponent by one to obtain the normalized sum.

Z = 0.10324 X 10'

The comparator, shifter, adder-subtractor, incrementer, and decrementer in
the floating-point pipeline are implemented with combinational circuits. Sup­
pose that the timedelaysof the four segments are t, = 60 ns, t2 = 70 ns, t3 = 100
ns, t4 = 80 ns, and the interface registers have a delay of t, = 10 ns. The dock
cycle is chosen to be t, = t3 + t, = 110 ns. An equivalent nonpipeline floating­
point adder-subtractor will have a delay time t, = t, + t2 + t, + t4 + t, = 320
ns. In this case the pipelined adder has a speedup of 3201110 = 2. 9 over the
nonpipelined adder.

9-4 Instruction Pipeline

Pipeline processing can occur not only in the data stream but in the instruction
stream as well. An instruction pipeline reads consecutive instructions from
memory while previous instructions are being executed in other segments.
This causes the instruction fetch and execute phases to overlap and perform
simultaneous operations. One possible digression associated with such a
scheme is that an instruction may cause a branch out of sequence. In that case
the pipeline must be emptied and all the instructions that have been read from
memory after the branch instruction must be discarded.

Consider a computer with an instruction fetch unit and an instruction
execution unit designed to provide a two-segment pipeline. The instruction
fetch segment can be implemented by means of a first-in, first-out (FIFO)
buffer. This is a type of unit that forms a queue rather than a stack. Whenever
the execution unit is not using memory, the control increments the program
counter and uses its address value to read consecutive instructions from mem­
ory. The instructions are inserted into the FIFO buffer so that they can be
executed on a first-in, first-out basis. Thus an instruction stream can be placed
in a queue, waiting for decoding and processing by the execution segment. The
instruction stream queuing mechanism provides an efficient way for reducing
the average access time to memory for reading instructions. Whenever there
is space in the FIFO buffer, the control unit initiates the next instruction fetch
phase. The buffer acts as a queue from which control then extracts the instruc­
tions for the execution unit.

Computers with complex instructions require other phases in addition to
the fetch and execute to process an instruction completely. In the most general
case, the computer needs to process each instruction with the following se­
quence of steps.

SECTION 9-4 Instruction Pipeline 3 1 1

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Calculate the effective address.

4. Fetch the operands from memory.

5. Execute the instruction.

6. Store the result in the proper place.

There are certain difficulties that will prevent the instruction pipeline
from operating at its maximum rate. Different segments may take different
times to operate on the incoming information. Some segments are skipped for
certain operations. For example, a register mode instruction does not need an
effective address calculation. Two or more segments may require memory
access at the same time, causing one segment to wait until another is finished
with the memory. Memory access conflicts are sometimes resolved by using
two memory buses for accessing instructions and data in separate modules. ln
this way, an instruction word and a data word can be read simultaneously from
two different modules.

The design of an instruction pipeline will be most efficient if the instruc­
tion cycle is divided into segments of equal duration. The time that each step
takes to fulfill its function depends on the instruction and the way itis executed.

Example: Four-Segment Instruction Pipeline
Assume that the decoding of the instruction can be combined with the calcu­
lation of the effective address into one segment. Assume further that most of
the instructions place the result into a processor register so that the instruction
execution and storing of the result can be combined into one segment. This
reduces the instruction pipeline into four segments.

Figure 9-7 shows how the instruction cycle in the CPU can be processed
with a four-segment pipeline. While an instruction is being executed in seg­
ment 4, the next instruction in sequence is busy fetching an operand from
memory in segment 3. The effective address may be calculated in a separate
arithmetic circuit for the third instruction, and whenever the memory is avail­
able, the fourth and all subsequent instructions can be fetched and placed in
an instruction FIFO. Thus up to four suboperations in the instruction cycle can
overlap and up to four different instructions can be in progress of being
processed at the same time.

Once in a while, an instruction in the sequence may be a program control
type that causes a branch out of normal sequence. In that case the pending
operations in the last two segments are completed and all information stored
in the instruction buffer is deleted. The pipeline then restarts from the new
address stored in the program counter. Similarly, an interrupt request, when
acknowledged, will cause the pipeline to empty and start again from a new
address value.

312 OW'TEll. NINE Pipeline and Vecmr Processina

Figure 9-8 shows the operation of the instruction pipetine. The time in the
horizontal axis is divided into steps of equal duration. The four segments are
represented in the diagram with an abbreviated symbol.

1. Fl is the segment that fetches an instruction.

2. DA is the segment that decodes the instruction and calculates the
effective address.

3. FO is the segment that fetches the operand.

4. EX is the segment that executes the instruction.

It is assumed that the processor has separate instruction and data memories
so that the operation in Fl and FO can proceed at the same time. In the absence

pipeline conflicts

Step: I 2 3

Ins truction: I FI DA FO

2 FI DA

4 5 6

EX

FO EX

SECTION 9-4 Instruction Pipeline 3 1 3

7 8 9 1 0 I I I 2 I 3

(Branch) 3 FI DA FO EX

4 FI - - FI DA FO EX

5 - - - Fl DA FO EX

6 FI DA FO EX

7 Fl DA FO EX

Figure 9�8 Timing of instruction pipeline.

of a branch instruction, each segment operates on different instructions. Thus,
in step 4, instruction 1 is being executed in segment EX; the operand for
instruction 2 is being fetched in segment FO; instruction 3 is being decoded in
segment DA; and instruction 4 is being fetched from memory in segment FL

Assume now that instruction 3 is a branch instruction. As soon as this
instruction is decoded in segment DA in step 4, the transfer from FI to DA of
the other instructions is halted until the branch instruction is executed in step
6. If the branch is taken, a new instruction is fetched in step 7. If the branch
is not taken, the instruction fetched previously in step 4 can be used. The
pipeline then continues until a new branch instruction is encountered.

Another delay may occur in the pipeline if the EX segment needs to store
the result of the operation in the data memory while the FO segment needs
to fetch an operand. In that case, segment FO must wait until segment EX has
finished its operation.

In general, there are three major difficulties that cause the instruction
pipeline to deviate from its normal operation.

1. Resource conflicts caused by access to memory by two segments at the
same time. Most of these conflicts can be resolved by using separate
instruction and data memories.

2. Data dependency conflicts arise when an instruction depends on the
result of a previous instruction, but this result is not yet available.

3. Branch difficulties arise from branch and other instructions that change
the value of PC.

Data Dependency
A difficulty that may caused a degradation of performance in an instruction
pipeline is due to possible collision of data or address. A collision occurs when

3 14 CHAPTER NINE Pipeline and Vector Processing

an instruction cannot proceed because previous instructions did not complete
certain operations. A data dependency occurs when an instruction needs data
that are not yet available. For example, an instruction in the FO segment may
need to fetch an operand that is being generated at the same time by the
previous instruction in segment EX. Therefore, the second instruction must
wait for data to become available by the first instruction. Similarly, an address
dependency may occur when an operand address cannot be calculated because
the information needed by the addressing mode is not available. For example,
an instruction with register indirect mode cannot proceed to fetch the operand
if the previous instruction is loading the address into the register. Therefore,
the operand access to memory must be delayed until the required address is
available. Pipelined computers deal with such conflicts between data depen­
dencies in a variety of ways.

hardware interlocks The most straightforward method is to insert hardware interlocks . An
interlock is a circuit that detects instructions whose source operands are des­
tinations of instructions farther up in the pipeline. Detection of this situation
causes the instruction whose source is not available to be delayed by enough
clock cycles to resolve the conflict. This approach maintains the program
sequence by using hardware to insert the required delays.

operand forwarding Another technique called operand forwarding uses special hardware to
detect a conflict and then avoid it by routing the data through special paths
between pipeline segments. For example, instead of transferring an ALU result
into a destination register, the hardware checks the destination operand, and
if it is needed as a source in the next instruction, it passes the result directly
into the ALU input, bypassing the register ffie. This method requires additional
hardware paths through multiplexers as well as the circuit that detects the
conflict.

A procedure employed in some computers is to give the responsibility for
solving data conflicts problems to the compiler that translates the high-level
programming language into a machine language program. The compiler for
such computers is designed to detect a data conflict and reorder the instruc­
tions as necessary to delay the loading of the conflicting data by inserting

delayed load no-operation instructions. This method is referred to as delayed load. An exam­
ple of delayed load is presented in the next section.

Handling of Branch Instructions
One of the major problems in operating an instruction pipeline is the occur­
rence of branch instructions. A branch instruction can be conditional or uncon­
ditional. An unconditional branch always alters the sequential program flow
by loading the program counter with the target address. In a conditional
branch, the control selects the target instruction if the condition is satisfied or
the next sequential instruction if the condition is not satisfied. As mentioned
previously, the branch instruction breaks the norrnal sequence of the instruc­
tion stream, causing difficulties in the operation of the instruction pipeline.

prefetch target
instruction

branch target buffer

loop buffer

branch prediction

tklayed branch

SECTION 9-5 RlSC Pipeline 3 15

Pipelined computers employ various hardware techniques to minimize the
performance degradation caused by instruction branching.

One way of handling a conditional branch is to prefetch the target instruc­
tion in addition to the instruction following the branch. Both are saved until
the branch is executed. If the branch condition is successful, the pipeline
continues from the branch target instruction. An extension of this procedure
is to continue fetching instructions from both places until the branch decision
is made. At that time control chooses the instruction stream of the correct
program flow.

Another possibility is the use of a branch target buffer or BTB. The BTB is
an associative memory (see Sec. 12-4) included in the fetch segment of the
pipeline. Each entry in the BTB consists of the address of a previously executed
branch instruction and the target instruction for that branch. It also stores the
next few instructions after the branch target instruction. When the pipeline
decodes a branch instruction, it searches the associative memory BTB for the
address of the instruction. If it is in the BTB, the instruction is available directly
and prefetch continues from the new path. If the instruction is not in the BTB,
the pipeline shifts to a new instruction stream and stores the target instruction
in the BTB. The advantage of this scheme is that branch instructions that have
occurred previously are readily available in the pipeline without interruption.

A variation of the BTB is the loop buffer. This is a small very high speed
register file maintained by the instruction fetch segment of the pipeline. When
a program loop is detected in the program, it is stored in the loop buffer in its
entirety, including all branches. The program loop can be executed directly
without having to access memory until the loop mode is removed by the final
branching out.

Another procedure that some computers use is branch prediction . A
pipeline with branch prediction uses some additional logic to guess the out­
come of a conditional branch instruction before it is executed. The pipeline then
begins prefetching the instruction stream from the predicted path. A correct
prediction eliminates the wasted time caused by branch penalties.

A procedure employed in most ruse processors is the deli<yed branch . In
this procedure, the compiler detects the branch instructions and rearranges the
machine language code sequence by inserting useful instructions that keep the
pipeline operating without interruptions. An example of delayed branch is the
insertion of a no-operation instruction after a branch instruction. This causes
the computer to fetch the target instruction during the execution of the no­
operation instruction, allowing a continuous flow of the pipeline. An example
of delayed branch is presented in the next section.

9-5 RISC Pipeline

The reduced instruction set computer (ruSq was introduced in Sec. 8-8 .
Among the characteristics attributed to ruse is its ability to use an efficient
instruction pipeline. The simplicity of the instruction set can be utilized to

3 16 CHAPTER NINE Pipeline and Vector Processing

single-cycle
instruction
execution

compiler support

implement an instruction pipeline using a small number of suboperations,
with each being executed in one clock cycle. Because of the fixed-length
instruction format, the decoding of the operation can occur at the same time
as the register selection. All data manipulation instructions have register-to­
register operations. Since all operands are in registers, there is no need for
calculating an effective address or fetching of operands from memory. There­
fore, the instruction pipeline can be implemented with two or three segments.
One segment fetches the instruction from program memory, and the other
segment executes the instruction in the ALU. A third segment may be used to
store the result of the ALU operation in a destination register.

The data transfer instructions in RISC are limited to load and store
instructions. These instructions use register indirect addressing. They usually
need three or four stages in the pipeline. To prevent conflicts between a
memory access to fetch an instruction and to load or store an operand, most
RISC machines use two separate buses with two memories: one for storing the
instructions and the other for storing the data. The two memories can some­
time operate at the same speed as the CPU clock and are referred to as cache
memories (see Sec. 12-6).

As mentioned in Sec. 8-8, one of the major advantages of RISC is its ability
to execute instructions at the rate of one per clock cycle. It is not possible to
expect that every instruction be fetched from memory and executed in one
clock cycle. What is done, in effect, is to start each instruction with each clock
cycle and to pipeline the processor to achieve the goal of single-cycle instruc­
tion execution. The advantage of RISC over OSC (complex instruction set
computer) is that RISC can achieve pipeline segments, requiring just one clock
cycle, while OSC uses many segments in its pipeline, with the longest segment
requiring two or more clock cycles.

Another characteristic of RISC is the support given by the compiler that
translates the high-level language program into machine language program.
Instead of designing hardware to handle the difficulties associated with data
conflicts and branch penalties, RISC processors rely on the efficiency of the
compiler to detect and minimize the delays encountered with these problems.
The following examples show how a compiler can optimize the machine
language program to compensate for pipeline conflicts.

Example: Three-Segment Instruction Pipeline
A typical set of instructions for a RISC processor are listed in Table 8-12. We
see from this table that there are three types of instructions. The data manip­
ulation instructions operate on data in processor registers. The data transfer
instructions are load and store instructions that use an effective address ob­
tained from the addition of the contents of two registers or a register and a
displacement constant provided in the instruction. The program control in­
structions use register values and a constant to evaluate the branch address,
which is transferred to a register or the program counter PC.

SECTION 9-5 RISC Pipeline 3 1 7

Now consider the hardware operation for such a computer. The control
section fetches the instruction from program memory into an instruction reg­
ister. The instruction is decoded at the same time that the registers needed for
the execution of the instruction are selected. The processor unit consists of a
number of registers and an arithmetic logic unit (ALU) that performs the
necessary arithmetic, logic, and shift operations. A data memory is used to
load or store the data from a selected register in the register file. The instruction
cycle can be divided into three suboperations and implemented in three
segments:

I: Instruction fetch

A: ALU operation

E: Execute instruction

The I segment fetches the instruction from program memory. The instruction
is decoded and an ALU operation is performed in the A segment. The ALU
is used for three different functions, depending on the decoded instruction.
It performs an operation for a data manipulation instruction, it evaluates the
effective address for a load or store instruction, or it calculates the branch
address for a program control instruction. The E segment directs the output
of the ALU to one of three destinations, depending on the decoded instruction.
It transfers the result of the ALU operation into a destination register in the
register file, it transfers the effective address to a data memory for loading or
storing, or it transfers the branch address to the program counter.

Delayed Load
Consider now the operation of the following four instructions:

1. LOAD: Rl <--M [address 1]

2. LOAD: R2 <--M [address 2]

3. ADD: R3 <-- Rl + R2

4. STORE: M[address 3] <-- R3

If the three-segment pipeline proceeds without interruptions, there will be a
data conflict in instruction 3 because the operand in R2 is not yet available in
the A segment. This can be seen from the timing of the pipeline shown in
Fig. 9-9(a). The E segment in clock cycle 4 is in a process of placing the memory
data into R2. The A segment in clock cycle 4 is using the data from R2, but the
value in R2 will not be the correct value since it has not yet been transferred
from memory. It is up to the compiler to make sure that the instruction
following the load instruction uses the data fetched from memory. If the
compiler cannot find a useful instruction to put after the load, it inserts a no-op
(no-operation) instruction. This is a type of instruction that is fetched from

3 1 8 CHAPTER NINE Pipeline and Vector Processing

Clock cycles:

I . Load R I

2. Load R2

3 . Add R I + R2

4. Store R 3

I 2

I A

I

3 4 5

E

A E

I A E

I A

(a) Pipeline timing with data conflict

Clock cycle: I 2 3 4 5 6

I . Load R I I A E

2. Load R2 I A E

3. No-operation I A E

4. Add R I + R2 I A E

5. Store R3 I A

(b) Pipeline timing with delayed load

6

E

7

E

Figure 9 .. 9 Three�segment pipeline timing.

memory but has no operation, thus wasting a clock cycle. This concept of
delaying the use of the data loaded from memory is referred to as delayed load.

Figure 9-9(b) shows the same program with a no-op instruction inserted
after the load to R2 instruction. The data is loaded into R2 in clock cycle 4. The
add instruction uses the value of R2 in step 5 . Thus the no-op instruction is
used to advance one clock cycle in order to compensate for the data conflict in
the pipeline. (Note that no operation is performed in segment A during clock
cycle 4 or segment E during clock cycle 5 .) The advantage of the delayed load
approach is that the data dependency is taken care of by the compiler rather
than the hardware. This results in a simpler hardware segment since the
segment does not have to check if the content of the register being accessed
is currently valid or not.

Delayed Branch
It was shown in Fig. 9-8 that a branch instruction delays the pipeline operation
until the instruction at the branch address is fetched. Several techniques for
reducing branch penalties were discussed in the preceding section. The
method used in most RISC processors is to rely on the compiler to redefine the
branches so that they take effect at the proper time in the pipeline. This method
is referred to as delayed branch.

SECTION 9-6 Vector Processing 3 19

The compiler for a processor that uses delayed branches is designed to
analyze the instructions before and after the branch and rearrange the program
sequence by inserting useful instructions in the delay steps. For example, the
compiler can determine that the program dependencies allow one or more
instructions preceding the branch to be moved into the delay steps after the
branch. These instructions are then fetched from memory and executed
through the pipeline while the branch instruction is being executed in other
segments. The effect is the same as if the instructions were executed in their
original order, except that the branch delay is removed. It is up to the compiler
to find useful instructions to put after the branch instruction. Failing that, the
compiler can insert no-op instructions.

An example of delayed branch is shown in Fig. 9-10. The program for this
example consists of five instructions:

Load from memory to R1

Increment R2

Add R3 to R4

Subtract R5 from R6

Branch to address X

In Fig. 9-10(a) the compiler inserts two no-op instructions after the branch.
The branch address X is transferred to PC in clock cycle 7. The fetching of the
instruction at X is delayed by two clock cycles by the no-op instructions. The
instruction at X starts the fetch phase at clock cycle 8 after the program counter
PC has been updated.

The program in Fig. 9-lO(b) is rearranged by placing the add and subtract
instructions after the branch instruction instead of before as in the original
program. Inspection of the pipeline timing shows that PC is updated to the
value of X in clock cycle 5, but the add and subtract instructions are fetched
from memory and executed in the proper sequence. In other words, if the load
instruction is at address 101 and X is equal to 350, the branch instruction is
fetched from address 103. The add instruction is fetched from address 104 and
executed in clock cycle 6. The subtract instruction is fetched from address 105
and executed in clock cycle 7. Since the value of X is transferred to PC with clock
cycle 5 in the E segment, the instruction fetched from memory at clock cycle
6 is from address 350, which is the instruction at the branch address.

9-6 Vector Processing

There is a class of computational problems that are beyond the capabilities of
a conventional computer. These problems are characterized by the fact that
they require a vast number of computations that will take a conventional
computer days or even weeks to complete. In many science and engineering

320 CHAPTER NINE Pipeline and Vector Processing

"f'Plicaticms

Clock cycles: I 2 3 4 5 6 7 8 9 10

I . Load I A E

2. Increment I A E

3 . Add I A E

4. Subtract I A E

5. Branch to X I A E

6. No-operation I A E

7. No-operation I A E

8. Instruction in X I A E

(a) Using no-operation instructions

Clock cycles: I 2 3 4 5 6 7 8

! . Load I A E

2. Increment I A E

3. Branch to X I A E

4. Add I A E

5. Subtract I A E

6. Instruction in X I A E

(b) Rearranging the instructions

Figure 9-10 Example of delayed branch.

applications, the problems can be formulated in terms of vectors and matrice1
that lend themselves to vector processing.

Computers with vector processing capabilities are in demand in special
ized applications. The following are representative application areas whero
vector processing is of the utmost importance.

Long-range weather forecasting

Petroleum explorations

Seismic data analysis

Medical diagnosis
AProdynamics and space fli.eht simulations

Artificial intelligence and expert systems

Mapping the human genome

Image processing

SECTION 9.-6 Vector Processing 3 2 1

Without sophisticated computers, many o f the required computations cannot
be completed within a reasonable amount of time. To achieve the required level
of high performance it is necessary to utilize the fastest and most reliable
hardware and apply innovative procedures from vector and parallel processing
techniques.

Vector Operations
Many scientific problems require arithmetic operations on large arrays of
numbers. These numbers are usually formulated as vectors and matrices of
floating-point numbers. A vector is an ordered set of a one-dimensional array
of data items. A vector V of length n is represented as a row vector by
V = [V1 V2 V, · · · V.] . It maybe represented as a columnvector if the data
items are listed in a column. A conventional sequential computer is capable of
processing operands one at a time. Consequently, operations on vectors must
be broken down into single computations with subscripted variables. The
element V; of vector V is written as V(I) and the index I refers to a memory
address or register where the number is stored. To examine the difference
between a conventional scalar processor and a vector processor, consider the
following Fortran DO loop:

DO 2 0 I = 1 , 1 0 0
2 0 C (I) = B (I) + A (I)

This is a program for adding two vectors A and B of length 100 to produce a
vector C . This is implemented in machine language by the following sequence
of operations.

I n i t i a l i z e I = 0
2 0 R e a d A (I)

R e a d B (I)
S t o r e C (I) = A (I) + B (I)
I n c r e m e n t I = I + 1
I f I ,;; 1 0 0 go to 2 0
C o n t i n u e

This constitutes a program loop that reads a pair o f operands from arrays A
and B and performs a floating-point addition. The loop control variable is then
updated and the steps repeat 100 times.

A computer capable of vector processing eliminates the overhead associ­
ated with the time it takes to fetch and execute the instructions in the program

322 CHAPTER NINE Pipeline and Vector Processing

loop. It allows operations to be specified with a single vector instruction of the
form

C(1 : 100) = A(1 : 100) + B(1 : 100)

The vector instruction includes the initial address of the operands, the length
of the vectors, and the operation to be performed, all in one composite instruc­
tion. The addition is done with a pipelined floating-point adder similar to the
one shown in Fig. 9-6.

A possible instruction format for a vector instruction is shown in Fig. 9-11 .
This i s essentially a three-address instruction with three fields specifying the
base address of the operands and an additional field that gives the length of
the data items in the vectors. This assumes that the vector operands reside in
memory. It is also possible to design the processor with a large number of
registers and store all operands in registers prior to the addition operation. In
that case the base address and length in the vector instruction specify a group
of CPU registers.

Matrix Multiplication
Matrix multiplication is one of the most computational intensive operations
performed in computers with vector processors. The multiplication of two
n x n matrices consists of n' inner products or n' multiply-add operations. An
n x m matrix of numbers has n rows and m columns and may be considered
as constituting a set of n row vectors or a set of m column vectors. Consider,
for example, the multiplication of two 3 x 3 matrices A and B .

The product matrix C i s a 3 x 3 matrix whose elements are related to the
elements of A and B by the inner product:

3
cii = L aik x bk; k=l

For example, the number in the first row and first column of matrix C is
calculated by letting i = 1, j = 1, to obtain

Figure 9 .. 11 Instruction format for vector processor.

SECTION 9.-6 Vector Processing 323

This requires three multiplications and (after initializing Cn to 0) three addi­
tions. The total number of multiplications or additions required to compute the
matrix product is 9 x 3 = 27. If we consider the linked multiply-add operation
c + a x b as a cumulative operation, the product of two n x n matricesrequires
n' multiply-add operations. The computation consists of n' inner products,
with each inner product requiring n multiply-add operations, assuming that
c is initialized to zero before computing each element in the product matrix.

In general, the inner product consists of the sum of k product terms of
the form

In a typical application k may be equal to 100 or even 1000. The inner product
calculation on a pipeline vector processor is shown in Fig. 9-12. The values of
A and B are either in memory or in processor registers. The floating-point
multiplier pipeline and the floating-point adder pipeline are assumed to have
four segments each. All segment registers in the multiplier and adder are
initialized to 0. Therefore, the output of the adder is 0 for the first eight cycles
until both pipes are full. A; and B; pairs are brought in and multiplied at a rate
of one pair per cycle. After the first four cycles, the products begin to be added
to the output of the adder. During the next four cycles 0 is added to the
products entering the adder pipeline. At the end of the eighth cycle, the first
four products A1 B1 through A4 B4 are in the four adder segments, and the next
four products, A5 B5 through A, B,, are in the multiplier segments. At the
beginning of the ninth cycle, the output of the adder is A1 B1 and the output
of the multiplier is A5 B5• Thus the ninth cycle starts the addition A1 B1 + A5 B5
in the adder pipeline. The tenth cycle starts the addition A2 B, + A6 B6, and so
on. This pattern breaks down the summation into four sections as follows:

C = A1 B1 + A, B, + A, B, + A13 B13 + · · ·

+ A, B, + A, B, + AIO BIO + AI, BI4 + . . .

+ A, B, + A, B, + An Bn + Ais Bis + · · ·

+ A, B, + A, B, + AI, BI2 + AI, BI, + . . .

Figure 9 .. 12 Pipeline for calculating an inner product.

324 CHAPTER NINE Pipeline and Vector Processing

When there are no more product terms to be added, the system inserts four
zeros into the multiplier pipeline. The adder pipeline will then have one partial
product in each of its four segments, corresponding to the four sums listed in
the four rows in the above equation. The four partial sums are then added to
form the final sum.

Memory Interleaving
Pipeline and vector processors often require simultaneous access to memory
from two or more sources. An instruction pipeline may require the fetching of
an instruction and an operand at the same time from two different segments.
Similarly, an arithmetic pipeline usually requires two or more operands to
enter the pipeline at the same time. Instead of using two memory buses for
simultaneous access, the memory can be partitioned into a number of modules
connected to a common memory address and data buses. A memory module
is a memory array together with its own address and data registers. Figure 9-13
shows a memory unit with four modules. Each memory array has its own
address register AR and data register DR. The address registers receive infor­
mation from a common address bus and the data registers communicate with
a bidirectional data bus. The two least significant bits of the address can be used
to distinguish between the four modules. The modular system permits one
module to initiate a memory access while other modules are in the process of
reading or writing a word and each module can honor a memory request
independent of the state of the other modules.

Figure 9# 13 Multiple module memory organization.

Address bus

Data bus

Memory
array

Memory
array

Memory
array

Memory
array

SECTION 9-6 Vector Processing 3 25

The advantage of a modular memory is that it allows the use of a tech­
nique called interleaving. In an interleaved memory, different sets of addresses
are assigned to different memory modules. For example, in a two-module
memory system, the even addresses may be in one module and the odd
addresses in the other. When the number of modules is a power of 2, the least
significant bits of the address select a memory module and the remaining bits
designate the specific location to be accessed within the selected module.

A modular memory is useful in systems with pipeline and vector process­
ing. A vector processor that uses an n-way interleaved memory can fetch n
operands from n different modules. By staggering the memory access, the
effective memory cycle time can be reduced by a factor close to the number of
modules. A CPU with instruction pipeline can take advantage of multiple
memory modules so that each segment in the pipeline can access memory
independent of memory access from other segments.

Supercomputers
A commercial computer with vector instructions and pipelined floating-point
arithmetic operations is referred to as a supercomputer . Supercomputers are
very powerful, high-performance machines used mostly for scientific compu­
tations. To speed up the operation, the components are packed tightly together
to minimize the distance that the electronic signals have to travel. Supercom­
puters also use special techniques for removing the heat from circuits to
prevent them from burning up because of their close proximity.

The instruction set of supercomputers contains the standard data trans­
fer, data manipulation, and program control instructions of conventional com­
puters. This is augmented by instructions that process vectors and combina­
tions of scalars and vectors. A supercomputer is a computer system best known
for its high computational speed, fast and large memory systems, and the
extensive use of parallel processing. It is equipped with multiple functional
units and each unit has its own pipeline configuration. Although the super­
computer is capable of general-purpose applications found in all other comput­
ers, it is specifically optimized for the type of numerical calculations involving
vectors and matrices of floating-point numbers.

Supercomputers are not suitable for normal everyday processing of a
typical computer installation. They are limited in their use to a number of
scientific applications, such as numerical weather forecasting, seismic wave
analysis, and space research. They have limited use and limited market be­
cause of their high price.

A measure used to evaluate computers in their ability to perform a given
number of floating-point operations per second is referred to as flops . The term
megaflops is used to denote million flops and gigaflops to denote billion flops.
A typical supercomputer has a basic cycle time of 4 to 20 ns. If the processor
can calculate a floating-point operation through a pipeline each cycle time, it
will have the ability to perform 50 to 250 megaflops. This rate would be

3 26 CHAPTER NINE Pipeline and Vector Processing

sustained from the time the first answer is produced and does not include the
initial setup time of the pipeline.

The first supercomputer developed in 1976 is the Cray-1 supercomputer.
It uses vector processing with 12 distinct functional units in parallel. Each
functional unit is segmented to process the incoming data through a pipeline.
All the functional units can operate concurrently with operands stored in the
large number of registers (over 150) in the CPU. A floating-point operation can
be performed on two sets of 64-bit operands during one clock cycle of 12.5 ns.
This gives a rate of 80 megaflops during the time that the data are processed
through the pipeline. It has a memory capacity of 4 million 64-bit words. The
memory is divided into 16 banks, with each bank having a 50-ns access time.
This means that when all 16 banks are accessed simultaneously, the memory
transfer rate is 320 million words per second. Cray research extended its
supercomputer to a multiprocessor configuration called Cray X-MP and Cray
Y-MP. The new Cray-2 supercomputer is 12 times more powerful than the
Cray-1 in vector processing mode.

Another early model supercomputer is the Fujitsu VP-200. It has a scalar
processor and a vector processor that can operate concurrently. Like the Cray
supercomputers, a large number of registers and multiple functional units are
used to enable register-to-register vector operations. There are four execution
pipelines in the vector processor, and when operating simultaneously, they
can achieve up to 300 megaflops. The main memory has 32 million words
connected to the vector registers through load and store pipelines. The VP-200
has 83 vector instructions and 195 scalar instructions. The newer VP-2600 uses
a clock cycle of 3.2 ns and claims a peak performance of 5 gigaflops.

9-7 Array Processors

An array processor is a processor that performs computations on large arrays
of data. The term is used to refer to two different types of processors. An
attached array processor is an auxiliary processor attached to a general-purpose
computer. It is intended to improve the performance of the host computer in
specific numerical computation tasks. An SIMD array processor is a processor
that has a single-instruction multiple-data organization. It manipulates vector
instructions by means of multiple functional units responding to a common
instruction. Although both types of array processors manipulate vectors, their
internal organization is different.

Attached Array Processor
An attached array processor is designed as a peripheral for a conventional host
computer, and its purpose is to enhance the performance of the computer by
providing vector processing for complex scientific applications. It achieves

SECTION 9-7 Array Processors 3 2 7

high performance by means of parallel processing with multiple functional
units. It includes an arithmetic unit containing one or more pipelined floating­
point adders and multipliers. The array processor can be programmed by the
user to accommodate a variety of complex arithmetic problems.

Figure 9-14 shows the interconnection of an attached array processor to
a host computer. The host computer is a general-purpose commercial com­
puter and the attached processor is a back-end machine driven by the host
computer. The array processor is connected through an input-output con­
troller to the computer and the computer treats it like an external interface. The
data for the attached processor are transferred from main memory to a local
memory through a high-speed bus. The general-purpose computer without
the attached processor serves the users that need conventional data process­
ing. The system with the attached processor satisfies the needs for complex
arithmetic applications.

Some manufacturers of attached array processors offer a model that can
be connected to a variety of different host computers. For example, when
attached to a VAX 11 computer, the FSP-164/MAX from Floating-Point Systems
increases the computing power of the VAX to 100 megaflops. The objective of
the attached array processor is to provide vector manipulation capabilities to
a conventional computer at a fraction of the cost of supercomputers.

SIMD Array Processor
An SIMD array processor is a computer with multiple processing units oper­
ating in parallel. The processing units are synchronized to perform the same
operation under the control of a common control unit, thus providing a single
instruction stream, multiple data stream (SIMD) organization. A general block
diagram of an array processor is shown in Fig. 9-15. It contains a set of identical
processing elements (PEs), each having a local memory M . Each processor
element includes an ALU, a floating-point arithmetic unit, and working regis­
ters. The master control unit controls the operations in the processor elements.
The main memory is used for storage of the program. The function of the
master control unit is to decode the instructions and determine how the
instruction is to be executed. Scalar and program control instructions are

Figure 9.-14 Attached array processor with host computer.

Input�output
interface

High-speed memory-to-

memory bus

328 CHA�R NINE Pipeline and Vector Processing

Figure 9� 15 SIMD array processor organization.

directly executed within the master control unit. Vector instructions are broad­
cast to all PEs simultaneously. Each PE uses operands stored in its local
memory. Vector operands are distributed to the local memories prior to the
parallel execution of the instruction.

Consider, for example, the vector addition C = A + B. The master con­
trol unit first stores the ith components a, and b, of A and B in local memory
M, for i = 1, 2, 3, . . . , n. It then broadcasts the floating-point add instruction
c, = a, + b, to all PEs, causing the addition to take place simultaneously. The
components of c, are stored in fixed locations in each local memory. This
produces the desired vector sum in one add cycle.

Masking schemes are used to control the status of each PE during the
execution of vector instructions. Each PE has a flag that is set when the PE is
active and reset when the PE is inactive. This ensures that only those PEs that
need to participate are active during the execution of the instruction. For
example, suppose that the array processor contains a set of 64 PEs. 1f a vector
length of less than 64 data items is to be processed, the control unit selects the
proper number of PEs to be active. Vectors of greater length than 64 must be
divided into 64-word portions by the control unit.

The best known SIMD array processor is the ILLIAC IV computer devel­
oped at the University of Illinois and manufactured by the Burroughs Corp .
This computer is no longer in operation. SIMD processors are highly special­
ized computers. They are suited primarily for numerical problems that can be
expressed in vector or matrix form. However, they are not very efficient in
other types of computations or in dealing with conventional data-processing
programs.

SfC'TICN 9-7 Array Procaoon 329

PROBLEMS

9-1. In certain scientific computations it is necessary to perform the arithmetic
operation (A; + 8;)(C, + 0;) with a stream of numbers. Specify a pipeline
configuration to cany out this task. Ust the contents of all registers in the
pipeline for i = 1 through 6.

9-2.. Draw a space-time diagnm fo.r a six-segment pipeline showing the time it
takes to process eight tasks.

9-3. Determine the number of dock cydes that it takes to process 200 tasks in a
six-segment pipeline.

9-4. A nonpipellne system takes 50 ns to process a task. The same task can �
processed in a six-segment pipeline with a dock cycle of 10 ns. Detennine
the speedup ratio of the pipeline for 100 tasks. What is the maximum
speedup that can � achieved?

9-5. The pipeline of Fig. 9-2 has the foUowing propagation times: 40 ns for the
operands to � read from memory into registers R1 and R2, 45 ns for the
signal to propagate through the multiplier, S ns for the transfer into R3, and
15 ns to add the two numbers into RS.
a. What is the mWmum dock cycle time that can be used?
b. A non pipeline system can perform the same operation by removing R3

and R4. How long will it take to multiply and add the operands without
using the pipeline?

c. Calculate the speedup of the pipeline for 10 tasks and again for 100 tasks.
d. What Is the maximum speedup that can be ac:hleved?

U. It Is necessary to design a pipeline for a fixed-point multip lier that multipliH
two 8-blt binary integers. £ad\ segment c:onsists of a num� of AND gates
and a binary adder similar to an array multipU�r as shown in Fig. 10.10.
a. How many AND gates are there in eadl segment, and what size of adder

is needed?
b. How many segments are there in the pipeline?
c. U the propagation delay in each segment is 30ns, what is the avera� time

that it lUes to multiply two fixed-point numbers in the pipeline?

9-7. The lime delay of the four segments in the pipeline of Fig. U are as follows:
1, • SOns, 1, • 30ns, 1, • 95 ns, and 1. • 45 ns. TheinterfKf'registersdelay
time 1, • 5 ns.
a. How long would it take to add 100 pairs of num�rs in the pipeline?
b. How can we reduce the total lime to about one-half of the lime calculated

in part (a)?

9-ll. How would you use the floating-point pipeline adder of Fig. U to add 100
Ooating·point nu.mbers Xo + X, + X, + · · · + Xooo?

9-9. Formulate a six-segment instruction pipeline for a computer. Specify the
operations to be performed in eadl segment.

9-10. Explain four possible hardware schemes that can be used in an instruction
pipeline in order to minltnlze the performance degr.tdation caused by in­
struction branching.

3 30 CHAPT<R NINE Pipe lin< and V«mr l'ro<:winc

9-11. Consider the four instructions in lhe following program. Suppose that the
first instruction starts from step 1 in the pipeline used in Fig. 9-8. Specify
what operations are performed in the four segments during step 4.

Load Rl.+-lf[H21
ADD R2-R2 + lf[3l.3)
INC R3+-R3 + :L
STORE lf[3lo<I)+-R3

9-U. Give an example of a program that will cause data conflict in the three-seg­
ment pipeline of Sec. 9-5.

9-13. Give an example that uses delayed load with the three-segment pipeline of
Sec. 9-5.

9-14. Give an example of a program that will cause a branch penalty in lhe
three-segment pipeline of Sec. 9-5.

9·15. Give an example that uses delayed branch with the three-segment pipeline
of Sec. 9-5.

9-16. Considerthemultiplicationoftwo40 x 40matrlcesusingavertorprocessor.
a. How many product terms are there in each inner product. and how many

inner products must be evaluated?
b. How many multiply-add operations are needed to cakulate the product

matrix?

9-17. How many dock cycles does it take to process an inner produCI in lhe
pipeline of Ag. 9-12 when used to evaluate the product of two 60 x 60
matrices? How many inner products are there, and how many dock cycle$
does it take to evaluate the prOduCI matrix?

9-18. Assign add�s to an array of data of 1024 word.s to be stored in the
memory desaibed in F"tg. 9-13.

9-19. A weather forecasting computation requires 2.50 billion flootlng-polnt oper­
ations. The problem is processed in a supercomputer that c:an perform 100
megaflops. How long wiU It take to do these cakulations?

9-20. Conslder a computer with lour Ooatlng-polnt pipeline procusors. Sup�
thateadl processorusesacyde timeol40 ns. How long will it taketoperlorm
400 noating·polnt operations? t. therudiffere�lf the same400operatlons
are carried out using a single pipeline processor with a cyde time of 10 ns?

REFERENCES

1. Dasgupta, S., OJmput<r An:lrittdurt: A Modn-n Syn!Nsis, Vol. 2. New York: John
Wiley, 1989.

2. DeCegama, A. L, PariJ/kl P�ing Architecture •1111 Vl.SI Hordu>art. Englewood
CUffs, N): Prentice HaiL 1989.

SECTION 9· 7 Array Processors 3 3 1

3. Gibson, G. A., Computer Systems Concepts and Design . Englewood Oiffs, NJ: Prentice
Hall, 1991.

4. Hays,) . F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill,
1988.

5. Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New
York: McGraw-Hill, 1984.

6. Kain, R., Computer Architecture: Software and Hardware . Vol. 2. Englewood Cliffs, NJ:
Prentice Hall, 1989.

7. Lee,) . K. F. , and A.) . Smith, "Branch Prediction Strategies and Branch Target
Buffer Design." Computer, Vol. 17, No. 1 Ganuary 1984), pp. 6-22.

8. Lilja, D.) . , "Reducing the Branch Penalties in Pipeline Processors." Computer, Vol.
21, No. 7 Guly 1988), pp. 47-55.

9. Patterson, D. A. , and J. L. Hennessy, Computer Architecture: A Quantitative Approach .
San Mateo, CA: Morgan Kaufmann Publishers, 1990.

10. Pollard, L. H., Computer Design and Architecture . Englewood Cliffs, NJ: Prentice
Hall, 1990.

11. Stone, H. S., High-Performance Computer Architecture, 2nd ed. Reading, MA:
Addison-Wesley, 1990.

12. Tabak, D., Multiprocessors . Englewood Cliffs, NJ: Prentice Hall, 1990.

C H A P T E R T E N

Computer Arithmetic

IN THIS CHAPTER

10.1 lnttodUGtion
10.2 Addition and Subttaetion
10.3 Multiplication Algorithms

10-4 Division Algorirhms
IO.S Aoating·Point Arithmetic Operations
10.6 Decimal Arirhmetk Unit
10-7 Decimal Aritbmetk Operations

10-1 Introduction

Arithmetic instructions in digital computer$ manipulate data to produce re­
sults necessary for the solution of computational problems. These instructions
perform arithmetic calculations and are responsible foe the bulk of activity
involved in processing data in a computer. The four basic arithmetic operations
are addition, subtraction, multipllcatio"' and division. From these four bulc
operations, it is possible to formulate other arithmetic functions and solve
scientific problems by means of numerical analysis methods.

A:n arithmetic processor Is the part of a processor unit that executes
arithmetic operations. The data type assumed to reside in processor repsters
during the execution of an arithmetic instruction is specified in the definition
of the instruction. A:n arithmetic instruction may specify binary or dedmal
data, and in each case the data may be in fixed•point or floating-point form.
FIXed-point numbers may represent integers or fractions. Negative numbers
may be in signed-magnitude or signed-<:amplement representation. The arith­
metic processor is very simple if only a binary fixed-point add instruction is
included. It would. be more complicated if it includes all four arithmetic o�

333

3 34 CHAPTER TEN Computer Arithmetic

algorithm

ations for binary and decimal data in fixed-point and floating-point represen­
tation.

At an early age we are taught how to perform the basic arithmetic
operations in signed-magnitude representation. This knowledge is valuable
when the operations are to be implemented by hardware. However, the de­
signer must be thoroughly familiar with the sequence of steps to be followed
in order to carry out the operation and achieve a correct result. The solution
to any problem that is stated by a finite number of well-defined procedural
steps is called an algorithm . An algorithm was stated in Sec. 3-3 for the addition
of two fixed-point binary numbers when negative numbers are in signed-2's
complement representation. This is a simple algorithm since all it needs for its
implementation is a parallel binary adder. When negative numbers are in
signed-magnitude representation, the algorithm is slightly more complicated
and its implementation requires circuits to add and subtract, and to compare
the signs and the magnitudes of the numbers. Usually, an algorithm will
contain a number of procedural steps which are dependent on results of
previous steps. A convenient method for presenting algorithms is a flowchart.
The computational steps are specified in the flowchart inside rectangular
boxes. The decision steps are indicated inside diamond-shaped boxes from
which two or more alternate paths emerge.

In this chapter we develop the various arithmetic algorithms and show
the procedure for implementing them with digital hardware. We consider
addition, subtraction, multiplication, and division for the following types of
data:

1. Fixed-point binary data in signed-magnitude representation

2. Fixed-point binary data in signed-2's complement representation

3. Floating-point binary data

4. Binary-coded decimal (BCD) data

10-2 Addition and Subtraction

As stated in Sec. 3-3, there are three ways of representing negative fixed-point
binary numbers: signed-magnitude, signed-l's complement, or signed-2's
complement. Most computers use the signed-2's complement representation
when performing arithmetic operations with integers. For floating-point oper­
ations, most computers use the signed-magnitude representation for the man­
tissa. In this section we develop the addition and subtraction algorithms for
data represented in signed-magnitude and again for data represented in
signed-2's complement.

It is important to realize that the adopted representation for negative
numbers refers to the representation of numbers in the registers before and

magnitude

addition
(subtraction)
algorithm

SECTION 10-2 Addition and Subtraction 335

after the execution of the arithmetic operation. It does not mean that comple­
ment arithmetic may not be used in an intermediate step. For example, it is
convenient to employ complement arithmetic when performing a subtraction
operation with numbers in signed-magnitude representation. As long as the
initial minuend and subtrahend, as well as the final difference, are in signed­
magnitude form the fact that complements have been used in an intermediate
step does not alter the fact that the representation is in signed-magnitude.

Addition and Subtraction with Signed-Magnitude Data
The representation of numbers in signed-magnitude is familiar because it is
used in everyday arithmetic calculations. The procedure for adding or subtract­
ing two signed binary numbers with paper and pencil is simple and straight­
forward. A review of this procedure will be helpful for deriving the hardware
algorithm.

We designate the magnitude of the two numbers by A and B. When the
signed numbers are added or subtracted, we find that there are eight different
conditions to consider, depending on the sign of the numbers and the opera­
tion performed. These conditions are listed in the first column of Table 10-1 .
The other columns in the table show the actual operation to be performed with
the magnitude of the numbers. The last column is needed to prevent a negative
zero. In other words, when two equal numbers are subtracted, the result
should be +0 not -0.

The algorithms for addition and subtraction are derived from the table
and can be stated as follows (the words inside parentheses should be used for
the subtraction algorithm):

Addition (subtraction) algorithm: when the signs of A and B are identical
(different), add the two magnitudes and attach the sign of A to the result. When
the signs of A and B are different (identical), compare the magnitudes and

TABLE 10�1 Addition and Subtraction of Signed·Magnitude Numbers

Subtract Magnitudes
Add

Operation Magnitudes When A > B When A < B When A = B

(+A) + (+B) +(A + B)
(+A) + (-B) + (A - B) - (B - A) + (A - B)
(-A) + (+B) - (A - B) + (B - A) + (A - B)
(-A) + (-B) - (A + B)
(+A) - (+B) + (A - B) - (B - A) + (A - B)
(+A) - (-B) + (A + B)
(-A) - (+B) - (A + B)
(-A) - (-B) - (A - B) + (B - A) +(A - B)

336 CHAPTER TEN Computer Arithmetic

subtract the smaller number from the larger. Choose the sign of the result to
be the same as A if A > B or the complement of the sign of A if A < B. If the
two magnitudes are equal, subtract B from A and make the sign of the result
positive.

The two algorithms are similar except for the sign comparison. The
procedure to be followed for identical signs in the addition algorithm is the
same as for different signs in the subtraction algorithm, and vice versa.

Hardware Implementation
To implement the two arithmetic operations with hardware, it is first necessary
that the two numbers be stored in registers. Let A and B be two registers that
hold the magnitudes of the numbers, and A, and B, be two flip-flops that hold
the corresponding signs. The result of the operation may be transferred to a
third register: however, a saving is achieved if the result is transferred into A
and A, . Thus A and A, together form an accumulator register.

Consider now the hardware implementation of the algorithms above.
First, a parallel-adder is needed to perform the microoperation A + B . Second,
a comparator circuit is needed to establish if A > B, A = B, or A < B. Third,
two parallel-subtractor circuits are needed to perform the microoperations
A - B and B - A. The sign relationship can be determined from an exclusive­
OR gate with A, and B, as inputs.

This procedure requires a magnitude comparator, an adder, and two
subtractors. However, a different procedure can be found that requires less
equipment. First, we know that subtraction can be accomplished by means of
complement and add. Second, the result of a comparison can be determined
from the end carry after the subtraction. Careful investigation of the alterna­
tives reveals that the use of 2's complement for subtraction and comparison is
an efficient procedure that requires only an adder and a complementer.

Figure 10-1 shows a block diagram of the hardware for implementing the
addition and subtraction operations. It consists of registers A and B and sign
flip-flops A, and B, . Subtraction is done by adding A to the 2' s complement of
B. The output carry is transferred to flip-flop E, where it can be checked to
determine the relative magnitudes of the two numbers. The add-overflow
flip-flop AVF holds the overflow bit when A and B are added. The A register
provides other microoperations that may be needed when we specify the
sequence of steps in the algorithm.

The addition of A plus B is done through the parallel adder. The S (sum)
output of the adder is applied to the input of the A register. The complementer
provides an output of B or the complement of B depending on the state of the
mode control M. The complementer consists of exclusive-OR gates and the
parallel adder consists of full-adder circuits as shown in Fig. 4-7 in Chap. 4.
The M signal is also applied to the input carry of the adder. When M = 0, the
output of B is transferred to the adder, the input carry is 0, and the output of

complmsmt «nd
incmMnt

SEC'I'1a< l�l Addi<ioo and Submction 33 7

Fipre 10·1 Hardwore lor si�·magnirude addi<ioo and oubax<ion.

the adder is equal to the sum A + B. When M a I, the l's complement of B
is applied to the adder, the input carry is I, and output S = A + H + 1. This
is equal to A plus the 2's complement of B, which is equivalent to the subtrac·
tion A - B.

Hardware Algorithm
The flowchart for the hardware algorithm is presented in Fig. 10-2. The two
signs A, and B,are compared by an exclusive-OR gate. If the output of the gate
isO, the signs are identical; if it is I, thesignsaredifferenl Foranelddoperation,
identical signs dictate that the magnitudes be added. For a subtrlld operation,
different signs dictate that the magnitudes be added. The magnitudes are
added with a mlcrooperation EA .-A + B. where EA is a register that com­
bines E: and A. The carry in E: after the addition constitutes an overflow if it is
equal to 1. The value of E: is transferred into the add-overnow flip-flop AVF.

The two magnitudes are subtracted if the signs are different for an Cldd
operation or identical for a subtract operation. The magnitudes are subtracted
by adding A to the 2's complement of B. No overflow can occur if the numbers
are subtracted so AVF is cleared to 0. A 1 in E indicates that A � B a.nd the
number in A is the correct result. If this nu.mber i.s zero, the sign A, must be
made positive to avoid a negative zero. A 0 in E: indicates that A < B. For this
case it is necessary to take the 2's complement of the value in A. This operation
can be done with one mlcrooperation A .-A"+ 1 . However, we assume that
the A register has circuits for mlcrooperations complm.mt and inlTtment, so the
2' s complement is obtained from these two mlcrooperations. In other paths of
the flowchart, the sign of the result is the same as the sign of A, so no change
in A, is required. However, when A < B, the sign of the result is the comple­
ment of the original sign of A. It is then necessary to complement A, to obtain

338 CHAPTER TEN Computer Arithmetic

Subtract operation Add operation

Figure 10�2 Flowchan for add and subtract operations.

the correct sign. The final result is found in register A and its sign in A, . The
value inAVF provides an overflow indication. The final value of E is immaterial.

Addition and Subtraction with Signed-2's
Complement Data
The signed-2's complement representation of numbers together with arith­
metic algorithms for addition and subtraction are introduced in Sec. 3-3. They
are summarized here for ea:sy reference. The leftmost bit of a binary number
represents the sign bit: 0 for positive and 1 for negative. If the sign bit is 1, the
entire number is represented in 2' s complement form. Thus +33 is represented

SECTION 10-2 Addition and Subtraction 339

as 00100001 and -33 as 11011111 . Note that 11011111 is the 2's complement of
00100001, and vice versa.

The addition of two numbers in signed-2's complement form consists of
adding the numbers with the sign bits treated the same as the other bits of the
number. A carry-out of the sign-bit position is discarded. The subtraction
consists of first taking the 2' s complement of the subtrahend and then adding
it to the minuend.

When two numbers of n digits each are added and the sum occupies n + 1
digits, we say that an overflow occurred. The effect of an overflow on the sum
of two signed-2's complement numbers is discussed in Sec. 3-3. An overflow
can be detected by inspecting the last two carries out of the addition. When
the two carries are applied to an exclusive-OR gate, the overflow is detected
when the output of the gate is equal to 1 .

The register configuration for the hardware implementation i s shown in
Fig. 10-3 . This is the same configuration as in Fig. 10-1 except that the sign bits
are not separated from the rest of the registers. We name the A register AC
(accumulator) and the B register BR . The leftmost bit in AC and BR represent
the sign bits of the numbers. The two sign bits are added or subtracted together
with the other bits in the complementer and parallel adder. The overflow
flip-flop V is set to 1 if there is an overflow. The output carry in thls case is
discarded.

The algorithm for adding and subtracting two binary numbers in signed-
2' s complement representation is shown in the flowchart of Fig. 10-4. The sum
is obtained by adding the contents of AC and BR (including their sign bits). The
overflow bit V is set to 1 if the exclusive-OR of the last two carries is 1, and it
is cleared to 0 otherwise. The subtraction operation is accomplished by adding
the content of AC to the 2's complement of BR . Taking the 2's complement of
BR has the effect of changing a positive number to negative, and vice versa.
An overflow must be checked during thls operation because the two numbers
added could have the same sign. The programmer must realize that if an
overflow occurs, there will be an erroneous result in the AC register.

Figure 10�3 Hardware for signed�2's complement addition and subtraction.

Overflow

340 CHAPTER TEN Computet Arithmetic

Subtract Add

Figure 104 Algorithm for adding and subtracting numbers in signed�Z's
complement representation.

Comparing this algorithm with its signed-magnitude counterpart, we
note that it is much simpler to add and subtract numbers if negative numbers
are maintained in signed-2' s complement representation. For this reason most
computers adopt this representation over the more familiar signed-magnitude.

10-3 Multiplication Algorithms

Multiplication of two fixed-point binary numbers in signed-magnitude repre­
sentation is done with paper and pencil by a process of successive shift and
add operations. This process is best illustrated with a numerical example.

23 10111
19 X 10011

---will
10111

00000 +
00000

10111
437 110110101

Multiplicand
Multiplier

Product

The process consists of looking at successive bits of the multiplier, least signif­
icant bit first. If the multiplier bit is a 1, the multiplicand is copied down;
otherwise, zeros are copied down. The numbers copied down in successive
lines are shifted one position to the left from the previous number. Finally, the
numbers are added and their sum forms the product.

SECTION 10-3 Multiplication Algorithms 341

The sign of the product is determined from the signs of the multiplicand
and multiplier. If they are alike, the sign of the product is positive. If they are
unlike, the sign of the product is negative.

Hardware Implementation for Signed-Magnitude Data
When multiplication is implemented in a digital computer, it is convenient to
change the process slightly. First, instead of providing registers to store and
add simultaneously as many binary numbers as there are bits in the multiplier,
it is convenient to provide an adder for the summation of only two binary
numbers and successively accumulate the partial products in a register. Sec­
ond, instead of shifting the multiplicand to the left, the partial product is
shifted to the right, which results in leaving the partial product and the
multiplicand in the required relative positions. Third, when the corresponding
bit of the multiplier is 0, there is no need to add all zeros to the partial product
since it will not alter its value.

The hardware for multiplication consists of the equipment shown in Fig.
10-1 plus two more registers. These registers together with registers A and B
are shown in Fig. 10-5. The multiplier is stored in the Q register and its sign
in Q, . The sequence counter SC is initially set to a number equal to the number
of bits in the multiplier. The counter is decremented by 1 after forming each
partial product. When the content of the counter reaches zero, the product is
formed and the process stops.

Initially, the multiplicand is in register B and the multiplier in Q. The sum
of A and B forms a partial product which is transferred to the EA register. Both
partial product and multiplier are shifted to the right. This shift will be denoted
by the statement shr EAQ to designate the right shift depicted in Fig. 10-5. The

Figure 10 .. 5 Hardware for multiply operation.

Sequence counter (SC)

A register Q register

(rightmost bit)

Q.

342 CHAPTIR TEN Computer Arithmetic

least significant bit of A is shifted into the most significant position of Q, the
bit from E is shifted into the most significant position of A, and 0 is shifted into
E. After the shift, one bit of the partial product is shifted into Q, pushing the
multiplier bits one position to the right. In this manner, the rightmost flip-flop
in register Q, designated by Q., will hold the bit of the multiplier, which must
be inspected next.

Hardware Algorithm
Figure 10-6 is a flowchart of the hardware multiply algorithm. Initially, the
multiplicand is in B and the multiplier in Q. Their corresponding signs are in
B, and Q., respectively. The signs are compared, and both A and Q are set to

Figure 10 .. 6 Flowchart for multiply operation.

Multiply operation

SECTION 10-J Multiplication Algorithms 343

correspond to the sign of the product since a double-length product will be
stored in registers A and Q. Registers A and E are cleared and the sequence
counter SC is set to a number equal to the number of bits of the multiplier. We
are assuming here that operands are transferred to registers from a memory
unit that has words of n bits. Since an operand must be stored with its sign,
one bit of the word will be occupied by the sign and the magnitude will consist
of n - 1 bits.

After the initialization, the low-order bit of the multiplier in Q, is tested.
If it is a 1, the multiplicand in B is added to the present partial product in A .
I f i t i s a 0 , nothing i s done. Register EAQ i s then shifted once t o the right to
form the new partial product The sequence counter is decremented by 1 and
its new value checked. If it is not equal to zero, the process is repeated and a
new partial product is formed. The process stops when SC = 0. Note that the
partial product formed in A is shifted into Q one bit at a time and eventually
replaces the multiplier. The final product is available in both A and Q, with A
holding the most significant bits and Q holding the least significant bits.

The previous numerical example is repeated in Table 10-2 to clarify the
hardware multiplication process. The procedure follows the steps outlined in
the flowchart.

Booth Multiplication Algorithm
Booth algorithm gives a procedure for multiplying binary integers in signed-2's
complement representation. It operates on the fact that strings of O's in the
multiplier require no addition but just shifting, and a string of 1's in the
multiplier from bit weight 2' to weight 2m can be treated as 2'+1 - 2m. For
example, the binary number 001110 (+ 14) has a string of 1's from 23 to 21

TABLE 10 .. 2 Numerical Example for Binary Multiplier

Multiplicand B = 101 11 E

Multiplier in Q
Q. = I ; add B
First partial product
Shift right EAQ
Q. = I ; add B
Second partial product I
Shift right EAQ 0
Q. = 0; shift right EAQ 0
Q. = 0; shift right EAQ 0
Q. = I ; add B
Fifth partial product 0
Shift right EAQ 0
Final product in AQ = 01101 10101

A Q

00000 10011
101 11
101 11
01011 11001
101 11
00010
10001 01 100
01000 10110
00100 01011
10111
11011
01101 10101

sc

101

100

011
0!0
001

000

344 CHAPTER TEN Computer Arithmetic

(k = 3, m = 1). The number can be represented as 2k+l - 2m = 24 - 21 = 16 -
2 = 14. Therefore, the multiplication M x 14, where M is the multiplicand and
14 the multiplier, can be done as M x 24 - M X 21 • Thus the product can be
obtained by shifting the binary multiplicand M four times to the left and
subtracting M shifted left once.

As in all multiplication schemes, Booth algorithm requires examination
of the multiplier bits and shifting of the partial product. Prior to the shifting,
the multiplicand may be added to the partial product, subtracted from the
partial product, or left unchanged according to the following rules:

1. The multiplicand is subtracted from the partial product upon encounter­
ing the first least significant 1 in a string of 1's in the multiplier.

2. The multiplicand is added to the partial product upon encountering the
first 0 (provided that there was a previous 1) in a string of O's in the
multiplier.

3. The partial product does not change when the multiplier bit is identical
to the previous multiplier bit.

The algorithm works for positive or negative multipliers in 2's comple­
ment representation. This is because a negative multiplier ends with a string
of 1's and the last operation will be a subtraction of the appropriate weight.
For example, a multiplier equal to -14 is represented in 2's complement as
110010 and is treated as -24 + 22 - 21 = - 14.

The hardware implementation of Booth algorithm requires the register
configuration shown in Fig. 10-7. This is similar to Fig. 10-5 except that the sign
bits are not separated from the rest of the registers. To show this difference,
we rename registers A, B, and Q, as AC, BR, and QR, respectively. Q, desig­
nates the least significant bit of the multiplier in register QR. An extra flip-flop
Q,., is appended to QR to facilitate a double bit inspection of the multiplier.
The flowchart for Booth algorithm is shown in Fig. 10-8. AC and the appended

Figure 1 Q .. 7 Hardware for Booth algorithm.

Sequence counter (SC)

QR register

Q, Q, + !

= ! 0

SECTION JQ.J Multiplication Algorithms 345
Mu1tiply

Multiplicand in BR
Multiplier in QR

Q, Q, + I
= 0 1

Figure 10 .. 8 Booth algorithm for multiplication of signed�Z's complement
numbers.

346 CHAPTER TEN Computer Arithmetic

bit Q,. 1 are initially cleared to 0 and the sequence counter SC is set to a number
n equal to the number of bits in the multiplier. The two bits of the multiplier
in Q, and Q,. 1 are inspected. If the two bits are equal to 10, it means that the
first 1 in a string of 1' s has been encountered. This requires a subtraction of
the multiplicand from the partial product in AC. If the two bits are equal to 01,
it means that the first 0 in a string of 0' s has been encountered. This requires
the addition of the multiplicand to the partial product in AC. When the two
bits are equal, the partial product does not change. An overflow cannot occur
because the addition and subtraction of the multiplicand follow each other. As
a consequence, the two numbers that are added always have opposite signs,
a condition that excludes an overflow. The next step is to shift right the partial
product and the multiplier (including bit Q,.1). This is an arithmetic shift right
(ashr) operation which shifts AC and QR to the right and leaves the sign bit
in AC unchanged (see Sec. 4-6). The sequence counter is decremented and the
computational loop is repeated n times.

A numerical example of Booth algorithm is shown in Table 10-3 for n = 5.
It shows the step-by-step multiplication of (-9) x (- 13) = + 117. Note that the
multiplier in QR is negative and that the multiplicand in BR is also negative.
The 10-bit product appears in AC and QR and is positive. The final value of Q,.1
is the original sign bit of the multiplier and should not be taken as part of the
product.

Array Multiplier
Checking the bits of the multiplier one at a time and forming partial products
is a sequential operation that requires a sequence of add and shift microoper­
ations. The multiplication of two binary numbers can be done with one micro­
operation by means of a combinational circuit that forms the product bits all

TABLE 10-3 Example of Multiplication with Booth Algorithm

BR = 101 1 1
BR + 1 = 01001 AC QR Q • • • sc

Initial 00000 10011 0 101
1 0 Subtract BR 01001

01001
ashr 00100 11001 100
ashr 00010 01100 011
Add BR 1011 1

1 1001
ashr 11100 10110 0 010

0 ashr 11110 0101 1 0 001
Subtract BR 01001

001 1 1
ashr 00011 10101 000

SECTION 10-J Multiplication Algorithms 34 7

at once. This is a fast way of multiplying two numbers since all it takes is the
time for the signals to propagate through the gates that form the multiplication
array. However, an array multiplier requires a large number of gates, and for
this reason it was not economical until the development of integrated circuits.

To see how an array multiplier can be implemented with a combinational
circuit, consider the multiplication of two 2-bit numbers as shown in Fig. 10-9.
The multiplicand bits are b1 and b0, the multiplier bits are a1 and a0, and the
product is c3 c2 c1 c0• The first partial product is formed by multiplying a0 by b1 b0•
The multiplication of two bits such as a0 and b0 produces a 1 if both bits are 1;
otherwise, it produces a 0. This is identical to an AND operation and can be
implemented with an AND gate. As shown in the diagram, the first partial
product is formed by means of two AND gates. The second partial product is
formed by multiplying a1 by b1 b0 and is shifted one position to the left. The two
partial products are added with two half-adder (HA) circuits. Usually, there are
more bits in the partial products and it will be necessary to use full-adders to
produce the sum. Note that the least significant bit of the product does not have
to go through an adder since it is formed by the output of the first AND gate.

A combinational circuit binary multiplier with more bits can be con­
structed in a similar fashion. A bit of the multiplier is ANDed with each bit of
the multiplicand in as many levels as there are bits in the multiplier. The binary
output in each level of AND gates is added in parallel with the partial product
of the previous level to form a new partial product. The last level produces the
product. For j multiplier bits and k multiplicand bits we need j x k AND gates
and (j - 1) k-bit adders to produce a product of j + k bits.

As a second example, consider a multiplier circuit that multiplies a binary
number of four bits with a number of three bits. Let the multiplicand be

Figure 10 .. 9 2�bit by Z�bit array multiplier.

b , bo
. , •o

aobt aobo
a1 b 1 a1 b 0 . ,

c, c, c, co

3 48 CHAPTER TEN Compu<er Arid>metlc

4-buaddtt

4-hit odcl<t

r,

ficure 10.10 +bi< by l-bi< amy muhiplicr.

<o

represented by b,l>,b,b,and the multipUer byQ1Q1Do- Since A: � 4 andj � 3, we
need 12 AND gates and two 4-bit adders to produce a product of seven bits.
The logic diagram of the multipUer is shown in Fig. 10-10.

10-4 Division Algorithms

Division of two fixed-point binary numbers in signed-magnitude representa­
tion is done with paper and pencil by a process of successive oompare, shift,
and subtract operations. Binary division is simpler than decimal division be-

partial remainder

SECTION 10-4 Division Algorithms 349

cause the quotient digits are either 0 or 1 and there is no need to estimate how
many times the dividend or partial remainder fits into the divisor. The division
process is illustrated by a numerical example in Fig. 10-11 . The divisor B
consists of five bits and the dividend A, of ten bits. The five most significant
bits of the dividend are compared with the divisor. Since the 5-bit number is
smaller than B, we try again by taking the six most significant bits of A and
compare this number with B. The 6-bit number is greater than B, so we place
a 1 for the quotient bit in the sixth position above the dividend. The divisor is
then shifted once to the right and subtracted from the dividend. The difference
is called a partial remainder because the division could have stopped here to
obtain a quotient of 1 and a remainder equal to the partial remainder. The
process is continued by comparing a partial remainder with the divisor. If the
partial remainder is greater than or equal to the divisor, the quotient bit is equal
to 1 . The divisor is then shifted right and subtracted from the partial remainder.
If the partial remainder is smaller than the divisor, the quotient bit is 0 and no
subtraction is needed. The divisor is shifted once to the right in any case. Note
that the result gives both a quotient and a remainder.

Hardware Implementation for Signed-Magnitude Data
When the division is implemented in a digital computer, it is convenient to
change the process slightly. Instead of shifting the divisor to the right, the
divide!ld, or partial remainder, is shifted to the left, thus leaving the two
numbers in the required relative position. Subtraction may be achieved by
adding A to the 2's complement of B. The information about the relative
magnitudes is then available from the end-carry.

The hardware for implementing the division operation is identical to that
required for multiplication and consists of the components shown in Fig. 10-5.
Register EAQ is now shifted to the left with 0 inserted into Q, and the previous
value of E lost. The numerical example is repeated in Fig. 10-12 to clarify the

Divisor :

B = 1 000 1

Figure 10 .. 1 1 Example of binary division.

1 1 0 1 0

lo 1 1 1 0ooooo
01 1 1 0
01 1 1 00
- 1 0001

- 0 1 0 1 1 0
-- 1 000 1

--00 1 0 1 0
---0 1 0 1 00
---- 1 0001

----0001 1 0
-----00 1 1 0

Quotient = Q

Dividend = A
5 bits of A < B, quotient has 5 bits
6 bits of A � B
Shift right B and subtract: enter 1 i n Q

7 bits of remainder ;;;t B
Shift right B and subtract; enter 1 in Q

Remainder < B; enter 0 in Q; shift right B
Remainder ;;.. B
Shift right B and subtract; enter I in Q

Remainder < B; enter 0 in Q
Final remainder

350 CHAPTER TEN Computer Arithmetic

Divisor B = 1 000 1 ,

Dividend:

E

shi EAQ 0
add lf + l

E = I
Set Q, = 1
shi EAQ
Add B + I

E = I I
Set Q, = I I
shi EAQ 0
Add B + I

E = O ; leave Q, = 0 0
Add B

Restore remainder
shi EAQ
Add S + I

E = I
Set Q, = I
shi EAQ
Add B + I

!;d
0� leave Q, = 0

Restore remainder
Neglect E
Remainder' in A :
Quotient i n Q :

B + I = 0 1 1 1 1

A Q sc
,........#--. ,........,._ -

01 1 1 0 00000
1 1 1 00 00000
Q!!!!
0 1 0 1 1
0 1 0 1 1 0000 1 �
1 0 1 1 0 0001 0
Q!!!!
00 1 0 1
00 1 0 1 0001 1
0 1 0 1 0 001 1 0
Q!!!!
1 1 00 1 00 1 1 0
1 0001

0 1 0 1 0
1 0 1 00 0 1 1 00
Q!!!!
0001 1
0001 1 0 1 1 0 1
001 1 0 1 1 0 1 0
Q!!!!
1 0 1 0 1 1 1 0 1 0
1 000 1

00 1 1 0 1 1 0 1 0

001 1 0
1 1 0 1 0

Figure 10�12 Example of binary division with digital hardware.

proposed division process. The divisor is stored in the B register and the
double-length dividend is stored in registers A and Q. The dividend is shifted
to the left and the divisor is subtracted by adding its 2' s complement value. The
information about the relative magnitude is available in E. If E = 1, it signifies
that A 2: B. A quotient bit 1 is inserted into Q, and the partial remainder is
shifted to the left to repeat the process. If E = 0, it signifies that A < B so the
quotient in Q, remains a 0 (inserted during the shift). The value of B is then
added to restore the partial remainder in A to its previous value. The partial
remainder is shifted to the left and the process is repeated again until all five
quotient bits are formed. Note that while the partial remainder is shifted left,
the quotient bits are shifted also and after five shifts, the quotient is in Q and
the final remainder is in A.

Before showing the algorithm in flowchart form, we have to consider the
sign of the result and a possible overflow condition. The sign of the quotient
is determined from the signs of the dividend and the divisor. If the two signs

SECTION 10-4 Division Algorithms 3 5 1

are alike, the sign o f the quotient is plus. If they are unalike, the sign i s ntinus.
The sign of the remainder is the same as the sign of the dividend.

Divide Overflow
The division operation may result in a quotient with an overflow. This is not
a problem when working with paper and pencil but is critical when the
operation is implemented with hardware. This is because the length of regis­
ters is finite and will not hold a number that exceeds the standard length. To
see this, consider a system that has 5-bit registers. We use one register to hold
the divisor and two registers to hold the dividend. From the example of
Fig. 10-11 we note that the quotient will consist of six bits if the five most
significant bits of the dividend constitute a number greater than the divisor.
The quotient is to be stored in a standard 5-bit register, so the overflow bit will
require one more flip-flop for storing the sixth bit. This divide-overflow condi­
tion must be avoided in normal computer operations because the entire quo­
tient will be too long for transfer into a memory unit that has words of standard
length, that is, the same as the length of registers. Provisions to ensure that
this condition is detected must be included in either the hardware or the
software of the computer, or in a combination of the two.

When the dividend is twice as long as the divisor, the condition for
overflow can be stated as follows: A divide-overflow condition occurs if the
high-order half bits of the dividend constitute a number greater than or equal
to the divisor. Another problem associated with division is the fact that a
division by zero must be avoided. The divide-overflow condition takes care of
this condition as well. This occurs because any dividend will be greater than
or equal to a divisor which is equal to zero. Overflow condition is usually
detected when a special flip-flop is set. We will call it a divide-overflow flip-flop
and label it DVF.

The occurrence of a divide overflow can be handled in a variety of ways.
In some computers it is the responsibility of the programmers to check if DVF
is set after each divide instruction. They then can branch to a subroutine that
takes a corrective measure such as rescaling the data to avoid overflow. In some
older computers, the occurrence of a divide overflow stopped the computer
and this condition was referred to as a divide stop . Stopping the operation of
the computer is not recommended because it is time consunting. The proce­
dure in most computers is to provide an interrupt request when DVF is set.
The interrupt causes the computer to suspend the current program and branch
to a service routine to take a corrective measure. The most common corrective
measure is to remove the program and type an error message explaining the
reason why the program could not be completed. It is then the responsibility
of the user who wrote the program to rescale the data or take any other
corrective measure. The best way to avoid a divide overflow is to use floating­
point data. We will see in Sec. 10-5 that a divide overflow can be handled very
simply if numbers are in floating-point representation.

352 CHAPTER TEN Computer Arithmetic

Hardware Algorithm
The hardware divide algorithm is shown in the flowchart of Fig. 10-13 . The
dividend is in A and Q and the divisor in B . The sign of the result is transferred
into Q, to be part of the quotient. A constant is set into the sequence counter
SC to specify the number of bits in the quotient. As in multiplication, we
assume that operands are transferred to registers from a memory unit that has

Figure 10 .. 13 Flowchart for divide operation.

Divide operation

restoring method

comparison and
nonrestoring method

SECTION 10-4 Division Algorithms 353

words of n bits. Since an operand must be stored with its sign, one bit of the
word will be occupied by the sign and the magnitude will consist of n - 1 bits.

A divide-overflow condition is tested by subtracting the divisor in B from
half of the bits of the dividend stored in A . If A ;, B, the divide-overflow
flip-flop DVF is set and the operation is terminated prematurely. If A < B,
no divide overflow occurs so the value of the dividend is restored by adding
B to A .

The division o f the magnitudes starts b y shifting the dividend in A Q to
the left with the high-order bit shifted into E. If the bit shifted into E is 1, we
know that EA > B because EA consists of a 1 followed by n - 1 bits while B
consists of only n -1 bits. In this case, B must be subtracted from EA and 1
inserted into Q, for the quotient bit. Since register A is missing the high-order
bit of the dividend (which is in E), its value is EA - 2"-1 • Adding to this value
the 2' s complement of B results in

(EA - 2"-1) + (2"-1 - B) = EA - B

The carry from this addition is not transferred to E if we want E to remain
a l .

If the shift-left operation inserts a 0 into E, the divisor is subtracted by
adding its 2's complement value and the carry is transferred into E . If E = 1,
it signifies that A ;, B; therefore, Q, is set to 1 . If E = 0, it signifies that A < B
and the original number is restored by adding B to A . In the latter case we leave
a 0 in Q, (0 was inserted during the shift).

This process is repeated again with register A holding the partial remain­
der. After n - 1 times, the quotient magnitude is formed in register Q and the
remainder is found in register A . The quotient sign is in Q, and the sign of the
remainder in A, is the same as the original sign of the dividend.

Other Algorithms
The hardware method just described is called the restoring method. The reason
for this name is that the partial remainder is restored by adding the divisor to
the negative difference. Two other methods are available for dividing numbers,
the comparison method and the non restoring method. In the comparison method
A and B are compared prior to the subtraction operation. Then if A ;, B, B is
subtracted from A. If A < B nothing is done. The partial remainder is shifted
left and the numbers are compared again. The comparison can be determined
prior to the subtraction by inspecting the end-carry out of the parallel-adder
prior to its transfer to register E .

I n the nonrestoring method, B i s not added i f the difference i s negative
but instead, the negative difference is shifted left and then B is added. To see
why this is possible consider the case when A < B. From the flowchart in Fig.
9-11 we note that the operations performed are A - B + B; that is, B is sub-

354 CHAI'TER TEN Computer Arithmetic

integer declaration
statement

traded and then added to restore A. The next time around the loop, this
number is shifted left (or multiplied by 2) and B subtracted again. This gives
2(A - B + B) - B = 2A - B . This result is obtained in the nonrestoring
method by leaving A - B as is. The next time around the loop, the number is
shifted left and B added to give 2(A - B) + B = 2A - B, which is the same as
before. Thus, in the nonrestoring method, B is subtracted if the previous value
of Q, was a 1, but B is added if the previous value of Q. was a 0 and no restoring
of the partial remainder is required. This process saves the step of adding the
divisor if A is less than B, but it requires special control logic to remember the
previous result. The first time the dividend is shifted, B must be subtracted.
Also, if the last bit of the quotient is 0, the partial remainder must be restored
to obtain the correct final remainder.

10-5 Floating-Point Arithmetic Operations

Many high-level programming languages have a facility for specifying floating­
point numbers. The most common way is to specify them by a real declaration
statement as opposed to fixed-point numbers, which are specified by an integer
declaration statement. Any computer that has a compiler for such high-level
programming language must have a provision for handling floating-point
arithmetic operations. The operations are quite often included in the internal
hardware. If no hardware is available for the operations, the coqtpiler must be
designed with a package of floating-point software subroutines. Although the
hardware method is more expensive, it is so much more efficient than the
software method that floating-point hardware is included in.1ttost computers
and is omitted only in very small ones.

Basic Considerations
Floating-point representation of data was introduced in Sec. 3-4. A floating­
point number in computer registers consists of two parts: a mantissa m and an
exponent e. The two parts represent a number obtained from multiplying m
times a radix r raised to the value of e; thus

The mantissa may be a fraction or an integer. The location of the radix point
and the value of the radix r are assumed and are not included in the registers.
For example, assume a fraction representation and a radix 10. The decimal
number 537.25 is represented in a register with m = 53725 and e = 3 and is
interpreted to represent the floating-point number

.53725 X 10'

SECfiON 10-5 Floating-Point Arithmetic Operations 355

A floating-point number is normalized if the most significant digit of the
mantissa is nonzero. In this way the mantissa contains the maximum possible
number of significant digits. A zero cannot be normalized because it does not
have a nonzero digit. It is represented in floating-point by all 0' s in the mantissa
and exponent.

Floating-point representation increases the range of numbers that can be
accommodated in a given register. Consider a computer with 48-bit words.
Since one bit must be reserved for the sign, the range of fixed-point integer
numbers will be ± (247 - 1), which is approximately ± 1014• The 48 bits can be
used to represent a floating-point number with 36 bits for the mantissa and 12
bits for the exponent. Assuming fraction representation for the mantissa and
taking the two sign bits into consideration, the range of numbers that can be
accommodated is

±(1 - 2-35) X 22047

This number is derived from a fraction that contains 35 1's, an exponent of 11
bits (excluding its sign), and the fact that 2" - 1 = 2047. The largest number
that can be accommodated is approximately 10615, which is a very large number.
The mantissa can accommodate 35 bits (excluding the sign) and if considered
as an integer it can store a number as large as {235 - 1). This is approximately
equal to 1010, which is equivalent to a decimal number of 10 digits.

Computers with shorter word lengths use two or more words to represent
a floating-point number. An 8-bit microcomputer may use four words to
represent one floating-point number. One word of 8 bits is reserved for the
exponent and the 24 bits of the other three words are used for the mantissa.

Arithmetic operations with floating-point numbers are more complicated
than with fixed-point numbers and their execution takes longer and requires
more complex hardware. Adding or subtracting two numbers requires first an
alignment of the radix point since the exponent parts must be made equal
before adding or subtracting the mantissas. The alignment is done by shifting
one mantissa while its exponent is adjusted until it is equal to the other
exponent. Consider the sum of the following floating-point numbers:

.5372400 X 10'

+ . 158oooo x 10-'

It is necessary that the two exponents be equal before the mantissas can be
added. We can either shift the first number three positions to the left, or shift
the second number three positions to the right. When the mantissas are stored
in registers, shifting to the left causes a loss of most significant digits. Shifting
to the right causes a loss of least significant digits. The second method is
preferable because it only reduces the accuracy, while the first method may
cause an error. The usual alignment procedure is to shift the mantissa that has

356 CHAPTER TIN Computer Arithmetic

the smaller exponent to the right by a number of places equal to the difference
between the exponents. After this is done, the mantissas can be added:

.5372400 X 102

+ . 0001580 X 10'
.5373980 X 10'

When two normalized mantissas are added, the sum may contain an
overflow digit. An overflow can be corrected easily by shifting the sum once
to the right and incrementing the exponent. When two numbers are sub­
tracted, the result may contain most significant zeros as shown in the following
example:

.56780 X 105
- .56430 X 10'

.00350 X 10'

A floating-point number that has a 0 in the most significant position of the
mantissa is said to have an underflow. To normalize a number that contains an
underflow, it is necessary to shift the mantissa to the left and decrement the
exponent until a nonzero digit appears in the first position. In the example
above, it is necessary to shift left twice to obtain .35000 X 10'. In most comput­
ers, a normalization procedure is performed after each operation to ensure that
all results are in a normalized form.

Floating-point multiplication and division do not require an alignment of
the mantissas. The product can be formed by multiplying the two mantissas
and adding the exponents. Division is accomplished by dividing the mantissas
and subtracting the exponents.

The operations performed with the mantissas are the same as in fixed­
point numbers, so the two can share the same registers and circuits. The
operations performed with the exponents are compare and increment (for
aligning the mantissas), add and subtract (for multiplication and division), and
decrement (to normalize the result). The exponent may be represented in any
one of the three representations: signed-magnitude, signed-2's complement,
or signed-1's complement.

A fourth representation employed in many computers is known as a
biased exponent. In this representation, the sign bit is removed from being a
separate entity. The bias is a positive number that is added to each exponent
as the floating-point number is formed, so that internally all exponents are
positive. The following example may clarify this type of representation. Con­
sider an exponent that ranges from -50 to 49. Internally, it is represented by
two digits (without a sign) by adding to it a bias of 50. The exponent register
contains the number e + 50, where e is the actual exponent. This way, the
exponents are represented in registers as positive numbers in the range of 00

SECTION 10-5 Floating, Point Arithmetic Operations 35 7

to 99. Positive exponents in registers have the range of numbers from 99 to 50.
The subtraction of 50 gives the positive values from 49 to 0. Negative exponents
are represented in registers in the range from 49 to 00. The subtraction of 50
gives the negative values in the range of -1 to -50.

The advantage of biased exponents is that they contain only positive
numbers. It is then simpler to compare their relative magnitude without being
concerned with their signs. As a consequence, a magnitude comparator can be
used to compare their relative magnitude during the alignment of the man­
tissa. Another advantage is that the smallest possible biased exponent contains
all zeros. The floating-point representation of zero is then a zero mantissa and
the smallest possible exponent.

In the examples above, we used decimal numbers to demonstrate some
of the concepts that must be understood when dealing with floating-point
numbers. Obviously, the same concepts apply to binary numbers as well. The
algorithms developed in this section are for binary numbers. Decimal computer
arithmetic is discussed in the next section.

Register Configuration
The register configuration for floating-point operations is quite similar to the
layout for fixed-point operations. As a general rule, the same registers and
adder used for fixed-point arithmetic are used for processing the mantissas.
The difference lies in the way the exponents are handled.

The register orgaruzation for floating-point operations is shown in Fig.
10-14. There are three registers, BR, AC, and QR. Each register is subdivided
into two parts. The mantissa part has the same uppercase letter symbols as in
fixed-point representation. The exponent part uses the corresponding lower­
case letter symbol.

It is assumed that each floating-point number has a mantissa in signed­
magnitude representation and a biased exponent. Thus the AC has a mantissa

Figure 10 .. 14 Registers for floating,point arithmetic operations.

I a, I B

Parallel-adder

A AC

Q QR

358 CHAPTER TIN Computer Arithmetic

whose sign is in A, and a magnitude that is in A. The exponent is in the part
of the register denoted by the lowercase letter symbol a. The diagram shows
explicitly the most significant bit of A, labeled by A1• The bit in this position
must be a 1 for the number to be normalized. Note that the symbol AC
represents the entire register, that is, the concatenation of A., A, and a .

Similarly, register B R i s subdivided into B., B, and b, and Q R into Q., Q ,
and q . A parallel-adder adds the two mantissas and transfers the sum into A
and the carry into E . A separate parallel-adder is used for the exponents. Since
the exponents are biased, they do not have a distinct sign bit but are repre­
sented as a biased positive quantity. It is assumed that the floating-point
numbers are so large that the chance of an exponent overflow is very remote,
and for this reason the exponent overflow will be neglected. The exponents are
also connected to a magnitude comparator that provides three binary outputs
to indicate their relative magnitude.

The number in the mantissa will be taken as a fraction, so the binary point
is assumed to reside to the left of the magnitude part. Integer representation
for floating-point causes certain scaling problems during multiplication and
division. To avoid these problems, we adopt a fraction representation.

The numbers in the registers are assumed to be initially normalized. After
each arithmetic operation, the result will be normalized. Thus all floating-point
operands coming from and going to the memory unit are always normalized.

Addition and Subtraction
During addition or subtraction, the two floating-point operands are in AC and
BR. The sum or difference is formed in the AC. The algorithm can be divided
into four consecutive parts:

1. Check for zeros.

2. Align the mantissas.

3. Add or subtract the mantissas.

4. Normalize the result.

A floating-point number that is zero cannot be normalized. If this number
is used during the computation, the result may also be zero. Instead of check­
ing for zeros during the normalization process we check for zeros at the
beginning and terminate the process if necessary. The alignment of the man­
tissas must be carried out prior to their operation. After the mantissas are
added or subtracted, the result may be unnormalized. The normalization
procedure ensures that the result is normalized prior to its transfer to memory.

The flowchart for adding or subtracting two floating-point binary num­
bers is shown in Fig. 10-15. If BR is equal to zero, the operation is terminated,
with the value in the AC being the result. If AC is equal to zero, we transfer

Check
for

zeros

j

Add or subtract

SECfiON 10-5 Floating� Point Arithmetic Operations 359

Mantissa
addition

or

Figure 10 .. 15 Addition and subtraction of floating#point numbers.

360 CHAI'TER TEN Computer Arithmetic

the content of BR into AC and also complement its sign if the numbers are to
be subtracted. If neither number is equal to zero, we proceed to align the
mantissas.

The magnitude comparator attached to exponents a and b provides three
outputs that indicate their relative magnitude. If the two exponents are equal,
we go to perform the arithmetic operation. If the exponents are not equal, the
mantissa having the smaller exponent is shifted to the right and its exponent
incremented. This process is repeated until the two exponents are equal.

The addition and subtraction of the two mantissas is identical to the
fixed-point addition and subtraction algorithm presented in Fig. 10-2. The
magnitude part is added or subtracted depending on the operation and the
signs of the two mantissas. If an overflow occurs when the magnitudes are
added, it is transferred into flip-flop E. If E is equal to 1, the bit is transferred
into A1 and all other bits of A are shifted right. The exponent must be incre­
mented to maintain the correct number. No underflow may occur in this case
because the original mantissa that was not shifted during the alignment was
already in a normalized position.

If the magnitudes were subtracted, the result may be zero or may have
an underflow. If the mantissa is zero, the entire floating-point number in the
AC is made zero. Otherwise, the mantissa must have at least one bit that is
equal to 1. The mantissa has an underflow if the most significant bit in position
A1 is 0. In that case, the mantissa is shifted left and the exponent decremented.
The bit in A1 is checked again and the process is repeated until it is equal to
1. When A1 = 1, the mantissa is normalized and the operation is completed.

Multiplication
The multiplication of two floating-point numbers requires that we multiply the
mantissas and add the exponents. No comparison of exponents or alignment
of mantissas is necessary. The multiplication of the mantissas is performed in
the same way as in fixed-point to provide a double-precision product. The
double-precision answer is used in fixed-point numbers to increase the accu­
racy of the product. In floating-point, the range of a single-precision mantissa
combined with the exponent is usually accurate enough so that only single­
precision numbers are maintained. Thus the half most significant bits of the
mantissa product and the exponent will be taken together to form a single­
precision floating-point product.

The multiplication algorithm can be subdivided into four parts:

1. Check for zeros.

2. Add the exponents.

3. Multiply the mantissas.

4. Normalize the product.

SECTION 10-5 Floating� Point Arithmetic Operations 361

Steps 2 and 3 can be done simultaneously if separate adders are available for
the mantissas and exponents.

The flowchart for floating-point multiplication is shown in Fig. 10-16. The
two operands are checked to determine if they contain a zero. If either operand
is equal to zero, the product in the AC is set to zero and the operation is

Figure 10-16 Multiplication of floating�point numbers.

Multiply

362 CHAPTER TEN Computer Arithmetic

temtinated. If neither of the operands is equal to zero, the process continues
with the exponent addition.

The exponent of the multiplier is in q and the adder is between exponents
a and b. It is necessary to transfer the exponents from q to a, add the two
exponents, and transfer the sum into a . Since both exponents are biased by the
addition of a constant, the exponent sum will have double this bias. The correct
biased exponent for the product is obtained by subtracting the bias number
from the sum.

The multiplication of the mantissas is done as in the fixed-point case with
the product residing in A and Q . Overflow cannot occur during multiplication,
so there is no need to check for it.

The product may have an underflow, so the most signllicant bit in A is
checked. If it is a 1, the product is already normalized. If it is a 0, the mantissa
in AQ is shifted left and the exponent decremented. Note that only one
normalization shift is necessary. The multiplier and multiplicand were origi­
nally normalized and contained fractions. The smallest normalized operand is
0 .1 , so the smallest possible product is 0.01. Therefore, only one leading zero
may occur.

Although the low-order half of the mantissa is in Q, we do not use it for
the floating-point product. Only the value in the AC is taken as the product.

Division
Floating-point division requires that the exponents be subtracted and the
mantissas divided. The mantissa division is done as in fixed-point except that
the dividend has a single-precision mantissa that is placed in the AC . Remem­
ber that the mantissa dividend is a fraction and not an integer. For integer
representation, a single-precision dividend must be placed in register Q and
register A must be cleared. The zeros in A are to the left of the binary point
and have no signllicance. In fraction representation, a single-precision divi­
dend is placed in register A and register Q is cleared. The zeros in Q are to the
right of the binary point and have no signllicance.

The check for divide-overflow is the same as in fixed-point representa­
tion. However, with floating-point numbers the divide-overflow imposes no
problems. If the dividend is greater than or equal to the divisor, the dividend
fraction is shifted to the right and its exponent incremented by 1. For normal­
ized operands this is a sufficient operation to ensure that no mantissa divide-

dividend alignment overflow will occur. The operation above is referred to as a dividend alignment .
The division of two normalized floating-point numbers will always result

in a normalized quotient provided that a dividend alignment is carried out
before the division. Therefore, unlike the other operations, the quotient ob­
tained after the division does not require a normalization.

The division algorithm can be subdivided into five parts:

1. Check for zeros.

2. Initialize registers and evaluate the sign.

3. Align the dividend.
4. Subtract the exponents.

5. Divide the mantissas.

SECfiON 10-6 Decimal Arithmetic Unit 363

The flowchart for floating-point division is shown in Fig. 10-17. The two
operands are checked for zero. If the divisor is zero, it indicates an attempt to
divide by zero, which is an illegal operation. The operation is terminated with
an error message. An alternative procedure would be to set the quotient in QR
to the most positive number possible (if the dividend is positive) or to the most
negative possible (if the dividend is negative). If the dividend in AC is zero, the
quotient in QR is made zero and the operation terminates.

If the operands are not zero, we proceed to determine the sign of the
quotient and store it in Q, . The sign of the dividend in A, is left unchanged to
be the sign of the remainder. The Q register is cleared and the sequence counter
SC is set to a number equal to the number of bits in the quotient.

The dividend alignment is similar to the divide-overflow check in the
fixed-point operation. The proper alignment requires that the fraction divi­
dend be smaller than the divisor. The two fractions are compared by a subtrac­
tion test. The carry in E determines their relative magnitude. The dividend
fraction is restored to its original value by adding the divisor. If A ;,: B, it is
necessary to shift A once to the right and increment the dividend exponent.
Since both operands are normalized, this alignment ensures that A < B .

Next, the divisor exponent i s subtracted from the dividend exponent.
Since both exponents were originally biased, the subtraction operation gives
the difference without the bias. The bias is then added and the result trans­
ferred into q because the quotient is formed in QR.

The magnitudes of the mantissas are divided as in the fixed-point case.
After the operation, the mantissa quotient resides in Q and the remainder in
A. The floating-point quotient is already normalized and resides in QR . The
exponent of the remainder should be the same as the exponent of the dividend.
The binary point for the remainder mantissa lies (n - 1) positions to the left
of A1• The remainder can be converted to a normalized fraction by subtracting
n - 1 from the dividend exponent and by shift and decrement until the bit in
A1 is equal to 1. This is not shown in the flow chart and is left as an exercise.

10-6 Decimal Arithmetic Unit

The user of a computer prepares data with decimal numbers and receives
results in decimal form. A CPU with an arithmetic logic unit can perform
arithmetic rnicrooperations with binary data. To perform arithmetic operations
with decimal data, it is necessary to convert the input decimal numbers to
binary, to perform all calculations with binary numbers, and to convert the
results into decimal. This may be an efficient method in applications requiring
a large number of calculations and a relatively smaller amount of input and

364 CHAPTER TIN Computer Arithmetic

END
(Quotient is in QR)

Figure 10 .. 17 Division of floating .. point numbers.

SECTION 10-6 Decimal Arithmetic Unit 365

output data. When the application calls for a large amount of input-output and
a relatively smaller number of arithmetic calculations, it becomes convenient
to do the internal arithmetic directly with the decimal numbers. Computers
capable of performing decimal arithmetic must store the decimal data in binary­
coded form. The decimal numbers are then applied to a decimal arithmetic unit
capable of executing decimal arithmetic microoperations.

Electronic calculators invariably use an internal decimal arithmetic unit
since inputs and outputs are frequent. There does not seem to be a reason for
converting the keyboard input numbers to binary and again converting the
displayed results to decimal, since this process requires special circuits and also
takes a longer time to execute. Many computers have hardware for arithmetic
calculations with both binary and decimal data. Users can specify by pro­
grammed instructions whether they want the computer to perform calculations
with binary or decimal data.

A decimal arithmetic unit is a digital function that performs decimal
microoperations. It can add or subtract decimal numbers, usually by forming
the 9's or 10's complement of the subtrahend. The unit accepts coded decimal
numbers and generates results in the same adopted binary code. A single-stage
decimal arithmetic unit consists of nine binary input variables and five binary
output variables, since a minimum of four bits is required to represent each
coded decimal digit. Each stage must have four inputs for the augend digit,
four inputs for the addend digit, and an input-carry. The outputs include four
terminals for the sum digit and one for the output-carry. Of course, there is
a wide variety of possible circuit configurations dependent on the code used
to represent the decimal digits.

BCD Adder
Consider the arithmetic addition of two decimal digits in BCD, together with
a possible carry from a previous stage. Since each input digit does not exceed
9, the output sum cannot be greater than 9 + 9 + 1 = 19, the 1 in the sum being
an input-carry. Suppose that we apply two BCD digits to a 4-bit binary adder.
The adder will form the sum in bitlllry and produce a result that may range from
0 to 19. These binary numbers are listed in Table 10-4 and are labeled by
symbols K, Z8, z,, Z2, and Z1• K is the carry and the subscripts under the letter
Z represent the weights 8, 4, 2, and 1 that can be assigned to the four bits in
the BCD code. The first column in the table lists the binary sums as they appear
in the outputs of a 4-bit bitlllry adder. The output sum of two decimlll numbers
must be represented in BCD and should appear in the form listed in the second
column of the table. The problem is to find a simple rule by which the binary
number in the first column can be converted to the correct BCD digit represen­
tation of the number in the second column.

In examining the contents of the table, it is apparent that when the binary
sum is equal to or less than 1001, the corresponding BCD number is identical

366 CHAPTER TEN Computer Arithmetic

TABLE 10-'1 Derivation of BCD Adder

Binary Sum BCD Sum

K z, z, z, z, c s. s, s, s, Decimal

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 0 0 0 0 0 0 0 8
0 0 0 0 0 0 9

0 1 0 1 0 0 0 0 0 10
0 1 0 1 1 0 0 0 1 1 1
0 1 0 0 0 0 1 0 12
0 1 0 1 0 0 1 1 13
0 1 1 1 0 0 1 0 0 14
0 1 1 1 1 0 1 0 1 15

0 0 0 0 0 1 1 0 16
0 0 0 1 0 1 1 1 17
0 0 1 0 0 0 0 18
0 0 1 0 0 19

and therefore no conversion is needed. When the binary sum is greater than
1001, we obtain a nonvalid BCD representation. The addition of binary 6 (0110)
to the binary sum converts it to the correct BCD representation and also
produces an output-carry as required.

One method of adding decimal numbers in BCD would be to employ one
4-bit binary adder and perfonn the arithmetic operation one digit at a time. The
low-order pair of BCD digits is first added to produce a binary sum. If the result
is equal or greater than 1010, it is corrected by adding 0110 to the binary sum.
This second operation will automatically produce an output-carry for the next
pair of significant digits. The next higher-order pair of digits, together with the
input-carry, is then added to produce their binary sum. If this result is equal
to or greater than 1010, it is corrected by adding 0110. The procedure is
repeated until all decimal digits are added.

The logic circuit that detects the necessary correction can be derived from
the table entries. It is obvious that a correction is needed when the binary sum
has an output carry K = 1. The other six combinations from 1010 to 1111 that
need a correction have a 1 in position Z8• To distinguish them from binary 1000
and 1001 which also have a 1 in position z, we specify further that either z,

SECTION 10·6 Decimal Arithmetic Unit 36 7

or z, must have a 1. The condition for a correction and an output-carry can be
expressed by the Boolean function

C = K + Z8 Z4 + z, z,

When C = 1, it is necessary to add 0110 to the binary sum and provide an
output-carry for the next stage.

A BCD adder is a circuit that adds two BCD digits in parallel and produces
a sum digit also in BCD. A BCD adder must include the correction logic in its
internal construction. To add 0110 to the binary sum, we use a second 4-bit
binary adder as shown in Fig. 10-18. The two decimal digits, together with the
input-carry, are first added in the top 4-bit binary adder to produce the binary
sum. When the output-carry is equal to 0, nothing is added to the binary sum.
When it is equal to 1, binary 0110 is added to the binary sum through the
bottom 4-bit binary adder. The output-carry generated from the bottom binary
adder may be ignored, since it supplies information already available in the
output-carry terminal.

Output
carry

Figure 10-18 Block diagram of BCD adder.

Addend Augend

368 CHAPTER TEN Computer Arithmetic

A decimal parallel-adder that adds n decimal digits needs n BCD adder
stages with the output-carry from one stage connected to the input-carry of the
next-higher-order stage. To achieve shorter propagation delays, BCD adders
include the necessary circuits for carry look-ahead. Furthermore, the adder
circuit for the correction does not need all four full-adders, and this circuit can
be optimized.

BCD Subtraction
A straight subtraction of two decimal numbers will require a subtractor circuit
that will be somewhat different from a BCD adder. It is more economical to
perform the subtraction by taking the 9's or 10's complement of the subtrahend
and adding it to the minuend. Since the BCD is not a self-complementing code,
the 9' s complement cannot be obtained by complementing each bit in the code.
It must be formed by a circuit that subtracts each BCD digit from 9.

The 9's complement of a decimal digit represented in BCD may be ob­
tained by complementing the bits in the coded representation of the digit
provided a correction is included. There are two possible correction methods.
In the first method, binary 1010 (decimal 10) is added to each complemented
digit and the carry discarded after each addition. In the second method, binary
0110 (decimal 6) is added before the digit is complemented. As a numerical
illustration, the 9's complement of BCD 0111 (decimal 7) is computed by first
complementing each bit to obtain 1000. Adding binary 1010 and discarding the
carry, we obtain 0010 (decimal 2). By the second method, we add 0110 to 0111
to obtain 1101. Complementing each bit, we obtain the required result of 0010.
Complementing each bit of a 4-bit binary number N is identical to the subtrac­
tion of the number from 1111 (decimal 15). Adding the binary equivalent of
decimal 10 gives 15 - N + 10 = 9 - N + 16. But 16 signilies the carry that is
discarded, so the result is 9 - N as required. Adding the binary equivalent of
decimal 6 and then complementing gives 15 - (N + 6) = 9 - N as required.

The 9's complement of a BCD digit can also be obtained through a
combinational circuit. When this circuit is attached to a BCD adder, the result
is a BCD adder/subtractor. Let the subtrahend (or addend) digit be denoted by
the four binary variables 88, 84, 82, and 81• Let M be a mode bit that controls
the add/subtract operation. When M = 0, the two digits are added; when
M = 1, the digits are subtracted. Let the binary variables x8, x4, x,, and x1 be
the outputs of the 9's complementer circuit. By an examination of the truth
table for the circuit, it may be observed (see Prob. 10-30) that 81 should always
be complemented; 82 is always the same in the 9' s complement as in the original
digit; x4 is 1 when the exclusive-OR of B2 and 84 is 1; and x8 is 1 when
88 84 82 = 000. The Boolean functions for the 9' s complementer circuit are

SECTION 1 0-7 Decimal Arithmetic Operations 369

x, = B4 M' + (B4 B2 + B4 Bi)M

x8 = BaM' + B8 B4 B2 M

From these equations we see that x = B when M = 0. When M = 1, the x
outputs produce the 9' s complement of B .

One stage o f a decimal arithmetic unit that can add o r subtract two BCD
digits is shown in Fig. 10-19. It consists of a BCD adder and a 9's complementer.
The mode M controls the operation ofthe unit. With M = 0, the S outputs form
the sum of A and B. With M = 1, the S outputs form the sum of A plus the
9's complement of B . For numbers with n decimal digits we need n such stages.
The output carry C;.1 from one stage must be connected to the input carry C;
of the next-higher-order stage. The best way to subtract the two decimal
numbers is to let M = 1 and apply a 1 to the input carry C1 of the first stage.
The outputs will form the sum of A plus the 10's complement of B, which
is equivalent to a subtraction operation if the carry-out of the last stage is
discarded.

10-7 Decimal Arithmetic Operations

The algorithms for arithmetic operations with decimal data are similar to the
algorithms for the corresponding operations with binary data. In fact, except
for a slight modification in the multiplication and division algorithms, the same

Figure 10#19 One stage of a decimal arithmetic unit.

BCD 9"s
M complementer

BCD adder (Fig. 1 0- 1 8)

s, s, s, s,

C;

3 70 CHAPTIR TEN Computer Arithmetic

flowcharts can be used for both types of data provided that we interpret the
microoperation symbols properly. Decimal numbers in BCD are stored in
computer registers in groups of four bits. Each 4-bit group represents a decimal
digit and must be taken as a unit when performing decimal microoperations.

For convenience, we will use the same symbols for binary and decimal
arithmetic microoperations but give them a different interpretation. As shown
in Table t0-5, a bar over the register letter symbol denotes the 9' s complement
of the decimal number stored in the register. Adding t to the 9's complement
produces the tO's complement. Thus, for decimal numbers, the symbol
A <--A + B + t denotes a transfer of the decimal sum formed by adding the
original content A to the tO's complement of B. The use of identical symbols
for the 9' s complement and the 1' s complement may be confusing if both types
of data are employed in the same system. If this is the case, it may be better
to adopt a different symbol for the 9's complement. If only one type of data
is being considered, the symbol would apply to the type of data used.

Incrementing or decrementing a register is the same for binary and
decimal except for the number of states that the register is allowed to have. A
binary counter goes through t6 states, from 0000 to 1111 , when incremented.
A decimal counter goes through tO states from 0000 to tOOt and back to 0000,
since 9 is the last count. Similarly, a binary counter sequences from 1111 to 0000
when decremented. A decimal counter goes from tOOt to 0000.

A decimal shift right or left is preceded by the letter d to indicate a shift
over the four bits that hold the decimal digits. As a numerical illustration
consider a register A holding decimal 7860 in BCD. The bit pattern of the t2
flip-flops is

011t 1000 0110 0000

The microoperation dshr A shifts the decimal number one digit to the right to
give 0786. This shift is over the four bits and changes the content of the register
into

0000 011t 1000 0110

TABLE 10 .. 5 Decimal Arithmetic Microoperation Symbols

Symbolic Designation

A <--A + B
B
A <--A + B + l
Q, <-- Q, + 1
dshr A
dshl A

Description

Add decimal numbers and transfer s urn into A
9' s complement of B
Content of A plus lO's complement of B into A
Increment BCD number in Q,
Decimal shift-right register A
Decimal shift-left register A

Addition and Subtraction

SECfiON I o. 7 Decimal Arithmetic Operations 3 7 1

The algorithm for addition and subtraction of binary signed-magnitude num­
bers applies also to decimal signed-magnitude numbers provided that we
interpret the microoperation symbols in the proper manner. Similarly, the
algorithm for binary signed-2's complement numbers applies to decimal
signed-10's complement numbers. The binary data must employ a binary
adder and a complementer. The decimal data must employ a decimal arith­
metic unit capable of adding two BCD numbers and forming the 9's comple­
ment of the subtrahend as shown in Fig. 10-19.

Decimal data can be added in three different ways, as shown in Fig. 10-20.
The parallel method uses a decimal arithmetic unit composed of as many BCD
adders as there are digits in the number. The sum is formed in parallel and
requires only one rnicrooperation. In the digit-serial bit-parallel method, the
digits are applied to a single BCD adder serially, while the bits of each coded
digit are transferred in parallel. The sum is formed by shifting the decimal
numbers through the BCD adder one at a time. For k decimal digits, this
configuration requires k rnicrooperations, one for each decimal shift. In the all
serial adder, the bits are shifted one at a time through a full-adder. The binary
sum formed after four shifts must be corrected into a valid BCD digit. This
correction, discussed in Sec. 10-6, consists of checking the binary sum. If it is
greater than or equal to 1010, the binary sum is corrected by adding to it 0110
and generating a carry for the next pair of digits.

The parallel method is fast but requires a large number of adders. The
digit-serial bit-parallel method requires only one BCD adder, which is shared
by all the digits. It is slower than the parallel method because of the time
required to shift the digits. The all serial method requires a minimum amount
of equipment but is very slow.

Multiplication
The multiplication of fixed-point decimal numbers is similar to binary except
for the way the partial products are formed. A decimal multiplier has digits that
range in value from 0 to 9, whereas a binary multiplier has only 0 and 1 digits.
In the binary case, the multiplicand is added to the partial product if the
multiplier bit is 1. In the decimal case, the multiplicand must be multiplied by
the digit multiplier and the result added to the partial product. This operation
can be accomplished by adding the multiplicand to the partial product a
number of times equal to the value of the multiplier digit.

The registers organization for the decimal multiplication is shown in
Fig. 10-21 . We are assuming here four-digit numbers, with each digit occupy­
ing four bits, for a total of 16 bits for each number. There are three registers,
A, B, and Q, each having a corresponding sign flip-flop A, B, and Q, .

3 7 2 CHAPTER TEN Computer Arithmetic

0 I 0 I 0 0 0 0

(a) Parallel decimal addition : 624 + 879 = 1 503

(b) Digit·serial. bit·parallel decimal addition

(c) All serial decimal addition

0 I I

Figure 10�20 Three ways of adding decimal numbers.

SECfiON 10-7 Decimal Arithmetic Operations 3 73

B

��--B_c_o_a_n_·th_m_e_ti_c _un_i_t
__ -"

A

�
"------Lk = 4

@J r:h 1 1 0' 1 1�2 1 1 0 ' I L(
Increment
Decrement

Figure 10 ... 21 Registers for decimal arithmetic multiplication and division.

Registers A and B have four more bits designated by A, and B, that provide an
extension of one more digit to the registers. The BCD arithmetic unit adds the
five digits in parallel and places the sum in the five-digit A register. The
end-carry goes to flip-flop E. The purpose of digit A, is to accommodate an
overflow while adding the multiplicand to the partial product during multipli­
cation. The purpose of digit B, is to form the 9's complement of the divisor
when subtracted from the partial remainder during the division operation. The
least significant digit in register Q is denoted by QL . This digit can be incre­
mented or decremented.

A decimal operand coming from memory consists of 17 bits. One bit (the
sign) is transferred to B, and the magnitude of the operand is placed in the
lower 16 bits of B . Both B, and A, are cleared initially. The result of the operation
is also 17 bits long and does not use the A, part of the A register.

The decimal multiplication algorithm is shown in Fig. 10-22. Initially, the
entire A register and B, are cleared and the sequence counter SC is set to a
number k equal to the number of digits in the multiplier. The low-order digit
of the multiplier in Q, is checked. If it is not equal to 0, the multiplicand in B
is added to the partial product in A once and QL is decremented. QL is checked
again and the process is repeated until it is equal to 0. In this way, the
multiplicand in B is added to the partial product a number of times equal to
the multiplier digit. Any temporary overflow digit will reside in A, and can
range in value from 0 to 9.

Next, the partial product and the multiplier are shifted once to the right.
This places zero in A, and transfers the next multiplier quotient into QL. The
process is then repeated k times to form a double-length product in AQ .

3 7 4 CHAPTER TEN Computer Arithmetic

Multiply

Figure 10 .. 22 Flowchart for decimal multiplication.

Division
Decimal division is similar to binary division except of course that the quotient
digits may have any of the 10 values from 0 to 9. In the restoring division
method, the divisor is subtracted from the dividend or partial remainder as
many times as necessary until a negative remainder results. The correct re­
mainder is then restored by adding the divisor. The digit in the quotient reflects
the number of subtractions up to but excluding the one that caused the
negative difference.

The decimal division algorithm is shown in Fig. 10-23. It is similar to the
algorithm with binary data except for the way the quotient bits are formed. The
dividend (or partial remainder) is shifted to the left, with its most significant
digit placed in A, . The divisor is then subtracted by adding its 10' s complement
value. Since B, is initially cleared, its complement value is 9 as required. The
carry in E determines the relative magnitude of A and B. If E = 0, it signifies

SECTION JO. 7 Decimal Arithmetic Operations 3 7 5

Divide

Figure 10�23 Flowchart for decimal division.

that A < B. In this case the divisor is added to restore the partial remainder
and QL stays at 0 (inserted there during the shift). If E = 1, it signilies that
A ;,: B. The quotient digit in QL is incremented once and the divisor subtracted
again. This process is repeated until the subtraction results in a negative
difference which is recognized by E being 0. When this occurs, the quotient
digit is not incremented but the divisor is added to restore the positive remain­
der. In this way, the quotient digit is made equal to the number of times that
the partial remainder "goes" into the divisor.

376 OIAPTER TEN Computer Arithmetic

The partial remaindel" and the quotient bits are shifted once tn the left and
the process is repeated k times to fonn k quotient digits. The remainder is then
found in register A and the quotient is in register Q. The value of E is neglected.

Floating-Point Operations
Decimal floating-point arithmetic operations foDow the same procedures as
binary operations. The algorithms in Sec. 10-5 can be adopted for decimal data
provided that the miaooperation symbols are interpreted correctly. The mul­
tiplication and division of the mantissas must be done by the methods de­
scribed above.

PROBLEMS

10.1. The complementershownln fig. 10-1 is not needed iflnstud of performing
A + B + 1 we perform B + A (B plus the l's complement of A). O..rive an
algorithm in Oowdulrt form for a.dclition and 5Ubtnction of fixed-point
binary number$ in signed-magnitude representation with the magnitudes
subtracted by the two miaoopera.tlons A _;;; and £A -A + B.

lG-2. Mark each inclividlal path in the flowchart ofFig. IG-2 by a number and then
indicate the overall path that the algorithm takes when the following signed·
magnitude numbers are computed. In each case give the value of AVF. The
leftmost bit in the lollowi!lg number$ "'Presents the sign bit .
•. 0 101101 + 0 011111
b. I 011111 + I 101101
c. 0 101101 - 0 011111
d. 0 IOllOI - 0 101101
e. 1 011111 - 0 10ll01

lo-3. Perform the arithmetic operations below with binary numbers and with
negative number$ In slgned-2"s complement "'Preset�!Jotion. Use seven bits
to accommodate each number together with its sign. In each cue, determine
if there is an overflow by checking the carries Into and out ol the sign bit
position .
•. (+35) + (+40)
b. (-35) + (-40)
c. (-35) - (+40)

lH. Consider the binary numbers when they are in signed-2"s comploment
represenllltlon. Each number has n bits: one for the sign and lc = " - 1 lor
the magnitude. A n"gative number -X is "'Presented as 2' + (2' - X).
where the first 2' designates the sign bit and (2' - X) is the 2's complement
of X. A positive number is representedasO + X, wheretheOdesignatesth"
sign bit, and X, the lc·bit magnitude. Using these generalized symbols, prove

10-5.

10-6.

10-7.

10-8.

10-9.

10-10.

10-11.

10-12.

10-13.

10-14.

10-15.

10-16.

10-17.

Problems 3 7 7

that the sum (±X) + (±Y) can be formed by adding the numbers including
their sign bits and discarding the carry-out of the sign-bit position. In other
words, prove the algorithm for adding two binary numbers in signed-2's
complement representation.

Formulate a hardware procedure for detecting an overflow by comparing the
sign of the sum with the signs of the augend and addend. The numbers are
in signed-2' s complement representation.

a. Perform the operation (-9) + (-6) = - 15 with binary numbers in
signed-1' s complement representation using only five bits to represent
each number (including the sign). Show that the overflow detection
procedure of checking the inequality of the last two carries fails in this
case.

b. Suggest a modified procedure for detecting an overflow when signed-l's
complement numbers are used.

Derive an algorithm in flowchart form for adding and subtracting two fixed­
point binary numbers when negative numbers are in signed-l's complement
representation.

Prove that the multiplication of two n-digit numbers in base r gives a product
no more than 2n digits in length. Show that this statement implies that no
overflow can occur in the multiplication operation.

Show the contents of registers E, A, Q, and SC (as in Table 10-2) during the
process of multiplication of two binary numbers, 11111 (multiplicand) and
10101 (multiplier). The signs are not included.

Show the contents of registers E, A, Q, and SC (as in Fig. 10-12) during the
process of division of (a) 10100011 by 1011; (b) 00001111 by 0011 . (Use a
dividend of eight bits.)

Show that adding B afterthe operationA + B + 1 restores theoriginalvalue
of A. What should be done with the end carry?

Why should the sign of the remainder after a division be the same as the sign
of the dividend?

Design an array multiplier that multiplies two 4-bit numbers. Use AND gates
and binary adders.

Show the step-by-step multiplication process using Booth algorithm (as in
Table 10-3) when the following binary numbers are multiplied. Assume 5-bit
registers that hold signed numbers. The multiplicand in both cases is + 15.
a. (+ 15) x (+13)
b. (+ 15) X (-13)

Derive an algorithm in flowchart form for the nonrestoring method of fixed­
point binary division.

Derive an algorithm for evaluating the square root of a binary fixed-point
number.

A binary floating-point number has seven bits for a biased exponent. The
constant used for the bias is 64.
a. List the biased representation of all exponents from -64 to +63.

3 7 8 CHAPTER TEN Computer Arithmetic

10-18.

10-19.

10-20.

10-21.

10-22.

10-23.

10-24.

10-25.

b. Show that a 7-bit magnitude comparator can be used to compare the
relative magnitude of the two exponents.

c. Show that after the addition of two biased exponents it is necessary to
subtract 64 in order to have a biased exponents sum. How would you
subtract 64 by adding its 2's complement value?

d. Show that after the subtraction of two biased exponents it is necessary
to add 64 in order to have a biased exponent difference.

Derive an algorithm in flowchart form for the comparison of two signed
binary numbers when negative numbers are in signed-2's complement rep­
resentation:
a. By means of a subtraction operation with the signed-2's complement

numbers.
b. By scanning and comparing pairs of bits from left to right.

Repeat Prob. 10-18 for signed-magnitude binary numbers.

Let n be the number of bits of the mantissa in a binary floating-point number.
When the mantissas are aligned during the addition or subtraction, the
exponent difference may be greater than n - 1. U this occurs, the mantissa
with the smaller exponent is shifted entirely out of the register. Modify the
mantissa alignment in Fig. 10-15 by including a sequence counter SC that
counts the number of shifts. If the number of shifts is greater than n - 1,
the larger number is then used to determine the result.

The procedure for aligning mantissas during addition or subtraction of
floating-point numbers can be stated as follows: Subtract the smaller expo­
nent from the larger and shift right the mantissa having the smaller exponent
a number of places equal to the difference between the exponents. The
exponent of the sum (or difference) is equal to the larger exponents. Without
using a magnitude comparator, assuming biased exponents, and taking into
account that only the AC can be shifted, derive an algorithm in flowchart
form for aligning the mantissas and placing the larger exponent in the AC.

Show that there can be no mantissa overflow after a multiplication operation.

Show that the division of two normalized floating-point numbers with
fractional mantissas will always result in a normalized quotient provided a
dividend alignment is carried out prior to the division operation.

Extend the flowchart of Fig. 10-17 to provide a normalized floating-point
remainder in the AC. The mantissa should be a fraction.

The algorithms for the floating-point arithmetic operations in Sec. 10-5
neglect the possibility of exponent overflow or underflow.
a. Go over the three flowcharts and find where an exponent overflow may

occur.
b. Repeat (a) for exponent underflow. An exponent underflow occurs if the

exponent is more negative than the smallest number that can be accom­
modated in the register.

c. Show how an exponent overflow or underflow can be detected by the
hardware.

10.26. If we assume integer representation for the mantissa of floating-point num­
bers, we encounter certain scaling problems during multiplication and divi-

10-27.

10-28.

10-29.

10-30.

10-31.

10-32.

10-33.

10-34.

10-35.

10-36.

10-37.

Problems 379

sion. Let the number of bits in the magnitude part ofthe mantissa be (n - 1).
For integer representation:
a. Show that if a single-precision product is used, (n - 1) must be added

to the exponent product in the AC .
b. Show that if a single-precision mantissa dividend is used, (n - 1) must

be subtracted from the exponent dividend when Q is cleared.

Show the hardware to be used for the addition and subtraction of two
decimal numbers in signed-magnitude representation. Indicate how an
overflow is detected.

Show that 673 - 356 can be computed by adding 673 to the 10's complement
of 356 and discarding the end carry. Draw the block diagram of a three-stage
dedmal arithmetic unit and show how this operation is implemented. List
all input bits and output bits of the unit.

Show that the lower 4-bit binary adder in Fig. 10-1 can be replaced by one
full-adder and two half-adders.

Using combinational circuit design techniques, derive the Boolean functions
for the BCD 9's complementer of Fig. 10-19. Draw the logic diagram.

It is necessary to design an adder for two decimal digits represented in the
excess-3 code (Table 3-6). Show that the correction after adding two digits
with a 4-bit binary adder is as follows:
a. The output carry is equal to the uncorrected carry.
b. If output carry � 1, add 0011.
c. If output carry � 0, add 1101 and ignore the carry from this addition.

Show that the excess-3 adder can be constructed with seven full-adders
and two inverters.

Derive the circuit for a 9' s complementer when decimal digits are repre­
sented in the excess-3 code (Table 3-6). A mode control input determines
whether the digit is complemented or not. What is the advantage of using
this code over BCD?

Show the hardware to be used for the addition and subtraction of two
decimal numbers with negative numbers in signed-lO's complement repre­
sentation. Indicate how an overflow is detected. Derive the flowchart al­
gorithm and try a few numbers to convince yourself that the algorithm
produces correct results.

Show the content of registers A, B, Q, and SC during the decimal multipli­
cation (Fig. 10-22) of (a) 470 x 152 and (b) 999 x 199. Assume three-digit
registers and take the second number as the multiplier.

Show the content of registers A, E, Q, and SC during the decimal division
(Fig. 10-23) of 1680/32. Assume two-digit registers.

Show that subregister A. in Fig. 10-21 is zero at the termination of (a) the
decimal multiplication as specified in Fig. 10-22, and (b) the decimal division
as specified in Fig. 10-23.

Change the floating-point arithmetic algorithms in Sec. 10-5 from binary to
decimal data. In a table, list how each microoperation symbol should be
interpreted.

380 OlAPT'EI\ TEN Computer Arithmeric

REFERENCES

I. Blaauw, G., Digi!Jll Systnns TmplemmbJtion. Englewood Cliffs, NJ: �ntice Hall,
1976.

2. Cavanagh, J. J. F., Digi!Jll Compute Arithmdic. New York: McGraw-Hill, 1984.
3. Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organwmon, Jrd ed.

New York: MtCraw-Hill, 1990.
4. Hays,}. F., Computu Archit«.turtondOrg<miZJllion, 2nded. New York: MtCraw-Hill,

1988.

5. Hill, F. J ., and G. R. Peterson, Digi!Jll Systnns: HmlUJ11JT Orgonwmon and V.Sign, Jrd
ed. New Yorlc: John Wiley, 1987.

6. Hwang, K., Compute Arilhmttic. New York: John Wiley, 1979.
7. Kulisch, V. W ., and W. L. Miranker, Computer Arillrmnic in Thmry and l'nld:ia. 1\'ew

York: Academic �ss, 1980.
8. Schmid, H., Otci=l Arilhmdic. New York: John Wiley, 1979.

1/0

CHAPTER E L E V E N

Input-Output
Organization

lN THIS CHAPTER

11-1 Peripheral Devices
11·2 Input-Output lnterfa.:�
11• 3 Asynchronous Data T ransfcr
11-4 Modes ofTrarufer
11·5 Priority Interrupt
11-6 Di=< Memory Access
11-7 lnpu<-Output Ptoeessor
11-8 Serial Communicarion

11·1 Peripheral Devices
The input-output subsystem of a computer, referred to as 110, provides an
effldent mode of communication between the central system and the outside
environment. Programs and data must be entered into computer memory for
processing and results obtained from computations must be recorded M dis­
played for the user. A computer serves no useful purpose without the ability
to receive information from an outside souroe and to transltUt results in a
meaningful form.

The most familiar means of entering Wonnation into a computer is
through a typewrite"' like keyboard that aUows a person to enter alphanumeric
Wormation directly. Every time a key is depressed, the terminal sends a binary
coded character to the computer. The fastest possible speed for entering
Information this way depends on the person's typing speed. On the other
hand, the central processing unit is an extremely fast device capable of per­
fornU.ng operations at very high speed. When input information is transferred
to the processor via a slow lceyboard, the processor will be idle most of the time
while waiting for the Wormation to arrive. To use a computer efficiently, a

381

382 CHAI'TER ELEVEN Input-Output Organization

peripheral

monitor and
Jay board

printer

large amount of programs and data must be prepared in advance and transmit­
ted into a storage medium such as magnetic tapes or disks. The information
in the disk is then transferred into computer memory at a rapid rate. Results
of programs are also transferred into a high-speed storage, such as disks, from
which they can be transferred later into a printer to provide a printed output
of results.

Devices that are under the direct control of the computer are said to be
connected on-line. These devices are designed to read information into or out
of the memory unit upon command from the CPU and are considered to be
part of the total computer system. Input or output devices attached to the
computer are also called peripherals . Among the most common peripherals are
keyboards, display units, and printers. Peripherals that provide auxiliary stor­
age for the system are magnetic disks and tapes. Peripherals are electrome­
chanical and electromagnetic devices of some complexity. Only a very brief
discussion of their function will be given here without going into detail of their
internal construction.

Video monitors are the most commonly used peripherals. They consist
of a keyboard as the input device and a display unit as the output device. There
are different types of video monitors, but the most popular use a cathode ray
tube (CRT). The CRT contains an electronic gun that sends an electronic beam
to a phosphorescent screen in front of the tube. The beam can be deflected
horizontally and vertically. To produce a pattern on the screen, a grid inside
the CRT receives a variable voltage that causes the beam to hit the screen and
make it glow at selected spots. Horizontal and vertical signals deflect the beam
and make it sweep across the tube, causing the visual pattern to appear on the
screen. A characteristic feature of display devices is a cursor that marks the
position in the screen where the next character will be inserted. The cursor can
be moved to any position in the screen, to a single character, the beginning of
a word, or to any line. Edit keys add or delete information based on the cursor
position. The display terminal can operate in a single-character mode where
all characters entered on the screen through the keyboard are transmitted to
the computer simultaneously. In the block mode, the edited text is first stored
in a local memory inside the terminal. The text is transferred to the computer
as a block of data.

Printers provide a permanent record on paper of computer output data
or text. There are three basic types of character printers: daisywheel, dot
matrix, and laser printers. The daisywheel printer contains a wheel with the
characters placed along the circumference. To print a character, the wheel
rotates to the proper position and an energized magnet then presses the letter
against the ribbon. The dot matrix printer contains a set of dots along the
printing mechanism. For example, a 5 x 7 dot matrix printer that prints 80
characters per line has seven horizontal lines, each consisting of 5 x 80 = 400
dots. Each dot can be printed or not, depending on the specific characters that
are printed on the line. The laser printer uses a rotating photographic drum

magnetic tape

magnetic disk

ASCII

SECTION 1 1 · 1 Peripheral Devices 383

that is used to imprint the character images. The pattern is then transferred
onto paper in the same manner as a copying machine.

Magnetic tapes are used mostly for storing files of data: for example, a
company's payroll record. Access is sequential and consists of records that can
be accessed one after another as the tape moves along a stationary read-write
mechanism. It is one of the cheapest and slowest methods for storage and has
the advantage that tapes can be removed when not in use. Magnetic disks have
high-speed rotational surfaces coated with magnetic material. Access is
achieved by moving a read-write mechanism to a track in the magnetized
surface. Disks are used mostly for bulk storage of programs and data. Tapes
and disks are discussed further in Sec. 12-1 in conjunction with their role as
auxiliary memory.

Other input and output devices encountered in computer systems are
digital incremental plotters, optical and magnetic character readers, analog-to­
digital converters, and various data acquisition equipment. Not all input comes
from people, and not all output is intended for people. Computers are used
to control various processes in real time, such as machine tooling, assembly
line procedures, and chemical and industrial processes. For such applications,
a method must be provided for sensing status conditions in the process and
sending control signals to the process being controlled.

The input-output organization of a computer is a function of the size of
the computer and the devices connected to it. The difference between a small
and a large system is mostly dependent on the amount of hardware the
computer has available for communicating with peripheral units and the num­
ber of peripherals connected to the system. Since each peripheral behaves
differently from any other, it would be prohibitive to dwell on the detailed
interconnections needed between the computer and each peripheral. Certain
techniques common to most peripherals are presented in this chapter.

ASCII Alphanumeric Characters
Input and output devices that communicate with people and the computer are
usually involved in the transfer of alphanumeric information to and from the
device and the computer. The standard binary code for the alphanumeric
characters is ASCII (American Standard Code for Information Interchange). It
uses seven bits to code 128 characters as shown in Table 11-1 . The seven bits
of the code are designated by b1 through b7, with b, being the most significant
bit. The letter A, for example, is represented in ASCII as 1000001 (column 100,
row 0001). The ASCII code contains 94 characters that can be printed and 34
nonprinting characters used for various control functions. The printing char­
acters consist of the 26 uppercase letters A through Z, the 26 lowercase letters,
the 10 numerals 0 through 9, and 32 special printable characters such as %, * ,
and $.

The 34 control characters are designated in the ASCII table with abbrevi-

384 CHAPTER ElEVEN Input-Output Organization

TABLE 1 1·1 American Standard Code for Information Interchange (ASCII)

b7 b6 bs

b4 b3 b2 bt 000 001 010 011 100 101 110 111

0000 NUL DLE SP 0 @ p p
0001 SOH DC! I A Q a q
0010 STX DC2 2 B R b
0011 ETX DC3 # 3 c s c
0100 EOT DC4 $ 4 D T d
0101 ENQ NAK % 5 E u e u
0110 ACK SYN & 6 F v v
0111 BEL ETB 7 G w g w
1000 BS CAN 8 H X h X
1001 HT EM 9 I y y
1010 LF SUB J z j
1011 VT ESC + K [k
1100 FF FS < L \ I
1101 CR GS M 1 m
1110 so RS > N 1\ n
1111 SI us 0 0 DEL

Control characters

NUL Null DLE Data link escape
SOH Start of heading DC! Device control I
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge
ACK Acknowledge SYN Synchronous idle
BEL Bell ETB End of transmission block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
VT Vertical tab ESC Escape
FF Form feed FS File separator
CR Carriage return GS Group separator
so Shift out RS Record separator
SI Shift in us Unit separator
SP Space DEL Delete

ated names. They are listed again below the table with their functional names.
The control characters are used for routing data and arranging the printed text
into a prescribed format. There are three types of control characters: format
effectors, information separators, and communication control characters. For-
mat effectors are characters that control the layout of printing. They include

byte

interface

SECTION I I ·Z Input-Output Interface 385

the familiar typewriter controls, such as backspace (BS), horizontal tabulation
(Hf), and carriage return (CR). Information separators are used to separate the
data into divisions like paragraphs and pages. They include characters such as
record separator (RS) and file separator (FS). The communication control char­
acters are useful during the transmission of text between remote terminals.
Examples of communication control characters are STX (start of text) and ETX
(end of text), which are used to frame a text message when transmitted through
a communication medium.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity
as a single unit called a llyte . Therefore, ASCII characters most often are stored
one per byte. The extra bit is sometimes used for other purposes, depending
on the application. For example, some printers recognize 8-bit ASCII characters
with the most significant bit set to 0. Additional 128 8-bit characters with the
most significant bit set to 1 are used for other symbols, such as the Greek
alphabet or italic type font. When used in data communication, the eighth bit
may be employed to indicate the parity of the binary-coded character.

1 1-2 Input-Output Interface

Input-output interface provides a method for transferring information be­
tween internal storage and external I/0 devices. Peripherals connected to a
computer need special communication links for interfacing them with the
central processing unit. The purpose of the communication link is to resolve
the differences that exist between the central computer and each peripheral.
The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their
manner of operation is different from the operation of the CPU and
memory, which are electronic devices. Therefore, a conversion of signal
values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer
rate of the CPU, and consequently, a synchronization mechariism may
be needed.

3. Data codes and formats in peripherals differ from the word format in
the CPU and memory.

4. The operating modes of peripherals are different from each other and
each must be controlled so as not to disturb the operation of other
peripherals connected to the CPU.

To resolve these differences, computer systems include special hardware
components between the CPU and peripherals to supervise and synchronize
all input and output transfers. These components are called int� units
because they interface between the processor bus and the peripheral device.

386 CHAPTER EL£VEN Input-OutpUt Orianizadon

In addition, each device may have its own controUer that supervises the
operations of the particular mechanism in the peripheral.

l/0 Bus and Interface Modules
A typical communication link between the processor and several peripherals
is shown in Fig. 11·1. The 1/0 bus consists of data lines, address lines, and
control lines. The magnetic disk, printer, and terminal are employed in prac­
tically any general-purpose computer. The magnetic tape is used in some
computers for backup storage. Each peripheral devi.ce has associated with it
an interface unit. Each interface deoodes the address and control received from
the UO bus, interprets them for the peripheral, and provides signals for the
periphe.ral controUer. It also synchronizes the data flow and supervises the
transfer between peripheral and processor. Each peripheral has its own con·
troUer that operates the particular electromechanical device. fur example, the
printer controUer controls the paper motion, the print timing, and the selection
of printing characters. A controUer may be housed separately or may be
physically integrated with the peripheral.

The UO bus from the processor is attached to aU peripheral interfaces. To
communicate with a particular device, the processor places a device address
on the address lines. Each interface attached to the 1/0 bus contains an address
decoder that monitors the address lines. When the interface detects its own
address, it activates the path between the bus lines and the device that it
controls. All peripherals whose address does not correspond to the address in
the bus are disabled by their interface.

At the same time that the address is made avallable In the address lines,
the processor provides a function code in the control lines. The interface

Fleur• 11·1 Conntaion ri 110 buo to input-ou<put devlca.

�----��-------r--w���--�-------;--- nu
� r----r-r----�-t----��------�t-- �

L_jh-rr-rt-t�rtt---rrr--Corool

I/0 command

control command

status

output data

input data

SECTION 1 1 -2 Input-Output Interface 387

selected responds to the function code and proceeds to execute it. The function
code is referred to as an VO command and is in essence an instruction that is
executed in the interface and its attached peripheral unit. The interpretation
of the command depends on the peripheral that the processor is addressing.
There are four types of commands that an interface may receive. They are
classified as control, status, data output, and data input.

A control command is issued to activate the peripheral and to inform it what
to do. For example, a magnetic tape unit may be instructed to backspace the
tape by one record, to rewind the tape, or to start the tape moving in the
forward direction. The particular control command issued depends on the
peripheral, and each peripheral receives its own distinguished sequence of
control commands, depending on its mode of operation.

A status command is used to test various status conditions in the interface
and the peripheral. For example, the computer may wish to check the status
of the peripheral before a transfer is initiated. During the transfer, one or more
errors may occur which are detected by the interface. These errors are desig­
nated by setting bits in a status register that the processor can read at certain
intervals.

A data output command causes the interface to respond by transferring data
from the bus into one of its registers. Consider an example with a tape unit.
The computer starts the tape moving by issuing a control command. The
processor then monitors the status of the tape by means of a status command.
When the tape is in the correct position, the processor issues a data output
command. The interface responds to the address and command and transfers
the information from the data lines in the bus to its buffer register. The interface
then communicates with the tape controller and sends the data to be stored
on tape.

The data input command is the opposite of the data output. In this case the
interface receives an item of data from the peripheral and places it in its buffer
register. The processor checks if data are available by means of a status com­
mand and then issues a data input command. The interface places the data on
the data lines, where they are accepted by the processor.

UO versus Memory Bus
In addition to communicating with VO, the processor must communicate with
the memory unit. Like the VO bus, the memory bus contains data, address,
and read/write control lines. There are three ways that computer buses can be
used to communicate with memory and VO:

1. Use two separate buses, one for memory and the other for VO.

2. Use one common bus for both memory and VO but have separate
control lines for each.

3. Use one common bus for memory and VO with common control lines.

388 CHAPTER ELEVEN Input-Output Organization

In the first method, the computer has independent sets of data, address,
and control buses, one for accessing memory and the other for 110. This is done

lOP in computers that provide a separate 110 processor (lOP) in addition to the
central processing unit (CPU). The memory communicates with both the CPU
and the lOP through a memory bus. The lOP communicates also with the input
and output devices through a separate 110 bus with its own address, data and
control lines. The purpose of the lOP is to provide an independent pathway
for the transfer of information between external devices and internal memory.
The 110 processor is sometimes called a data channel. In Sec. 11-7 we discuss
the function of the lOP in more detail.

isolated 110

mnnory-mapped

Isolated versus Memory-Mapped 1/0
Many computers use one common bus to transfer information between mem­
ory or 110 and the CPU. The distinction between a memory transfer and 110
transfer is made through separate read and write lines. The CPU specifies
whether the address on the address lines is for a memory word or for an
interface register by enabling one of two possible read or write lines. The 110
read and 1/0 write control lines are enabled during an 110 transfer. The memory
read and memory write control lines are enabled during a memory transfer. This
configuration isolates all 110 interface addresses from the addresses assigned
to memory and is referred to as the isolated 110 method for assigning addresses
in a common bus.

In the isolated 110 configuration, the CPU has distinct input and output
instructions, and each of these instructions is associated with the address of
an interface register. When the CPU fetches and decodes the operation code
of an input or output instruction, it places the address associated with the
instruction into the common address lines. At the same time, it enables the 110
read (for input) or 110 write (for output) control line. This informs the external
components that are attached to the common bus that the address in the
address lines is for an interface register and not for a memory word. On the
other hand, when the CPU is fetching an instruction or an operand from
memory, it places the memory address on the address lines and enables the
memory read or memory write control line. This informs the external compo­
nents that the address is for a memory word and not for an 110 interface.

The isolated 110 method isolates memory and 110 addresses so that
memory address values are not affected by interface address assignment since
each has its own address space. The other alternative is to use the same address
space for both memory and 110. This is the case in computers that employ only
one set of read and write signals and do not distinguish between memory and
110 addresses. This configuration is referred to as memory-mapped 110 . The
computer treats an interface register as being part of the memory system. The
assigned addresses for interface registers cannot be used for memory words,
which reduces the memory address range available.

110 port

SECTION 1 1 -1 Input-Output Interface 389

In a memory-mapped l/0 organization there are no specific input or
output instructions. The CPU can manipulate l/0 data residing in interface
registers with the same instructions that are used to manipulate memory
words. Each interface is organized as a set of registers that respond to read and
write requests in the normal address space. Typically, a segment of the total
address space is reserved for interface registers, but in general, they can be
located at any address as long as there is not also a memory word that responds
to the same address.

Computers with memory-mapped l/0 can use memory-type instructions
to access l/0 data. It allows the computer to use the same instructions for either
input-output transfers or for memory transfers. The advantage is that the load
and store instructions used for reading and writing from memory can be used
to input and output data from l/0 registers. In a typical computer, there are
more memory-reference instructions than l/0 instructions. With memory­
mapped l/0 all instructions that refer to memory are also available for l/0.

Example of UO Interface
An example of an l/0 interface unit is shown in block diagram form in Fig. 11-2.
It consists of two data registers called ports, a control register, a status register,
bus buffers, and timing and control circuits. The interface communicates with
the CPU through the data bus. The chip select and register select inputs
determine the address assigned to the interface. The l/0 read and write are two
control lines that specify an input or output, respectively. The four registers
communicate directly with the l/0 device attached to the interface.

The l/0 data to and from the device can be transferred into either port
A or port B. The interface may operate with an output device or with an input
device, or with a device that requires both input and output. If the interface
is connected to a printer, it will only output data, and if it services a character
reader, it will only input data. A magnetic disk unit transfers data in both
directions but not at the same time, so the interface can use bidirectional lines.
A command is passed to the l/0 device by sending a word to the appropriate
interface register. In a system like this, the function code in the l/0 bus is not
needed because control is sent to the control register, status information is
received from the status register, and data are transferred to and from ports
A and B registers. Thus the transfer of data, control, and status information
is always via the common data bus. The distinction between data, control, or
status information is determined from the particular interface register with
which the CPU communicates.

The control register receives control information from the CPU. By load­
ing appropriate bits into the control register, the interface and the l/0 device
attached to it can be placed in a variety of operating modes. For example, port
A may be defined as an input port and port B as an output port. A magnetic
tape unit may be instructed to rewind the tape or to start the tape moving in

390 CHAPTER ELEVEN Input-Output Organization

Bidirectional

data bus

Chip select cs
RS I

Register select
RSO

J/0 read
RD

I/O write
WR

1/0 data

l/0 da1a

Timing Control
and

control

Status

------ To CPU To I/0 device ------o-

CS RS 1 RSO Register selected

x x None: data bus in high-impedance

Port A register

Port B register

Control register

Status register

Figure u .. z Example of UO interface unit.

the forward direction. The bits in the status register are used for status condi­
tions and for recording errors that may occur during the data transfer. For
example, a status bit may indicate that portA has received a new data item from
the 110 device. Another bit in the status register may indicate that a parity error
has occurred during the transfer.

The interface registers communicate with the CPU through the bidirec­
tional data bus. The address bus selects the interface unit through the chip
select and the two register select inputs. A circuit must be provided externally
(usually, a decoder) to detect the address assigned to the interface registers.
This circuit enables the chip select (CS) input when the interface is selected by
the address bus. The two register select inputs RSl and RSO are usually
connected to the two least significant lines of the address bus. These two inputs

strobe

handshaking

timing diagram

SECTION 1 1 -3 Asynchronous Data Transfer 391

select one of the four registers in the interface as specified in the table accom­
panying the diagram. The content of the selected register is transfer into the
CPU via the data bus when the VO read signal is enabled. The CPU transfers
binary information into the selected register via the data bus when the VO write
input is enabled.

1 1-3 Asynchronous Data Transfer

The internal operations in a digital system are synchronized by means of clock
pulses supplied by a common pulse generator. Clock pulses are applied to all
registers within a unit and all data transfers among internal registers occur
simultaneously during the occurrence of a clock pulse. Two units, such as a
CPU and an VO interface, are designed independently of each other. If the
registers in the interface share a common clock with the CPU registers, the
transfer between the two units is said to be synchronous. In most cases, the
internal timing in each unit is independent from the other in that each uses its
own private clock for internal registers. In that case, the two units are said to
be asynchronous to each other. This approach is widely used in most computer
systems.

Asynchronous data transfer between two independent units requires
that control signals be transmitted between the communicating units to indi­
cate the time at which data is being transmitted. One way of achieving this is
by means of a strobe pulse supplied by one of the units to indicate to the other
unit when the transfer has to occur. Another method commonly used is to
accompany each data item being transferred with a control signal that indicates
the presence of data in the bus. The unit receiving the data item responds with
another control signal to acknowledge receipt of the data. This type of agree­
ment between two independent units is referred to as lumdshaking .

The strobe pulse method and the handshaking method of asynchronous
data transfer are not restricted to VO transfers. In fact, they are used extensively
on numerous occasions requiring the transfer of data between two indepen­
dent units. In the general case we consider the transmitting unit as the source
and the receiving unit as the destination. For example, the CPU is the source
unit during an output or a write transfer and it is the destination unit during
an input or a read transfer. It is customary to specify the asynchronous transfer
between two independent units by means of a timing diagram that shows the
timing relationship that must exist between the control signals and the data in
the buses. The sequence of control during an asynchronous transfer depends
on whether the transfer is initiated by the source or by the destination unit.

Strobe Control
The strobe control method of asynchronous data transfer employs a single
control line to time each transfer. The strobe may be activated by either the
source or the destination unit. Figure 11-3(a) shows a source-initiated transfer.

392 CHAPTER ELEVEN Input-Output Organization

Data bus

Strobe

(a) Block diagram

Data Fvalid data -�L-----

Strobe

(b) Timing diagram

Figure 11 .. 3 Source�initiated strobe for data transfer.

The data bus carries the binary information from source unit to the destination
unit. Typically, the bus has multiple lines to transfer an entire byte or word.
The strobe is a single line that informs the destination unit when a valid data
word is available in the bus.

As shown in the timing diagram of Fig. 11-3(b), the source unit first places
the data on the data bus. After a brief delay to ensure that the data settle to
a steady value, the source activates the strobe pulse. The information on the
data bus and the strobe signal remain in the active state for a sufficient time
period to allow the destination unit to receive the data. Often, the destination
unit uses the falling edge of the strobe pulse to transfer the contents of the data
bus into one of its internal registers. The source removes the data from the bus
a brief period after it disables its strobe pulse. Actually, the source does not
have to change the information in the data bus. The fact that the strobe signal
is disabled indicates that the data bus does not contain valid data. New valid
data will be available only after the strobe is enabled again.

Figure 11-4 shows a data transfer initiated by the destination unit. In this
case the destination unit activates the strobe pulse, informing the source to
provide the data. The source unit responds by placing the requested binary
information on the data bus. The data must be valid and remain in the bus long
enough for the destination unit to accept it. The falling edge of the strobe pulse
can be used again to trigger a destination register. The destination unit. then
disables the strobe. The source removes the data from the bus after a predeter­
mined time interval.

In many computers the strobe pulse is actually controlled by the clock
pulses in the CPU. The CPU is always in control of the buses and informs the
external units how to transfer data. For example, the strobe of Fig. 11-3 could
be a memory-write control signal from the CPU to a memory unit. The source,
being the CPU, places a word on the data bus and informs the memory unit,

two-wire control

SECTION I l-l Asynchronous Data Transfer 393

(a) Block diagram

:;:D:::at::,a ___ __,!==Valid data ::::JL-----

Strobe

(b) Timing diagram

Figure 11 .. 4 Destination;initiated strobe for data transfer.

which is the destination, that this is a write operation. Similarly, the strobe of
Fig. 11-4 could be a memory-read control signal from the CPU to a memory
unit. The destination, the CPU, initiates the read operation to inform the
memory, which is the source, to place a selected word into the data bus.

The transfer of data between the CPU and an interface unit is similar to
the strobe transfer just described. Data transfer between an interface and an
VO device is commonly controlled by a set of handshaking lines.

Handshaking
The disadvantage of the strobe method is that the source unit that initiates the
transfer has no way of knowing whether the destination unit has actually
received the data item that was placed in the bus. Similarly, a destination unit
that initiates the transfer has no way of knowing whether the source unit has
actually placed the data on the bus. The handshake method solves this problem
by introducing a second control signal that provides a reply to the unit that
initiates the transfer. The basic principle of the two-wire handshaking method
of data transfer is as follows. One control line is in the same direction as the
data flow in the bus from the source to the destination. It is used by the source
unit to inform the destination unit whether there are valid data in the bus. The
other control line is in the other direction from the destination to the source.
It is used by the destination unit to inform the source whether it can accept
data. The sequence of control during the transfer depends on the unit that
initiates the transfer.

Figure 11-5 shows the data transfer procedure when initiated by the
source. The two handshaking lines are data valid, which is generated by the
source unit, and data accepted, generated by the destination unit. The timing
diagram shows the exchange of signals between the two units. The sequence
of events listed in part (c) shows the four possible states that the system can

394 CHAPTER ELEVEN Input-Output Organization

Source
unit

Data bus

Data valid

Data bus

Data valid

Data accepted

(a) Block diagram

(b) Timing diagram

Source unit

Place data on bus.
Enable data valid.

Disable data valid.
Invalidate data on bus.

Destination
unit

Destination unit

Accept data from bus.
Enable diJta accepted.

Disable diJta accepted.
Ready to accept data

(initial state).

(c) Sequence of events

Figure 1 1-5 Source�initiated transfer using handshaking.

be at any given time. The source unit initiates the transfer by placing the data
on the bus and enabling its data valid signal. The data accepted signal is activated
by the destination unit after it accepts the data from the bus. The source unit
then disables its data valid signal, which invalidates the data on the bus. The
destination unit then disables its data accepted signal and the system goes into
its initial state. The source does not send the next data item until after the
destination unit shows its readiness to accept new data by disabling its data
accepted signal. This scheme allows arbitrary delays from one state to the next

SECTION 1 1 -J Asynchronous Data Transfer 395

and permits each unit to respond at its own data transfer rate. The rate of
transfer is determined by the slowest unit.

The destination-initiated transfer using handshaking lines is shown in
Fig. 11-6. Note that the name of the signal generated by the destination unit
has been changed to ready for data to reflect its new meaning. The source unit
in this case does not place data on the bus until after it receives the ready for
data signal from the destination unit. From there on, the handshaking proce­
dure follows the same pattern as in the source-initiated case. Note that the

Figure 1 1�6 Destination�initiated transfer using handshaking.

Source
unit

Data bus

Data valid

Ready for data

(a) Block diagram

Destination
unit

Data bus -----.J

Source unit

Place data on bus.
Enable data valid.

Disable data valid.
Invalidate data on bus

(initial state).

(b) Timing diagram

Destination unit

Ready to accept data.
Enable ready for data.

Accept data from bus.
Disable ready for data.

(c) Sequence of events

396 CHAPTER ELEVEN Input-Output Organization

sequence of events in both cases would be identical if we consider the ready for
data signal as the complement of data accepted. In fact, the only difference
between the source-initiated and the destination-initiated transfer is in their
choice of initial state.

The handshaking scheme provides a high degree of flexibility and reliabil­
ity because the successful completion of a data transfer relies on active partic­
ipation by both units. If one unit is faulty, the data transfer will not be

timeout completed. Such an error can be detected by means of a timeout mechanism,
which produces an alarm if the data transfer is not completed within a prede­
termined time. The timeout is implemented by means of an internal clock that
starts counting time when the unit enables one of its handshaking control
signals. If the return handshake signal does not respond within a given time
period, the unit assumes that an error has occurred. The timeout signal can be
used to interrupt the processor and hence execute a service routine that takes
appropriate error recovery action.

synchronous

asynchronous

Asynchronous Serial Transfer
The transfer of data between two units may be done in parallel or serial. In
parallel data transmission, each bit of the message has its own path and the
total message is transmitted at the same time. This means that an n-bit message
must be transmitted through n separate conductor paths. In serial data trans­
mission, each bit in the message is sent in sequence one at a time. This method
reqttires the use of one pair of conductors or one conductor and a common
ground. Parallel transmission is faster but requires many wires. It is used for
short distances and where speed is important. Serial transmission is slower but
is less expensive since it requires only one pair of conductors.

Serial transmission can be synchronous or asynchronous. In synchron­
ous transmission, the two units share a common clock frequency and bits are
transmitted continuously at the rate dictated by the clock pulses. In long­
distant serial transmission, each unit is driven by a separate clock of the same
frequency. Synchronization signals are transmitted periodically between the
two units to keep their clocks in step with each other. In asynchronous trans­
mission, binary information is sent only when it is available and the line
remains idle when there is no information to be transmitted. This is in contrast
to synchronous transmission, where bits must be transmitted continuously to
keep the clock frequency in both units synchronized with each other. Syn­
chronous serial transmission is discussed further in Sec. 11-8.

A serial asynchronous data transmission technique used in many interac­
tive terminals employs special bits that are inserted at both ends of the char­
acter code. With this technique, each character consists of three parts: a start
bit, the character bits, and stop bits. The convention is that the transmitter rests

start bit

stop bit

SECfiON 1 1 -J Asynchronous Data Transfer 397

at the 1-state when no characters are transmitted. The first bit, called the start
bit, is always a 0 and is used to indicate the beginning of a character. The last
bit called the stop bit is always a 1. An example of this format is shown in
Fig. 11-7.

A transmitted character can be detected by the receiver from knowledge
of the transmission rules:

1. When a character is not being sent, the line is kept in the 1-state.

2. The initiation of a character transmission is detected from the start bit,
which is always 0.

3. The character bits always follow the start bit.

4. After the last bit of the character is transmitted, a stop bit is detected
when the line returns to the 1-state for at least one bit time.

Using these rules, the receiver can detect the start bit when the line goes from
1 to 0. A clock in the receiver examines the line at proper bit times. The receiver
knows the transfer rate of the bits and the number of character bits to accept.
After the character bits are transmitted, one or two stop bits are sent. The stop
bits are always in the 1-state and frame the end of the character to signify the
idle or wait state.

At the end of the character the line is held at the 1-state for a period of
at least one or two bit times so that both the transmitter and receiver can
resynchronize. The length of time that the line stays in this state depends on
the amount of time required for the equipment to resynchronize. Some older
electromechanical terminals use two stop bits, but newer terminals use one
stop bit. The line remains in the 1-state until another character is transmitted.
The stop time ensures that a new character will not follow for one or two bit
times.

As an illustration, consider the serial transmission of a terminal whose
transfer rate is 10 characters per second. Each transmitted character consists

Figure 11 .. 7 Asynchronous serial transmission.

0 0 0

�------ Character bits -------�- Stop -1
bits

398 CHAPTER ELEVEN Input-Output Organization

baud rate

of a start bit, eight information bits, and two stop bits, for a total of 11 bits. Ten
characters per second means that each character takes 0 . 1 s for transfer. Since
there are 11 bits to be transmitted, it follows that the bit time is 9.09 ms. The
baud rate is defined as the rate at which serial information is transmitted and
is equivalent to the data transfer in bits per second. Ten characters per second
with an 11-bit format has a transfer rate of 110 baud.

The terminal has a keyboard and a printer. Every time a key is depressed,
the terminal sends 11 bits serially along a wire. To print a character in the
printer, an 11-bit message must be received along another wire. The terminal
interface consists of a transmitter and a receiver. The transmitter accepts an
8-bit character from the computer and proceeds to send a serial 11-bit message
into the printer line. The receiver accepts a serial 11-bit message from the
keyboard line and forwards the 8-bit character code into the computer. Inte­
grated circuits are available which are specifically designed to provide the
interface between computer and similar interactive terminals. Such a circuit is
called an asynchronous communication interface or a universal asynchronous receiver­
transmitter (UART).

Asynchronous Communication Interface
The block diagram of an asynchronous communication interface is shown in
Fig. 1 1-8. It functions as both a transmitter and a receiver. The interface is
initialized for a particular mode of transfer by means of a control byte that is
loaded into its control register. The transmitter register accepts a data byte from
the CPU through the data bus. This byte is transferred to a shift register for
serial transmission. The receiver portion receives serial information into an­
other shift register, and when a complete data byte is accumulated, it is
transferred to the receiver register. The CPU can select the receiver register to
read the byte through the data bus. The bits in the status register are used for
input and output flags and for recording certain errors that may occur during
the transmission. The CPU can read the status register to check the status of
the flag bits and to determine if any errors have occurred. The chip select and
the read and write control lines communicate with the CPU. The chip select
(CS) input is used to select the interface through the address bus. The register
select (RS) is associated with the read (RD) and write (WR) controls. Two
registers are write-only and two are read-only. The register selected is a func­
tion of the RS value and the RD and WR status, as listed in the table accom­
panying the diagram.

The operation of the asynchronous communication interface is initialized
by the CPU by sending a byte to the control register. The initialization proce­
dure places the interface in a specific mode of operation as it defines certain
parameters such as the baud rate to use, how many bits are in each character,
whether to generate and check parity, and how many stop bits are appended
to each character. Two bits in the status register are used as flags. One bit is

transmitter

Bidirectional

data bus

Chip select cs

Register select
RS Timing

and
I/O read

RD
control

I/O write WR

cs RS Operation

WR
WR

RD

RD

SECTION 1 1 -J Asynchronous Data Transfer 399

Register selected

None: data bus in high-impedance

Transmitter register

Control register

Receiver register

Status register

Transmit
data

Transmitter
clock

Receiver
clock

Receive
data

Figure 1 1�8 Block diagram of a typical asynchronous communication interface.

used to indicate whether the transmitter register is empty and another bit is
used to indicate whether the receiver register is full.

The operation of the transmitter portion of the interface is as follows. The
CPU reads the status register and checks the flag to see if the transmitter
register is empty. If it is empty, the CPU transfers a character to the transmitter
register and the interface clears the flag to mark the register full. The first bit
in the transmitter shift register is set to 0 to generate a start bit. The character
is transferred in parallel from the transmitter register to the shift register and
the appropriate number of stop bits are appended into the shift register. The
transmitter register is then marked empty. The character can now be transmit­
ted one bit at a time by shifting the data in the shift register at the specified

400 CHAPTER ELEVEN Input-Output Organization

baud rate. The CPU can transfer another character to the transmitter register
after checking the flag in the status register. The interface is said to be double
buffered because a new character can be loaded as soon as the previous one
starts transmission.

receiver The operation of the receiver portion of the interface is similar. The

FIFO

receive data input is in the 1-state when the line is idle. The receiver control
monitors the receive-data line for a 0 signal to detect the occurrence of a start
bit. Once a start bit has been detected, the incoming bits of the character are
shifted into the shift register at the prescribed baud rate. After receiving the
data bits, the interface checks for the parity and stop bits. The character without
the start and stop bits is then transferred in parallel from the shift register to
the receiver register. The flag in the status register is set to indicate that the
receiver register is full. The CPU reads the status register and checks the flag,
and if set, it reads the data from the receiver register.

The interface checks for any possible errors during transmission and sets
appropriate bits in the status register. The CPU can read the status register at
any time to check if any errors have occurred. Three possible errors that the
interface checks during transmission are parity error, framing error, and over­
run error. Parity error occurs if the number of l's in the received data is not
the correct parity. A framing error occurs if the right number of stop bits is not
detected at the end of the received character. An overrun error occurs if the
CPU does not read the character from the receiver register before the next one
becomes available in the shift register. Overrun error results in a loss of
characters in the received data stream.

First-In, First-Out Buffer
A first-in, first-out (FIFO) buffer is a memory unit that stores information in
such a manner that the item first in is the item first out. A FIFO buffer comes
with separate input and output terminals. The important feature of this buffer
is that it can input data and output data at two different rates and the output
data are always in the same order in which the data entered the buffer. When
placed between two units, the FIFO can accept data from the source unit at one
rate of transfer and deliver the data to the destination unit at another rate. If
the source unit is slower than the destination unit, the buffer can be filled with
data at a slow rate and later emptied at the higher rate. If the source is faster
than the destination, the FIFO is useful for those cases where the source data
arrive in bursts that fill out the buffer but the time between bursts is long
enough for the destination unit to empty some or all the information from the
buffer. Thus a FIFO buffer can be useful in some applications when data are
transferred asynchronously. It piles up data as they come in and gives them
away in the same order when the data are needed.

The logic diagram of a typical 4 x 4 FIFO buffer is shown in Fig. 11-9. It
consists of four 4-bit registers RI, I = 1, 2, 3, 4, and a control register with

R l

Input ready

Master clear

R 1

s

SECTION 1 1 -3 Asynchronous Data Transfer 401

R 3 R 4

F,

Data
output

Output
ready

R F' 3

Delete

Figure 1 1-9 Circuit diagram of 4 X 4 FIFO buffer.

flip-flops F;, i = 1, 2, 3, 4, one for each register. The FIFO can store four words
of four bits each. The number of bits per word can be increased by increasing
the number of bits in each register and the number of words can be increased
by increasing the number of registers.

A flip-flop F, in the control register that is set to 1 indicates that a: 4-bit data
word is stored in the corresponding register RI. A 0 in F, indicates that the
corresponding register does not contain valid data. The control register directs

402 CHAI'TER ELEVEN Input-Output ()yganization

the movement of data through the registers. Whenever the F; bit of the control
register is set (F; = 1) and the f;.1 bit is reset (Fi.1 = 1), a clock is generated
causing register R(I + 1) to accept the data from register RJ. The same clock
transition sets f;.1 to 1 and resets F, to 0. This causes the control flag to move
one position to the right together with the data. Data in the registers move
down the FIFO toward the output as long as there are empty locations ahead
ofit. This ripple-through operation stops when the data reach a register R1 with
the next flip-flop F;., being set to 1, or at the last register R4. An overall master
clear is used to initialize all control register flip-flops to 0.

Data are inserted into the buffer provided that the input ready signal is
enabled. This occurs when the first control flip-flop F1 is reset, indicating that
register R1 is empty. Data are loaded from the input lines by enabling the clock
in R1 through the insert control line. The same clock sets F, which disables the
input ready control, indicating that the FIFO is now busy and unable to accept
more data. The ripple-through process begins provided that R2 is empty. The
data in R1 are transferred into R2 and F1 is cleared. This enables the input ready
line, indicating that the inputs are now available for another data word. If the
FIFO is full, F1 remains set and the input ready line stays in the 0 state. Note
that the two control lines input ready and insert constitute a destination-initiated
pair of handshake lines.

The data falling through the registers stack up at the output end. The
output ready control line is enabled when the last control flip-flop F4 is set,
indicating that there are valid data in the output register R4. The output data
from R4 are accepted by a destination unit, which then enables the delete
control signal. This resets F., causing output ready to disable, indicating that the
data on the output are no longer valid. Only after the delete signal goes back
to 0 can the data from R3 move into R4. If the FIFO is empty, there will be no
data in R3 and F4 will remain in the reset state. Note that the two control lines
output ready and delete constitute a source-initiated pair of handshake lines.

1 1 -4 Modes of Transfer

Binary information received from an external device is usually stored in mem­
ory for later processing. Information transferred from the central computer into
an external device originates in the memory unit. The CPU merely executes the
110 instructions and may accept the data temporarily, but the ultimate source
or destination is the memory unit. Data transfer between the central computer
and 110 devices may be handled in a variety of modes. Some modes use the
CPU as an intermediate path; others transfer the data directly to and from the
memory unit. Data transfer to and from peripherals may be handled in one of
three possible modes:

1. Programmed 110

2. Interrupt-initiated 110

3. Direct memory access (DMA)

progTIIPIIPII�d 1/0

interrupt

DM4.

lOP

SEC:TION I H Modes of Transfer 403

Programmed 1/0 operations are the result of 110 instructions written in
the computer program. Each data item transfer is initiated by an instruction
in the program. Usually, the transfer is to and from a CPU register and
peripheral. Other instructions are needed to transfer the data to and from CPU
and memory. Transferring data under program control requires constant mon­
itoring of the peripheral by the CPU. Once a data transfer is initiated, the CPU
is required to monitor the interface to see when a transfer can again be made.
It is up to the programmed instructions executed in the CPU to keep close tabs
on everything that is taking place in the interface unit and the 110 device.

In the programmed 1/0 method, the CPU stays in a program loop until
the 110 unit indicates that it is ready for data transfer. This is a time-consuming
process since it keeps the processor busy needlessly. It can be avoided by using
an interrupt facility and special commands to inform the interface to issue an
interrupt request signal when the data are available from the device. In the
meantime the CPU can proceed to execute another program. The interface
meanwhile keeps monitoring the device. When the interface determines that
the device is ready for data transfer, it generates an interrupt request to the
computer. Upon detecting the external interrupt signal, the CPU momentarily
stops the task it is processing, branches to a service program to process the 110
transfer, and then returns to the task it was originally performing.

Transfer of data under programmed 110 is between CPU and peripheral.
In direct memory access (DMA), the interface transfers data into and out of the
memory unit through the memory bus. The CPU initiates the transfer by
supplying the interface with the starting address and the number of words
needed to be transferred and then proceeds to execute other tasks. When the
transfer is made, the DMA requests memory cycles through the memory bus.
When the request is granted by the memory controller, the DMA transfers the
data directly into memory. The CPU merely delays its memory access operation
to allow the direct memory 110 transfer. Since peripheral speed is usually
slower than processor speed, I/O-memory transfers are infrequent compared
to processor access to memory. DMA transfer is discussed in more detail in
Sec. 11�.

Many computers combine the interface logic with the requirements for
direct memory access into one unit and call it an 110 processor (lOP). The lOP
can handle many peripherals through a DMA and interrupt facility. In such
a system, the computer is divided into three separate modules: the memory
unit, the CPU, and the lOP. 110 processors are presented in Sec. 11-7.

Example of Programmed 1/0
In the programmed 110 method, the 110 device does not have direct access to
memory. A transfer from an 1/0 device to memory requires the execution of
several instructions by the CPU, including an input instruction to transfer the
data from the device to the CPU and a store instruction to transfer the data from
the CPU to memory. Other instructions may be needed to verify that the data
are available from the device and to count the numbers of words transferred.

404 CHAPTER ELEVEN Input-Output Organization

An example of data transfer from an VO device through an interface into
the CPU is shown in Fig. 11-10. The device transfers bytes of data one at a time
as they are available. When a byte of data is available, the device places it in
the VO bus and enables its data valid line. The interface accepts the byte into
its data register and enables the data accepted line. The interface sets a bit in
the status register that we will refer to as an F or "flag" bit. The device can now
disable the data valid line, but it will not transfer another byte until the data
accepted line is disabled by the interface. This is according to the handshaking
procedure established in Fig. 11-5.

A program is written for the computer to check the flag in the status
register to determine if a byte has been placed in the data register by the VO
device. This is done by reading the status register into a CPU register and
checking the value of the flag bit. If the flag is equal to 1, the CPU reads the
data from the data register. The flag bit is then cleared to 0 by either the CPU
or the interface, depending on how the interface circuits are designed. Once
the flag is cleared, the interface disables the data accepted line and the device
can then transfer the next data byte.

A flowchart of the program that must be written for the CPU is shown
in Fig. 11-1 1 . It is assumed that the device is sending a sequence of bytes
that must be stored in memory. The transfer of each byte requires three
instructions:

1� Read the status register.

2. Check the status of the flag bit and branch to step 1 if not set or to step
3 if set.

3. Read the data register.

Each byte is read into a CPU register and then transferred to memory with a
store instruction. A common VO programming task is to transfer a block of
words from an VO device and store them in a memory buffer. A program that

Figure 11 .. 10 Data ttansfer from VO device to CPU.

Interface
Data bus J/0 bus

Address bus I Data register I
Data valid l/0 CPU l/0 read device

I/O write I Status I F I Data accepted
register

F = Flag bit

SECTION I H Modes of Transfer 40 5

Figure 1 1 .. 1 1 Flowchart for CPU program to input data.

stores input characters in a memory buffer using the instructions defined in
Chap. 6 is listed in Table 6-21 .

The programmed VO method is particularly useful in small low-speed
computers or in systems that are dedicated to monitor a device continuously.
The difference in information transfer rate between the CPU and the VO device
makes this type of transfer inefficient. To see why this is inefficient, co.nsider
a typical computer that can execute the two instructions that read the status
register and check the flag in 1 fl.S. Assume that the input device transfers its

406 CHAPTER ELEVEN Input-Output Organization

vectored interrupt

110 routines

data at an average rate of 100 bytes per second. This is equivalent to one byte
every 10,000 IJ.S. This means that the CPU will check the flag 10,000 times
between each transfer. The CPU is wasting time while checking the flag instead
of doing some other useful processing task.

Interrupt-Initiated UO
An alternative to the CPU constantly monitoring the flag is to let the interface
inform the computer when it is ready to transfer data. This mode of transfer
uses the interrupt facility. While the CPU is running a program, it does not
check the flag. However, when the flag is set, the computer is momentarily
interrupted from proceeding with the current program and is informed of the
fact that the flag has been set. The CPU deviates from what it is doing to take
care of the input or output transfer. After the transfer is completed, the
computer returns to the previous program to continue what it was doing before
the interrupt.

The CPU responds to the interrupt signal by storing the return address
from the program counter into a memory stack and then control branches to
a service routine that processes the required VO transfer. The way that the
processor chooses the branch address of the service routine varies from one
unit to another. In principle, there are two methods for accomplishing this.
One is called vectored interrupt and the other, nonvectored interrupt. In a non vec­
tored interrupt, the branch address is assigned to a fixed location in memory.
In a vectored interrupt, the source that interrupts supplies the branch informa­
tion to the computer. This information is called the interrupt vector. In some
computers the interrupt vector is the first address of the VO service routine.
In other computers the interrupt vector is an address that points to a location
in memory where the beginning address of the VO service routine is stored.
A system with vectored interrupt is demonstrated in Sec. 11-5.

Software Considerations
The previous discussion was concerned with the basic hardware needed to
interface VO devices to a computer system. A computer must also have soft­
ware routines for controlling peripherals and for transfer of data between the
processor and peripherals. VO routines must issue control commands to acti­
vate the peripheral and to check the device status to determine when it is ready
for data transfer. Once ready, information is transferred item by item until all
the data are transferred. In some cases, a control command is then given to
execute a device function such as stop tape or print characters. Error checking
and other useful steps often accompany the transfers. In interrupt-controlled
transfers, the VO software must issue commands to the peripheral to interrupt
when ready and to service the interrupt when it occurs. In DMA transfer, the
VO software must initiate the DMA channel to start its operation.

priority interrupt

polling

SECTION 1 1 ·5 Priority Interrupt 407

Software control of input-output equipment is a complex undertaking.
For this reason VO routines for standard peripherals are provided by the
manufacturer as part of the computer system. They are usually included within
the operating system. Most operating systems are supplied with a variety of
VO programs to support the particular line of peripherals offered for the
computer. VO routines are usually available as operating system procedures
and the user refers to the established routines to specify the type of transfer
required without going into detailed machine language programs.

1 1 -5 Priority Interrupt

Data transfer between the CPU and an VO device is initiated by the CPU.
However, the CPU cannot start the transfer unless the device is ready to
communicate with the CPU. The readiness of the device can be determined
from an interrupt signal. The CPU responds to the interrupt request by storing
the return address from PC into a memory stack and then the program
branches to a service routine that processes the required transfer. As discussed
in Sec. 8-7, some processors also push the current PSW (program status word)
onto the stack and load a new PSW for the service routine. We neglect the PSW
here in order not to complicate the discussion of VO interrupts.

In a typical application a number of VO devices are attached to the
computer, with each device being able to originate an interrupt request. The
first task of the interrupt system is to identify the source of the interrupt. There
is also the possibility that several sources will request service simultaneously.
In this case the system must also decide which device to service first.

A priority interrupt is a system that establishes a priority over the various
sources to determine which condition is to be serviced first when two or more
requests arrive simultaneously. The system may also determine which condi­
tions are permitted to interrupt the computer while another interrupt is being
serviced. Higher-priority interrupt levels are assigned to requests which, if
delayed or interrupted, could have serious consequences. Devices with high­
speed transfers such as magnetic disks are given high priority, and slow
devices such as keyboards receive low priority. When two devices interrupt the
computer at the same time, the computer services the device, with the higher
priority first.

Establishing the priority of simultaneous interrupts can be done by soft­
ware or hardware. A polling procedure is used to identify the highest-priority
source by software means. In this method there is one common branch address
for all interrupts. The program that takes care of interrupts begins at the branch
address and polls the interrupt sources in sequence. The order in wJ;tich they
are tested determines the priority of each interrupt. The highest-priority source
is tested first, and if its interrupt signal is on, control branches to a service
routine for this source. Otherwise, the next-lower-priority source is tested, and

408 CHAPTER ELEVEN Input-Output Organization

so on. Thus the initial service routine for all interrupts consists of a program
that tests the interrupt sources in sequence and branches to one of many
possible service routines. The particular service routine reached belongs to the
highest-priority device among all devices that interrupted the computer. The
disadvantage of the software method is that if there are many interrupts, the
time reqillred to poll them can exceed the time available to service the VO
device. In this situation a hardware priority-interrupt unit can be used to speed
up the operation.

A hardware priority-interrupt unit functions as an overall manager in an
interrupt system environment. It accepts interrupt requests from many
sources, determines which of the incoming requests has the highest priority,
and issues an interrupt request to the computer based on this determination.
To speed up the operation, each interrupt source has its own interrupt vector
to access its own service routine directly. Thus no polling is required because
all the decisions are established by the hardware priority-interrupt unit. The
hardware priority function can be established by either a serial or a parallel
connection of interrupt lines. The serial connection is also known as the daisy­
chaining method.

Daisy-Chaining Priority
Th� daisy-chaining method of establishing priority consists of a serial connec­
tion of all devices that request an interrupt. The device with the highest priority
is placed in the first position, followed by lower-priority devices up to the
device with the lowest priority, which is placed last in the chain. This method
of connection between three devices and the CPU is shown in Fig. 11-12. The
interrupt request line is common to all devices and forms a wired logic connec­
tion. If any device has its interrupt signal in the low-level state, the interrupt
line goes to the low-level state and enables the interrupt input in the CPU.
When no interrupts are pending, the interrupt line stays in the high-level state
and no interrupts are recognized by the CPU. This is equivalent to a negative­
logic OR operation. The CPU responds to an interrupt request by enabling the
interrupt acknowledge line. This signal is received by device 1 at its PI (priority
in) input. The acknowledge signal passes on to the next device through the PO
(priority out) output only if device 1 is not requesting an interrupt. If device
1 has a pending interrupt, it blocks the acknowledge signal from the next device
by placing a 0 in the PO output. It then proceeds to insert its own interrupt

vector address (VAD) vector address (V AD) into the data bus for the CPU to use during the interrupt
cycle.

A device with a 0 in its PI input generates a 0 in its PO output to inform
the next-lower-priority device that the acknowledge signal has been blocked.
A device that is requesting an interrupt and has a 1 in its PI input will intercept
the acknowledge signal by placing a 0 in its PO output. If the device does not
have pending interrupts, it transmits the acknowledge signal to the next device

Processor data bus

SECTION 1 1 -5 Priority Interrupt 409

CPU
Interrupt acknowledge '---------------"'----"'---------i INTA CK

Figure 1 1 .. 12 Daisy .. chain priority interrupt.

by placing a 1 in its PO output. Thus the device with PI = 1 and PO = 0 is the
one with the highest priority that is requesting an interrupt, and this device
places its VAD on the data bus. The daisy chain arrangement gives the highest
priority to the device that receives the interrupt acknowledge signal from the
CPU. The farther the device is from the first position, the lower is its priority.

Figure 11-13 shows the internal logic that must be included within each
device when connected in the daisy-chaining scheme. The device sets

·
its RF

flip-flop when it wants to interrupt the CPU. The output of the RF flip-flop goes
through an open-collector inverter, a circuit that provides the wired logic for
the common interrupt line. If PI = 0, both PO and the enable line to VAD are
equal to 0, irrespective of the value of RF. If PI = 1 and RF = 0, then PO = 1
and the vector address is disabled. This condition passes the acknowledge
signal to the next device through PO. The device is active when PI = 1 and
RF = 1. This condition places a 0 in PO and enables the vector address for the
data bus. It is assumed that each device has its own distinct vector address.
The RF flip-flop is reset after a sufficient delay to ensure that the CPU has
received the vector address.

Parallel Priority Interrupt
The parallel priority interrupt method uses a register whose bits are set sepa­
rately by the interrupt signal from each device. Priority is established according
to the position of the bits in the register. In addition to the interrupt register,
the circuit may include a mask register whose purpose is to control the status
of each interrupt request. The mask register can be programmed to disable

4 10 CHAPTER ELEVEN Input-Output ()yganization

priority logic

Interrupt
request

from device

Priority in

inverter

VAD

Priority out r--i--------------- PO

PI RF PO Enable

0 0 0
0 I 0 0

0 I 0
0

L.. ___ ,_ Interrupt request to CPU

Figure 11 .. 13 One stage of the daisy�chain priority arrangement.

lower-priority interrupts while a higher-priority device is being serviced. It can
also provide a facility that allows a high-priority device to interrupt the CPU
while a lower-priority device is being serviced.

The priority logic for a system of four interrupt sources is shown in
Fig. 11-14. It consists of an interrupt register whose individual bits are set by
external conditions and cleared by program instructions. The magnetic disk,
being a high-speed device, is given the highest priority. The printer has the
next priority, followed by a character reader and a keyboard. The mask register
has the same number of bits as the interrupt register. By means of program
instructions, it is possible to set or reset any bit in the mask register. Each
interrupt bit and its corresponding mask bit are applied to an AND gate to
produce the four inputs to a priority encoder. In this way an interrupt is
recognized only if its corresponding mask bit is set to 1 by the program. The
priority encoder generates two bits of the vector address, which is transferred
to the CPU.

Another output from the encoder sets an interrupt status flip-flop lST
when an interrupt that is not masked occurs. The interrupt enable flip-flop lEN
can be set or cleared by the program to provide an overall control over the
interrupt system. The outputs of lST ANDed with lEN provide a common
interrupt signal for the CPU. The interrupt acknowledge IN'TACK signal from
the CPU enables the bus buffers in the output register and a vector address
VAD is placed into the data bus. We will now explain the priority encoder
circuit and then discuss the interaction between the priority interrupt con­
troller and the CPU.

lntemljlC
regi$1er

Priority Encoder

S£C'TICN II·S Priority lnt=.opt 411

Ficure 11·14 Priority lnterTUpt hard-..

INTACK
lromCPU

The priority encoder is a circuit that implements the priority function. The logic
of the priority encoder is such that if two or more inputs arrive at the same time,
the input having the highest priority will take precedence. The truth table of
a fow--input priority encoder is given in Table 11·2. The x's in thr table
designate don't-are conditions. Input 10 has the highest priority; so regardless
of the values of other inputs, when this input is 1, the output generates an
output ry : 00. 11 has the next priority level. The output is 01 if /1 • 1 provided

4 12 CHAPTER ELEVEN Input-Output Organization

TABLE 1 1 ·2 Priority Encoder Truth Table

Inputs

Io J, J, J,

I X X X
0 I X X
0 0 I X

0 0 0 I
0 0 0 0

Outputs
X y 1ST

0 0

0 I I
I 0 I

1 1
X X 0

Boolean functions

x = 1�1;

y = J�J, + J�J;

(1ST) � /0 + /1 + /2 + /3

that 10 = 0, regardless of the values of the other two lower-priority inputs. The
output for 12 is generated only if higher-priority inputs are 0, and so on down
the priority level. The interrupt status IST is set only when one or more inputs
are equal to 1. If all inputs are 0, IST is cleared to 0 and the other outputs of
the encoder are not used, so they are marked with don't-care conditions. This
is because the vector address is not transferred to the CPU when IST = 0. The
Boolean functions listed in the table specify the internal logic of the encoder.
Usually, a computer will have more than four interrupt sources. A priority
encoder with eight inputs, for example, will generate an output of three bits.

The output of the priority encoder is used to form part of the vector
address for each interrupt source. The other bits of the vector address can be
assigned any value. For example, the vector address can be formed by append­
ing six zeros to the x and y outputs ofthe encoder. With this choice the interrupt
vectors for the four VO devices are assigned binary numbers 0, 1, 2, and 3.

Interrupt Cycle
The

.
interrupt enable flip-flop lEN shown in Fig. 11-14 can be set or cleared by

program instructions. When lEN is cleared, the interrupt request coming from
IST is neglected by the CPU. The program-controlled lEN bit allows the pro­
grammer to choose whether to use the interrupt facility. If an instruction to
clear lEN has been inserted in the program, it means that the user does not
want his program to be interrupted. An instruction to set lEN indicates that
the interrupt facility will be used while the current program is running. Most
computers include internal hardware that clears lEN to 0 every time an inter­
rupt is acknowledged by the processor.

At the end of each instruction cycle the CPU checks lEN and the interrupt
signal from !ST. If either is equal to 0, control continues with the next instruc­
tion. If both lEN and IST are equal to 1, the CPU goes to an interrupt cycle.
During the interrupt cycle the CPU performs the following sequence of micro­
operations:

SP +- SP - 1

M[SP] +-PC

Decrement stack pointer

Push PC into stack

INTACK <-- 1

PC <- VAD

lEN <-- 0

SECTION 1 1 ·5 Priority Interrupt 4 13

Enable interrupt acknowledge

Transfer vector address to PC

Disable further interrupts

Go to fetch next instruction

The CPU pushes the return address from PC into the stack. It then acknowl­
edges the interrupt by enabling the INTACK line. The priority interrupt unit
responds by placing a unique interrupt vector into the CPU data bus. The CPU
transfers the vector address into PC and clears lEN prior to going to the next
fetch phase. The instruction read from memory during the next fetch phase will
be the one located at the vector address.

Software Routines
A priority interrupt system is a combination of hardware and software tech­
niques. So far we have discussed the hardware aspects of a priority interrupt
system. The computer must also have software routines for servicing the
interrupt requests and for controlling the interrupt hardware registers.
Figure 11-15 shows the programs that must reside in memory for handling the

Figure 1 1 .. 15 Programs stored in memory for servicing interrupts.

Address

� Memory 1/0 service programs

0 JMP DISK DISK -- Program to service
magnetic disk

1 JMP PTR

2 JMP RDR PTR -- Program to service

3 JMP KBD
line printer

Main program

RDR -- Program to service
character reader

750 --

KBD -- Program to service
keyboard

Stack 256 --

256

750

414 CHAPTER ELEVEN Input-Output Organization

seroice program interrupt system. Each device has its own service program that can be reached
through a jump GMP) instruction stored at the assigned vector address. The
symbolic name of each routine represents the starting address of the service
program. The stack shown in the diagram is used for storing the return address
after each interrupt.

To illustrate with a specific example assume that the keyboard sets its
interrupt bit while the CPU is executing the instruction in location 749 of the
main program. At the end of the instruction cycle, the computer goes to an
interrupt cycle. It stores the return address 750 in the stack and then accepts
the vector address 00000011 from the bus and transfers it to PC . The instruction
in location 3 is executed next, resulting in transfer of control to the KBD routine.
Now suppose that the disk sets its interrupt bit when the CPU is executing the
instruction at address 255 in the KBD program. Address 256 is pushed into the
stack and control is transferred to the DISK service program. The last instruc­
tion in each routine is a return from interrupt instruction. When the disk
service program is completed, the return instruction pops the stack and places
256 into PC . This returns control to the KBD routine to continue servicing the
keyboard. At the end of the KBD program, the last instruction pops the stack
and returns control to the main program at address 750. Thus, a higher-priority
device can interrupt a lower-priority device. It is assumed that the time spent
in servicing the high-priority interrupt is short compared to the transfer rate
of the low-priority device so that no loss of information takes place.

Initial and Final Operations
Each interrupt service routine must have an initial and final set of operations
for controlling the registers in the hardware interrupt system. Remember that
the interrupt enable lEN is cleared at the end of an interrupt cycle. This flip-flop
must be set again to enable higher-priority interrupt requests, but not before
lower-priority interrupts are disabled. The initial sequence of each interrupt
service routine must have instructions to control the interrupt hardware in the
following manner:

1. Clear lower-level mask register bits.

2. Clear interrupt status bit !ST.

3. Save contents of processor registers.

4. Set interrupt enable bit lEN.

5. Proceed with service routine.

The lower-level mask register bits (including the bit of the source that
interrupted) are cleared to prevent these conditions from enabling the inter­
rupt. Although lower-priority interrupt sources are assigned to higher-num­
bered bits in the mask register, priority can be changed if desired since the

SECTION 1 1 -6 Direct Memory Access 4 1 5

programmer can use any bit configuration for the mask register. The interrupt
status bit must be cleared so it can be set again when a higher-priority interrupt
occurs. The contents of processor registers are saved because they may be
needed by the program that has been interrupted after control returns to it. The
interrupt enable lEN is then set to allow other (higher-priority) interrupts and
the computer proceeds to service the interrupt request.

The final sequence in each interrupt service routine must have instruc-
tions to control the interrupt hardware in the following manner:

1. Gear interrupt enable bit lEN.

2. Restore contents of processor registers.

3. Clear the bit in the interrupt register belonging to the source that has
been serviced.

4. Set lower-level priority bits in the mask register.

5. Restore return address into PC and set lEN.

The bit in the interrupt register belonging to the source of the interrupt
must be cleared so that it will be available again for the source to interrupt. The
lower-priority bits in the mask register (including the bit of the source being
interrupted) are set so they can enable the interrupt. The return to the inter­
rupted program is accomplished by restoring the return address to PC . Note
that the hardware must be designed so that no interrupts occur while executing
steps 2 through 5; otherwise, the return address may be lost and the informa­
tion in the mask and processor registers may be ambiguous if an interrupt
is acknowledged while executing the operations in these steps. For this reason
lEN is initially cleared and then set after the return address is transferred into
PC .

The initial and final operations listed above are referred to as overhead
operations or housekeeping chores. They are not part of the service program
proper but are essential for processing interrupts. All overhead operations can
be implemented by software. This is done by inserting the proper instructions
at the beginning and at the end of each service routine. Some of the overhead
operations can be done automatically by the hardware. The contents of proces­
sor registers can be pushed into a stack by the hard ware before branching to
the service routine. Other initial and final operations can be assigned to the
hardware. In this way, it is possible to reduce the time between receipt of an
interrupt and the execution of the instructions that service the interrupt source.

1 1 -6 Direct Memory Access (DMA)

The transfer of data between a fast storage device such as magnetic disk and
memory is often limited by the speed of the CPU. Removing the CPU from the
path and letting the peripheral device manage the memory buses directly

commands

� - - .s L::_j f

SECTION 1 1 ·1 Input-Output Processor 42 1

Central processing
unit (CPU)

Input-output
processor (lOP)

Peripheral devices

Figure 1 1�19 Block diagram of a computer with l/0 processor.

The data formats of peripheral devices differ from memory and CPU data
formats. The lOP must structure data words from many different sources. For
example, it may be necessary to take four bytes from an input device and pack
them into one 32-bit word before the transfer to memory. Data are gathered
in the lOP at the device rate and bit capacity while the CPU is executing its own
program. After the input data are assembled into a memory word, they are
transferred from lOP directly into memory by "stealing" one memory cycle
from the CPU. Similarly, an output word transferred from memory to the lOP
is directed from the lOP to the output device at the device rate and bit capacity.

The communication between the lOP and the devices attached to it is
similar to the program control method of transfer. Communication with the
memory is similar to the direct memory access method. The way by which the
CPU and lOP communicate depends on the level of sophistication included in
the system. In very-large-scale computers, each processor is independent of
all others and any one processor can initiate an operation. In most computer
systems, the CPU is the master while the lOP is a slave processor. The CPU
is assigned the task of initiating all operations, but 110 instructions are executed
in the lOP. CPU instructions provide operations to start an 110 transfer and also
to test 110 status conditions needed for making decisions on various 110
activities. The lOP, in turn, typically asks for CPU attention by means of an
interrupt. It also responds to CPU requests by placing a status word in a
prescribed location in memory to be examined later by a CPU program. When
an 110 operation is desired, the CPU informs the lOP where to find the 110
program and then leaves the transfer details to the lOP.

Instructions that are read from memory by an lOP are sometimes called
comrrumds, to distinguish them from instructions that are read by the CPU.
Otherwise, an instruction and a command have similar functions. Commands
are prepared by experienced programmers and are stored in memory. The
command words constitute the program for the lOP. The CPU informs the lOP
where to find the commands in memory when it is time to execute the 110
program.

422 CHAI'TER ELEVEN Input-Output Organization

CPU-lOP Communication
The communication between CPU and lOP may take different forms, depend­
ing on the particular computer considered. In most cases the memory unit acts
as a message center where each processor leaves information for the other. To
appreciate the operation of a typical lOP, we will illustrate by a specific example
the method by which the CPU and lOP communicate. This is a simplified
example that omits many operating details in order to provide an overview of
basic concepts.

The sequence of operations may be carried out as shown in the flowchart
of Fig. 11-20. The CPU sends an instruction to test the lOP path. The lOP

Figure 1 1�20 CPU� lOP communication.

CPU operations

Send instruction
to test lOP path

Request lOP status

Continue

lOP operations

Transfer status word
to memory location

Transfer status word
to memory location

SECTION 1 1 -7 Input-Output Processor 423

responds by inserting a status word in memory for the CPU to check. The bits
of the status word indicate the condition of the lOP and VO device, such as
lOP overload condition, device busy with another transfer, or device ready for
VO transfer. The CPU refers to the status word in memory to decide what to
do next. If all is in order, the CPU sends the instruction to start VO transfer.
The memory address received with this instruction tells the lOP where to find
its program.

The CPU can now continue with another program while the lOP is busy
with the VO program. Both programs refer to memory by means of DMA
transfer. When the lOP terminates the execution of its program, it sends an
interrupt request to the CPU. The CPU responds to the interrupt by issuing
an instruction to read the status from the lOP. The lOP responds by placing
the contents of its status report into a specified memory location. The status
word indicates whether the transfer has been completed or if any errors
occurred during the transfer. From inspection of the bits in the status word,
the CPU determines if the VO operation was completed satisfactorily without
errors.

The lOP takes care of all data transfers between several VO units and the
memory while the CPU is processing another program. The lOP and CPU are
competing for the use of memory, so the number of devices that can be in
operation is limited by the access time of the memory. It is not possible to
saturate the memory by VO devices in most systems, as the speed of most
devices is much slower than the CPU. However, some very fast units, such as
magnetic disks, can use an appreciable number of the available memory cycles.
In that case, the speed of the CPU may deteriorate because it will often have
to wait for the lOP to conduct memory transfers.

IBM 370 I/0 Channel
The VO processor in the IBM 370 computer is called a channel. A typical
computer system configuration includes a number of channels with each
channel attached to one or more VO devices. There are three types of channels:
multiplexer, selector, and block-multiplexer. The multiplexer channel can be
connected to a number of slow- and medium-speed devices and is capable of
operating with a number of VO devices simultaneously. The selector channel
is designed to handle one VO operation at a time and is normally used to
control one high-speed device. The block-multiplexer channel combines the
features of both the multiplexer and selector channels. It provides a connection
to a number of high-speed devices, but all VO transfers are conducted with an
entire block of data as compared to a multiplexer channel, which can transfer
only one byte at a time.

The CPU communicates directly with the channels through dedicated
control lines and indirectly through reserved storage areas in memory.
Figure 11-21 shows the word formats associated with the channel operation.

424 CHAPTER ELEVEN Input-Output Organization

Key

(a) 1/0 instruction fonnat

Address Status

(b) Channel status word fonnat

Data address

(c) Channel command word format

Count

Figure 1 1-Z l IBM 370 110 related word formats.

The 110 instruction format has three fields: operation code, channel address,
and device address. The computer system may have a number of channels, and
each is assigned an address. Similarly, each channel may be connected to
several devices and each device is assigned an address. The operation code
specifies one of eight 110 instructions: start 110, start 110 fast release, test 110,
clear 110, halt 110, halt device, test channel, and store channel identification.
The addressed channel responds to each of the 110 instructions and executes
it. It also sets one of four condition codes in a processor register called PSW
(processor status word). The CPU can check the condition code in the PSW to
determine the result of the 110 operation. The meaning of the four condition
codes is different for each 110 instruction. But, in general, they specify whether
the channel or the device is busy, whether or not it is operational, whether
interruptions are pending, if the 110 operation had started successfully, and
whether a status word was stored in memory by the channel.

The format of the channel status word is shown in Fig. 11-21(b). It is
always stored in location 64 in memory. The key field is a protection mechanism
used to prevent unauthorized access by one user to information that belongs
to another user or to the operating system. The address field in the status word
gives the address of the last command word used by the channel. The count
field gives the residual count when the transfer was terminated. The count field
will show zero if the transfer was completed successfully. The status field
identifies the conditions in the device and the channel and any errors that
occurred during the transfer.

The difference between the start 110 and start 110 fast release instructions
is that the latter requires less CPU time for its execution. When the channel

SECTION 1 1 -7 Input-Output Processor 425

receives one of these two instructions, it refers to memory location 72 for the
address of the first channel command word (CCW). The format of the channel
command word is shown in Fig. ll-21 (c). The data address field specifies the
first address of a memory buffer and the count field gives the number of bytes
involved in the transfer. The command field specifies an 110 operation and the
flag bits provide additional information for the channel. The command field
corresponds to an operation code that specifies one of six basic types of 110
operations:

1. Write . Transfer data from memory to 110 device.

2. Read. Transfer data from 110 device to memory.

3. Read backwards . Read magnetic tape with tape moving backward.

4. Control. Used to initiate an operation not involving transfer of data, such
as rewinding of tape or positioning a disk-access mechanism.

5. Sense. Informs the channel to transfer its channel status word to
memory location 64.

6. Transfer in channel. Used instead of a jump instruction. Here the data
address field specifies the address of the next command word to be
executed by the channel.

An example of a channel program is shown in Table 1 1-3. It consists of
three command words. The first causes a transfer into a magnetic tape of 60
bytes from memory starting at address 4000. The next two command words
perform a similar function with a different portion of memory and byte count.
The six flags in each control word specify certain interrelations between the
command words. The first flag is set to 1 in the first command word to specify
"data chaining." It results in combining the 60 bytes from the first command
word with the 20 bytes of its successor into one record of 80 bytes. The 80 bytes
are written on tape without any separation or gaps even though two memory
sections were used. The second flag is set to 1 in the second command word
to specify "command chaining." It informs the channel that the next command
word will use the same 110 device, in this case, the tape. The channel informs
the tape unit to start inserting a record gap on the tape and proceeds to read
the next command word from memory. The 40 bytes of the third command

TABLE 1 1-3 IBM-370 Channel Program Example

Command Address Flags Count

Write tape 4000 100000 60
Write tape 6000 01()()()() 20
Write tape 3000 000000 40

4 26 CHAPTER ELEVEN Input-Output Organization

word are then written on tape as a separate record. When all the flags are equal
to zero, it signifies the end of I/0 operations for the particular I/0 device.

A memory map showing all pertinent information for I/0 processing is
illustrated in Fig. 11-22. The operation begins when the CPU program encoun­
ters a start I/0 instruction. The IOP then goes to memory location 72 to obtain
a channel address word. This word contains the starting address of the I/0
channel program. The channel then proceeds to execute the program specified
by the channel command words. The channel constructs a status word during

Figure 1 1-22 Location of information in memory for 110 operations in the
IBM 370.

Memory unit

Channel status word

[
Channel address word

Channel command word I

Channel command word 2

Channel command word 3

S tart 1/0 instruction

64

72

} 1/0 channel
program

CPU
program

SECTION 1 1 -7 Input-Output Processor 42 7

the transfer and stores it in location 64. Upon interruption, the CPU can refer
to memory location 64 for the status word.

Intel 8089 lOP
The Intel 8089 l/0 processor is contained in a 40-pin integrated circuit package.
Within the 8089 are two independent units called channels . Each channel
combines the general characteristics of a processor unit with those of a direct
memory access controller. The 8089 is designed to function as an lOP in a
microcomputer system where the Intel 8086 microprocessor is used as the
CPU. The 8086 CPU initiates an l/0 operation by building a message in memory
that describes the function to be performed. The 8089 lOP reads the message
from memory, carries out the operation, and notifies the CPU when it has
finished.

In contrast to the IBM 370 channel, which has only six basic l/0 com­
mands, the 8089 lOP has 50 basic instructions that can operate on individual
bits, on bytes, or 16-bit words. The lOP can execute programs in a manner
similar to a CPU except that the instruction set is specifically chosen to provide
efficient input-<>utput processing. The instruction set includes general data
transfer instructions, basic arithmetic and logic operations, conditional and
unconditional branch operations, and subroutine call and return capabilities.
The set also includes special instructions to initiate DMA transfers and issue
an interrupt request to the CPU. It provides efficient data transfer between any
two components attached to the system bus, such as l/0 to memory, memory
to memory, or l/0 to l/0.

A microcomputer system using the Intel 8086/8089 pair of integrated
circuits is shown in Fig. 11-23. The 8086 functions as the CPU and the 8089 as
the lOP. The two units share a common memory through a bus controller
connected to a system bus, which is called a "multibus" by Intel. The lOP uses
a local bus to communicate with various interface units connected to l/0
devices. The CPU communicates with the lOP by enabling the channel attention
line. The select line is used by the CPU to select one of two channels in the 8089.
The lOP gets the attention of the CPU by sending an interrupt request.

The CPU and lOP communicate with each other by writing messages for
one another in system memory. The CPU prepares the message area and
signals the lOP by enabling the channel attention line. The lOP reads the
message, performs the required l/0 functions, and executes the appropriate
channel program. When the channel has completed its program, it issues an
interrupt request to the CPU.

The communication scheme consists of program sections called "blocks,"
which are stored in memory as shown in Fig. 11-24. Each block contains control
and parameter information as well as an address pointer to its successor block.
The address of the control block is passed to each lOP channel during initial­
ization. The busy flag indicates whether the lOP is busy or ready to perform

428 CHAPTER ELEVEN Input-Output Organization

I
l

8086
CPU 1

-g.] c I Bus I System
� g c i controller I bus

Memory unit
� 1! .5 u

8089 1 Local bus
lOP

t l
I Interface I I Interface I

t l
I Input device I !output device I

Figure 11 .. 23 Intel 8086/8089 microcomputer system block diagram.

Control block Parameter block Task block ---
Busy I CCW w- TB address r-----

PB address Memory address
8089

Byte count lOP
program

Device address

Track and sector

Status

Figure 1 1 .. 24 Location of information in memory for UO operations in the
Intel 8086/8089 microcomputer system.

a new 110 operation. The CCW (channel command word) is specified by the
CPU to indicate the type of operation required from the lOP. The CCW in the
8089 does not have the same meaning as the command word in the IBM
channel. The CCW here is more like an 110 instruction that specifies an
operation for the lOP, such as start operation, suspend operation, resume
operation, and halt 110 program. The parameter block contains variable data

SECTION l l -8 Serial Communication 429

that the lOP program must use in carrying out its task. The task block contains
the actual program to be executed in the lOP.

The CPU and lOP work together through the control and parameter
blocks. The CPU obtains use of the shared memory after checking the busy flag
to ensure that the lOP is available. The CPU then fills in the information in the
parameter block and writes a "start operation" command in the CCW. After
the communication blocks have been set up, the CPU enables the channel
attention signal to inform the lOP to start its VO operation. The CPU then
continues with another program. The lOP responds to the channel attention
signal by placing the address of the control block into its program counter. The
lOP refers to the control block and sets the busy flag. It then checks the
operation in the CCW. The PB (parameter block) address and TB (task block)
address are then transferred into internal lOP registers. The lOP starts execut­
ing the program in the task block using the information in the parameter block.
The entries in the parameter block depend on the VO device. The parameters
listed in Fig. 11-24 are suitable for data transfer to or from a magnetic disk. The
memory address specifies the beginning address of a memory buffer. The byte
count gives the number of bytes to be transferred. The device address specifies
the particular VO device to be used. The track and sector numbers locate the
data on the disk. When the VO operation is completed, the lOP stores its status
bits in the status word location of the parameter block and interrupts the CPU.
The CPU can refer to the status word to check if the transfer has been com­
pleted satisfactorily.

1 1 -8 Serial Communication

A data communication processor is an VO processor that distributes and
collects data from many remote terminals connected through telephone and
other communication lines. It is a specialized VO processor designed to com­
municate directly with data communication networks. A communication
network may consist of any of a wide variety of devices, such as printers,
interactive display devices, digital sensors, or a remote computing facility.
With the use of a data communication processor, the computer can service
fragments of each network demand in an interspersed manner and thus have
the apparent behavior of serving many users at once. In this way the computer
is able to operate efficiently in a time-sharing environment.

J.ata communication The most striking difference between an VO processor and a data commu-
rrrocessor nication processor is in the way the processor communicates with the VO

devices. An VO processor communicates with the peripherals through a com­
mon VO bus that is comprised of many data and control lines. All peripherals
share the common bus and use it to transfer information to and from the VO
processor. A data communication processor communicates with each terminal
through a single pair of wires. Both data and control information are trans-

block transfer

CRC

full-duplex

protocol

SECfiON l l -8 Serial Communication 43 1

character received. Another procedure used in asynchronous terminals involv­
ing a human operator is to echo the character. The character transmitted from
the keyboard to the computer is recognized by the processor and retransmitted
to the terminal printer. The operator would realize that an error occurred
during transmission if the character printed is not the same as the character
whose key he has struck.

In synchronous transmission, where an entire block of characters is
transmitted, each character has a parity bit for the receiver to check. After the
entire block is sent, the transmitter sends one more character that constitutes
a parity over the length of the message. This character is called a longitudinal
redundancy check (LRC) and is the accumulation of the exclusive-OR of all
transmitted characters. The receiving station calculates the LRC as it receives
characters and compares it with the transmitted LRC. The calculated and
received LRC should be equal for error-free messages. If the receiver finds an
error in the transmitted block, it informs the sender to retransmit the same
block once again. Another method used for checking errors in transmission is
the cyclic redundancy check (CRC). This is a polynomial code obtained from
the message bits by passing them through a feedback shift register containing
a number of exclusive-OR gates. This type of code is suitable for detecting burst
errors occurring in the communication channel.

Data can be transmitted between two points in three different modes:
simplex, half-duplex, or full-duplex. A simplex line carries information in one
direction only. This mode is seldom used in data communication because
the receiver cannot communicate with the transmitter to indicate the occur­
rence of errors. Examples of simplex transmission are radio and television
broadcasting.

A half-duplex transmission system is one that is capable of transmitting in
both directions but data can be transmitted in only one direction at a time. A
pair of wires is needed for this mode. A common situation is for one modem
to act as the transmitter and the other as the receiver. When transmission in
one direction is completed, the role of the modems is reversed to enable
transmission in the reverse direction. The time required to switch a half-duplex
line from one direction to the other is called the turnaround time.

A full-duplex transmission can send and receive data in both directions
simultaneously. This can be achieved by means of a four-wire link, with a
different pair of wires dedicated to each direction of transmission. Alterna­
tively, a two-wire circuit can support full-duplex communication if the
frequency spectrum is subdivided into two nonoverlapping frequency bands
to create separate receive and transmit channels in the same physical pair of
wires.

The communication lines, modems, and other equipment used in the
transmission of information between two or more stations is called a data link.
The orderly transfer of information in a data link is accomplished by means of
a protocol . A data link control protocol is a set of rules that are followed by
interconnecting computers and terminals to ensure the orderly transfer of

430 CHAPTER ELEVEN Input-Output Organization

ferred in a serial fashion with the result that the transfer rate is much slower.
The task of the data communication processor is to transmit and collect digital
information to and from each terminal, determine if the information is data or
control and respond to all requests according to predetermined established
procedures. The processor, obviously, must also communicate with the CPU
and memory in the same manner as any 1/0 processor.

The way that remote terminals are connected to a data communication
processor is via telephone lines or other public or private communication
facilities. Since telephone lines were originally designed for voice communica­
tion and computers communicate in terms of digital signals, some form of
conversion must be used. The converters are called data sets, acoustic couplers,

modem or modems (from "modulator-demodulator"). A modem converts digital signals
into audio tones to be transmitted over telephone lines and also converts audio
tones from the line to digital signals for machine use. Various modulation
schemes as well as different grades of communication media and transmission
speeds are used. A communication line may be connected to a synchronous
or asynchronous interface, depending on the transmission method of the
remote terminal. An asynchronous interface receives serial data with start and
stop bits in each character as shown in Fig. 11-7. This type of interface is similar
to the asynchronous communication interface unit presented in Fig. 11-8.

Synchronous transmission does not use start-stop bits to frame characters
and therefore makes more efficient use of the communication link . High-speed
devices use synchronous transmission to realize this efficiency. The modems
used in synchronous transmission have internal clocks that are set to the
frequency that bits are being transmitted in the communication line. For proper
operation, it is required that the clocks in the transmitter and receiver modems
remain synchronized at all times. The communication line, however, contains
only the data bits from which the clock information must be extracted. Fre­
quency synchronization is achieved by the receiving modem from the signal
transitions that occur in the received data. Any frequency shift that may occur
between the transmitter and receiver clocks is continuously adjusted by main­
taining the receiver clock at the frequency of the incoming bit stream. The
modem transfers the received data together with the clock to the interface unit.
The interface or terminal on the transmitter side also uses the clock information
from its modem. In this way, the same bit rate is maintained in both transmitter
and receiver.

Contrary to asynchronous transmission, where each character can be sent
separately with its own start and stop bits, synchronous transmission must
send a continuous message in order to maintain synchronism. The message
consists of a group of bits transmitted sequentially as a block of data. The entire
block is transmitted with special control characters at the beginning and end
of the block. The control characters at the beginning of the block supply the
information needed to separate the incoming bits into individual characters.

One of the functions of the data communication processor is to check for
transmission errors. An error can be detected by checking the parity in each

432 CHAPTER ELEVEN Input-Output Organization

SYN character

information. The purpose of a data link protocol is to establish and ternUnate
a connection between two stations, to identify the sender and receiver, to
ensure that all messages are passed correctly without errors, and to handle all
control functions involved in a sequence of data transfers. Protocols are divided
into two major categories according to the message-framing technique used.
These are character-oriented protocol and bit-oriented protocol.

Character-Oriented Protocol
The character-oriented protocol is based on the binary code of a character set.
The code most commonly used is ASCII (American Standard Code for Infor­
mation Interchange). It is a 7-bit code with an eighth bit used for parity. The
code has 128 characters, of which 95 are graphic characters and 33 are control
characters. The graphic characters include the upper- and lowercase letters, the
ten numerals, and a variety of special symbols. A list of the ASCII characters
can be found in Table 11-1 . The control characters are used for the purpose of
routing data, arranging the test in a desired format, and for the layout of the
printed page. The characters that control the transmission are called communi­
cation control characters. These characters are listed in Table 11-4. Each character
has a 7-bit code and is referred to by a three-letter symbol. The role of each
character in the control of data transmission is stated briefly in the function
column of the table.

The SYN character serves as synchronizing agent between the transmitter
and receiver. When the 7-bit ASCII code is used with an odd-parity bit in the
most significant position, the assigned SYN character has the 8-bit code
00010110 which has the property that, upon circular shifting, it repeats itself
only after a full S-bit cycle. When the transmitter starts sending 8-bit characters,
it sends a few characters first and then sends the actual message. The initial
continuous string of bits accepted by the receiver is checked for a SYN charac­
ter. In other words, with each clock pulse, the receiver checks the last eight bits

TABLE 1 1-4 ASCII Communication Control Cl!aracte"

Code Symbol Meaning Function

00101 10 SYN Synchronous idle Establishes synchronism
()()()()()()] SOH Start of heading Heading of block message
0000010 STX Start of text Precedes block of text
000001 1 ETX End of text Terminates block of text
0000100 EOT End of transmission Concludes transmission
00001 1 0 ACK Acknowledge Affirmative acknowledgement
0010101 NAK Negative acknowledge Negative acknowledgement
0000101 ENQ Inquiry Inquire if terminal is on
00101 1 1 ETB End of transmission block End of block of data
0010000 DLE Data link escape Special control character

SECTION 1 1 ·8 Serial Communication 433

received. If they do not match the bits of the SYN character, the receiver accepts
the next bit, rejects the previous high-order bit, and again checks the last eight
bits received for a SYN character. This is repeated after each clock pulse and
bit received until a SYN character is recognized. Once a SYN character is
detected, the receiver has framed a character. From here on the receiver counts
every eight bits and accepts them as a single character. Usually, the receiver
checks two consecutive SYN characters to remove any doubt that the first did
not occur as a result of a noise signal on the line. Moreover, when the trans­
mitter is idle and does not have any message characters to send, it sends a
continuous string of SYN characters. The receiver recognizes these characters
as a condition for synchronizing the line and goes into a synchronous idle state.
In this state, the two units maintain bit and character synchronism even though
no meaningful information is communicated.

Messages are transmitted through the data link with an established
format consisting of a header field, a text field, and an error-checking field. A
typical message format for a character-oriented protocol is shown in Fig. 11-25.
The two SYN characters assure proper synchronization at the start of the
message. Following the SYN characters is the header, which starts with an
SOH (start of heading) character. The header consists of address and control
information. The STX character terminates the header and signifies the begin­
ning of the text transmission. The text portion of the message is variable in
length and may contain any ASCII characters except the communication con­
trol characters. The text field is terminated with the ETX character. The last field
is a block check character (BCC) used for error checking. It is usually either a
longitudinal redundancy check (LRC) or a cyclic redundancy check (CRC).

The receiver accepts the message and calculates its own BCC. If the BCC
transmitted does not agree with the BCC calculated by the receiver, the receiver
responds with a negative acknowledge (NAK) character. The message is then
retransmitted and checked again. Retransmission will be typically attempted
several times before it is assumed that the line is faulty. When the transmitted
BCC matches the one calculated by the receiver, the response is a positive
acknowledgment using the ACK character.

Transmission Example
In order to appreciate the function of a data communication processor, let us
illustrate by a specific example the method by which a terminal and the
processor communicate. The communication with the memory unit and CPU
is similar to any 110 processor.

Figure 11 .. 25 Typical message fonnat for character#oriented protocol.

I SYN I SYN I SOH I Header I STX I Text

434 CHAPTER ELEVEN Input-Output Organization

A typical message that might be sent from a tenninal to the processor io
listed in Table 11-5. A look at this message reveals that there are a number oi
control characters used for message formation. Each character, including the
control characters, is transmitted serially as an 8-bit binary code which consists
of the 7-bit ASCII code plus an odd parity bit in the eighth most significant
position. The two SYN characters are used to synchronize the receiver and
transmitter. The heading starts with the SOH character and continues with two
characters that specify the address of the tenninal. In this particular example,
the address is T4, but in general it can have any set of two or more graphic
characters. The STX character tenninates the heading and signifies the begin­
ning of the text transmission. The text data of concern here is "request balance
of account number 1234." The individual characters for this message are not
listed in the table because they will take too much space. It must be realized,
however, that each character in the message has an 8-bit code and that each
bit is transmitted serially. The ETX control character signifies the tennination
of the text characters. The next character following ETX is a longitudinal
redundancy check (LRC). Each bit in this character is a parity bit calculated from
all the bits in the same column in the code section of the table.

The data communication processor receives this message and proceeds
to analyze it. It reoognizes tenninal T4 and stores the text associated with the
message. While receiving the characters, the processor checks the parity in
each character and also computes the longitudinal parity. The computed LRC
is compared with the LRC character received. If the two match, a positive
acknowledgment (ACK) is sent back to the tenninal. If a mismatch exists, a

Code

0001 01 10
0001 01 10
0000 0001
0101 0100
001 1 0100
0000 0010
0101 0010
0100 0101

101 1 001 1
001 1 0100
1000 001 1
01 1 1 0000

TABLE 1 1 .. 5 Typical Transmission from a Terminal to Processor

Symbol

SYN
SYN
SOH

T
4

STX

request
balance
of account
No. 1234

ETX
LRC

Comments

First sync character
Second sync character
Start of heading
Address of terminal is T4

Start of text transmission

Text sent is a request to respond with the balance of
account number 1234

End of text transmission
Longitudinal parity character

SECTION 1 1 -8 Serial Communication 435

negative acknowledgment (NAK) is returned to the terminal, which would
initiate a retransmission of the same block. If the processor finds the message
without errors, it transfers the message into memory and interrupts the CPU.
When the CPU acknowledges the interrupt, it analyzes the message and
prepares a text message for responding to the request. The CPU sends an
instruction to the data communication processor to send the message to the
terminal.

A typical response from processor to terminal is listed in Table 11-6. After
two SYN characters, the processor acknowledges the previous message with
an ACK character. The line continues to idle with SYN character waiting for
the response to come. The message received from the CPU is arranged in the
proper format by the processor by inserting the required control characters
before and after the text. The message has the heading SOH and the address
of the terminal T4. The text message informs the terminal that the balance is
$100. An LRC character is computed and sent to the terminal. If the terminal
responds with a NAK character, the processor retransmits the message.

While the processor is taking care of this terminal it is busy processing
other terminals as well. Since the characters are received in a serial fashion, it
takes a certain amount of time to receive and collect an 8-bit character. During
this time the processor is multiplexing all other communication lines and

TABLE 1 1 .. 6 Typical Transmission from Processor to Terminal

Code Symbol Comments

0001 O l i O SYN First sync character
0001 O l i O SYN Second sync character
1000 Ol iO ACK Processor acknowledges previous message
0001 O l i O SYN Line is idling

0001 O l i O SYN Line is idling
0000 0001 SOH Start of heading
0101 0100 T Address of terminal is T4
001 1 0100 4
0000 0010 STX Start of text transmission
1 1 00 0010
1 100 0001 balance Text sent is a response from the computer giving the

is balance of account
$100.00

101 1 0000
1000 001 1 ETX End of text transmission
1 101 0101 LRC Longitudinal parity character

436 CHAPTER ELEVEN Input-Output Organization

DLE character

services each one in tum. The speed of most remote terminals is extremely slow
compared to the processor speed. This property allows multiplexing of many
users to achieve greater efficiency in a time-sharing system. This also allows
many users to operate simultaneously while each is being sampled at speeds
comparable to normal human response.

Data Transparency
The character-oriented protocol was originally developed to communicate with
keyboard, printer, and display devices that use alphanumeric characters exclu­
sively. As the data communication field expanded, it became necessary to
transmit binary information which is not ASCII text. This happens, for exam­
ple, when two remote computers send programs and data to each other over
a communication channel. An arbitrary bit pattern in the text message becomes
a problem in the character-oriented protocol. This is because any 8-bit pattern
belonging to a communication control character will be interpreted erro­
neously by the receiver. For example, if the binary data in the text portion of
the message has the 8-bit pattern 10000011, the receiver will interpret this as
an ETX character and assume that it reached the end of the text field. When
the text portion of the message is variable in length and contains bits that are
to be treated without reference to any particular code, it is said to contain
transparent data. This feature requires that the character recognition logic of
the receiver be turned off so that data patterns in the text field are not acciden­
tally interpreted as communication control information.

Data transparency is achieved in character-oriented protocols by insert­
ing a OLE (data link escape) character before each communication control
character. Thus, the start of heading is detected from the double character OLE
SOH, and the text field is terminated with the double character OLE ETX. If
the OLE bit pattern 00010000 occurs in the text portion of the message, the
transmitter inserts another OLE bit pattern following it. The receiver removes
all OLE characters and then checks the next 8-bit pattern. If it is another OLE
bit pattern, the receiver considers it as part of the text and continues to receive
text. Otherwise, the receiver takes the following 8-bit pattern to be a commu­
nication control character.

The achievement of data transparency by means of the OLE character is
inefficient and somewhat complicated to implement. Therefore, other proto­
cols have been developed to make the transmission of transparent data more
efficient. One protocol used by Digital Equipment Corporation employs a byte
count field that gives the number of bytes in the message that follows. The
receiver must then count the number of bytes received to reach the end of the
text field. The protocol that has been mostly used to solve the transparency
problem (and other problems associated with the character-oriented protocol)
is the bit-oriented protocol.

8-bit flag

zero insertion

Bit-Oriented Protocol

SECTION l l -8 Serial Communication 4 3 7

The bit-oriented protocol does not use characters in its control field and is
independent of any particular code. It allows the transmission of serial bit
stream of any length without the implication of character boundaries. Mes­
sages are organized in a specific format called a frame. In addition to the
information field, a frame contains address, control, and error-checking fields.
The frame boundaries are determined from a special S-bit number called a flag.
Examples of bit-oriented protocols are SDLC (synchronous data link control)
used by IBM, HDLC (high-level data link control) adopted by the International
Standards Organization, and ADCCP (advanced data communication control
procedure) adopted by the American National Standards Institute.

Any data communication link involves at least two participating stations.
The station that has responsibility for the data link and issues the commands
to control the link is called the primary station. The other station is a secondary
station. Bit-oriented protocols assume the presence of one primary station and
one or more secondary stations. All communication on the data link is from
the primary station to one or more secondary stations, or from a secondary
station to the primary station.

The frame format for the bit-oriented protocol is shown in Fig. 11-26. A
frame starts with the 8-bit flag 01111110 followed by an address and control
sequence. The information field is not restricted in format or content and can
be of any length. The frame check field is a CRC (cyclic redundancy check)
sequence used for detecting errors in transmission. The ending flag indicates
to the receiving station that the 16 bits just received constitute the CRC bits.
The ending frame can be followed by another frame, another flag, or a se­
quence of consecutive 1's. When two frames follow each other, the intervening
flag is simultaneously the ending flag of the first frame and the beginning flag
of the next frame. If no information is exchanged, the transmitter sends a series
of flags to keep the line in the active state. The line is said to be in the idle state
with the occurrence of 15 or more consecutive 1's. Frames with certain control
messages are sent without an information field. A frame must have a minimum
of 32 bits between two flags to accommodate the address, control, and frame
check fields. The maximum length depends on the condition of the communi­
cation channel and its ability to transmit long messages error-free.

To prevent a flag from occurring in the middle of a frame, the bit-oriented
protocol uses a method called zero insertion . This requires that a 0 be inserted

Figure 1 1 ,26 Frame format for bit,oriented protocol.

Information
any number of bits

4 38 CHAPTER ELEVEN Input-Output Organization

control field

by the transmitting station after any succession of five continuous 1' s. The
receiver always removes a 0 that follows a succession of five l's. Thus the bit
pattern 0111111 is transmitted as 011111Dl and restored by the receiver to its
original value by removal of the 0 following the five l's. As a consequence, no
pattern of 01111110 is ever transmitted between the beginning and ending
flags.

Following the flag is the address field, which is used by the primary
station to designate the secondary station address. When a secondary station
transmits a frame, the address tells the primary station which secondary
station originated the frame. An address field of eight bits can specify up to
256 addresses. Some bit-oriented protocols permit the use of an extended
address field. To do this, the least significant bit of an address byte is set to 0
if another address byte follows. A 1 in the least significant bit of a byte is used
to recognize the last address byte.

Following the address field is the control field. The control field comes
in three different formats, as shown in Fig. 11-27. The information transfer
format is used for ordinary data transmission. Each frame transmitted in this
format contains send and receive counts. A station that transmits sequenced
frames counts and numbers each frame. This count is given by the send count
N, . A station receiving sequenced frames counts each error-free frame that it
receives. This count is given by the receive count N, . The N, count advances
when a frame is checked and found to be without errors. The receiver confirms
accepted numbered information frames by returning its N, count to the trans­
mitting station.

The P/F bit is used by the primary station to poll a secondary station to

Figure 1 1 .. 27 Control field format in bit�oriented protocol.

Information transfer: 0 Ns P/F N,

Supervisory : Code P/F I N,

I
Unnumbered: Code P/F Code

N, Send count P/F Poll/final
N, Receive count Code Binary code

Problems 439

request that it initiate transmission. It is used by the secondary station to
indicate the final transmitted frame. Thus the PIF field is called P (poll) when
the primary station is transmitting but is designated as F (final) when a sec·
ondary station is transmitting. Each frame sent to the secondary station from
the primary station has a P bit set to 0. When the primary station is finished
and ready for the secondary station to respond, the P bit is set to 1. The
secondary station then responds with a number of frames in which the F bit
is set to 0. When the secondary station sends the last frame, it sets the F bit
to 1. Therefore, the PIF bit is used to determine when data transmission from
a station is finished.

The supervisory format of the control field is recognized from the fust two
bits being 1 and 0. The next two bits indicate the type of command. This follows
by a PIF bit and a receive sequence frame count. The frames of the supervisory
format do not carry an information field. They are used to assist in the transfer
of information in that they confirm the acceptance of preceding frames canying
information, convey ready· or busy conditions, and report frame numbering
errors.

The unnumbered format is recognized from the first two bits being 11.
The five code bits available in this format can specify up to 32 commands and
responses. The primary station uses the control field to specify a command for
a secondary station. The secondary station uses the control field to transmit
a response to the primary station. Unnumbered-format frames are employed
for initialization of link functions, reporting procedural errors, placing stations
in a disconnected mode, and other data link control operations.

PROBLEMS

11·1. The addresses assigned to the four registen of the 110 interface of Fig. 11-2
are fqual to the binary equivalent ol U. 13, 14, and 15. Show the external
circuit that must be connect� betw�n an &-bit 110 address from the CPU
and the CS, RSI, and RSO Inputs ol the Interface.

11·2. Six Interface units of the type shown in Fig. 11-2 ate connect� to a CPU that
uses an 110 address of eight bits. Each one of the six chip select (CS) inputs
is connected to a different address tine. Thus the high-order address tine is
connect� to the CS input ol the first interface unit and the sixth address tine
is connected to the CS input of the sixth interface unit. The two low-order
address lines are connected to the RSl and RSO of aU six Interface units.
Determine the 8-bit address of each register in each interface.

U.J. List four peripheral devices that produce an acceptable output for a person
to understand.

11-4. Write your full name in ASCII using eight bits per character with the leftmost
bit always 0. Include a space between names and a period � a middle
initial.

'

440 CHAPTER ELEVEN Input-Output Organization

11-5.

11-6.

11-7.

11-8.

11-9.

11-10.

11-11.

11-12.

11-13.

What is the difference between isolated 110 and memory-mapped 110? What
are the advantages and disadvantages of each?

Indicate whether the following constitute a control, status, or data transfer
commands.
a. Skip next instruction if flag is set.
b. Seek a given record on a magnetic disk.
c. Check if 110 device is ready.
d. Move printer paper to beginning of next page.
e. Read interface status register.

A commercial interface unit uses different names for the handshake lines
associated with the transfer of data from the 110 device into the interface
unit. The interface input handshake line is labeled STB (strobe), and the
interface output handshake line is labeled IBF (input buffer full). A low-level
signal on STB loads data from the 110 bus into the interface data register. A
high-level signal on IBF indicates that the data item has been accepted by the
interface. IBF goes low after an 110 read signal from the CPU when it reads
the contents of the data register.
a. Draw a block diagram showing the CPU, the interface, and the 110 device

together with the pertinent interconnections among the three units.
b. Draw a timing diagram for the handshaking transfer.
c. Obtain a sequence-of-events flowchart for the transfer from the device to

the interface and from the interface to the CPU.

A CPU with a 20-MHz clock is connected to a memory unit whose access time
is 40 ns. Formulate a read and write timing diagrams using a READ strobe
and a WRITE strobe. Include the address in the timing diagram.

The asynchronous communication interface shown in Fig. 11-8 is connected
between a CPU and a printer. Draw a flowchart that describes the sequence
of operations in the transmitter portion of the interface when the CPU sends
characters to be printed.

Give at least six status conditions for the setting of individual bits in the
status register of an asynchronous communication interface.

How many bits are there in the transmitter shift register of Fig. 11-8 when
the interface is attached to a terminal that needs one stop bit? List the bits
in the shift register when the letter W is transmitted using ASCII with even
parity.

How many characters per second can be transmitted over a 1200-baud line
in each of the following modes? (Assume a character code of eight bits.)
a. Synchronous serial transmission.
b. Asynchronous serial transmission with two stop bits.
c. Asynchronous serial transmission with one stop bit.

Inlormation is inserted into a FIFO bulfer at a rate of m bytes per second.
The information is deleted at a rate of n byte per second. The maximum
capacity of the bulfer is k bytes.
a. How long does it take for an empty buffer to fill up when m > n?
b. How long does it take for a full buffer to empty when m < n?
c. Is the FIFO buffer needed if m = n?

11-14.

11-15.

11-16.

11-17.

11-18.

11-19.

11-20.

11-21.

11-22.

11-23.

11-24.

11-25.

11-26.

11-27.

11-28.

Problems 44 1

The bits in the control register of the FIFO shown in Fig. 11-9 are
F, F, F, F, = 0011 . Give the sequence of internal operations when an item is
deleted from the FIFO and then a new item is inserted.

What are the values of input ready and output ready and control bits F1
through F, in Fig. 11-9 when:
a. The buffer is empty?
b. The buffer is full?
c. The buffer contains two data items?

Show a block diagram similar to Fig. 11-10 for the data transfer from a CPU
to an interface and then to an 1/0 device. Determine a procedure for setting
and clearing the flag bit.

Using the configuration established in Prob. 11-16, obtain a flowchart (sim­
ilar to Fig. 11-11) for the CPU program to output data.

What is the basic advantage of using interrupt-initiated data transfer over
transfer under program control without an interrupt?

In most computers an interrupt is recognized only after the execution of the
instruction. Consider the possibility of acknowledging the interrupt at any
time during the execution of the instruction. Discuss the difficulty that may
arise.

What happens in the daisy-chain priority interrupt shown in Fig. 11-12 when
device 1 requests an interrupt after device 2 has sent an interrupt request to
the CPU but before the CPU responds with the interrupt acknowledge?

Consider a computer without priority interrupt hardware. Any one of many
sources can interrupt the computer, and any interrupt request results in
storing the return address and branching to a common interrupt routine.
Explain how a priority can be established in the interrupt service program.

Using combinational circuit design techniques, derive the Boolean expres­
sions listed in Table 11-2 for the priority encoder. Draw the logic diagram of
the circuit.

Design a paraDe! priority interrupt hardware for a system with eight inter­
rupt sources.

Obtain the truth table of an 8 x 3 priority encoder. Assume that the three
outputs ryz from the priority encoder are used to provide a vector address
of the form 101ryz00. Ust the eight vector addresses starting from the one
with the highest priority.

What should be done in Fig. 11-14 to make the four V AD values equal to the
binary equivalent of 76, 77, 78, and 79?

What programming steps are required to check when a source interrupts the
computer while it is stiU being serviced by a previous interrupt request from
the same source?

Why are the read and write control lines in a DMA controUer bidirectional?
Under what condition and for what purpose are they used as inputs? Under
what condition and for what purpose are they used as outputs?

It is necessary to transfer 256 words from a magnetic disk to a memory

442 CHAPTER £LEVW Input-OutpUt Organization

section starting from address 1230. The transfer is by meons of DMA as
shown in Fig. 11-18.
a. Give the initial values that the CPU must tnl.nsfer to the DMA controller.
b. Give the step-by-$tepaccountofthe actions taken du.ringthe input of the

first two words.
11-29. A DMA controUer transfers 164>it words to memory using cycle stealing-The

words are assembk!d from a device that transmits characters at a rate of 2400
characters per second. The CPU is fetching and executing instructions at an
average rate of 1 million instructions per second. By how miKh will the CPl:
be slowed down because of the DMA transfer?

11·30. Why does DMA have priority over the CPU when both request a mem�·
transfer?

11-31. Draw a flowchart simllar to the one in Fig. 11·20 that describes the CPU-110
channel communication in the IBM 370.

11·32. The address of a terminal connected to a data communication pnxesso<
consists of two letters of the alpha.bet or a letter followed by one of the 10
numerals. How many different addresses can be formulated.

11·33. Ust a pos$ible line procedure and the charKter sequence for the communi­
cation between a data communicatwn processor and a remote terminal. The
processor inquires if the terminal is operative. The terminal ruponds w;th
yes or no. If the response Is yes, the processor sends a block of text.

11-34. A data communication link employs the character-rontrolled protocol w;th
data transparency using the OLE <haract"r. The text message that the trans·
mltter sends betw""" STX and ETX is as foUows:

OLE STX OLE OLE ETX OLE OLE ETX OLE BTX

What is the binary value of the transparent text data?

11-35. What Is the minimum number of bits that a frame must have in the bit­
oriented protocol?

11-36. Show how the uro insertion works In the bit-oriented protocol when a uro
foUowed by the 10 bits that represent the binary equ;.-.nt of 1023 are
transmitted.

REFERENCES

1. GorsUne, G. W., Computer Org�•izo tlon: Hllrrlwlm/So{twlzn, 2nd ed. Englewood
Cliffs, NJ: Prentice HaU, 1986.

2. Hays,J. F., Computer ArchiteclllrtandOrg�izatiorl. 2nd eel. NewYorlc M<Graw-Hill,
1988.

3. Hill, F. J., and G. R. Peterson. Digillll Systmrs: H.-rdwrzn Orgllllizatlon .-1111 Design, 3rd
ed. New York: John Wiley, 1987.

4. Hwang, K., and F. A. Briggs, CimrpiiiD" Alchikt:ttln lind Pr�nllld Processing. New
York: M<Graw-Hill, 1984.

References 44 3

5. Lippiatt, A. G. , and G. L. Wright, The Architecture of Smnll Computer Systems, 2nd
ed. Englewood Cliffs, NJ: Prentice Hall, 1985.

6. Patterson, D. A., and). L. Hennessy, Computer Architecture: A Quantitative Approach .
San Mateo, CA: Morgan Kaufmann Publishers, 1990.

7. Pollard, L. H., Computer Design and Architecture. Englewood Cliffs, NJ: Prentice
Hall, 1990.

8. Rafiquzzaman, M., and R. Chandra, Modern Computer Architecture. St. Paul, MN:
West Publishing, 1988.

9 . Toy, W., and B. Zee, Computer Hardware/Software Architecture. Englewood Cliffs, NJ:
Prentice Hall, 1986.

10. Wakerly,) . F., Microcomputer Architecture and Programming. New York: john Wiley,
1981 .

11 . Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.

C H A P T E R T W E L V E

Memory Organization

IN THIS CHAPTER

12-1 Memo<y Hierarchy

12-2 Main Memory

12-3 Auxiliary Memory
1:2-4 Associative Memory
12-S Cache Memory

12-6 Virtual Memory

12-7 Memory Manageroo\t Hardware

12-1 Memory Hierarchy

The memory unit Is an essential component in any digital romputer since It Is
needed for sto""'g programs and data. A very smAll computer with a Umited
application may be able to ful6ll its intend.ed task without the nH<I of addi·
tiona! storage capacity. Most general·pwpose computers would run more
efficiently if they were equipped with additional storage beyond the capadty
of the main memory. There is just not enough space in one memory unit to
accommodate all the pn>gTams used in a typical computer. Moreover, most
computer users accumulate and continue to accumulate large amounts of
data-processing software. Not all accumulated information is needed by the
processor at the same time. Therefore, it is more economical to use low-cost
storage devices to serve as a backup for storing the information that is not
currently used by the CPU. The memory unit that communicates directly with
the CPU is called the m11in mmwry. Devices that provide backup storage are
called auxiliary mmtary. The most common auxiliary memory devices used in
computer systems are magnetic disks and tapes. They are used for storing
system.programs, large data 6Jes, and other backup information. Only pro­
grams and data currently needed by the processor reside in main memory. AU

445

446 OIAPTER TWELVE Memory Orcanization

other information Is stored in auxiliary memory and transferred to main mem­
ory when needed.

The total memory capacity of a computer can be visualized as being a
hierarchy of components. The memory hierarchy system consists of all storage
devices employed in a computer system from the slow but high-capacity
awdliary memory to a relatively faster main memory, to an even smaller and
faster cache memory accessible to the high-speed processing logic. Figure U-1
illustrates the components ina typical memory hierarchy. At the bottom of the
hierarchy are the relatively slow magnetic tapes used to store removable files.
Next are the magnetic disks used as backup storage. The main memory occu­
pies a central position by being able to communicate directly with the CPU and
with auxiliary memory devices through an UO processor. When programs not
residing in main memory are needed by the CPU, they are brought in from
auxiliary memory. Programs not currently needed in main memory are trans­
ferred into auxiliary memory to provide space for currently used programs and
data.

A special very-high·speed memory called a CiJChL is sometimes used to
increase the speed of processing by making current programs and data avail­
able to the CPU at a rapid rate. The cache memory is employed in computer
systems to compensate for the speed differential between main memory access
time and processor logic. CPU logic is usuaUy faster than main memory access
time, with the result that processing speed is limited primarily by the speed
of main memory. A technique used to compensate for the mismatch in oper·
atin.g speeds is to employ an extremely fast, small cache between the CPU and
main memory whose access time Is dose to processor logic dock cycle time.
The cache is u!led for storing segments of programs currently being executed
in the CPU and temporary data frequently needed in the present calculations.

flcu"' t 2·1 Memory hltl'li'Chy in • C<>ft�PU<<r symm.

Auxlltvy mem o l)'

I M�nd.iC I UI'O I
�"'"""'"" M&in

I �"""' I - """"""'
di.t�>b I l

CPtJ r-- Cxbe
_,

multiprogramming

SECTION 12 · 1 Memory Hierarchy 44 7

By making programs and data available at a rapid rate, it is possible to increase
the performance rate of the computer.

While the VO processor manages data transfers between auxiliary mem­
ory and main memory, the cache organization is concerned with the transfer
of information between main memory and CPU. Thus each is involved with
a different level in the memory hierarchy system. The reason for having two
or three levels of memory hierarchy is economics. As the storage capacity of
the memory increases, the cost per bit for storing binary information decreases
and the access time of the memory becomes longer. The auxiliary memory has
a large storage capacity, is relatively inexpensive, but has low access speed
compared to main memory. The cache memory is very small, relatively expen­
sive, and has very high access speed. Thus as the memory access speed
increases, so does its relative cost. The overall goal of using a memory hierarchy
is to obtain the highest-possible average access speed while minimizing the
total cost of the entire memory system.

Auxiliary and cache memories are used for different purposes. The cache
holds those parts of the program and data that are most heavily used, while
the auxiliary memory holds those parts that are not presently used by the CPU.
Moreover, the CPU has direct access to both cache and main memory but not
to auxiliary memory. The transfer from auxiliary to main memory is usually
done by means of direct memory access of large blocks of data. The typical
access time ratio between cache and main memory is about 1 to 7. For example,
a typical cache memory may have an access time of 100 ns, while main memory
access time may be 700 ns. Auxiliary memory average access time is usually
1000 times that of main memory. Block size in auxiliary memory typically
ranges from 256 to 2048 words, while cache block size is typically from 1 to 16
words.

Many operating systems are designed to enable the CPU to process a
number of independent programs concurrently. This concept, called multipro­
gramming, refers to the existence of two or more programs in different parts
of the memory hierarchy at the same time. In this way it is possible to keep
all parts of the computer busy by working with several programs in sequence.
For example, suppose that a program is being executed in the CPU and an VO
transfer is required. The CPU initiates the VO processor to start executing the
transfer. This leaves the CPU free to execute another program. In a multipro­
gramming system, when one program is waiting for input or output transfer,
there is another program ready to utilize the CPU.

With multiprogramming the need arises for running partial programs, for
varying the amount of main memory in use by a given program, and for
moving programs around the memory hierarchy. Computer programs are
sometimes too long to be accommodated in the total space available in main
memory. Moreover, a computer system uses many programs and all the
programs cannot reside in main memory at all times. A program with its data
normally resides in auxiliary memory. When the program or a segment of the

448 CHAPTER TWELVE Memory Organization

random-access
memory (RAMI

read-rmly memory
(ROM)

bootstrap loader

crmtpt�ter startup

program is to be executed, it is transferred to main memory to be executed by
the CPU. Thus one may think of auxiliary memory as containing the totality
of information stored in a computer system. It is the task of the operating
system to maintain in main memory a portion of this information that is
currently active. The part of the computer system that supervises the flow of
information between auxiliary memory and main memory is called the memory
management system. The hardware for a memory management system is pre­
sented in Sec. 12-7.

12-2 Main Memory

The main memory is the central storage unit in a computer system. It is a
relatively large and fast memory used to store programs and data during the
computer operation. The principal technology used for the main memory is
based on semiconductor integrated circuits. Integrated circuit RAM chips are
available in two possible operating modes, static and dynamic. The static RAM
consists essentially of internal flip-flops that store the binary information. The
stored information remains valid as long as power is applied to the unit. The
dynamic RAM stores the binary information in the form of electric charges that
are applied to capacitors. The capacitors are provided inside the chip by MOS
transistors. The stored charge on the capacitors tend to discharge with time and
the capacitors must be periodically recharged by refreshing the dynamic mem­
ory. Refreshing is done by cycling through the words every few milliseconds
to restore the decaying charge. The dynamic RAM offers reduced power
consumption and larger storage capacity in a single memory chip. The static
RAM is easier to use and has shorter read and write cycles.

Most of the main memory in a general-purpose computer is made up of
RAM integrated circuit chips, but a portion of the memory may be constructed
with ROM chips. Originally, RAM was used to refer to a random-access
memory, but now it is used to designate a read/write memory to distinguish
it from a read-only memory, although ROM is also random access. RAM is used
for storing the bulk of the programs and data that are subject to change. ROM
is used for storing programs that are permanently resident in the computer and
for tables of constants that do not change in value once the production of the
computer is completed.

Among other things, the ROM portion of main memory is needed for
storing an initial program called a bootstrap loader. The bootstrap loader is a
program whose function is to start the computer software operating when
power is turned on. Since RAM is volatile, its contents are destroyed when
power is turned off. The contents of ROM remain unchanged after power is
turned off and on again. The startup of a computer consists of turning the
power on and starting the execution of an initial program. Thus when power
is turned on, the hardware of the computer sets the program counter to the

bidirectional bus

SECTION 1 2·2 Main Memory 449

first address of the bootstrap loader. The bootstrap program loads a portion
of the operating system from disk to main memory and control is then trans­
ferred to the operating system, which prepares the computer for general use.

RAM and ROM chips are available in a variety of sizes. If the memory
needed for the computer is larger than the capacity of one chip, it is necessary
to combine a number of chips to form the required memory size. To demon­
strate the chip interconnection, we will show an example of a 1024 x 8 memory
constructed with 128 x 8 RAM chips and 512 x 8 ROM chips.

RAM and ROM Chips
A RAM chip is better suited for communication with the CPU if it has one or
more control inputs that select the chip only when needed. Another common
feature is a bidirectional data bus that allows the transfer of data either from
memory to CPU during a read operation, or from CPU to memory during a
write operation. A bidirectional bus can be constructed with three-state
buffers. A three-state buffer output can be placed in one of three possible
states: a signal equivalent to logic 1, a signal equivalent to logic 0, or a high­
impedance state. The logic 1 and 0 are normal digital signals. The high­
impedance state behaves like an open circuit, which means that the output
does not carry a signal and has no logic significance.

The block diagram of a RAM chip is shown in Fig. 12-2. The capacity of
the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit

Figure 12-2 Typical RAM chip.

Chip select I CS I

Chip select 2 CS2

Read RD 1 28 X 8
8-bit data bus

RAM

Write WR

7-bit address AD7

(a) Block diagram

CSI CS2 RD WR Memory function State of data bus

0 0 X X Inhibit High-impedance
X Inhibit High-impedance

Inhibit High-impedance
Write Input data to RAM

X Read Output data from RAM
X X lnltibit High-impedance

(b) Function table

450 CHAPTER TWELVE Memory Organization

address and an 8-bit bidirectional data bus. The read and write inputs specie:.
the memory operation and the two chips select (CS) control inputs are fc o
enabling the chip only when it is selected by the microprocessor. The availahL.
ity of more than one control input to select the chip facilitates the decoding c :
the address lines when multiple chips are used in the microcomputer. The rea.:
and write inputs are sometimes combined into one line labeled R!W. When the
chip is selected, the two binary states in this line specify the two operation>
of read or write.

The function table listed in Fig. 12-2(b) specifies the operation of the RA.\�
chip. The unit is in operation only when CS1 = 1 and CS2 = 0. The bar on tor
of the second select variable indicates that this input is enabled when it is equa.:
to 0. If the chip select inputs are not enabled, or if they are enabled but the read
or write inputs are not enabled, the memory is inhibited and its data bus is in
a high-impedance state. When CS1 = 1 and CS2 = 0, the memory can be
placed in a write or read mode. When the WR input is enabled, the memory
stores a byte from the data bus into a location specified by the address input
lines. When the RD input is enabled, the content of the selected byte is placed
into the data bus. The RD and WR signals control the memory operation as well
as the bus buffers associated with the bidirectional data bus .

A ROM chip is organized externally in a similar manner. However, since
a ROM can only read, the data bus can only be in an output mode. The block
diagram of a ROM chip is shown in Fig. 12-3. For the same-size chip, it is
possible to have more bits of ROM than of RAM, because the internal binary
cells in ROM occupy less space than in RAM . For this reason, the diagram
specifies a 512-byte ROM, while the RAM has only 128 bytes.

The nine address lines in the ROM chip specify any one of the 512 bytes
stored in it. The two chip select inputs must be CS1 = 1 and CS2 = 0 for the

· unit to operate. Otherwise, the data bus is in a high-impedance state. There
is no need for a read or write control because the unit can only read. Thus when
the chip is enabled by the two select inputs, the byte selected by the address
lines appears on the data bus.

Memory Address Map
The designer of a computer system must calculate the amount of memory
required for the particular application and assign it to either RAM or ROM. The
interconnection between memory and processor is then established from
knowledge of the size of memory needed and the type of RAM and ROM chips
available. The addressing of memory can be established by means of a table
that specifies the memory address assigned to each chip. The table, called a
memory address map, is a pictorial representation of assigned address space for
each chip in the system.

To demonstrate with a particular example, assume that a computer sys­
tem needs 512 bytes of RAM and 512 bytes of ROM. The RAM and ROM chips

5 1 2 X 8
ROM

SECTION 1 2·2 Main Memory 45 1

8-bit data bus

Figure 12-3 Typical ROM chip.

to be used are specified in Figs. 12-2 and 12-3. The memory address map for
this configuration is shown in Table 12-1 . The component column specifies
whether a RAM or a ROM chip is used. The hexadecimal address column
assigns a range of hexadecimal equivalent addresses for each chip. The address
bus lines are listed in the third column. Although there are 16 lines in the
address bus, the table shows only 10 lines because the other 6 are not used in
this example and are assumed to be zero. The small x's under the address bus
lines designate those lines that must be connected to the address inputs in each
chip. The RAM chips have 128 bytes and need seven address lines. The ROM
chip has 512 bytes and needs 9 address lines. The x's are always assigned to
the low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9
for the ROM. It is now necessary to distinguish between four RAM chips by
assigning to each a different address. For this particular example we choose bus
lines 8 and 9 to represent four distinct binary combinations. Note that any other
pair of unused bus lines can be chosen for this purpose. The table clearly shows
that the nine low-order bus lines constitute a memory space for RAM equal to
29 = 512 bytes. The distinction between a RAM and ROM address is done with
another bus line. Here we choose line 10 for this purpose. When line 10 is 0,
the CPU selects a RAM, and when this line is equal to 1, it selects the ROM.

The equivalent hexadecimal address for each chip is obtained from the
information under the address bus assignment. The address bus lines are

TABLE 12-1 Memory Address Map for Microprocomputer

Address bus
Hexadecimal

Component address 10 9 4 2

RAM I ()()()()...007F 0 0 0· X X X X X X X
RAM 2 OOSO-OOFF 0 0 I X X X X X X X
RAM 3 0100-017F 0 0 X X X X X X X
RAM 4 0180-{)1 FF 0 I X X X X X X X
ROM 0200-03FF I X X X X X X X X X

452 CHAITER TWELVE Memory Organization

subdivided into groups of four bits each so that each group can be represented
with a hexadecimal digit. The first hexadecimal digit represents lines 13 to 16
and is always 0. The next hexadecimal digit represents lines 9 to 12, but lines
11 and 12 are always 0. The range of hexadecimal addresses for each compo­
nent is determined from the x's associated with it. These x's represent a binan·
number that can range from an all-O's to an all-1's value.

Memory Connection to CPU
RAM and ROM chips are connected to a CPU through the data and address
buses. The low-order lines in the address bus select the byte within the chips
and other lines in the address bus select a particular chip through its chip select
inputs. The connection of memory chips to the CPU is shown in Fig. 12-4. This
configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of
ROM. It implements the memory map of Table 12-1. Each RAM receives the
seven low-order bits of the address bus to select one of 128 possible bytes. The
particular RAM chip selected is determined from lines 8 and 9 in the address
bus . This is done through a 2 x 4 decoder whose outputs go to the CS1 inputs
in each RAM chip. Thus, when address lines 8 and 9 are equal to 00, the first
RAM chip is selected. When 01, the second RAM chip is selected, and so on.
The RD and WR outputs from the microprocessor are applied to the inputs of
each RAM chip.

The selection between RAM and ROM is achieved through bus line 10.
The RAMs are selected when the bit in this line is 0, and the ROM when the
bit is 1 . The other chip select input in the ROM is connected to the RD control
line for the ROM chip to be enabled only during a read operation. Address bus
lines 1 to 9 are applied to the input address of ROM without going through the
decoder. This assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM. The
data bus of the ROM has only an output capability, whereas the data bus
connected to the RAMs can transfer information in both directions .

The example just shown gives an indication of the interconnection com­
plexity that can exist between memory chips and the CPU. The more chips that
are connected, the more external decoders are required for selection among the
chips . The designer must establish a memory map that assigns addresses to
the various chips from which the required connections are determined .

12-3 Auxiliary Memory

The most common auxiliary memory devices used in computer systems are
magnetic disks and tapes. Other components used, but not as frequently, are
magnetic drums, magnetic bubble memory, and optical disks. To understand
fully the physical mechanism of auxiliary memory devices one must have a
knowledge of magnetics, electronics, and electromechanical systems. AI-

CPU

Address bus

1 6 - 1 1 10 9 8 7 - 1 RD WR Data bus

I
r----

I Decoder J 3 2 I 0

CSI -
CS2 128 X 8 ----f- --- RD RAM I

Data

-- WR
AD7

CSI

CS2
128 X 8 f- --- RD RAM 2

Data ..__
--- WR

AD7

CS I -
CS2

128 X 8 f- --- RD RAM 3
Data ----

--- WR
AD7

CSI -
CS2

128 X 8 f- --- RD RAM 4
Data ----

--- WR

AD7

�
CSI
CS2

}AD9
128 X 8 Data ---

8 ROM 9
Figure 12.-4 Memory connection to the CPU.

453

454 CHAPTER TWELVE Memory Organization

though the physical properties of these storage devices can be quite complex,
their logical properties can be characterized and com pared by a few parame­
ters. The important characteristics of any device are its access mode, access
time, transfer rate, capacity, and cost.

The average time required to reach a storage location in memory and
obtain its contents is called the access time. In electromechanical devices with
moving parts such as disks and tapes, the access time consists of a seek time
required to position the read-write head to a location and a transfer time
required to transfer data to or from the device. Because the seek time is usually
much longer than the transfer time, auxiliary storage is organized in records
or blocks. A record is a specified number of characters or words. Reading or
writing is always done on entire records. The transfer rate is the number of
characters or words that the device can transfer per second, after it has been
positioned at the beginning of the record.

Magnetic drums and disks are quite similar in operation. Both consist of
high-speed rotating surfaces coated with a magnetic recording medium. The
rotating surface of the drum is a cylinder and that of the disk, a round flat plate.
The recording surface rotates at uniform speed and is not started or stopped
during access operations. Bits are recorded as magnetic spots on the surface
as it passes a stationary mechanism called a write head . Stored bits are detected
by a change in magnetic field produced by a recorded spot on the surface as
it passes through a read head. The amount of surface available for recording in
a disk is greater than in a drum of equal physical size. Therefore, more
information can be stored on a disk than on a drum of comparable size. For
this reason, disks have replaced drums in more recent computers.

Magnetic Disks
A magnetic disk is a circular plate constructed of metal or plastic coated with
magnetized material. Often both sides of the disk are used and several disks
may be stacked on one spindle with read/write heads available on each surface.
All disks rotate together at high speed and are not stopped or started for access
purposes. Bits are stored in the magnetized surface in spots along concentric
circles called tracks. The tracks are commonly divided into sections called
sectors. In most systems, the minimum quantity of information which can be
transferred is a sector. The subdivision of one disk surface into tracks and
sectors is shown in Fig. 12-5.

Some units use a single read/write head for each disk surface. In this type
of unit, the track address bits are used by a mechanical assembly to move the
head into the specified track position before reading or writing. In other disk
systems, separate read/write heads are provided for each track in each surface.
The address bits can then select a particular track electronically through a
decoder circuit. This type of unit is more expensive and is found only in very
large computer systems.

Permanent timing tracks are used in disks to synchronize the bits and

SECTION 1 2·3 Auxiliary Memory 455

Tracks

Read/write
head

Figure 12�5 Magnetic disk.

recognize the sectors. A disk system is addressed by address bits that specify
the disk number, the disk surface, the sector number and the track within the
sector. After the read/write heads are positioned in the specified track, the
system has to wait until the rotating disk reaches the specified sector under the
read/write head. Information transfer is very fast once the beginning of a sector
has been reached. Disks may have multiple heads and simultaneous transfer
of bits from several tracks at the same time.

A track in a given sector near the circumference is longer than a track near
the center of the disk If bits are recorded with equal density, some tracks will
contain more recorded bits than others. To make all the records in a sector of
equal length, some disks use a variable recording density with higher density
on tracks near the center than on tracks near the circumference. This equalizes
the number of bits on all tracks of a given sector.

Disks that are permanently attached to the unit assembly and cannot be
removed by the occasional user are called hard disks . A disk drive with remov­
able disks is called a floppy disk. The disks used with a floppy disk drive are
small removable disks made of plastic coated with magnetic recording material.
There are two sizes commonly used, with diameters of 5 .25 and 3. 5 inches. The
3 .5-inch disks are smaller and can store more data than can the 5.25-inch disks.
Floppy disks are extensively used in personal computers as a medium for
distributing software to computer users.

Magnetic Tape
A magnetic tape transport consists of the electrical, mechanical, and electronic
components to provide the parts and control mechanism for a magnetic-tape
unit. The tape itself is a strip of plastic coated with a magnetic recording

456 CHAI'TER TWELVE Memory Organization

content addressable
memory

medium. Bits are recorded as magnetic spots on the tape along several tracks.
Usually, seven or nine bits are recorded simultaneously to form a character
together with a parity bit. Read/write heads are mounted one in each track so
that data can be recorded and read as a sequence of characters.

Magnetic tape units can be stopped, started to move forward or in re­
verse, or can be rewound. However, they cannot be started or stopped fast
enough between individual characters. For this reason, information is recorded
in blocks referred to as records. Gaps of unrecorded tape are inserted between
records where the tape can be stopped. The tape starts moving while in a gap
and attains its constant speed by the time it reaches the next record. Each
record on tape has an identification bit pattern at the beginning and end. By
reading the bit pattern at the beginning, the tape control identifies the record
number. By reading the bit pattern at the end of the record, the control
recognizes the beginning of a gap. A tape unit is addressed by specifying the
record number and the number of characters in the record. Records may be of
fixed or variable length.

12-4 Associative Memory

Many data-processing applications require the search of items in a table stored
in memory. An assembler program searches the symbol address table in order
to extract the symbol's binary equivalent. An account number may be searched
in a file to determine the holder's name and account status. The established
way to search a table is to store all items where they can be addressed in
sequence. The search procedure is a strategy for choosing a sequence of
addresses, reading the content of memory at each address, and comparing the
information read with the item being searched until a match occurs. The
number of accesses to memory depends on the location of the item and the
efficiency of the search algorithm. Many search algorithms have been devel­
oped to minimize the number of accesses while searching for an item in a
random or sequential access memory.

The time required to find an item stored in memory can be reduced
considerably if stored data can be identified for access by the content of the data
itself rather than by an address. A memory unit accessed by content is called
an associative memory or content addressable memory (CAM). This type of memory
is accessed simultaneously and in parallel on the basis of data content rather
than by specific address or location. When a word is written in an associative
memory, no address is given. The memory is capable of finding an empty
unused location to store the word. When a word is to be read from an associa­
tive memory, the content of the word, or part of the word, is specified. The
memory locates all words which match the specified content and marks them
for reading.

Because of its organization, the associative memory is uniquely suited to
do parallel searches by data association. Moreover, searches can be done on

SECTION 1 2-4 Associative Memory 457

an entire word or on a specific field within a word. An associative memory is
more expensive than a random access memory because each cell must have
storage capability as well as logic circuits for matching its content with an
external argument. For this reason, associative memories are used in applica­
tions where the search time is very critical and must be very short.

Hardware Organization
The block diagram of an associative memory is shown in Fig. 12-6. It consists
of a memory array and logic for m words with n bits per word. The argument
register A and key register K each have n bits, one for each bit of a word. The
match register M has m bits, one for each memory word. Each word in memory
is compared in parallel with the content of the argument register. The words
that match the bits of the argument register set a corresponding bit in the match
register. After the matching process, those bits in the match register that have
been set indicate the fact that their corresponding words have been matched.
Reading is accomplished by a sequential access to memory for those words
whose corresponding bits in the match register have been set.

The key register provides a mask for choosing a particular field or key in
the argument word. The entire argument is compared with each memory word
if the key register contains all l' s. Otherwise, only those bits in the argument
that have l's in their corresponding position of the key register are compared.
Thus the key provides a mask or identifying piece of information which

Figure 12 .. 6 Block diagram of associative memory.

Input

Read

Write

Output

458 CHAPTER TWELVE Memory Organization

specifies how the reference to memory is made. To illustrate with a numerica;
example, suppose that the argument register A and the key register K have the
bit configuration shown below. Only the three leftmost bits of A are compared
with memory words because K has 1's in these positions.

A

K

Word 1

Word 2

101 111100

111 000000

100 111100

101 000001

no match

match

Word 2 matches the unmasked argument field because the three leftmost bits
of the argument and the word are equal.

The relation between the memory array and external registers in an
associative memory is shown in Fig. 12-7. The cells in the array are marked by
the letter C with two subcripts. The first subscript gives the word number and
the second specifies the bit position in the word. Thus cell C9 is the cell for bit
j in word i. A bit Ai in the argument register is compared with all the bits in
column j of the array provided that Ki = 1. This is done for all columns
j = 1, 2, . . . , n. If a match occurs between all the unmasked bits of the argu­
ment and the bits in word i, the corresponding bit M1 in the match register is
set to 1. If one or more unmasked bits of the argument and the word do not
match, M1 is cleared to 0.

Figure 12� 7 Associative memory of m word, n cells per word.

Word I � 5]

Word i [3;] 5]

Word m � �
Bit I Bit j Bit n

SECTION 1 2-4 Associative Memory 459

The internal organization of a typical cell C,i is shown in Fig. 12-8. It
consists of a flip-flop storage element F;i and the circuits for reading, writing,
and matching the cell. The input bit is transferred into the storage cell during
a write operation. The bit stored is read out during a read operation. The match
logic compares the content of the storage cell with the corresponding un­
masked bit of the argument and provides an output for the decision logic that
sets the bit in M,.

Match Logic
The match logic for each word can be derived from the comparison algorithm
for two binary numbers. First, we neglect the key bits and compare the argu­
ment in A with the bits stored in the cells of the words. Word i is equal to the
argument in A if Ai = F,i for j = 1, 2, . . . , n . Two bits are equal if they are both
1 or both 0. The equality of two bits can be expressed logically by the Boolean
function

where xi = 1 if the pair of bits in position j are equal; otherwise, xi = 0.
For a word i to be equal to the argument in A we must have all xi variables

equal to 1. This is the condition for setting the corresponding match bit M, to
1. The Boolean function for this condition is

and constitutes the AND operation of all pairs of matched bits in a word.

Figure 12 .. 8 One cell of associative memory.

Output

460 CHAPTER T'WELVE Memory Organization

We now include the key bit K; in the comparison logic. The requirement
is that if K; = 0, the corresponding bits of A; and f1; need no comparison. Only
when K; = 1 must they be compared. This requirement is achieved by ORing
each term with Kf, thus:

{X·
X· + K' = J J J 1

if K; = 1
if K; = O

When K; = 1, we have Kf = 0 and x; + 0 = x; . When K; = 0, then Kf = 1 and
x; + 1 = 1. A term (x; + Kf) will be in the 1 state if its pair of bits is not
compared. This is necessary because each term is ANDed with all other terms
so that an output of 1 will have no effect. The comparison of the bits has an
effect only when K; = 1 .

The match logic for word i in an associative memory can now be expressed
by the following Boolean function:

M, = (x1 + Kl)(x2 + K2)(x3 + K3) · · · (x, + K�)

Each term in the expression will be equal to 1 if its corresponding K; = 0. If
K; = 1, the term will be either 0 or 1 depending on the value of X;. A match will
occur and M, will be equal to 1 if all terms are equal to 1 .

I f we substitute the original definition o f x;, the Boolean function above
can be expressed as follows:

"

M, = IT (A; F;; + Af Fij + Kf)
j = 1

where II is a product symbol designating the AND operation of all n terms. We
need m such functions, one for each word i = 1, 2, 3, . . . , m .

The circuit for matching one word is shown in Fig. 12-9. Each cell requires
two AND gates and one OR gate. The inverters for A; and K; are needed once
for each column and are used for all bits in the column. The output of all OR
gates in the cells of the same word go to the input of a common AND gate to
generate the match signal for M, . M, will be logic 1 if a match occurs and 0 if
no match occurs. Note that if the key register contains all 0' s, output M, will
be a 1 irrespective of the value of A or the word. This occurrence must be
avoided during normal operation.

Read Operation
If more than one word in memory matches the unmasked argument field, all
the matched words will have 1's in the corresponding bit position of the match
register. It is then necessary to scan the bits of the match register one at a time.
The matched words are read in sequence by applying a read signal to each word
line whose corresponding M, bit is a 1 .

SECTION IH Associative Memory 46 1

M;

Figure 12 .. 9 Match logic for one word of associative memory.

In most applications, the associative memory stores a table with no two
identical items'under a given key. In this case, only one word may match the
unmasked argument field. By connecting output M; directly to the read line in
the same word position (instead of the M register), the content of the matched
word will be presented automatically at the output lines and no special read
command signal is needed. Furthermore, if we exclude words having a zero
content, an all-zero output will indicate that no match occurred and that the
searched item is not available in memory.

Write Operation
An associative memory must have a write capability for storing the information
to be searched. Writing in an associative memory can take different forms,
depending on the application. If the entire memory is loaded with new infor­
mation at once prior to a search operation then the writing can be done by
addressing each location in sequence. This will make the device a random­
access memory for writing and a content addressable memory for reading. The
advantage here is that the address for input can be decoded as in a random­
access memory. Thus instead of having m address lines, one for each word in
memory, the number of address lines can be reduced by the decoder to d lines,
where m = 2'.

462 CHAJ'Tl;R TWELVE Memory Organization

If unwanted words have to be deleted and new words inserted one at a
time, there is a need for a special register to distinguish between active and
inactive words. This register, sometimes called a tag register, would have as
many bits as there are words in the memory. For every active word stored in
memory, the corresponding bit in the tag register is set to 1. A word is deleted
from memory by clearing its tag bit to 0. Words are stored in memory by
scanning the tag register until the first 0 bit is encountered. This gives the first
available inactive word and a position for writing a new word. After the new
word is stored in memory it is made active by setting its tag bit to 1 . An
unwanted word when deleted from memory can be cleared to all 0' s if this
value is used to specify an empty location. Moreover, the words that have a
tag bit of 0 must be masked (together with the Ki bits) with the argument word
so that only active words are compared.

12-5 Cache Memory

Analysis of a large number of typical programs has shown that the references
to memory at any given interval of time tend to be confined within a few
localized areas in memory. This phenomenon is known as the property of

locality of reference locality of reference . The reason for this property may be understood considering
that a typical computer program flows in a straight-line fashion with program
loops and subroutine calls encountered frequently. When a program loop is
executed, the CPU repeatedly refers to the set of instructions in memory that
constitute the loop. Every time a given subroutine is called, its set of instruc­
tions are fetched from memory. Thus loops and subroutines tend to localize
the references to memory for fetching instructions. To a lesser degree, memory
references to data also tend to be localized. Table-lookup procedures repeat­
edly refer to that portion in memory where the table is stored. Iterative proce­
dures refer to common memory locations and array of numbers are confined
within a local portion of memory. The result of all these observations is the
locality of reference property, which states that over a short interval of time,
the addresses generated by a typical program refer to a few localized areas of
memory repeatedly, while the remainder of memory is accessed relatively
infrequently.

If the active portions of the program and data are placed in a fast small
memory, the average memory access time can be reduced, thus reducing the
total execution time of the program. Such a fast small memory is referred to
as a cache memory. It is placed between the CPU and main memory as illustrated
in Fig. 12-1 . The cache memory access time is less than the access time of main
memory by a factor of 5 to 10. The cache is the fastest component in the memory
hierarchy and approaches the speed of CPU components.

The fundamental idea of cache organization is that by keeping the most
frequently accessed instructions and data in the fast cache memory, the aver-

hit ratio

mapping

SECTION 1 2-5 Cache Memory 463

age memory access time will approach the access time of the cache. Although
the cache is only a small fraction of the size of main memory, a large fraction
of memory requests will be found in the fast cache memory because of the
locality of reference property of programs.

The basic operation of the cache is as follows. When the CPU needs to
access memory, the cache is examined. If the word is found in the cache, it is
read from the fast memory. If the word addressed by the CPU is not found in
the cache, the main memory is accessed to read the word. A block of words
containing the one just accessed is then transferred from main memory to
cache memory. The block size may vary from one word (the one just accessed)
to about 16 words adjacent to the one just accessed. In this manner, some data
are transferred to cache so that future references to memory find the required
words in the fast cache memory.

The performance of cache memory is frequently measured in terms of a
quantity called hit ratio . When the CPU refers to memory and finds the word
in cache, it is said to produce a hit . If the word is not found in cache, it is in
main memory and it counts as a miss . The ratio of the number of hits divided
by the total CPU references to memory (hits plus misses) is the hit ratio. The
hit ratio is best measured experimentally by running representative programs
in the computer and measuring the number of hits and misses during a given
interval of time. Hit ratios of 0.9 and higher have been reported. This high ratio
verifies the validity of the locality of reference property.

The average memory access time of a computer system can be improved
considerably by use of a cache. If the hit ratio is high enough so that most of
the time the CPU accesses the cache instead of main memory, the average
access time is closer to the access time of the fast cache memory. For example,
a computer with cache access time of 100 ns, a main memory access time of
1000 ns, and a hit ratio of 0.9 produces an average access time of 200 ns. This
is a considerable improvement over a similar computer without a cache mem­
ory, whose access time is 1000 ns.

The basic characteristic of cache memory is its fast access time . Therefore,
very little or no time must be wasted when searching for words in the cache.
The transformation of data from main memory to cache memory is referred to
as a mapping process. Three types of mapping procedures are of practical
interest when considering the organization of cache memory:

1. Associative mapping

2. Direct mapping

3. Set-associative mapping

To help in the discussion of these three mapping procedures we wi)l use a
specific example of a memory organization as shown in Fig. 12-10. The main
memory can store 32K words of 12 bits each. The cache is capable of storing
512 of these words at any given time. For every word stored in cache, there is

464 CHAPTER TWELVE Memory Organization

Main memory
32K X 1 2 I Cache memory f-

5 1 2 X 1 2

Figure 12�10 Example of cache memory.

CPU

a duplicate copy in main memory. The CPU communicates with both memo­
ries. It first sends a 15-bit address to cache. If there is a hit, the CPU accepts
the 12-bit data from cache. If there is a miss, the CPU reads the word from main
memory and the word is then transferred to cache.

Associative Mapping
The fastest and most flexible cache organization uses an associative memory.
This organization is illustrated in Fig. 12-11 . The associative memory stores
both the address and content (data) of the memory word. This permits any
location in cache to store any word from main memory. The diagram shows
three words presently stored in the cache. The address value of 15 bits is shown
as a five-digit octal number and its corresponding 12 -bit word is shown as a
four-digit octal number. A CPU address of 15 bits is placed in the argument
register and the associative memory is searched for a matching address. If the

Figure 12 .. 1 1 Associative mapping cache (all numbers in octal).

CPU address (1 5 bits)

I- Address Data �
0 1 0 0 0 3 4 5 0

0 2 7 7 7 6 7 I 0

2 2 3 4 5 I 2 3 4

tag field

SECTION 1 2-5 Cache Memory 465

address is found, the corresponding 12-bit data is read and sent to the CPU.
If no match occurs, the main memory is accessed for the word. The ad­
dress--data pair is then transferred to the associative cache memory. If the cache
is full, an address--data pair must be displaced to make room for a pair that is
needed and not presently in the cache. The decision as to what pair is replaced
is determined from the replacement algorithm that the designer chooses for the
cache. A simple procedure is to replace cells of the cache in round-robin order
whenever a new word is requested from main memory. This constitutes a
first-in first-out (FIFO) replacement policy.

Direct Mapping
Associative memories are expensive compared to random-access memories
because of the added logic associated with each cell. The possibility of using
a random-access memory for the cache is investigated in Fig. 12-12. The CPU
address of 15 bits is divided into two fields. The nine least significant bits
constitute the index field and the remaining six bits form the tag field. The figure
shows that main memory needs an address that includes both the tag and the
index bits. The number of bits in the index field is equal to the number of
address bits required to access the cache memory.

In the general case, there are 2' words in cache memory and 2" words in
main memory. The n-bit memory address is divided into two fields: k bits for
the index field and n - k bits for the tag field. The direct mapping cache
organization uses the n-bit address to access the main memory and the k-bit
index to access the cache. The internal organization of the words in the cache
memory is as shown in Fig. 12-13(b). Each word in cache consists of the data
word and its associated tag. When a new word is first brought into the cache,
the tag bits are stored alongside the data bits. When the CPU generates a
memory request, the index field is used for the address to access the cache. The

Figure 12�12 Addressing relationships between main and cache memories.

6 bits 9 bits

·�
Index

I
I

00 000 32K X 1 2 000 5 1 2 X 1 2
Octal 1 Cache memory

Octal Main memory address Address = 9 bits
address Data = l 2 bits . Address = I S bits 777

Data = 1 2 bits
77 777

466 CHAPTER TWELVE Memory Organization

Memory
address

00000

00777

0 1 000

0 1 777

02000

02777

Memory data

1 2 2 0

2 3 4 0

3 4 5 0

4 5 6 0

5 6 7 0

6 7 I 0

(a) Main memory

Index
address Tag

000 0 0

777 0 2

Data

1 2 2 0

6 7 I 0

(b) Cache memory

Figure 12�13 Direct mapping cache organization.

tag field of the CPU address is compared with the tag in the word read from
the cache. If the two tags match, there is a hit and the desired data word is in
cache. If there is no match, there is a miss and the required word is read from
main memory. It is then stored in the cache together with the new tag,
replacing the previous value. The disadvantage of direct mapping is that the
hit ratio can drop considerably if two or more words whose addresses have the
same index but differenttags are accessed repeatedly. However, this possibility
is minimized by the fact that such words are relatively far apart in the address
range (multiples of 512 locations in this example.)

To see how the direct-mapping organization operates, consider the nu­
merical example shown in Fig. 12-13. The word at address zero is presently
stored in the cache (index = 000, tag = 00, data = 1220). Suppose that the CPU
now wants to access the word at address 02000. The index address is 000, so
it is used to access the cache. The two tag_s are then compared. The cache tag
is 00 but the address tag is 02, which does not produce a match. Therefore, the
main memory is accessed and the data word 5670 is transferred to the CPU.
The cache word at index address 000 is then replaced with a tag of 02 and data
of 5670.

The direct-mapping example just described uses a block size of one word.
The same organization but using a block size of B words is shown in Fig. 12-14.

Block 0

Block I

Index Tag Data

000 0 I 3 4 5 0

007 0 I 6 5 7 8

0 1 0

0 1 7

770

Block 63

777

SECTION 1 2-5 Cache Memory 467

Tag I Block I Word

Index

Figure 12-14 Direct mapping cache with block size of 8 words.

The index field is now divided into two parts: the block field and the word field.
In a 512-word cache there are 64 blocks of 8 words each, since 64 x 8 = 512.
The block number is specified with a 6-bit field and the word within the block
is specified with a 3-bit field. The tag field stored within the cache is common
to all eight words of the same block. Every time a miss occurs, an entire block
of eight words must be transferred from main memory to cache memory.
Although this takes extra time, the hit ratio will most likely improve with a
larger block size because of the sequential nature of computer programs.

Set-Associative Mapping
It was mentioned previously that the disadvantage of direct mapping is that
two words with the same index in their address but with different tag values
cannot reside in cache memory at the same time. A third type of cache organ­
ization, called set-associative mapping, is an improvement over the direct­
mapping organization in that each word of cache can store two or more words
of memory under the same index address. Each data word is stored together
with its tag and the number of tag-data items in one word of cache is said to
form a set. An example of a set-associative cache organization for a set size of
two is shown in Fig. 12-15. Each index address refers to two data words and
their associated tags. Each tag requires six bits and each data word has 12 bits,
so the word length is 2(6 + 12) = 36 bits. An index address of nine bits can
accommodate 512 words. Thus the size of cache memory is 512 x 36. It can
accommodate 1024 words of main memory since each word of cache contains
two data words. In general, a set-associative cache of set size k will accommo­
date k words of main memory in each word of cache.

468 CHAPTER lWELVE Memory Organization

replacement
algorithms

Index Tag

000 0 I

777 0 2

Data

3 4 5 0

6 7 I 0

Tag Data

0 2 5 6 7 0

0 0 2 3 4 0

Figure 12 .. 15 Two;way set .. associative mapping cache.

The octal numbers listed in Fig. 12-15 are with reference to the main
memory contents illustrated in Fig. 12-13(a). The words stored at addresses
01000 and 02000 of main memory are stored in cache memory at index address
000. Similarly, the words at addresses 02777 and 00777 are stored in cache at
index address 777. When the CPU generates a memory request, the index value
of the address is used to access the cache. The tag field of the CPU address is
then compared with both tags in the cache to determine if a match occurs. The
comparison logic is done by an associative search of the tags in the set similar
to an associative memory search: thus the name "set-associative." The hit ratio
will improve as the set size increases because more words with the same index
but different tags can reside in cache. However, an increase in the set size
increases the number of bits in words of cache and requires more complex
comparison logic.

When a miss occurs in a set-associative cache and the set is full, it is
necessary to replace one of the tag-data items with a new value. The most
common replacement algorithms used are: random replacement, first-in, first­
out (FIFO), and least recently used (LRU). With the random replacement policy
the control chooses one tag-data item for replacement at random. The FIFO
procedure selects for replacement the item that has been in the set the longest.
The LRU algorithm selects for replacement the item that has been least recently
used by the CPU. Both FIFO and LRU can be implemented by adding a few
extra bits in each word of cache.

Writing into Cache
An important aspect of cache organization is concerned with memory write
requests. When the CPU finds a word in cache during a read operation, the
main memory is not involved in the transfer. However, if the operation is a
write, there are two ways that the system can proceed.

write-through

write-back

valid bit

SECTION 12-6 Virrual Memory 469

The simplest and most commonly used procedure is to update main
memory with every memory write operation, with cache memory being up­
dated in parallel if it contains the word at the specified address. This is called
the write-through method. This method has the advantage that main memory
always contains the same data as the cache. This characteristic is important in
systems with direct memory access transfers. It ensures that the data residing
in main memory are valid at all times so that an 110 device communicating
through DMA would receive the most recent updated data.

The second procedure is called the write-back method. In this method only
the cache location is updated during a write operation. The location is then
marked by a flag so that later when the word is removed from the cache it is
copied into main memory. The reason for the write-back method is that during
the time a word resides in the cache, it may be updated several times; however,
as long as the word remains in the cache, it does not matter whether the copy
in main memory is out of date, since requests from the word are filled from
the cache. It is only when the word is displaced from the cache that an accurate
copy need be rewritten into main memory. Analytical results indicate that the
number of memory writes in a typical program ranges between 10 and 30
percent of the total references to memory.

Cache Initialization
One more aspect of cache organization that must be taken into consideration
is the problem of initialization. The cache is initialized when power is applied
to the computer or when the main memory is loaded with a complete set of
programs from auxiliary memory. After initialization the cache is considered
to be empty, but in effect it contains some nonvalid data. It is customary to
include with each word in cache a valid bit to indicate whether or not the word
contains valid data.

The cache is initialized by clearing all the valid bits to 0. The valid bit of
a particular cache word is set to 1 the first time this word is loaded from main
memory and stays set unless the cache has to be initialized again. The intro­
duction of the valid bit means that a word in cache is not replaced by another
word unless the valid bit is set to 1 and a mismatch of tags occurs. If the valid
bit happens to be 0, the new word automatically replaces the invalid data. Thus
the initialization condition has the effect of forcing misses from the cache until
it fills with valid data.

12-6 Virtual Memory

In a memory hierarchy system, programs and data are first stored in auxiliary
memory. Portions of a program or data are brought into main memory as they
are needed by the CPU. Virtual memory is a concept used in some large
computer systems that permit the user to construct programs as though a large

4 70 CHAPTER TWELVE Memory Organization

address space
memory space

memory space were available, equal to the totality of auxiliary memory. Each
address that is referenced by the CPU goes through an address mapping from
the so-called virtual address to a physical address in main memory. Virtual
memory is used to give programmers the illusion that they have a very large
memory at their disposal, even though the computer actually has a relatively
small main memory. A virtual memory system provides a mechanism for
translating program-generated addresses into correct main memory locations.
This is done dynamically, while programs are being executed in the CPU. The
translation or mapping is handled automatically by the hardware by means of
a mapping table.

Address Space and Memory Space
An address used by a programmer will be called a virtual address, and the set
of such addresses the address space . An address in main memory is called a
location or physical address . The set of such locations is called the memory space .
Thus the address space is the set of addresses generated by programs as they
reference instructions and data; the memory space consists of the actual main
memory locations directly addressable for processing. In most computers the
address and memory spaces are identical. The address space is allowed to be
larger than the memory space in computers with virtual memory.

As an illustration, consider a computer with a main-memory capacity of
32K words (K = 1024). Fifteen bits are needed to specify a physical address in

· memory since 32K = 215• Suppose that the computer has available auxiliary
memory for storing 220 = 1024K words. Thus auxiliary memory has a capacity
for storing information equivalent to the capacity of 32 main memories. Denot­
ing the address space by N and the memory space by M, we then have for this
example N = 1024K and M = 32K.

In a multiprogram computer system, programs and data are transferred
to and from auxiliary memory and main memory based on demands imposed
by the CPU. Suppose that program 1 is currently being executed in the CPU.
Program 1 and a portion of its associated data are moved from auxiliary
memory into main memory as shown in Fig. 12-16. Portions of programs and
data need not be in contiguous locations in memory since information is being
moved in and out, and empty spaces may be available in scattered locations
in memory.

In a virtual memory system, programmers are told that they have the total
address space at their disposal. Moreover, the address field of the instruction
code has a sufficient number of bits to specify all virtual addresses. In our
example, the address field of an instruction code will consist of 20 bits but
physical memory addresses must be specified with only 15 bits. Thus CPU will
reference instructions and data with a 20-bit address, but the information at
this address must be taken from physical memory because access to auxiliary
storage for individual words will be prohibitively long. (Remember that for

Auxiliary memory

Program I

Data I , I

Data I , 2

Program 2

Data 2. I

Address space
N = I 024K = 2"

�

SECTION 1 2-6 Virtual Memory 4 7 1

Main memory

Program I

Data I , I

Memory space
M = 32k = 2"

Figure 12 .. 16 Relation between address and memory space in a virtual
memory system.

efficient transfers, auxiliary storage moves an entire record to the main mem­
ory.) A table is then needed, as shown in Fig. 12-17, to map a virtual address
of 20 bits to a physical address of 15 bits. The mapping is a dynamic operation,
which means that every address is translated inunediately as a word is refer­
enced by CPU.

The mapping table may be stored in a separate memory as shown in
Fig. 12-17 or in main memory. In the first case, an additional memory unit is
required as well as one extra memory access time. In the second case, the table

Figure 12 .. 17 Memory table for mapping a virtual address.

Virtual address

Memory
mapping

table
Main

memory

4 72 CHAPTER TWELVE Memory Organization

pages and blocks

page frame

takes space from main memory and two accesses to memory are required with
the program running at half speed. A third alternative is to use an associative
memory as explained below.

Address Mapping Using Pages
The table implementation of the address mapping is simplified if the informa­
tion in the address space and the memory space are each divided into groups
of fixed size. The physical memory is broken down into groups of equal size
called blocks, which may range from 64 to 4096 words each. The term page refers
to groups of address space of the same size. For example, if a page or block
consists of 1K words, then, using the previous example, address space is
divided into 1024 pages and main memory is divided into 32 blocks. Although
both a page and a block are split into groups of 1K words, a page refers to the
organization of address space, while a block refers to the organization of
memory space. The programs are also considered to be split into pages.
Portions of programs are moved from auxiliary memory to main memory in
records equal to the size of a page. The term "page frame" is sometimes used
to denote a block.

Consider a computer with an address space of 8K and a memory space
of 4K. If we split each into groups of 1K words we obtain eight pages and four
blocks as shown in Fig. 12-18. At any given time, up to four pages of address
space may reside in main memory in any one of the four blocks.

The mapping from address space to memory space is facilitated if each
virtual address is considered to be represented by two numbers: a page number
address and a line within the page. In a computer with '1! words per page, p
bits are used to specify a line address and the remaining high-order bits of the
virtual address specify the page number. In the example of Fig. 12-18, a virtual
address has 13 bits. Since each page consists of 210 = 1024 words, the high­
order three bits of a virtual address will specify one of the eight pages and the
low-order 10 bits give the line address within the page. Note that the line
address in address space and memory space is the same; the only mapping
required is from a page number to a block number.

The organization of the memory mapping table in a paged system is
shown in Fig. 12-19. The memory-page table consists of eight words, one for
each page. The address in the page table denotes the page number and the
content of the word gives the block number where that page is stored in main
memory. The table shows that pages 1, 2, 5, and 6 are now available in main
memory in blocks 3, 0, 1, and 2, respectively. A presence bit in each location
indicates whether the page has been transferred from auxiliary memory into
main memory. A 0 in the presence bit indicates that this page is not available
in main memory. The CPU references a word in memory with a virtual address
of 13 bits. The three high-order bits of the virtual address specify a page
number and also an address for the memory-page table. The content of the

Page 0

Page I

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7
Address space
N = 8K = 2 1 3

SECTION 1 1-6 Virtual Memory 4 7 3

Block 0

Block I

Block 2

Block 3

Memory space
M = 4K = 2 1 2

Figure 12 .. 18 Address space and memory space split into groups of lK words.

word in the memory page table at the page number address is read out into
the memory table buffer register. If the presence bit is a 1, the block number
thus read is transferred to the two high-order bits of the main memory address
register. The line number from the virtual address is transferred into the 10
low-order bits of the memory address register. A read signal to main memory

Figure 12 .. 19 Memory table in a paged system.

Memory page table

4 7 4 CHAPTER TWELVE Memory Organization

transfers the content of the word to the main memory buffer register ready to
be used by the CPU. If the presence bit in the word read from the page table
is 0, it signifies that the content of the word referenced by the virtual address
does not reside in main memory. A call to the operating system is then
generated to fetch the required page from auxiliary memory and place it into
main memory before resuming computation.

Associative Memory Page Table
A random-access memory page table is inefficient with respect to storage
utilization. In the example of Fig. 12-19 we observe that eight words of memory
are needed, one for each page, but at least four words will always be marked
empty because main memory cannot accommodate more than four blocks. In
general, a system with n pages and m blocks would require a memory-page
table of n locations of which up to m blocks will be marked with block numbers
and all others will be empty. As a second numerical example, consider an
address space of 1024K words and memory space of 32K words. If each page
or block contains 1K words, the number of pages is 1024 and the number of
blocks 32. The capacity of the memory-page table must be 1024 words and only
32 locations may have a presence bit equal to 1. At any given time, at least 992
locations will be empty and not in use.

A more efficient way to organize the page table would be to construct it
with a number of words equal to the number of blocks in main memory. In this
way the size of the memory is reduced and each location is fully utilized. This
method can be implemented by means of an associative memory with each
word in memory containing a page number together with its corresponding

Figure 12 .. 20 An associative memory page table.

Virtual address

Page no.
r--"-.
L, __ o--'-1'--=L�in�e .::nu.::m.::b.::e�r _ __Jj Argument register

Key register

0 0 I I I

0 I 0 0 0
Associative memory

I 0 I 0 I

I I 0 I 0

............... �
Page no. Block no.

page fault

SECTION 1 1·6 Virtual Memory 4 75

block number. The page field in each word is compared with the page number
in the virtual address. If a match occurs, the word is read from memory and
its corresponding block number is extracted.

Consider again the case of eight pages and four blocks as in the example
of Fig. 12-19. We replace the random access memory-page table with an
associative memory of four words as shown in Fig. 12-20. Each entry in the
associative memory array consists of two fields. The first three bits specify a
field for storing the page number. The last two bits constitute a field for storing
the block number. The virtual address is placed in the argument register. The
page number bits in the argument register are compared with all page numbers
in the page field of the associative memory. If the page number is found, the
5-bit word is read out from memory. The corresponding block number, being
in the same word, is transferred to the main memory address register. If no
match occurs, a call to the operating system is generated to bring the required
page from auxiliary memory.

Page Replacement
A virtual memory system is a combination of hardware and software tech­
niques. The memory management software system handles all the software
operations for the efficient utilization of memory space. It must decide (1)
which page in main memory ought to be removed to make room for a new
page, (2) when a new page is to be transferred from auxiliary memory to main
memory, and (3) where the page is to be placed in main memory. The hardware
mapping mechanism and the memory management software together consti­
tute the architecture of a virtual memory.

When a program starts execution, one or more pages are transferred into
main memory and the page table is set to indicate their position. The program
is executed from main memory until it attempts to reference a page that is still
in auxiliary memory. This condition is called page fault . When page fault occurs,
the execution of the present program is suspended until the required page is
brought into main memory. Since loading a page from auxiliary memory to
main memory is basically an VO operation, the operating system assigns this
task to the VO processor. In the meantime, control is transferred to the next
program in memory that is waiting to be processed in the CPU. Later, when
the memory block has been assigned and the transfer completed, the original
program can resume its operation.

When a page fault occurs in a virtual memory system, it signifies that the
page referenced by the CPU is not in main memory. A new page is then
transferred from auxiliary memory to main memory. If main memory is full,
it would be necessary to remove a page from a memory block to make room
for the new page. The policy for choosing pages to remove is determined from
the replacement algorithm that is used. The goal of a replacement policy is to
try to remove the page least likely to be referenced in the immediate future.

Two of the most common replacement algorithms used are the first-in,

4 76 CHAI'TER TWELVE Memory Organization

FIFO first-out (FIFO) and the least recently used (LRU). The FIFO algorithm selects for
replacement the page that has been in memory the longest time. Each time a
page is loaded into memory, its identification number is pushed into a FIFO
stack. FIFO will be full whenever memory has no more empty blocks. When
a new page must be loaded, the page least recently brought in is removed. The
page to be removed is easily determined because its identification number is
at the top of the FIFO stack. The FIFO replacement policy has the advantage
of being easy to implement. It has the disadvantage that under certain circum­
stances pages are removed and loaded from memory too frequently.

LRU The LRU policy is more difficult to implement but has been more attrac-
tive on the assumption that the least recently used page is a better candidate
for removal than the least recently loaded page as in FIFO. The LRU algorithm
can be implemented by associating a counter with every page that is in main
memory. When a page is referenced, its associated counter is set to zero. At
fixed intervals of time, the counters associated with all pages presently in
memory are incremented by 1. The least recently used page is the page with
the highest count. The counters are often called aging registers, as their count
indicates their age, that is, how long ago their associated pages have been
referenced.

12-7 Memory Management Hardware

In a multiprogramming environment where many programs reside in memory
it becomes necessary to move programs and data around the memory, to vary
the amount of memory in use by a given program, and to prevent a program
from changing other programs. The demands on computer memory brought
about by multiprogramming have created the need for a memory management
system. A memory management system is a collection of hardware and soft­
ware procedures for managing the various programs residing in memory. The
memory management software is part of an overall operating system available
in many computers. Here we are concerned with the hardware unit associated
with the memory management system.

The basic components of a memory management unit are:

1. A facility for dynamic storage relocation that maps logical memory
references into physical memory addresses

2. A provision for sharing common programs stored in memory by differ­
ent users

3. Protection of information against unauthorized access between users
and preventing users from changing operating system functions

The dynamic storage relocation hardware is a mapping process similar to
the paging system described in Sec. 12-6. The fixed page size used in the virtual

segment

logical address

SECTION 1 2-7 Memory Management Hardware 4 7 7

memory system causes certain dilficulties with respect to program size and the
logical structure of programs. It is more convenient to divide programs and
data into logical parts called segments. A segment is a set of logically related
instructions or data elements associated with a given name. Segments may be
generated by the programmer or by the operating system. Examples of seg­
ments are a subroutine, an array of data, a table of symbols, or a user's
program.

The sharing of common programs is an integral part of a multiprogram­
ming system. For example, several users wishing to compile their Fortran
programs should be able to share a single copy of the compiler rather than each
user having a separate copy in memory. Other system programs residing in
memory are also shared by all users in a multiprogramming system without
having to produce multiple copies.

The third issue in multiprogramming is protecting one program from
unwanted interaction with another. An example of unwanted interaction is
one user's unauthorized copying of another user's program. Another aspect
of protection is concerned with preventing the occasional user from performing
operating system functions and thereby interrupting the orderly sequence of
operations in a computer installation. The secrecy of certain programs must be
kept from unauthorized personnel to prevent abuses in the confidential activ­
ities of an organization.

The address generated by a segmented program is called a logical address .
This is similar to a virtual address except that logical address space is associated
with variable-length segments rather than fixed-length pages. The logical
address may be larger than the physical memory address as in virtual memory,
but it may also be equal, and sometimes even smaller than the length of the
physical memory address. In addition to relocation information, each segment
has protection information associated with it. Shared programs are placed in
a unique segment in each user's logical address space so that a single physical
copy can be shared. The function of the memory management unit is to map
logical addresses into physical addresses similar to the virtual memory map­
ping concept.

Segmented-Page Mapping
It was already mentioned that the property of logical space is that it uses
variable-length segments. The length of each segment is allowed to grow and
contract according to the needs of the program being executed. One way of
specifying the length of a segment is by associating with it a number of
equal-size pages. To see how this is done, consider the logical address shown
in Fig. 12-21 . The logical address is partitioned into three fields. The segment
field specifies a segment number. The page field specifies the page within the
segment and the word field gives the specific word within the page. A page
field of k bits can specify up to 2' pages. A segment number may be associated

478 CHAPTER TWELVE M•moty Organaation

I Segment I Poge I Word I I
S,gn1C11 Clblc .,.,.

4

Q

(I) Loal<AIIo phY>i<AIIddrcu mappin&

St&meno

Biod. I Word I
Physk:al addms

with just one page or with as many as 1!-pages. Thus the length of a segment
would vary according to the number of pages that are assigned to it.

The mapping of the logical address into a physical address is done by
means of two tables, as shown in Fig. 12-2l(a� The segment number of the
logical address specifies the address for the segment table. The entry in the

SECTION 1 2-7 Memory Management Hardware 4 79

segment table is a pointer address for a page table base. The page table base
is added to the page number given in the logical address. The sum produces
a pointer address to an entry in the page table. The value found in the page
table provides the block number in physical memory. The concatenation of the
block field with the word field produces the final physical mapped address.

The two mapping tables may be stored in two separate small memories
or in main memory. In either case, a memory reference from the CPU will
require three accesses to memory: one from the segment table, one from the
page table, and the third from main memory. This would slow the system
significantly when compared to a conventional system that requires only one
reference to memory. To avoid this speed penalty, a fast associative memory
is used to hold the most recently referenced table entries. (This type of memory
is sometimes called a translation lookaside buffer, abbreviated TLB.) The first time
a given block is referenced, its value together with the corresponding segment
and page numbers are entered into the associative memory as shown in
Fig. 12-21(b). Thus the mapping process is first attempted by associative search
with the given segment and page numbers. If it succeeds, the mapping delay
is only that of the associative memory. If no match occurs, the slower table
mapping of Fig. 12-21(a) is used and the result transformed into the associative
memory for future reference.

Numerical Example
A numerical example may clarify the operation of the memory management
unit. Consider the 20-bit logical address specified in Fig. 12-22(a). The 4-bit
segment number specifies one of 16 possible segments. The 8-bit page number
can specify up to 256 pages, and the 8-bit word field implies a page size of 256
words. This configuration allows each segment to have any number of pages
up to 256. The smallest possible segment will have one page or 256 words. The
largest possible segment will have 256 pages, for a total of 256 x 256 = 64K
words.

The physical memory shown in Fig. 12-22(b) consists of 220 words of 32
bits each. The 20-bit address is divided into two fields: a 12-bit block number
and an 8-bit word number. Thus, physical memory is divided into 4096 blocks
of 256 words each. A page in a logical address has a corresponding block in
physical memory. Note that both the logical and physical address have 20 bits.
In the absence of a memory management unit, the 20-bit address from the CPU
can be used to access physical memory directly.

Consider a program loaded into memory that requires five pages. The
operating system may assign to this program segment 6 and pages 0 through
4, as shown in Fig. 12-23(a). The total logical address range for the program is
from hexadecimal 60000 to 604FF. When the program is loaded into physical
memory, it is distributed among five blocks in physical memory where the
operating system finds empty spaces. The correspondence between each
memory block and logical page number is then entered in a table as shown in

480 CHAPTIR 1WELVE Memory Organization

4

Segment Page

(a) Logical address format: 16 segments of 256 pages each,
each page has 256 words

220 X 32
Physical memory

1 2

Block

(b) Physical address format: 4096 blocks of 256 words each,
each word has 32 bits

Figure 12�22 An example of logical and physical addresses.

Word

Word

Fig. 12-23(b). The information from this table is entered in the segment and
page tables as shown in Fig. 12-24(a).

Now consider the specific logical address given in Fig. 12-24. The 20-bit
address is listed as a five-digit hexadecimal number. It refers to word number
7E of page 2 in segment 6. The base of segment 6 in the page table is at address
35. Segment 6 has associated with it five pages, as shown in the page table at
addresses 35 through 39. Page 2 of segment 6 is at address 35 + 2 = 37. The
physical memory block is found in the page table to be 019. Word 7E in block
19 gives the 20-bit physical address 0197E. Note that page 0 of segment 6 maps
into block 12 and page 1 maps into block 0. The associative memory in Fig.

Figure 12�23 Example of logical and physical memory address assignment.

Hexadecimal
address Page number

60000 Page 0

60 1 00 Page I

60200 Page 2

60300 Page 3

60400
Page 4

604FF

(a) Logical address assignment

Segment Page Block

00 0 1 2
0 1 000
02 01 9
03 053
04 A61

(b) Segment-page versus
memory block assignment

0

F

Segment table

35

A3

SECfiON 1 2· 7 Memory Management Hardware 48 1

Logical address (in haxadecimal)

02 7E

Page table Physical memory

()() 00000 .------,
Block 0

OOOFF f--------1

35 01 2

3 6 000
37 0 1 9 01200

38 053 Block 1 2
012FF

39 A61

0 1900
0 1 97E

32-bit word

A3 012 0 19FF

(a) Segment and page table mapping

Segment Page Block

6 02 0 1 9

6 04 A61

(b) Associative memory (TLB)

Figure 12 .. 24 Logical to physical memory mapping example (all numbers are
in hexadecimal).

482 CHAPTER TWELVE Memory Organization

12-24(b) shows that pages 2 and 4 of segment 6 have been referenced previously
and therefore their corresponding block numbers are stored in the associative
memory.

From this example it should be evident that the memory management
system can assign any number of pages to each segment. Each logical page can
be mapped into any block in physical memory. Pages can move to different
blocks in memory depending on memory space requirements. The only updat­
ing required is the change of the block number in the page table. Segments can
grow or shrink independently without affecting each other. Different seg­
ments can use the same block of memory if it is required to share a program
by many users. For example, block number 12 in physical memory can be
assigned a second logical address FOOOO through FOOFF. This specifies segment
number 15 and page 0, which maps to block 12 as shown in Fig. 12-24(a).

Memory Protection
Memory protection can be assigned to the physical address or the logical
address. The protection of memory through the physical address can be done
by assigning to each block in memory a number of protection bits that indicate
the type of access allowed to its corresponding block. Every time a page is
moved from one block to another it would be necessary to update the block
protection bits. A much better place to apply protection is in the logical address
space rather than the physical address space. This can be done by including
protection information within the segment table or segment register of the
memory management hardware.

The content of each entry in the segment table or a segment register is
called a descriptor. A typical descriptor would contain, in addition to a base
address field, one or two additional fields for protection purposes. A typical
format for a segment descriptor is shown in Fig. 12-25. The base address field
gives the base of the page table address in a segmented-page organization or
the block base address in a segment register organization. This is the address
used in mapping from a logical to the physical address. The length field gives
the segment size by specifying the maximum number of pages assigned to the
segment. The length field is compared against the page number in the logical
address. A size violation occurs if the page number falls outside the segment
length boundary. Thus a given program and its data cannot access memory not
assigned to it by the operating system.

The protection field in a segment descriptor specifies the access rights
available to the particular segment. In a segmented-page organization, each

Figure 12 .. 25 Format of a typical segment descriptor.

Base address Length I Protection

entry in the page table may have its own protection field to describe the access
rights of each page. The protection information is set into the descriptor by the
master control program of the operating system. Some of the access rights of
interest that are used for protecting the programs residing in memory are:

1. Full read and write privileges

2. Read only (write protection)

3. Execute only (program protection)

4. System only (operating system protection)

Full read and write privileges are given to a program when it is executing
its own instructions. Write protection is useful for sharing system programs
such as utility programs and other library routines. These system programs are
stored in an area of memory where they can be shared by many users. They
can be read by all programs, but no writing is allowed. 11Us protects them from
being changed by other programs.

The execute-only condition protects programs from being copied. It re­
stricts the segrnent to be referenced only during the instruction fetch phase but
not during the execute phase. Thus it allows the users to execute the segrnent
program instructions but prevents them from reading the instructions as data
for the purpose of copying their content.

Portions of the operating system wW reside in memory at any given time.
These system programs must be protected by making them inaccessible to
unauthorized users. The ope.rating system protection con.dition !s placed in the
descriptors of all operating system programs to prevent the occasional user
from accessing operating system segrnents.

PROBLEMS

11·1. a. How many 128 x 8RAMchlpsare needed toprovidea memory capldty
or 2048 by�s?

b. How many tines of the address bus must be used to a=ss 2048 llytH ot
memory? How many oJ these tines will be common 10 all chlps?

c. How many lines must be decoded for chlp sel«t? Specify the siu or the
decoders.

12·1. A computer uses RAM chips or 1024 x I capacity.
a. How many chlps are needed, and how should their address tines be

connected to provide a memory capacity of 1024 bytes?
b. How many cl\ips are needed to provide a memory capacity or 161< llytH?

Explain In words how the chlps a.re 10 be connected 10 the address bus.
11-3. AR0Mchipof1024 x 8bitsha.sfourselectlnputsandoperatesfroma>volt

484 CHAPTER TWELVE Memory Organization

power supply. How many pins are needed for the IC package? Draw a block
diagram and label all input and output tenninals in the ROM.

12-4. Extend the memory system of Fig. 12-4 to 4096 bytes of RAM and 4096 bytes
of ROM. List the memory-address map and indicate what size decoders are
needed.

12-5. A computer employs RAM chips of 256 x 8 and ROM chips of 1024 x 8. The
computer system needs 2K bytes of RAM, 4K bytes of ROM, and four
interface units, each with four registers. A memory-mapped 1/0 configura­
tion is used. The two highest-order bits of the address bus are assigned 00
for RAM, 01 for ROM, and 10 for interface registers.
a. How many RAM and ROM chips axe needed?
b. Draw a memory-address map for the system.
c. Give the address range in hexadecimal for RAM, ROM, and interface.

12-6. An 8-bit computer has a 16-bit address bus. The first 15 lines of the address
are used to select a bank of 32K bytes of memory. The high-order bit of the
address is used to select a register which receives the contents of the data
bus. Explain how this configuration can be used to extend the memory
capacity of the system to eight banks of 32K bytes each, for a total of 256K
bytes of memory.

12-7. A magnetic disk system has the following parameters:

12-8.

12-9.

12-10.

12-11.

12-12.

Ts = average time to position the magnetic head over a track

R = rotation speed of disk in revolutions per second

Nt = number of bits per track

Ns = number of bits per sector

Calculate the average time T. that it will take to read one sector.

What is the transfer rate of an eight-track magnetic tape whose speed is 120
inches per second and whose density is 1600 bits per inch?

Obtain the complement function for the match logic of one word in an
associative memory. In other words, show that M/ is the sum of exclusive­
OR functions. Draw the logic diagram for M; and terminate it with an
inverter to obtain M;.

Obtain the Boolean function for the match logic of one word in an associative
memory taking into consideration a tag bit that indicates whether the word
is active or inactive.

What additional logic is required to give a no-match result for a word in an
associative memory when all key bits are zeros?

a. Draw the logic diagram of all the cells of one word in an associative
memory. Include the read and write logic of Fig. 12-8 and the match logic
of Fig. 12-9.

b. Draw the logic diagram of all cells along one vertical column (column j)
in an associative memory. Include a common output line for all bits in
the same column.

486 CHAI'TEJI. TWa liE Memory Organhation

c. If a page consists of 21< words, how many pages and blocb are u.-In
the system?

11·20. A virtual memory has a page size ol 11(words. There are eight pages
and four blocks. The associative memory page table contilns the foUowing
entries:

Page Block
0 3
I I
4 1
6 0

Make a list of aU virtual addresses (In decimal) that will cause a page fauh
if used by the CPU.

12·2:1. A virtual memory system has an address space o/81< words, a memory space
of 4K words, and page and block siz.es of IK words (see Fig. 12·18). The
foUowi11g page reference changes occur during • given lime lntuvlll. (Only
page changes are listed. U the same page Is referenced aga.ln, it Is not listed
twice.)

11·22 ..

12-13.

12-14.

4 2 0 I 2 6 I 4 0 I 0 2 3 S 7

Determine the four pages that are 1"6ident In main memory aftv each page
reference change if the replacement algorithm used Is (a) FIFO; (b) LRU.
Oetenrune the two logical addresses from Fig. 12·24{a) that will access
physical memory 1t heXAdecimal address 012AJ'.
The Jogkal address space In a computer system consists of 128 �b.
Each segment can have up to32 pages of 4K words In each. Physical memory
consists ol 4K blocb of 4K words In each. Formulate the logical and physical
address formats.
Give the binary number ol the logical address lonnW..ted In Ptob. 12·23 for
segment 36 and word number 2000 In page 15.

REFERENCES

I. Baer, j. L., O>mpwler Syslmu Archittdurt. Polollac, MD: Computer Science Press,
1980.

2. Dasgupta, S .. O>mpu� Archit«twn: A Modmt Syntlrt:sis, Vol. l. New Yodc John
Wiley, 1989.

3. Gibson, G. A., ComputtTSystmuConcqll$andO.Sign. EnglewoodCliffs,N):Prentice
HaU, 1991.

References 48 7

4. Hamacher, V. C. , Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3rd ed.
New York: McGraw-Hill, 1990.

5. Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New
York: McGraw-Hill, 1984.

6. Kain, R., Computer Architecture: Software and Hardware, Vol. 1 . Englewood Cliffs, Nj:
Prentice Hall, 1989.

7. Langholz, G., J. Francioni, and A. Kandel, Elements of Computer Organization.
Englewood Cliffs, Nj: Prentice Hall, 1989.

8. Murray, W. D., Computer and Digital System Architecture . Englewood Cliffs, Nj:
Prentice Hall, 1990.

9. Patterson, D. A., and). L. Hennessy, Computer Architecture: A Quantitative Approach .
San Mateo, CA: Morgan Kaufmann Publishers, 1990.

10. Pollard, L. H., Computer Design and Architecture . Englewood Cliffs, Nj: Prentice
Hall, 1990.

11. Stone, H. S. (ed.), Introduction to Computer Architecture, 2nd ed. Chicago: Science
Research Associates, 1980.

C H A P T E R T H I R T E E N

Multiprocessors

IN nus CHAPTER

13-1 Chlracterisdcs of Mulciprocessor.s
13-2 Interconnection Srruc:l'UTeS

13·3 lnterprocessor Arl>i<rarion
13-4 Inter-processor Communication and Synchronization

13-S Cache Coherence

13-1 Characteristics of Multiprocessors

A multiprocessor system is a.n intercoMection of two or more CPUs with
memory and input-output equipment. The term "processor" In multiprocessqr
can mean either a central processing unit (CPU) or an input-output processor
(lOP). However, a system with a single CPU and one or more lOPs is usually
not included in the definition of a multiprocessor system unless the lOP has
computational facilities comparable to a CPU. As it is most commonly defined,
a multiprocessor system implies the e.xistence of multiple CPUs, although
usually there will be one or more lOPs as well. As mentioned in Sec. 9-1,
multiprocessors are classified as multiple instruction stream, multiple data
stream (MIMO) systems.

There are some s.imUarities between multiprocessor and multicomputer
systems since both support concurrent operations. However, there exists an
important distinction between a system with multiple computers and a system
with multiple processors. Computers are intercoMected with each other by
mea.ns of communication lines to form a computn" ndwork. The network consists
of several autonomous computers that may or may not communicate with each
other. A multiprocessor system is controlled by one operating system that
provides interaction betwee.n processors and aU the components of the system
cooperate in the solution of a problem.

489

490 CHAPTER THIRTEEN Multiprocessors

microprocessor

VLSI

Although some large-scale computers include two or more CPUs in their
overall system, it is the emergence of the microprocessor that has been the
major motivation for multiprocessor systems. The fact that microprocessors
take very little physical space and are very inexpensive brings about the
feasibility of interconnecting a large number of microprocessors into one com­
posite system. Very-large-scale integrated circuit technology has reduced the
cost of computer components to such a low level that the concept of applying
multiple processors to meet system performance requirements has become an
attractive design possibility.

Multiprocessing improves the reliability of the system so that a failure or
error in one part has a limited effect on the rest of the system. If a fault causes
one processor to fail, a second processor can be assigned to perform the
functions of the disabled processor. The system as a whole can continue to
function correctly with perhaps some loss in efficiency.

The benefit derived from a multiprocessor organization is an improved
system performance. The system derives its high performance from the fact
that computations can proceed in parallel in one of two ways.

1. Multiple independent jobs can be made to operate in parallel.

2. A single job can be partitioned into multiple parallel tasks.

An overall function can be partitioned into a number of tasks that each
processor can handle individually. System tasks may be allocated to special­
purpose processors whose design is optimized to perform certain types of
processing efficiently. An example is a computer system where one processor
performs the computations for an industrial process control while others
monitor and control the various parameters, such as temperature and flow
rate . Another example is a computer where one processor performs high­
speed floating-point mathematical computations and another takes care of
routine data-processing tasks.

Multiprocessing can improve performance by decomposing a program
into parallel executable tasks. This can be achieved in one of two ways. The user
can explicitly declare that certain tasks of the program be executed in parallel.
This must be done prior to loading the program by specifying the parallel
executable segments. Most multiprocessor manufacturers provide an operat­
ing system with programming language constructs suitable for specifying
parallel processing. The other, more efficient way is to provide a compiler with
multiprocessor software that can automatically detect parallelism in a user's
program. The compiler checks for data dependency in the program. If a program
depends on data generated in another part, the part yielding the needed data
must be executed first. However, two parts of a program that do not use data
generated by each can run concurrently. The parallelizing compiler checks the
entire program to detect any possible data dependencies. These that have no
data dependency are then considered for concurrent scheduling on different
processors.

tightly coupled

loosely coupled

SECTION 13-2 Interconnection Structures 49 1

Multiprocessors are classified by the way their memory is organized. A
multiprocessor system with common shared memory is classified as a shared­
memory or tightly coupled multiprocessor. This does not preclude each processor
from having its own local memory. In fact, most commercial tightly coupled
multiprocessors provide a cache memory with each CPU. In addition, there is
a global common memory that all CPUs can access. Information can therefore
be shared among the CPUs by placing it in the common global memory.

An alternative model of microprocessor is the distributed-memory or loosely
coupled system. Each processor element in a loosely coupled system has its own
private local memory. The processors are tied together by a switching scheme
designed to route information from one processor to another through a mes­
sage-passing scheme. The processors relay program and data to other proces­
sors in packets. A packet consists of an address, the data content, and some
error detection code. The packets are addressed to a specific processor or taken
by the first available processor, depending on the communication system used.
Loosely coupled systems are most efficient when the interaction between tasks
is minimal, whereas tightly coupled systems can tolerate a higher degree of
interaction between tasks.

13-2 Interconnection Structures

The components that form a multiprocessor system are CPUs, lOPs connected
to input-<mtput devices, and a memory unit that may be partitioned into a
number of separate modules. The interconnection between the components
can have different physical configurations, depending on the number of trans­
fer paths that are available between the processors and memory in a shared
memory system or among the processing elements in a loosely coupled sys­
tem. There are several physical forms available for establishing an interconnec­
tion network. Some of these schemes are presented in this section:

1. Time-shared common bus

2. Multiport memory

3. Crossbar switch

4. Multistage switching network

5. Hypercube system

Time-Shared Common Bus
A common-bus multiprocessor system consists of a number of processors
connected through a common path to a memory unit. A time-shared common
bus for five processors is shown in Fig. 13-1 . Only one processor can commu­
nicate with the memory or another processor at any given time. Transfer

492 CHAPTER THIRTEEN Multiprocessors

shared memory

Figure 13 .. 1 Time·shared common bus organization.

operations are conducted by the processor that is in control of the bus at the
time. Any other processor wishing to initiate a transfer must first determine
the availability status of the bus, and only after the bus becomes available can
the processor address the destination unit to initiate the transfer. A command
is issued to inform the destination unit what operation is to be performed. The
receiving unit recognizes its address in the bus and responds to the control
signals from the sender, after which the transfer is initiated. The system may
exhibit transfer conflicts since one common bus is shared by all processors.
These conflicts must be resolved by incorporating a bus controller that estab­
lishes priorities among the requesting units.

A single common-bus system is restricted to one transfer at a time. This
means that when one processor is communicating with the memory, all other
processors are either busy with internal operations or must be idle waiting for
the bus. As a consequence, the total overall transfer rate within the system is
limited by the speed of the single path. The processors in the system can be
kept busy more often through the implementation of two or more independent
buses to permit multiple simultaneous bus transfers. However, this increases
the system cost and complexity.

A more economical implementation of a dual bus structure is depicted in
Fig. 13-2. Here we have a number of local buses each connected to its own local
memory and to one or more processors. Each local bus may be connected to
a CPU, an lOP, or any combination of processors. A system bus controller links
each local bus to a common system bus . The VO devices connected to the local
lOP, as well as the local memory, are available to the local processor. The
memory connected to the common system bus is shared by all processors. If
an lOP is connected directly to the system bus, the VO devices attached to it
may be made available to all processors. Only one processor can communicate
with the shared memory and other common resources through the system bus
at any given time. The other processors are kept busy communicating with
their local memory and VO devices. Part of the local memory may be designed

st.CT10N lJ.l lnterconneaion Sauc.turu 493

as a cache memory attached to the CPU (see Sec. U�� ln this way, the average
access time of the local memory can be made to approach the cycle time of the
CPU to which it is attached.

Multlport Memory
A multiport memory system employs separate buses between each memory
module and each CPU. This is shown in Fig .. 13-3 for four CPUs and four
memory modules (MMs). Each processor bus is COMected to each memory
module. A processor bus consists of the address, data, and control lines
required to communicate with memory. The memory module is said to have
four ports and each port accommodates one of the buses. The module must
have internal control logic to determine which port will have access to memory
at any given time. Memory access conflicts are resolved by assigning fixed
priorities to each memory port. The priority for memory acoess associated with
each processor may be established by the physical port position that its bus
occupies in each module. Thus CPU 1 will have priority over CPU 2, CPU 2
will have priority over CPU 3, and CPU 4 will have the lowest priority.

The advantage of the multi port memory organiution is the high �fer
rate that can be achieved because of the multiple paths between processors and
memory. The disadvantage is that it requires expensive memory control logic
and a large number of cables and connectors. As a consequence, this interron-

494 CHAJ'fER THIRTEEN Multiprocessors

Memory modules

Figure 13-3 Multiport memory organization.

nection structure is usually appropriate for systems with a small number of
processors.

Crossbar Switch
The crossbar switch organization consists of a number of crosspoints that are
placed at intersections between processor buses and memory module paths.
Figure 13-4 shows a crossbar switch interconnection between four CPUs and
four memory modules. The small square in each crosspoint is a switch that
determines the path from a processor to a memory module. Each switch point
has control logic to set up the transfer path between a processor and memory.
It examines the address that is placed in the bus to determine whether its
particular module is being addressed. It also resolves multiple requests for
access to the same memory module on a predetermined priority basis.

Figure 13-5 shows the functional design of a crossbar switch connected
to one memory module. The circuit consists of multiplexers that select the data,

Memory modules

F1g11re 13-4 Crossbar switch.

Figure 13.5 Block diagram of crossbar switch.

Data

Address
Memory
module Read/write Multiplexers

and
arbitration

Memory logic

enable

495

} Data. address. and
control from CPU I

} Data, address, and
control from CPU 2

} Data. address. and
control from CPU 3

} Data, address. and
control from CPU 4

496 CHAPTER THIRTEEN Multiprocessors

interchange switch

address, and control from one CPU for communication with the memc
module. Priority levels are established by the arbitration logic to select one Cl
when two or more CPUs attempt to access the same memory. The multiplex<
are controlled with the binary code that is generated by a priority encoc
within the arbitration logic.

A crossbar switch organization supports simultaneous transfers from
memory modules because there is a separate path associated with each me
ule. However, the hardware required to implement the switch can becm
quite large and complex.

Multistage Switching Network
The basic component of a multistage network is a two-input, two-out]:
interchange switch. As shown in Fig. 13-6, the 2 X 2 switch has two inpu
labeled A and B, and two outputs, labeled 0 and 1. There are control sign
(not shown) associated with the switch that establish the interconnecti
between the input and output terminals . The switch has the capability
connecting input A to either of the outputs. Terminal B of the switch beha'
in a similar fashion. The switch also has the capability to arbitrate betwe
conflicting requests. If inputs A and B both request the same output termin
only one of them will be connected; the other will be blocked.

Using the 2 x 2 switch as a building block, it is possible to build
multistage network to control the communication between a number of souro
and destinations. To see how this is done, consider the binary tree shown
Fig. 13-7. The two processors P1 and P2 are connected through switches to ei!
memory modules marked in binary from 000 through 111 . The path fron
source to a destination is determined from the binary bits of the destinati

Figure 1J .. 6 Operation of a 2 X 2 interchange switch.

A connected to 0

A �
B -----L.___j--l-

B connected to 0

A �
B �

A connected to I

B connected to I

omeg11 network

P,

P,

SECTION 1 3 - Z Interconnection Structures 497

Figure 13-7 Binary tree with 2 X 2 switches.

()()()

00 1

1 00

1 0 1

1 1 0

I l l

number. The first bit of the destination number determines the switch output
in the first level. The second bit specifies the output of the switch in the second
level, and the third bit specifies the output of the switch in the third level. For
example, to connect P1 to memory 101, it is necessary to form a path from P1
to output 1 in the first-level switch, output 0 in the second-level switch, and
output 1 in the third-level switch. It is clear that either P1 or P2 can be connected
to any one of the eight memories. Certain request patterns, however, cannot
be satisfied simultaneously. For example, if P, is connected to one of the
destinations 000 through 011, P2 can be connected to only one of the destina­
tions 100 through 111 .

Many different topologies have been proposed for multistage switching
networks to control processor-memory communication in a tightly coupled
multiprocessor system or to control the communication between the process­
ing elements in a loosely coupled system. One such topology is the omega
switching network shown in Fig. 13-8. In this configuration, there is exactly one
path from each source to any particular destination. Some request patterns,
however, cannot be connected simultaneously. For example, any two sources
cannot be connected simultaneously to destinations 000 and 001.

498 CHAPTER THIRTEEN Mulriproces.son

000
001

010
011

100
101

llO
Ill

A particular request is initiated in the switching network by the source,
which sends a 3-bit pattern representing the destination number. As the binary
pattern moves through the network, each level examines a different bit to
determine the 2 x 2 switch setting. Level 1 inspects the most significant bit.
level 2 inspects the middle bit, and level 3 inspects the least significant bit.
When the request arrives on either Input of the 2 x 2 switch, it i$ routed to the
upper output if the specified bit is 0 or to the lower output if the bit is 1.

In a tightly coupled multiprocessor system, the source is a processor and
the destination is a memo.ry module. The first pass through the network sets
up the path. Succeeding passes are used to transfer the address into memory
and then transfer the data in either direction. depending on whether the
request is a read or a write. In a loosely coupled multiprocessor system, both
the source and destination are processing elements. After the path is estab­
lished, the source processor transfers a message to the destination processor.

Hypercube Interconnection
The hypercube or binary n-cube multiprocessor structure is a loosely coupled
system composed of N = 2" processors intetconnected in an n -dimen.sioruil
binary cube. Each processor forms a ned� of the cube. Although it is customary

SECfiON 13-2 lncerconneccion Snucrures 499

to refer to each node as having a processor, in effect it contains not only a CPU
but also local memory and VO interface. Each processor has direct communi­
cation paths to n other neighbor processors. These paths correspond to the
edges of the cube. There are 2" distinct n-bit binary addresses that can be
assigned to the processors. Each processor address differs from that of each
of its n neighbors by exactly one bit position.

Figure 13-9 shows the hypercube structure for n = 1, 2, and 3. A one-cube
structure has n = 1 and 2" = 2. It contains two processors interconnected by
a single path. A two-cube structure has n = 2 and 2" = 4. It contains four nodes
interconnected as a square. A three-cube structure has eight nodes intercon­
nected as a cube. An n-cube structure has 2" nodes with a processor residing
in each node. Each node is assigned a binary address in such a way that the
addresses of two neighbors differ in exactly one bit position. For example, the
three neighbors of the node with address 100 in a three-cube structure are 000,
110, and 101 . Each of these binary numbers differs from address 100 by one
bit value.

Routing messages through an n-cube structure may take from one to n
links from a source node to a destination node. For example, in a three-cube
structure, node 000 can communicate directly with node 001. It must cross at
least two links to communicate with 01 1 (from 000 to 001 to 011 or from 000
to 010 to 011). It is necessary to go through at least three links to communicate
from node 000 to node 111 . A routing procedure can be developed by comput­
ing the exclusive-OR of the source node address with the destination node
address. The resulting binary value will have 1 bits corresponding to the axes
on which the two nodes differ. The message is then sent along any one of the
axes. For example, in a three-cube structure, a message at 010 going to 001
produces an exclusive-OR of the two addresses equal to 011 . The message can
be sent along the second axis to 000 and then through the third axis to 001 .

Figure 13�9 Hypercube scructures for n = 1 , 2 ,3 .

0� 010 1 1

I � 00 10

One-cube Two-cube

010

000

lbree-cube

I l l

10 1

500 CHAPTER THIRTEEN Multiprocesso"

system bus

A representative of the hypercube architecture is the Intel iPSC computer
complex. It consists o£ 128 (n = 7) microcomputers connected through commu­
nication channels. Each node consists of a CPU, a floating-point processor,
local memory, and serial communication interface units. The individual nodes
operate independently on data stored in local memory according to resident
programs. The data and programs to each node come through a message-pass­
ing system from other nodes or from a cube manager. Application programs
are developed and compiled on the cube manager and then downloaded to the
individual nodes. Computations are distributed through the system and exe­
cuted concurrently.

13-3 lnterprocessor Arbitration

Computer systems contain a number of buses at various levels to facilitate the
transfer of information between components. The CPU contains a number of
internal buses for transferring information between processor registers and
ALU. A memory bus consists of lines for transferring data, address, and
read/write information. An VO bus is used to transfer information to and from
input and output devices. A bus that connects major components in a multi­
processor system, such as CPUs, lOPs, and memory, is called a system bus . The
physical circuits of a system bus are contained in a number of identical printed
circuit boards. Each board in the system belongs to a particular module. The
board consists of circuits connected in parallel through connectors. Each pin
of each circuit connector is connected by a wire to the corresponding pin of all
other connectors in other boards. Thus any board can be plugged into a slot
in the backplane that forms the system bus.

The processors in a shared memory multiprocessor system request access
to common memory or other common resources through the system bus. If no
other processor is currently utilizing the bus, the requesting processor may be
granted access immediately. However, the requesting processor must wait if
another processor is currently utilizing the system bus. Furthermore, other
processors may request the system bus at the same time. Arbitration must then
be performed to resolve this multiple contention for the shared resources. The
arbitration logic would be part of the system bus controller placed between the
local bus and the system bus as shown in Fig. 13-2.

System Bus
A typical system bus consists of approximately 100 signal lines. These lines are
divided into three functional groups: data, address, and control. In addition,
there are power distribution lines that supply power to the components. For
example, the IEEE standard 796 multibus system has 16 data lines, 24 address
lines, 26 control lines, and 20 power lines, for a total of 86 lines.

synchronous bus

asynchronous bus

SECfiON 13-3 lncerprocessor Arbitration 501

The data lines provide a path for the transfer of data between processors
and common memory. The number of data lines is usually a multiple of 8, with
16 and 32 being most common. The address lines are used to identify a memory
address or any other source or destination, such as input or output ports. The
number of address lines determines the maximum possible memory capacity
in the system. For example, an address of 24 lines can access up to 224 (16 mega)
words of memory. The data and address lines are terminated with three-state
buffers (see Fig. 4-5). The address buffers are unidirectional from processor to
memory. The data lines are bidirectional (see Fig. 12-3), allowing the transfer
of data in either direction.

Data transfers over the system bus may be synchronous or asynchronous.
In a synchronous bus, each data item is transferred during a time slice known
in advance to both source and destination units. Synchronization is achieved
by driving both units from a common clock source. An alternative procedure
is to have separate clocks of approximately the same frequency in each unit.
Synchronization signals are transmitted periodically in order to keep all clocks
in the system in step with each other. In an asynchronous bus, each data item
being transferred is accompanied by handshaking control signals (see Fig. 11-9)
to indicate when the data are transferred from the source and received by the
destination.

The control lines provide signals for controlling the information transfer
between units. Tinting signals indicate the validity of data and address infor­
mation. Command signals specify operations to be performed. Typical control
lines include transfer signals such as memory read and write, acknowledge of
a transfer, interrupt requests, bus control signals such as bus request and bus
grant, and signals for arbitration procedures.

Table 13-1 lists the 86 lines that are available in the IEEE standard 796
multibus . It includes 16 data lines and 24 address lines. All signals in the
multibus are active or enabled in the low-level state. The data transfer control
signals include memory read and write as well as 110 read and write. Conse­
quently, the address lines can be used to address separate memory and 110
spaces. The memory or 110 responds with a transfer acknowledge signal when
the transfer is completed. Each processor attached to the multibus has up to
eight interrupt request outputs and one interrupt acknowledge input line.
They are usually applied to a priority interrupt controller similar to the one
described in Fig. 11-21 . The miscellaneous control signals provide timing and
i..l"litialization capabilities. In particular, the bus lock signal is essential for
multiprocessor applications. This processor-activated signal serves to prevent
other processors from getting hold of the bus while executing a test and set
instruction. This instruction is needed for proper processor synchronization
(see Sec. 13-4).

The six bus arbitration signals are used for interprocessor arbitration.
These signals wi..ll be explained later after a discussion of the serial and parallel
arbitration procedures.

502 CHAPTER THIRTEEN Multiprocessors

TABLE 13-1 IEEE Standard 796 Multibus Signals

Data and address
Data lines (16 lines)
Address lines (24 lines)

Data transfer
Memory read
Memory write
10 read
!O write
Transfer acknowledge

Interrupt control
Interrupt request (8 lines)
Interrupt acknowledge

Miscellaneous control
Master clock
System initialization
Byte high enable
Memory inhibit (2 lines)
Bus lock

Bus arbitration
Bus request
Common bus request
Bus busy
Bus clock
Bus priority in
Bus priority out

Power and ground (20 lines)

Signal name

DATAO-DATAJ5
ADRSO-ADRS23

MRDC
MWTC
IORC
IOWC
TACK

INTO-INTI
INTA

CCLK
!NIT
BHEN
INHJ-INH2
LOCK

BREQ
CBRQ
BUSY
BCLK
BPRN
BPRO

Reprinted with permission of the IEEE.

Serial Arbitration Procedure
Arbitration procedures service all processor requests on the basis of established
priorities. A hardware bus priority resolving technique can be established by
means of a serial or parallel connection of the units requesting control of
the system bus. The serial priority resolving technique is obtained from a
daisy-chain connection of bus arbitration circuits similar to the priority inter­
rupt logic presented in Sec. 11-5. The processors connected to the system bus
are assigned priority according to their position along the priority control line.
The device closest to the priority line is assigned the highest priority. When
multiple devices concurrently request the use of the bus, the device with the
highest priority is granted access to it.

Figure 13-10 shows the daisy-chain connection of four arbiters. It is
assumed that each processor has its own bus arbiter logic with priority-in and
priority-out lines. The priority out (PO) of each arbiter is connected to the

PI

Highest
priority

Bus

PO
arbiter I

Bus

PI PO
arbiter 2

SECTION 13-3 Interprocessor Arbitration 503

Bus

PI PO
arbiter 3

Lowest
priority

Bus
To next
arbiter

PI PO
arbiter 4

Bus busy line

Figure 13-10 Serial (daisy-chain) arbitration.

priority in (PI) of the next-lower-priority arbiter. The PI of the highest-priority
unit is maintained at a logic 1 value. The highest-priority unit in the system
will always receive access to the system bus when it requests it. The PO output
for a particular arbiter is equal to 1 if its PI input is equal to 1 and the processor
associated with the arbiter logic is not requesting control of the bus. This is the
way that priority is passed to the next unit in the chain. If the processor requests
control of the bus and the corresponding arbiter finds its PI input equal to 1,
it sets its PO output to 0. Lower-priority arbiters receive a 0 in PI and generate
a 0 in PO . Thus the processor whose arbiter has a PI = 1 and PO = 0 is the
one that is given control of the system bus.

A processor may be in the middle of a bus operation when a higher­
priority processor requests the bus. The lower-priority processor must com­
plete its bus operation before it relinquishes control of the bus. The bus busy
line shown in Fig. 13-10 provides a mechanism for an orderly transfer of
control. The busy line comes from open-collector circuits in each unit and
provides a wired-OR logic connection. When an arbiter receives control of the
bus (because its PI = 1 and PO = 0) it examines the busy line. If the line is
inactive, it means that no other processor is using the bus. The arbiter activates
the busy line and its processor takes control of the bus . However, if the arbiter
finds the busy line active, it means that another processor is currently using
the bus. The arbiter keeps examining the busy line while the lower-priority
processor that lost control of the bus completes its operation. When the bus
busy line returns to its inactive state, the higher-priority arbiter enables the
busy line, and its corresponding processor can then conduct the required bus
transfers.

Parallel Arbitration Logic
The parallel bus arbitration technique uses an external priority encoder and a
decoder as shown in Fig. 13-11 . Each bus arbiter in the parallel scheme has
a bus request output line and a bus acknowledge input line. Each arbiter
enables the request line when its processor is requesting access to �he system

504 CHAPTER THIRTEEN Multiprocessors

Bus busy line

Figure 13 .. 11 Parallel arbitration.

bus. The processor takes control of the bus if its acknowledge input line is
enabled. The bus busy line provides an orderly transfer of control, as in the
daisy-chaining case.

Figure 13-11 shows the request lines from four arbiters going into a 4 x 2
priority encoder. The output of the encoder generates a 2-bit code which
represents the highest-priority unit among those requesting the bus. The truth
table of the priority encoder can be found in Table 11-2 (Sec. 11-5). The 2-bit
code from the encoder output drives a 2 x 4 decoder which enables the proper
acknowledge line to grant bus access to the highest-priority unit.

We can now explain the function of the bus arbitration signals listed in
Table 13-1 . The bus priority-in BPRN and bus priority-out BPRO are used for
a daisy-chain connection of bus arbitration circuits. The bus busy signal BUSY
is an open-collector output used to instruct all arbiters when the bus is busy
conducting a transfer. The common bus request CBRQ is also an open-collector
output that serves to instruct the arbiter if there are any other arbiters of
lower-priority requesting use of the system bus. The signals used to construct
a parallel arbitration procedure are bus request BREQ and priority-in BPRN,

SECTION 13-3 lnterprocessor Arbitration 505

corresponding to the request and acknowledge signals in Fig. 13-11 . The bus
clock BCLK is used to synchronize all bus transactions.

Dynamic Arbitration Algorithms
The two bus arbitration procedures just described use a static priority al­
gorithm since the priority of each device is fixed by the way it is connected
to the bus. In contrast, a dynamic priority algorithm gives the system the
capability for changing the priority of the devices while the system is in
operation. We now discuss a few arbitration procedures that use dynamic
priority algorithms.

time slice The time slice algorithm allocates a fixed-length time slice of bus time that
is offered sequentially to each processor, in round-robin fashion. The service
given to each system component with this scheme is independent of its loca­
tion along the bus. No preference is given to any particular device since each
is allotted the same amount of time to communicate with the bus.

polling In a bus system that uses polling, the bus grant signal is replaced by a set
of lines called poll lines which are connected to all units. These lines are used
by the bus controller to define an address for each device connected to the bus.
The bus controller sequences through the addresses in a prescribed manner.
When a processor that requires access recognizes its address, it activates the
bus busy line and then accesses the bus. After a number of bus cycles, the
polling process continues by choosing a different processor. The polling se­
quence is normally programmable, and as a result, the selection priority can
be altered under program control.

LRU The least recently used (LRU) algorithm gives the highest priority to the
requesting device that has not used the bus for the longest interval. The
priorities are adjusted after a number of bus cycles according to the LRU
algorithm. With this procedure, no processor is favored over any other since
the priorities are dynamically changed to give every device an opportunity to
access the bus.

FIFO In the first-come, first-seroe scheme, requests are served in the order
received. To implement this algorithm, the bus controller establishes a queue
arranged according to the time that the bus requests arrive. Each processor
must wait for its turn to use the bus on a first-in, first-out (FIFO) basis.

rotating daisy-chain The rotating daisy-chain procedure is a dynamic extension of the daisy-
chain algorithm. In this scheme there is no central bus controller, and the
priority line is connected from the priority-out of the last device back to the
priority-in of the first device in a closed loop. This is similar to the connections
shown in Fig. 13-10 except that the PO output of arbiter 4 is connected to the
PI input of arbiter 1. Whichever device has access to the bus serves as a bus
controller for the following arbitration. Each arbiter priority for a given bus
cycle is determined by its position along the bus priority line from the arbiter

506 CHAPTER THIRTEEN Multiprocesro"

whose processor is currently controlling the bus. Once an arbiter releases the
bus, it has the lowest priority.

13-4 lnterprocessor Communication
and Synchronization

The various processors in a multiprocessor system must be provided with a
facility for communicating with each other. A communication path can be
established through common input-<>utput channels. In a shared memory
multiprocessor system, the most common procedure is to set aside a portion
of memory that is accessible to all processors. The primary use of the common
memory is to act as a message center similar to a mailbox, where each processor
can leave messages for other processors and pick up messages intended for it.

The sending processor structures a request, a message, or a procedure,
and places it in the memory mailbox. Status bits residing in common memory
are generally used to indicate the condition of the mailbox, whether it has
meaningful information, and for which processor it is intended. The receiving
processor can check the mailbox periodically to determine if there are valid
messages for it. The response time of this procedure can be time consuming
since a processor will recognize a request only when polling messages. A more
efficient procedure is for the sending processor to alert the receiving processor
directly by means of an interrupt signal. This can be accomplished through a
software-initiated interprocessor interrupt by means of an instruction in the
program of one processor which when executed produces an external interrupt
condition in a second processor. This alerts the interrupted processor of the
fact that a new message was inserted by the interrupting processor.

In addition to shared memory, a multiprocessor system may have other
shared resources. For example, a magnetic disk storage unit connected to an
lOP may be available to all CPUs. This provides a facility for sharing of system
programs stored in the disk. A communication path between two CPUs can
be established through a link between two lOPs associated with two different
CPUs. This type of link allows each CPU to treat the other as an VO device so
that messages can be transferred through the VO path.

To prevent conflicting use of shared resources by several processors there
must be a provision for assigning resources to processors. This task is given
to the operating system. There are three organizations that have been used in
the design of operating system for multiprocessors: master-slave configura­
tion, separate operating system, and distributed operating system.

In a master-slave mode, one processor, designated the master, always
executes the operating system functions. The remaining processors, denoted
as slaves, do not perform operating system functions. If a slave processor needs

SECTION 13-4 Interprocessor Communication and Synchronization 507

an operating system service, it must request it by interrupting the master and
waiting until the current program can be interrupted.

In the separate operating system organization, each processor can exe­
cute the operating system routines it needs. This organization is more suitable
for loosely coupled systems where every processor may have its own copy of
the entire operating system.

In the distributed operating system organization, the operating system
routines are distributed among the available processors. However, each partic­
ular operating system function is assigned to only one processor at a time. This
type of organization is also referred to as a floating operating system since the
routines float from one processor to another and the execution of the routines
may be assigned to different processors at different times.

In a loosely coupled multiprocessor system the memory is distributed
among the processors and there is no shared memory for passing information.
The communication between processors is by means of message passing
through VO channels. The communication is initiated by one processor calling
a procedure that resides in the memory of the processor with which it wishes
to communicate. When the sending processor and receiving processor name
each other as a source and destination, a channel of communication is estab­
lished. A message is then sent with a header and various data objects used to
communicate between nodes. There may be a number of possible paths avail­
able to send the message between any two nodes. The operating system in each
node contains routing information indicating the alternative paths that can be
used to send a message to other nodes. The communication efficiency of the
interprocessor network depends on the communication routing protocol, pro­
cessor speed, data link speed, and the topology of the network.

lnterprocessor Synchronization
The instruction set of a multiprocessor contains basic instructions that are used
to implement communication and synchronization between cooperating pro­
cesses. Communication refers to the exchange of data between different
processes. For example, parameters passed to a procedure in a different pro­
cessor constitute interprocessor communication. Synchronization refers to the
special case where the data used to communicate between processors is control
information. Synchronization is needed to enforce the correct sequence of
processes and to ensure mutually exclusive access to shared writable data.

Multiprocessor systems usually include various mechanisms to deal with
the synchronization of resources. Low-level primitives are implemented di­
rectly by the hardware. These primitives are the basic mechanisms that enforce
mutual exclusion for more complex mechanisms implemented in software. A
number of hardware mechanisms for mutual exclusion have been developed.
One of the most popular methods is through the use of a binary semaphore.

508 CHAPTER THIRTEEN Multiprocessors

critical section

hardware lock

Mutual Exclusion with a Semaphore
A properly functioning multiprocessor system must provide a mechanism that
will guarantee orderly access to shared memory and other shared resources.
This is necessary to protect data from being changed simultaneously by two
or more processors. This mechanism has been termed mutual exclusion. Mutual
exclusion must be provided in a multiprocessor system to enable one processor
to exclude or lock out access to a shared resource by other processors when
it is in a critical section. A critical section is a program sequence that, once begun,
must complete execution before another processor accesses the same shared
resource.

A binary variable called a semaphore is often used to indicate whether or
not a processor is executing a critical section. A semaphore is a software­
controlled flag that is stored in a memory location that all processors can access.
When the semaphore is equal to 1, it means that a processor is executing a
critical program, so that the shared memory is not available to other processors.
When the semaphore is equal to 0, the shared memory is available to any
requesting processor. Processors that share the same memory segment agree
by convention not to use the memory segment unless the semaphore is equal
to 0, indicating that memory is available. They also agree to set the semaphore
to 1 when they are executing a critical section and to clear it to 0 when they
are finished.

Testing and setting the semaphore is itself a critical operation and must
be performed as a single indivisible operation. If it is not, two or more proces­
sors may test the semaphore simultaneously and then each set it, allowing
them to enter a critical section at the same time. This action would allow
simultaneous execution of critical section, which can result in erroneous initial­
ization of control parameters and a loss of essential information.

A semaphore can be initialized by means of a test and set instruction in
conjunction with a hardware lock mechanism. A hardware lock is a processor­
generated signal that serves to prevent other processors from using the system
bus as long as the signal is active. The test-and-set instruction tests and sets
a semaphore and activates the lock mechanism during the time that the instruc­
tion is being executed. This prevents other processors from changing the
semaphore between the time that the processor is testing it and the time that
it is setting it. Assume that the semaphore is a bit in the least significant
position of a memory word whose address is symbolized by SEM. Let
the mnemonic TSL designate the "test and set while locked" operation. The
instruction

T S L S E M

will be executed in two memory cycles (the first to read and the second to write)
without interference as follows:

R +-M[SEM]
M[SEM] +- 1

Test semaphore
Set semaphore

SECTION lJ.S Cache Coherence 509

The semaphore is tested by transferring its value to a processor register R and
then it is set to 1. The value in R determines what to do next. If the processor
finds that R = 1, it knows that the semaphore was originally set. (The fact that
it is set again does not change the semaphore value .) That means that another
processor is executing a critical section, so the processor that checked the
semaphore does not access the shared memory. If R = 0, it means that the
common memory (or the shared resource that the semaphore represents) is
available. The semaphore is set to 1 to prevent other processors from accessing
memory. The processor can now execute the critical section. The last instruc­
tion in the program must clear location SEM to zero to release the shared
resource to other processors.

Note that the lock signal must be active during the execution of the
test-and-set instruction. It does not have to be active once the semaphore is set.
Thus the lock mechanism prevents other processors from accessing memory
while the semaphore is being set. The semaphore itself, when set, prevents
other processors from accessing shared memory while one processor is execut­
ing a critical section.

13-5 Cache Coherence

The operation of cache memory is explained in Sec. 12-6. The primary advan­
tage of cache is its ability to reduce the average access time in uniprocessors.
When the processor finds a word in cache during a read operation, the main
memory is not involved in the transfer. If the operation is to write, there are
two commonly used procedures to update memory. In the write-through policy,
both cache and main memory are updated with every write operation. In the
write-back policy, only the cache is updated and the location is marked so that
it can be copied later into main memory.

In a shared memory multiprocessor system, all the processors share a
common memory. In addition, each processor may have a local memory, part
or all of which may be a cache. The compelling reason for having separate
caches for each processor is to reduce the average access time in each processor.
The same information may reside in a number of copies in some caches and
main memory. To ensure the ability of the system to execute memory opera­
tions correctly, the multiple copies must be kept identical. This requirement
imposes a cache coherence problem. A memory scheme is coherent if the value
returned on a load instruction is always the value given by the latest store
instruction with the same address. Without a proper solution to the cache
coherence problem, caching cannot be used in bus-oriented multiprocessors
with two or more processors.

Conditions for Incoherence
Cache coherence problems exist in multiprocessors with private caches be­
cause of the need to share writable data. Read-only data can safely be replicated

5 10 CHAPTER THIRTEEN Multiprocessors

without cache coherence enforcement mechanisms. To illustrate the problem,
consider the three-processor configuration with private caches shown in
Fig. 13-12. Sometime during the operation an element X from main memory
is loaded into the three processors, P1, P2, and P3• As a consequence, it is also
copied into the private caches of the three processors. For simplicity, we
assume that X contains the value of 52. The load on X to the three processors
results in consistent copies in the caches and main memory.

If one of the processors performs a store to X, the copies of X in the caches
become inconsistent. A load by the other processors will not return the latest
value. Depending on the memory update policy used in the cache, the main
memory may also be inconsistent with respect to the cache. This is shown in
Fig. 13-13. A store to X (of the value of 120) into the cache of processor P1
updates memory to the new value in a write-through policy. A write-through
policy maintains consistency between memory and the originating cache, but
the other two caches are inconsistent since they still hold the old value. In a
write-back policy, main memory is not updated at the time of the store. The
copies in the other two caches and main memory are inconsistent. Memory is
updated eventually when the modified data in the cache are copied back into
memory.

Another configuration that may cause consistency problems is a direct
memory access (DMA) activity in conjunction with an lOP connected to the
system bus. In the case of input, the DMA may modify locations in main
memory that also reside in cache without updating the cache. During a DMA
output, memory locations may be read before they are updated from the cache
when using a write-back policy. VO-based memory incoherence can be over­
come by making the lOP a participant in the cache coherent solution that is
adopted in the system.

Solutions to the Cache Coherence Problem
Various schemes have been proposed to solve the cache coherence problem in
shared memory multiprocessors. We discuss some of these schemes briefly
here. See references 3 and 10 for more detailed discussions.

A simple scheme is to disallow private caches for each processor and have
a shared cache memory associated with main memory. Every data access is
made to the shared cache. This method violates the principle of closeness of
CPU to cache and increases the average memory access time. In effect, this
scheme solves the problem by avoiding it.

For performance considerations it is desirable to attach a private cache to
each processor. One scheme that has been used allows only nonshared and
read-only data to be stored in caches. Such items are called cachable. Shared
writable data are noncachable. The compiler must tag data as either cachable or
noncachable, and the system hardware makes sure that only cachable data are
stored in caches. The noncachable data remain in main memory. This method

Bus

Caches

P, Processors

Figure 13# 12 Cache configuration after a load on X.

Figure 13-13 Cache configuration after a store to X by processor P 1 •

Main memory

Bus

Caches

Processors

(a) With write-through cache policy

Main memory

Bus

Caches

Processors

(b) With write-back cache policy

5 1 1

512 CHAPTER Tlili!TEEN Multiprocwon

restricts the type of data stored in caches and introduces an extra software
overhead that may degradate performance.

A scheme that allows writable data to exist in at least one cache is a
method that employs a cmtmliud globAl WJJe in its compiler. The status of
memory blocks is stored in the central global table. Each block is identified as
rtlld-<mly (RO) or TttU1 and write (RW). All caches can bave copies of blocks
identified as RO. Only one cache can bave a copy of an RW block. Thus if the
data are updated in the cache with an RW block, the other caches are not
affected because they do not have a copy of this block.

The cache coherence problem can be solved by means of a combination
of software and hardware or by means of hardware-only schemes. The two
methods mentioned previously use software.based procedures that require the
ability to tag information in order to disable caching of shared writable data.
Hardware-only solutions are handled by the hardware automatically and have
the advantage of higher speed and program transparency. In the hardware
solution, the cache controller is specially designed to allow it to monitor all bus
requests from CPUs and lOPs. All caches attached to the bus constantly
monitor the network for possible write operations. Depending on the method
used, they must then either update or invalidate their own cache copies when
a match is detected. The bus controller that monitors this action is referred to
as a snoopy clldle amtrolln. This Is basically a hard waxe unit designed to main·
tain a bus-watching mechanism over all the caches attached to the bus.

Various schemes bave been proposed to solve the cache coherence prob­
lem by means of snoopy cache protocol The simplest method is to adopt a
write•through policy and use the following procedure. All the snoopy con·
trollers watch the bus for memory store operations. When a word in a cache
Is updated by writing into it, the corresponding location in main memory is
also updated. The local snoopy controllers in all other caches check their
memory to determine if they have a copy of the word that has been overwritten.
U a copy exists In a remote cache, that location is marked invalid. Because aU
caches snoop on all bus writes, whenever a word is written, the net effect
is to update it In the original cache and main memo.ry and remove It from
all other caches. U at some future time a processor accesses the invalid
Item from its cache, the response is equivalent to a cache miss, and the updated
Item is transferred from main memory. In this way, inconsistent versions are
prevented.

PROBLEMS

13-1. Discuss the difference between tightly coupled multiprocessors and loose:ly
coupled multiprocessors from the viewpoint of hardw= organizalion and

programming techniques.

13-2.

13-3.

13-4.

13-5.

13-6.

13-7.

13-8.

13-9.

13-10.

13-11.

13-12.

13-13.

13-14.

Problems 5 13

What i s the purpose of the system bus controller shown i n Fig. 13·2? Explain
how the system can be designed to distinguish between references to local
memory and references to common shared memory.

How many switch points are there in a crossbar switch network that con­
nects p processors to m memory modules?

The 8 x 8 omega switching network of Fig. 13·8 has three stages with four
switches in each stage, for a total of 12 switches. How many stages and
switches per stage are needed in an n x n omega switching network?

Suppose that the wire breaks between the switch in the first row, second
column and the switch in the second row, third column in the omega
switching network of Fig. 13·8. What paths will be disconnected?

Construct a diagram for a 4 x 4 omega switching network. Show the switch
setting required to connect input 3 to output 1 .

Three types o f switches are used t o design a multistage interconnection
network: an interchange switch with two inputs and two outputs as in Fig.
13-6, an arbitration switch with two inputs and one output, and a distribu­
tion switch with one input and two outputs.
a. Show how the arbitration and distribution switches operate.
b. Using arbitration and interchange switches, construct an 8 x 4 network

with a unique path between any source and any destination.
c. Using distribution and interchange switches, construct a 4 x 8 network

with a unique path between any source and any destination.

Draw a diagram showing the structure of a four-dimensional hypercube
network. Ust all the paths available from node 7 to node 9 that use the
minimum number of intermediate nodes.

Draw a logic diagram using gates and flip-flops showing the circuit of one
bus arbiter stage in the daisy·chain arbitration scheme of Fig. 13-10.

The bus controlled by the parallel arbitration logic shown in Fig. 13-11 is
initially idle. Devices 2 and 3 then request the bus at the same time . Specify
the input and output binary values in the encoder and decoder and deter­
mine which bus arbiter is acknowledged.

Show how the arbitration logic of Fig. 13·10 can be modified to provide a
rotating daisy·chain arbitration procedure. Explain how the priority is deter·
mined once the bus line is disabled.

Consider a bus topology in which two processors communicate through a
buffer in shared memory. When one processor wishes to communicate with
the other processor it puts the information in the memory buffer and sets
a flag. Periodically, the other processor checks the flags to deiermine if it has
information to receive. What can be done to ensure proper synchronization
and to minimize the time between sending and receiving the information?

Describe the following terminology associated with multiprocessors.
(a) mutual exclusion; (b) critical section; (c) hardware lock; (d) semaphore;
(e) test-and-set instruction.

What is cache coherence, and why is it important in shared-memory multi­
processor systems? How can the problem be resolved with a snoopy cache
controller?

514 OiAP'!El TiiiRTEEN Multi�

1. Dasgupta, S .. Q,rpiiUr Archit«!UF¥: II Modern Synlh$$, Vol. 2. New York: John
Wiley, 1989.

2. DeC�ama, A. L .• Ptmllln Proassing llrchifllcturt '""' VlS1 Htmltam. Englewood
Cliffs, NJ: Prentice Hall, 1989.

3. Dubois, M., C. Scheurich, and F. A. Briggs, "'Synchronization. Coherence, and
Event Ordering in Multiprocessors." I£E.ECompuler, Vol .. 21, No. 2(Februuy 1988),.
pp.�21.

4. Gibson, G. A .. CompiiUr Systems Corraptund Dtsigrl. Englewood Cliffs, NJ: Prentice
Hall, 1991.

5. Gorsline, G. W., Compultr Org<miz.otion: HmdwanJSo{twlzn, 2nd ed. Englewood
Oifls, NJ: Prentice Holl. 1986.

6. Hays, J. F., Computtr llrchilllcturund Org«nizAtion, 2nd ed. New Yorlc: McGraw-Hill,
1988.

7. Hwang. K, and F. A. Briggs, Computtr llrchittdwrtand Pandld Proassing. New Yod<:
Mc:Craw-Hlll, 1964.

8. Kain, R .. Computerllrchitldu� So{twlzn•rrd Hllrdwa�. Vol 2. Englewood Cliffs, NJ:
Prentice HaU, 1989.

9. Langholz, C., J. Francioni, and A. Kandel, Elcntrrll of Computtr OrgizniZAtion.
Englewood Cliffs, NJ: Prentice HaU, 1989.

10. Stenstrom, P., "A SW'Yey oC Cache Coherenc:e Schemes for Multip� ... IEEE
Compultr, Vol. 23, No. 6 Uune 1990). pp. 1.2-24.

11. Stone, H. S., High-Ptrfomuz- Computtr llrdtil«!f�. 2nd ed. RNdlng. MA:
Addison-Wesley, 1990.

12. Tabak, D., Multipt'OCtSSDrS. Englewood Cliffs, NJ: Prentice HaU, 1990.

Index

·,

515

A
AC, 126
Access time, 463
Accumulator, 126
Accumulator register, 128-30

design of, 164-65
Addend, 338
Adder, 103-4
Adder and logic circuit, 130, 166
Adder-subtracter, 104-5
Addition algorithms:

decimal numbers, 365-68, 371
floating-point, 358-60
signed-magnitude, 335-38
signed-2's complement, 79, 338-40

Add microoperation, 102-4
Add-overfiow, 336
Address, 60, 131
Address bus, 417-19
Address field, 226
Addressing modes, 260

autoincrement, 262
base register, 264
direct, 126-27, 263
immediate, 126, 262
implied, 261
indexed, 263-64
indirect, 126-27, 263
register, 262
register indirect, 262
relative, 263

Address mapping, 472
Address register, 128-30
Address sequencing, 216
Address space, 470
Address symbol table, 1 83
Adjacent squares, 12
Algorithm, 334
Alphanumeric code, 73 , 86, 383
ALU, 1 16-17, 241-45
AND, 4
AND gate, 5

Index 5 1 7

AN D microoperation, 1 10--1 1
special symbol, 109

AR (see Address register)
Arbitration, 500
Arbitration algorithms, 505
Arbitration switch, 513
Architecture, 3
Arithmetic algorithm, 334
Arithmetic circuit , 106--8
Arithmetic instructions, 269-70
Arithmetic logic unit, 116, 244-45
�thmetic microoperations, 102-3
Arithmetic pipeline, 307-10
Arithmetic processor, 333
Arithmetic shift, 1 14-15, 272, 346

overflow, 1 1 5
Array multiplier, 346--48
Array processor, 326

attached, 326--27
SIMD, 327-28

ASCII, 74-75, 184, 383-85
Assembler, 182, 185-90
Assembly language, 179- 81
Associative memory, 456

hardware organization, 457-60
write-back, 469
write-through, 469

Associative mapping, 464
Asynchronous bus, 501
Asynchronous communication, 398-400
Asynchronous transfer, 391 , 396
Attached array processor, 326--27
Autodecrement, 262
Autoincrement, 262
Auxiliary memory, 445, 452-56

B
Base of a number, 68
Base register, 264
Basic computer, 123

common bus, 129-31

5 18 Index

Basic computer (cont.)
control, 135-39
design of, 157-67
flowchart, 158
input-output, 150-53
instruction cycle, 139, 142, 158
instructions, 132-34, 174-75
interrupt, 153-56
phases, 139
registers, 128, 1 57
tabular summary, 159

Baud rate, 398
BCD, 72-73, 81-82
BCD adder, 365-68
BCD subtracter, 368-69
Berkeley RISC I , 288-91
Biased exponent, 356
Bidirectional shift register, 53-56
Binary, 1
Binary adder, 103-4
Binary-coded decimal, 73 , 85
Binary codes, 72 , 84

alphanumeric, 73
ASCII, 74-75
BCD , 72-73
error detection, 87
excess- 3 , 85-86
Gray, 84

Bi11ary counter, 56-58
design of, 32-36
with parallel load, 58-59

Binary incrementer, 105-6
Binary n-cube, 498
Binary numbers, 2, 68
Binary parallel adder, 103-45
Binary point , 77
Binary signal, 4
Binary tree, 497
Binary variable, 7, 213
Bit, 1
Bit-clear, 270
Bit complement, 270
Bit manipulation instructions, 270-72
Bit-oriented protocol, 437-39
Bit-set, 271
Block, 472
Block diagram, 18
Block transfer, 43 1
Boolean algebra, 7-11
Boolean expression, 8
Boolean function, 7
Booth algorithm, 343-46
Bootstrap loader, 448
Branch, 147, 275
Branch conditions, 276
Branch instructions, 273-76, 314-15
Branch logic, 217
Branch target buffer, 315
Buffer gate, 5 , 100

Burst transfer, 416
Bus, 97-98, 500

of basic computer, 129-31
construction of, 98-101
input-output, 386
memory, 453

Bus arbitration, 502-6
Bus grant, 416
Bus organization, 242-44
Bus request, 416
Bus selection, 99
Bus transfer, 99
Byte, 60

c
Cache coherence, 509- 12
Cache memory, 446, 462-69
Call subroutine, 200
CAM, 456
CAR (see Control address register)
Carry, 19, 76
Carry status bit, 274
Central processing unit, 241
Channel, 423
Character code, 73
Character manipulation, 204
Character-oriented protocol, 432
Characteristic table, 23-25
Chip, 41, 449
Chip select, 449
CISC, 282
Circular shift, 114
Clear, 23, 1 1 3
Oock, 2 2 , 2 6 , 96
Clock cycle, 137, 305
Clocked sequential circuit, 22
CMOS, 43
Combinational circuit. 1 8

analysis, 1 9
design, 19

Combinational circuit shifter, 116
Command, 387, 421
Comment field, 179
Common bus, 97-98, 129-31 , 242-44
Communication control characters, 432
Compiler, 190
Compiler support, 316
Complement, 10, 74-76

subtraction with, 76
Complementer, 336-37
Complex instruction set computer, 282-84
Computer architecture, 3
Computer arithmetic, 333
Computer design, 3, 1 57-67
Computer hardware, 1
Computer instruction cycle, 139
Computer instructions, 132-34, 175

Computer network, 489
Computer organization, 3
Computer registers, 128
Computer software, 2, 173
Condition code, 274
Conditional branch, 217, 275-76
Content addressable memory, 456
Control address register, 215, 217
Control command, 387
Control design, 160-64, 231-32
Control function, 96
Control logic gates, 160
Control memory, 213-14, 229
Control signal, 136--38
Control unit, 135-39, 231
Control word, 213, 243-45
Counter, 56-58

design of, 32-36
CPU, 3 , 241
CRC, 43 1
Critical section, 508
Crossbar switch, 494-96
Cycle stealing, 416
Cyclic redundancy check, 43 1

D
Daisy-chain, 408, 502-3
Data bus, 417-19
Data communication, 429
Data communication protocol, 43 1

bit-oriented, 437-39
character-oriented, 432-33
example, 433-36
message format, 433 , 437

Data' dependency, 313-14
Data link, 43 1
Data manipulation instructions, 268-72
Data register, 128-30
Data representation, 67
Data selector, 49
Data set, 430
Data stream, 301
Data transfer instructions, 267-68
Data transparency, 436
Data types, 67, 269
Decimal adder, 365-68
Decimal arithmetic, 369-76

addition and subtraction, 371
division, 374-76
multiplication, 371 -73

Decimal arithmetic unit, 363-69
Decimal codes, 85
Decimal numbers, 68, 81
Decimal representation, 81
Decimal subtraction, 368-69
Decode phase, 139, 226
Decoder, 43

Decrement, 108

Index 5 19

Delayed branch, 315 , 318-19
Delayed load, 314, 317-18
DeMorgan theorem, 8-10
Descriptor, 482
Design of basic computer, 157-67
Device, 382
D flip-flop, 23
Digital, 1
Digital computer, 1
Digital integrated circuits, 41
Digital logic families, 42
Digital signal, 4
Digital system, 1
Direct address, 126-27, 263
Direct mapping, 465
Direct memory access, 415-20

controller, 416- 18
transfer, 418-20

Disk, 383 , 454
Distributed memory, 491
Distributed switch, 513
Divide overflow, 351
Dividend, 349
Dividend alignment, 362
Division algorithms:

comparison method, 353
decimal numbers, 374-76
floating-point, 362-63
non-restoring, 353-54
restoring method, 353
signed-magnitude, 349-53

Divisor, 349
OLE character, 436
DMA (see Direct memory access)
Don't-care conditions, 16
Double-precision, 196
DR (see Data register)
Drum, 454
Dual-bus, 492-93
Dynamic arbitration, 505
Dynamic input, 22-23
Dynamic microprogramming, 214
Dynamic relocation, 476

E
EBCDIC, 87
ECL, 43
Edge triggered flip-flop, 25
EEPROM, 63
Effective address, 126, 262
Emitter-coupled logic, 43
Enable input, 44
Encoder, 47
End carry, 76
EPROM, 63
Equivalence, 5

520 Index

Error detection code, 87
Error diagnostics, 188
Excess-3 code, 85-86
Excitation table, 27, 33
Exclusive-NOR, 5
Exclusive-OR, 6, 1 1 1
Execute phase, 139, 228
Exponent, 83, 354
External interrupt, 281

F
FA (see FuU-adder)
Fetch phase, 139-41 , 156, 226
FIFO, 400, 476
FIFO buffer, 400-2, 505
First-in first-out, 400-2
Fixed-point, 77

binary representation, 79-80
decimal representation, 81-82

Flag, 152, 437
Flag bits, 274
Flip-flop, 22-28

asynchronous clear, 26
edge-triggered, 25
excitation table, 27
IC, 26
input function, 28
master-slave, 26
types of, 22-25

Floating-point, 83 , 354-57
¢thmetic operations, 358-63
nonnalization, 83 , 355

Floating-point pipeline, 308-10
Floppy disk, 455
Flops, 325
Flowchart for basic computer, 158
Fortran, 178
Full-adder, 20-22, 104
FuU-duplex, 431

G
Gates, 4-6
General register organization, 242-47
Graphic symbols, 23
Gray code, 84

H
Half-adder, 19
Half-duplex, 431
Haodshaking, 391 , 393-96
Hardware, 2 , 173
Hardware algorithm, 334
Hardware interlock, 312
Hardware lock, 508

Hardwired control, 136, 216
HDLC, 437
Hexadecimal code, 134, 177
Hexadecimal numbers, 68-70

binary coded, 71
conversion to binary, 70

High-impedaoce, 100
Hit ratio, 463
Hold time, 26
Hypercube, 498-500

IBM chaonel, 423-26
IC (see Integrated circuit)
Immediate mode, 126, 262
Implied mode, 261
Increment, 58, 103 , 108
Incrementer, 105-6
Index addressing, 263-64
Indirect address, 126--27, 132, 263
Infix notation, 252
Inner product, 322
Input carry, 106
Input equation, 28
Input flag, 1 52
Input logic, 233 -35
Input-output , 150-53 , 381

bus, 386, 421
devices, 381-83
instructions, 1 52
interface, 385-87, 389-91
programming, 203
transfer, 391-98

Input-output processor, 420--22
Instruction code, 123, 1 32
Instruction cycle, 139, 310--1 1
Instruction format, 255 , 322
Instruction register, 128
Instruction pipeline, 31 0--15
Instruction set completeness, 134-35
Instruction stream, 301
Instructions, 133, 175
Integrated circuit, 41-43
Intel-8089 lOP, 427
Interchange switch, 496
Interconnection of processors, 491-500
Interface, 385, 389
Interleaved memory, 324
Internal interrupt, 281
Interprocessor arbitration, 500
Interprocessor communication, 506
lnterprocessor synchronization, 5(17
Interregister transfer, 95
Interrupt, 153-56, 281 , 407-12

priority, 407
types of, 281-82
vectored, 406

Interrupt acknowledge, 410
Interrupt cycle, 153-56, 412-13
Interrupt initiated 1/0, 406
Interrupt program, 205-8
Interrupt register, 411
Interrupt request, 417
Inverter gate, 5
IR (see Instruction register)
110, 381
110 bus, 421
110 instructions, 152
110 interface, 385-87
110 port, 389
110 software, 406, 413
lOP (see Input-output processor)
Isolated 110, 388

J
JK flip-flop, 24
Jump, 225, 273

K
Karnaugh map, 1 1
Keyboard, 382

L
Label, 179, 225
Large-scale integration, 42
Last-in first-out, 247
LD (see Load control)
Least recently used, 476
LIFO, 247
Load control, 52, 129
Load input, 129-3 1
Local b u s , 492-93
Locality of reference, 462
Location counter, 185
Lock mechanism, 508
Logic circuit, 1 1 1
Logic circuit families, 42
Logic diagram, 7
Logic gates, 4
Logic microoperations, 108- 10

hardware implementation, 1 1 1
list of, 109-10

Logic operations, 197
Logical address, 477
Logical instructions, 270-72
Logical shift, 1 14, 272
Loosely coupled multiprocessors, 491
LRC, 431
LRU, 476, 505
LSI, 42

M

M (see Memory word)
Machine language, 174-75
Magnetic disk, 383, 454
Magnetic drum, 383
Magnetic tape, 383, 455
Magnitude, 335
Magnitude comparator, 336
Main memory, 445, 448
Mantissa, 83, 354
Map simplification, 1 1 - 1 8
Mapping, 2 1 6 , 2 1 9 , 463
Mask operation, 1 1 3
Mask register, 411
Master-slave flip-flop, 26
Match logic, 459

Index 5 2 1

Matrix multiplication, 322
Medium-scale integration, 42
Memory:

access time, 463
associative, 456--62
auxiliary, 452-56
cache, 462-69
chip, 449
content addressable, 456
FIFO, 400
IC, 41 , 449
random access, 60, 448
read only, 61, 450
virtual, 469

Memory address, 60, 1 3 1
Memory address map, 450-52
Memory array, 324
Memory bus, 387, 453
Memory cycle, 138
Memory hierarchy, 445
Memory interleaving, 324
Memory management, 476--79
Memory-mapped 110 , 388-89
Memory module, 494
Memory organization, 445
Memory page table, 473, 478
Memory protection, 482
Memory read, 61 , 101
Memory reference instructions, 145-50
Memory space, 470
Memory stack, 249-51
Memory transfer, 101-2
Memory word, 58, 101
Memory write, 60-61, 101-2
Message format, 433
Message-passing, 491
Message routing, 499
Metal-oxide semiconductor, 43
Microcomputer, 500
Microinstruction, 214

binary form, 229-30
fonnats, 222-24
symbolic fonn, 225-28

522 Index

Microoperation, 93, 102, 223, 246
arithmetic, 102-3
logic, 108- 10
read, 101
register transfer, 102
shift, 1 14- 15
write, 102

Microprocessor, 490
Microprogram, 214

binary, 229-30
control, 231-32
example, 220-30
sequencer, 232-35
symbolic, 225-28

Microprogrammed control unit, 214
Mintenn, 11
Minuend, 338
MIMD , 301 , 489
Mode field, 261 , 265
Modem, 430
Modes of transfer, 402-3
Monitor, 382
MOS, 43
Move instruction, 256
MSI, 42
Multiple functional unit, 300, 306
Multiplexer, 48-50, 98
Multiplicand, 340
Multiplication algorithms:

Booth algorithm, 343-46
decimal numbers, 371-73
floating-point, 360-62
signed-magnitude, 341-43
signed-2's complement, 343-46
software implementation, 195

Multiplication program, 193-96
Multiplier, 340
Multipart memory, 493
Multiprocessor, 489

arbitration, 500-6
communication, 506
interconnection, 491-500
synchronization, 507-9

Multiprogramming, 447
Multistage switching network, 496-98
Mutual exc1usion, 508
MUX (see Multiplexer)

N
NAND gate, 5, 9, 16
Next state, 23, 30
NOR gate, 5 , 9, 16
Normalization, 83, 355
Number base conversion, 68-71
Number system, 68

0
Object program, 183
Octal numbers, 68-72

binary coded, 70
conversion to binary, 70

Odd function, 6, 88
Omega network, 497-98
One-address instruction, 259
On-line, 382
Opcode, 125
Operating system, 447, 483, 506
Operation code, 124, 255
ORG, 180, 226
OR gate, 5-6
OR microoperation, 1 10- 1 1

special symbol, 1 09
Output flag, 152
Overflow, 80--8 1 , 115
Overflow status bi t , 274
Overlap register window, 285-88

p
Packet, 491
Page, 472
Page fault, 475
Page frame, 472
Page replacement, 475
Page table, 474
Parallel adder, 336--37
Parallel arbitration logic, 503-5
Parallel load, 54
Parallel processing, 299
Parallel transfer, 5 1
Parameter linkage, 2 00
Parity bit, 87
Parity checker, 87-89
Parity generator, 87-89
Partial product, 341, 343
Partial remainder, 349
PC (see Program counter)
Peripheral, 382
Pipeline, 302-7

arithmetic, 307-10
in ruse, 315-19
instruction, 310-15

Pipeline conflicts, 313
Pipeline processing, 299
Pointer, 192
Polish notation, 252
Polling, 407, 505
Pop stack, 249
Port, 389
Present state, 23, 30
Printer, 382
Priority encoder, 411-12

Priority interrupt, 4fJ7-12
daisy-chaining, 408-9
parallel, 409- 1 1
software routines, 413-15

Priority logic, 410
Product, 340
Product of sums, 14
Program, 2, 173
Program control instructions, 273-74
Program counter, 128-30
Program interrupt, 153-56, 205, 279
Program loop, 190
Program status word, 280
Programmed 110, 402-6
Programming languages, 176
PROM, 63
Protection, 482
Protocol, 431
Pseudo-instruction, 178-80
Push stack, 247-49
PSW, 280

R
Radix, 68
RAM, 60, 448
Random-access memot)l, 60-61, 448-50
Read, 60-61, 101
Read microoperation, 101
Read only memory, 6!-63, 448

programming of, 62-63
truth table, 62
types of, 62-63

Reduced instruction set computer, 282-85
characteristics, 284-85
instructions, 259-60, 288-89
pipeline, 315-19

Register, SO, 95
Register address, 255
Register indirect mode, 262
Register load, SO
Register mode, 262
Register with parallel load, 5 1
Register-reference instructions, 143-44
Register stack, 247-49
Register transfer, 95
Register transfer language, 94

basic symbols, 97
Register transfer statements, 95

arithmetic, 102-3
conditional control, 96
logic, 108- 10
shift, 1 1 4

Registers o f basic computer, 128, 157
Relative addressing, 263
Remainder, 349-50
Replacement algorithms, 475-76
Resource conflict, 313

Return address, 148

Index 523

Return from subroutine, 278
Reverse Polish notation, 251-54

arithmetic expressions, 253-54
RISC, 282-85

instructions, 259-60, 288-91
pipeline, 315-19

ROM, 61, 214, 230, 450
Rotating daisy-chain, 505
Routine, 216
RPN, 252

s
Schottky TIL, 42
SDLC, 437
Sector, 455
Segment, 304, 477
Segment descriptor, 482
Selection inputs, 48
Selective-clear, 1 12
Selective-complement, 112
Selective-set, 112
Self-complementing code, 86
Semaphore, 508
Sequence counter, 341
Sequencer, 2 1 5 , 232-35
Sequential circuit, 28

design of, 32-36
Serial communication, 429
Serial communication interface, 1 5 1
Serial input , 5 3
Service program, 4 1 4
Service routine, 207
Set, 23
Set-associative mapping, 467
Setup time, 26
Shared memory system, 491-92
Shifter, 115-16
Shift instructions, 371-72
Shift microoperations, 114

hardware implementation, 1 15-16
Shift operations, 197
Shift register, 53
Signal, 4
Sign status bit, 274
Signed-magnitude, 78
Signed-2's complement, 78

overflow, 86
Signed numbers, 78
SIMD , 301 , 327
Simplex, 43 1
Single-cycle execution, 3 1 6
SISD , 301
Small-scale integration, 41
Snoopy each controller, S12
Software, 2, 173, 406, 413
Software interrupt, 281 -82

524 Index

Source program, 183
SP (see Stack pointer)
Space-time diagram, 304-5
Speedup ratio, 305-6
SR flip-flop, 22
SSI, 41
Stack, 247
Stack instructions, 259
Stack limit, 251
Stack operations, 254
Stack organization, 247-49
Stack pointer, 247
Start bit, 396
State diagram, 3 1-32
State table, 30-31
Status bits, 217, 274
Status command, 387
Status register, 404
Stop bit, 397
Store, 147
Stored program organization, 125
Strobe control, 391
Subroutine, 198, 278-79
Subroutine call, 148, 200, 278
Subroutine parameters, 200
Subroutine program, 199
Subroutine register, 220
Subroutine return, 200, 278
Subtraction algorithms:

decim�l numbers, 368-69, 371
floating-point, 358-60
signed-magnitude, 335-38
signed-2's complement, 89, 338-40
unsigned numbers, 76

Subtract microoperation, 102-5
Subtractor, 104-5
Subtrahend, 338
Sum of mintenns, 11
Sum of products, 14
Supercomputer, 325
Supervisor mode, 280
Symbol table, 183 .
Symbolic address, 179
Symbolic microprogram, 227
Symbolic program, 175, 184
SYN character, 432
Synchronization, 507
Synchronous bus, 501
Synchronous clear, 58
Synchronous transfer, 396
Synchronous transmission, 430
System bus, 493, 500-2

T
Table-lookup, 187
Tag field, 465
Tape, 383 , 455

Task, 304
Test and set, 508
T flip-flop, 24
Three-address instruction, 258
Three-state buffer, 100
Three-state bus, 100-1
Throughput , 299
lightly coupled multiprocessor, 491
lime shared bus, 491-93
lime slice, 505
Timeout, 396
liming and control, 135
liming diagram, 26, 391
Timing signal, 136-38
TLB, 479
Track, 455
Transistor-transistor logic, 42-43
Translation look-aside buffer, 479
Trap, 281
Truth table, 4, 7
TTL, 42
Two-address instruction, 258

u
UART, 398
Underflow, 356
Unsigned numbers, 76

subtraction of, 76-77

v
Valid bit, 469
Vector address, 408
Vector operations, 321
Vector processing, 319
Vectored interrupt, 406
Video monitor, 382
Virtual address, 470
Virtual memory, 469
VLSI, 42, 490

w
Weighted code, 86
Word, 58
Word count register, 417
Write, 60-61, 101
Write microoperation, 102
Write-back, 469
Write-through, 469

X
XOR (see Exclusive-OR)

z
Zero-address instruction, 259
Zero detection, 275
Zero insertion, 437
Zero status bit, 274

Index 525

