

INTRODUCTION TO VR
DEVELOPMENT WITH UNITY

Explore the world of Virtual Reality by building simple VR projects

Author:

Xhemal Zenuni

Co-Authors:

Lejla Abazi Bexheti

Visar Shehu

Arbana Kadriu

Shqipe Salii

The textbook was prepared in the scope of the project:

ACCELERATING WESTERN BALKANS UNIVERSITY MODERNIZATION BY

INCORPORATING VIRTUAL TECHNOLOGIES

(VTECH@WBUNI)

"The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein."

Published by:

South East European University, Tetovo

Editor: Burim Ismaili

Printed by: Arbëria Design, Tetovo

Distribution: 120 copies

Printed in Republic of North Macedonia

First Printing Edition, November 2022

ISBN: 978-608-248-052-7

Copyright © 2022 By Author

CIP - Каталогизација во публикација

Национална и универзитетска библиотека "Св. Климент Охридски", Скопје

004.946:004.455-049.8

ZENULI, Xhemal

 Introduction to VR development with unity : explore the world of

virtual reality by building simple VR projects / Xhemal Zenuni ;

co-authors Lejla Abazi Bexheti ... [и др.]. - Tetovo : South East

European University, 2022. - 57 стр. : илустр. ; 24 см

Други ко-автори: Visar Shehu, Arbana Kadriu, Shqipe Salii. -

Библиографија: стр. 57

ISBN 978-608-248-052-7

а) Виртуелна реалност -- Информатика -- Апликативен софтвер -- Развој

COBISS.MK-ID 58787333

-v-

Table of Contents

Introduction to VR Development with Unity

Introduction to Virtual Reality………………………………………………………………………….2

VR Games or VR Applications .. 3

Types of VR Experiences .. 3

What Skills Are Relevant in VR Development? ... 4

Summary ... 5

Getting Set Up For Unity VR Development…………………….…………………………………..6

Installing SteamVR ... 6

Installing Unity Hub and Editor .. 6

Exploring Unity Interface ... 8

Unity Terminology ... 10

Creating a New Project in Unity ... 11

Creating a Simple 3D World in Unity ... 13

Building the Walls .. 16

Creating Collectibles .. 18

Working with UI Elements ... 19

Moving Objects and Scripting in Unity .. 21

Controlling the Camera ... 25

Collision Detection .. 28

Building the Game ... 31

External 3D Modelling Software and Tools .. 31

Asset Stores for Virtual Reality Development .. 37

Summary ... 37

VR Interactions…………………………………………………………………………………………..39

Interaction Techniques for Selection.. 39

Interaction Techniques for Manipulation ... 40

Interaction Techniques for Locomotion ... 40

S I M P L E S T M A N U S C R I P T T E M P L A T E I N W O R D

-vi-

What is XR? .. 41

XR Setting Configuration .. 41

Installing XR Interaction Toolkit .. 45

Scene Configuration ... 47

Summary .. 53

What’s next?..55

References………………………………………………………………………………………………...57

-1-

-2-

1

INTRODUCTION TO VIRTUAL REALITY

Virtal reality is a technology which allows a user to interact with computer-

generated 3D worlds in completely new ways, whether that environment is

simulation of the real or an imaginary world. By wearing a head-mounted display

such as Oculus Rift, a user not only can view stereostopic 3D scenes, but it can

interact with it in totaly new ways, such as look around the scene by moving the

head, move around it by using different sensors and generally engage in immersive

experiences that feel very real and can have profound impact on people.

Therefore, the VR technology is growing rapidely into new distinct discipline in

world of the IT with wide applications in different fields, such as car design,

construction, architecture or biology among others, thus putting VR skills

developers in high demand. In this race, despite technological advancements at

hardvare level supporting VR, building development skills for this new paradigm

becomes important nowdays.

This manuscript is compiled for those who are interested in learning the most

funadamental concepts and techniques in developing VR through Unity3D

ecosystem.

-3-

VR Games or VR Applications

Gamers usually are early adopters of high tech graphics technologies and

experiences, including highly interactive 3D environments such as different virtual

reality based games. Therefore, it is not a surprise that initial products from VR

emerged from the gaming industry, and majority of demos from producers of VR

hardware such as Oculus Share are VR based games, as they are most enthusiastic

users and advocaters of this technology.

However, virtual reality technogoly gains serious ground outside gaming industry

as well. In non-gaming VR applicartion the focus is more on the interactive

experience or to the application goal and less about winning. Some serious

industries, such as healthcare, mechanical engineering, architecture and civil

engineering have adopted this technology to offer controlled environments for

mimicking real life scenarios with little risk or no risk at all for the person in it and

are enjoying the benefits that VR technology provides.

One can think of several ways how VR technology can be used. It can be used for

entertainment or gaming purposes, but the same paradigm can have also the

potential in the industry apps with great potential to boost bussines growth.

Types of VR Experiences

There are many types of virtual reality experiences, which can be broadly divided

into non-immersive, semi – immersive and fully – immersive simulations. Non-

immersive simulations are one of the oldest, and they are often not considered as

of type VR, because they are common in our everyday life. In this kind of

interaction, the user is in its physical space interacting with a virtual one. Most of

the classical games and apps fall within this category.

On the other hand, semi – immersive experiences give the users the perception of

being in a different reality and they provide users with a partially virtual

environment to interact with. A virtual tour or the simulation to flight an airplane

can be of this category as the instruments of the pilot are real and the screens in

front can display virtual content. This type of virtual environment provides a visual

experience, but has no physical sensations to enhance the experience.

Fully – immersive experience ensures a realistic virtual experience, not only related

to the physical environment but also to the interaction itself. In order to provide a

-4-

fully – immersive experience, special equipment such as VR headsets, different

sensors such as body detectors, gloves and other advanced interaction

technologies are required.

What Skills Are Relevant in VR Development?

In order to build virtual reality games or appliactions, a number of skills and

concepts are ver important, and those include:

• 3D modeling: when building for a VR experience, creation and the work

with 3D space and scale is essential.

• First-person controls: there are various approaches and techniques that

can be used to control the movement of the main character in the game

or app, such as game controllers, head movements or gaze-based

selection.

• UI controls: user interface elements such as texts, buttons, panels and so

on are important in games and VR apps as well to design, to interact with

them and make selections.

• Animations: can enhance the experiences in VR worlds and several

techniques can be used to move and animate different objects, either

automatic or those that are dependent to events in the environment.

• Physics: crticial to VR apps is to simulate real world environment where we

have different forces, such as gravity or friction actiong on different

objects. Users have to sense these forces in VR environments as well and

make the experience more immense.

• Multiuser services: some experiences need multiuser involvement, and real

– time networking and interactions can be a daunting task to implement.

• Programming: is the core glue in VR development and knowledge in

software engineering and programming in C# or any other programming

language is considered as an important prerequisite.

• Other technical skills: such as sound design or video editing can be a

benificary skill for specific games or apps.

-5-

Summary

Virtual reality is an emmerging technology that can mean different things to

different people. In general,VR is not only about games but it can have wide

adoption in industry and academia for different purposes, from learning and

training purposes up to including people in very interesting immersing VR

experiences in different fields, such as architecture and civil engineering,

automotive industry, medicine and so on.

Building a successful VR game or app requires some fundamental skills, such as 3D

design or programming skills that are important into building VR prototypes.

Therefore this script aims to provide some skillsets to create build and run different

VR apps or games, and try to discuss how virtual reality really works.

-6-

2

GETTING SET UP FOR UNITY VR DEVELOPMENT

Before doing any VR development, we need to install not only the right version of

Unity, but also a VR device that might need to be configured. As there are many

VR devices and brands with their unique controllers, depending on VR device

intended to be used, additional modules might be needed to be installed and

configured as well.

Installing SteamVR

The SteamVR offers cross-platform compatibility for different devices and it is

considered as ultimate tool to access and play VR games and content, and it

provides interaction system that is used throughout the text.

To get SteamVR, we first need the Steam client software. Athogh traditionally is

used to purchse and and installing games, it is grown to provide all kinds of VR

libraries, apps amd software required for VR experiences and developments as well.

The Steam can be downloaded from

https://store.steampowered.com/app/250820/SteamVR/ and the installation

process is straightforward using a Windows installer.

Everything is free, but an account is needed as pre-requisite to install and configure

the SteamVR. The creation and the process of login are straightforward. Once the

process is finished successfully, the SteamVR can be started with a double-click to

the icon pointing to the client and SteamVR window

Installing Unity Hub and Editor

Unity can be installed on Windows and MacOs computers, and there is a limited

support for Linux at the moment. Before installing Unity Hub and other related

software, we need to make sure that our computer meets the minimum system

requierements for Unity (https://docs.unity3d.com/Manual/system-

requirements.html).

The installation process is rather straightforward and can be accomplished in few

steps:

https://store.steampowered.com/app/250820/SteamVR/
https://docs.unity3d.com/Manual/system-requirements.html
https://docs.unity3d.com/Manual/system-requirements.html

-7-

1. Downoad Unity Hub and the right version of Unity from the official web

site https://unity3d.com/get-unity/download.

Figure 1 Unity3D Download Page

2. Select the right edition of Unity and the version for your operating system.

The Unity Hub installation wizard will guide you to install the right version

of Unity Editor.

3. Once the Unity Hub and Editor is properly installed, we can create new

projects using different pre-defined templates for various types of games

or apps, including VR.

Figure 2 Unity Hub New Project Startup Page

https://unity3d.com/get-unity/download

-8-

Exploring Unity Interface

The Unity interface is made of five main windows.

1. The Scene View is the central part in Unity and offers an interactive world

to visually build the game or the app. It is the place to work with different

game or app objects, and do basic operations with them such as select,

manipulate or modify them. So, it requires some fundamental skills that a

developer needs to master when working with Unity as it includes some

frequent and basic operations, such as how to position an object in space,

select, scale and rotate them, and so on.

 Figure 3 Unity Interface Main Windows

2. The Game View shows how the final or published product will look like.

One can play and test the app or game at any point using the play

button in the toolbar positioned immediately above the scene or game

view.

-9-

 Figure 4 The Game View Window in Unity

3. The Hierarchy Window displays the list of all objects in the current sene.

As objects will be added or deleted in the scene, the list is updated

accordingly. They can also be organized in parent/child hierarchy. Objects

can be re-organized and their hierarchical relationship can be changed.

4. The Inspector Window shows the properties of the selected object. Unity

uses a Component-Based Object system, much like other Game Engines.

Everything is just an empty Object first. Then things are added to it, for

example a position, a rigidbody component, a script and so on. The

inspector is context sensitive as properties are changed based on the

selected object.

5. The project Window stores all the files that are or can be used to build

the projects. This files can be of different types and can be used to build

different GameObjecst out of which as commonly used formats are

images, sounds, prefabs, scripts, different models, and so on. The project

window allows to organize and move them around different folders, so

when a project becomes larger, this part can be used to keep the project

organized.

-10-

There are also few other general – use parts in the Unity environment, eapecially

on the top part where the main toolbar can be found as shown in Figure 5. It is

made of several tools which are useful for different purposes, out of which

transform tools are essential. These tools can be used to select and transform

GameObjects such as move around the scene, scale or rotate them. The hand is

used to move camera and the little cross icon is used to move GameObjects.

Figure 5 The Toolbar in Unity

Unity Terminology

The following is a list of words and terminology commionly used when developing

games or apps in Unity environment.

GameObject are fundamental objects in Unity and they act as containers for

Components such as rendering, position, scripts and other elements which

implement real functionalities. By bulding GameObjects they become the most

fundamental building blocks in Unity and they become camera, light, players,

enemies and worlds in Scenes.

Components are elements that are added to GameObjects and they provide

behavior to them such as sound or scripts and so on.

Prefabs are tpre-configured GameObjects at run time and act as templates from

which we can create instances such as bullets, coins, stars or other fundamental

objects important in game development.

Tranform is a component automatically applied to every GameObject. It is used to

store and manipulate the information about position, rotation and scale. This

component is used whenever we need to move, rotate or change the size of an

object.

Tag is a label assigned to one or more GameObjects and they can be used to

identify and organize GameObjects.

-11-

Layers are a tool that can be used to create a group of objects that share particular

characteristics and to restrict operations such as raycasting or rendering.

Triggers are used for collision check and detection. The unity will register the

collision between two GameObjects but will not do anything physically to resolve

it. These events can be captured from script, so you can know when a collision

happens, and react to it in your own way.

Creating a New Project in Unity

To create a new Unity project, launch the Unity Hub where a number of different

options appear, including a button that allows a new project dialog box to be

activated as shown in the following screenshot.

Figure 6 Unity Hub startup page

Once the button New Project is clicked, a new dialog box appears out which you

can select a number of options and features for the new project, out which the

project name and the folder location are as the most basic and common ones.

The dialog box enables a VR template based project to be selected as well and

any other asset packages at this time as well, but a simple and first projects can

be created using the 3D (Core) template, and additional packages and assets can

be included in a later time if they are needed.

-12-

Figure 7 The create new project dialog box

A default Unity 3D scene includes a Sample Scene object which has a child the

Main Camera and a single Directional Light component. The scene object has a

reference empty ground plane grid which spans across three main space

dimensions, namely across the x, y and z axes. The y axis represented with the

green color is directed up as depicted in the figure 8.

-13-

Figure 8 The representation of space axes in Unity scene

Unity is not specifically designed for 3D design, as there are other applications

designed for this purpose, yet is supports the creation of some basic 3D shapes

such as the cube, the sphere, the plain and so on. This enables users to create

some basic objects in scene, and consequently the development of simple

applications and games in 3D environments, which can be treated as the

foundations of VR worlds as well.

Creating a Simple 3D World in Unity

In the following section we will create a simple 3D world in Unity, using the built-

in capabilities and by adding some objects and setup the environment, such as a

plane, a sphere and so on. We will add some basic UI elements as well and thus try

to improve the user experience. Finally some scripts will be written to show the

basics of programming in Unity to create the game functionality, see how to check

for the input from the keyboard and use it for adding interatction with the users.

The project is inspired from Unity learn academy

(https://learn.unity.com/project/roll-a-ball), with slight modifications.

https://learn.unity.com/project/roll-a-ball

-14-

The first step will be to add a ground plane into the scene. In order to create the

plane which will be used as a ground to an application or to a game, we need to

use the Hierarchy panel and click on the plus sign which is located on the top-left

corner. Several options will appear, out of which 3D Object category is where the

basic 3D shapes can be found. By selecting Plane, a game object of type plane is

added in the scene.

The plane by default is white and it is positioned in the center, that is at position

(0,0,0) known as the origin of the world as shown in Figure 9.

Figure 9 The presentation of plane object in scene

The plane can be scaled and transformed using the Transfrom component which

can be seen at the Inspector object on the right side of the Unity environment.

Since the Plane has no volume (although is considered a 3D object), so scaling

along Y axis will have no visual impact (unless the value is changed to a negative

number). However to have a better and more comfort working space, the values

for plane scaling according to X and Z axis are changed to two.

-15-

The next step will be to create a simple sphere primitive object to the scene. To

create a sphere, in the Hierarchy select the Create menu, 3D Object and then select

Sphere as shown in Figure 10.

Like the plane and any other 3D object, the sphere has a radius one and with its

origin at the center. At the beginning it looks like the sphere and the plane are

merged together, and somehow the sphere is buried in the plane. In order to be

perfectly on top of the plane, the sphere needs to be raised by 0.5 units. This time

we can use the Transform component and set the y position to 0.5. We also can

change the name of the plane and sphere to Playground and Ball respectively for

better reference.

Figure 10 The creation of primitive sphere object

As primitive objects, such as plane and sphere are in white color by default, some

contrast colors between them will be added. To add color or a texture to a model,

one needs to use materials and apply them to objects. The following steps will be

followed:

1. In the Project window, select the top-level Assets folder, select the Create

menu and then folder. Rename the new folder to Materials.

-16-

2. With the Materials folder selected, use the Create menu and this time

select Material and rename it to Playground.

3. In the Inspector panel, click the white rectangle to the right of Albedo

which opens the Color Panel and set the RGB values to 20, 80 and 140,

which is a nice blue color.

4. Repeat the precedings steps 2 and 3 to create a yellow material named as

Ball and with RGB values set to 240, 240 and 0.

5. Select and drag the Playground material from the Project panel into the

Playground object in the scene.

6. Select and drag the Ball material from the Project panel into the

Playground object in the scene.

Once the above steps are completed, the scene looks like in Figure 11.

Figure 11 The materials added to primitive 3D objects

Building the Walls

In the playing area, we will place walls around the edges to keep the Ball object

from falling off, and some of them as obstacles within the playground.

-17-

The creation of walls and obstacles can be created in the following order:

• To get organized, at the very beginning we will create an empy object. This

object has no visual effect in the game, as it serves for organization

purpose onky. In Hierarchy, we will select Create->Create Empty and

rename it to Walls.

• To create the first wall, in Hierarchy we will select Create->3D Object-

>Cube. We will rename the object to WestWall. We will select the object

and in Transform component we will reset the values to its default values.

In the Inspector, we will change the cube's Transform scale x value to 0.5,

y value to 2, and z value to 20.5. Finally, we will set the transform's position

x value to minus 10.

• We will select the WestWall, right click with the mouse and select the

option Duplicate. We will rename the object to EastWall and in we will

chane only the transform's position x value to 10.

• We will repeat the duplication process again and rename the object to

NorthWall. In the Inspector, we will change the cube's Transform scale x

value to 20.5, y value to 2, and z value to 0.5. We will change the position

as well and set the value of x and y to zero, and the value of z to 10.

• We will duplicate the NorthWall, rename it to SouthWall and change the z

position from 10 to minus 10. This will be sufficient to create the

surrounding walls of the playground. We will add two obstacle objects as

well.

• We will duplicate the SouthWall object and rename the new object to

Obstacle1. We will set scale (x,y,z) values to (10,2,0.5) and position (x,y,z)

values to (0,0,5).

• The last step will be to duplicate the Obstacle1 and rename the new object

to Obstacle2 and change the position value z from 5 to minus 5.

After the completion of the above steps, the playing scene looks like in the

following figure.

-18-

Figure 12 Adding walls and obstacles in game scene

Creating Collectibles

We will create collectible elements in scene. The idea is that the Ball object will be

moved around the playground and the motion will be controlled by keyboard

inputs, and it will collide and collect the collectible elements.

To create the collectible elements, we will:

• Create a cube object by going to Hierarchy and select the option 3D

Object->Cube.

• The object will be named Collectible.

• In Transform component, we will set its position to (0,0.5,0), the rotation

to (45,45,45) and the scaling to (0.5,0.5,0.5).

• We will create a specific Material for this object, and set its Albedo RGB

color values to (0,245,1) and attach to the Collectibe element.

• In Assets window, we will create a new folder and name it Prefabs.

• We will drag the Collectible element from Hierarchy to Prefabs folder, and

thus make Collectible a prefab.

-19-

• Next, we will delete the Collectible from Hierarchy and there we will add

new empty object Collectibles.

• We will drag the Collectible prefab above the Collectibles object to create

an Collectible instance in scene and make it as child of Collectibles. We will

change the position of the Collectible element in arbitrary form, and make

sure that the y position value remains 0.5, while we ensure that we put x

and y values that will position this element inside the playground and with

some offset to walls and obstacles.

• We repeat the above step for several times, and the final scene looks like

in the figure below.

Figure 13 Adding collectible objects in the project

Working with UI Elements

Unity offers support to work with different UI (user interface) elements or objects.

They are two dimensional graphics which overlay the main gameplay and present

information to end users. Common UI elements include text, buttons, panels,

sliders and so on. In Unity, this type of objects resides on a Canvas.

-20-

In this game, we will create a text element that will show to the user how many

Collectible elements have collected. To do this:

• In Hierarchy we will select the Add button and go to UI -> Text.

• We will rename the object to CountText, and change the value of text in

Text component to “Count: 0”.

• In Text component we will change the font size to 24, the font color to

white and set the value horizontal and vertical overflow to Overflow.

• In Rect Transform component we will select the icon will open the anchors

and presets menu. By holding Shift and Alt or option and select the top

left anchor point. This will position the text in that up corner.

• In Rect Transform component we change PosX to 90 and PosY to -20, and

the result is better viewed if it is opened in play mode and it loos like in

the following figure.

Figure 14 Adding UI Text element to keep the counting score

-21-

Moving Objects and Scripting in Unity

Objects in Unity can be moved using two main approaches.The first one is by by

altering the values x, y and z in Transform component over the time. The other

approach is to Unity physics components.

Unity includes a build-in physics engine that handles the physics for object

interactions and effects, like the gravity, acceleration, collision detection, object

fraction and so on. The items that play into physics include the following:

• The Rigidbody component

• The Collider component

• The Physic matrial and

• The project Physics Manager

Rigidbody is the key component to physics that can be added to objects and it

defines some key physic parameters such gravity, mass and drag among others.

Rigidbody automatically reacts to the gravity and collisions, calculates the

momentum and updates object position and rotation accordingly.

Colliders are used to detect if two objects collide. In order to do this, both colliding

objects must have a Collider component. There are colliders of different geometric

shapes, and they are also separate categories for 2D and 3D games or worlds.

The Phisics Materials can be assigned to colliders, and they can be used to adjust

the friction and the bounciness effect of colliding objects.

Unity has the Physics Manager that can be activated by navigating Edit->Project

Settings->Physics. It defines some global and default values for different important

physic parameters, such as gravity, bounce threshold and so on.

In the developed scene, we will define two types of motion. One will be applied to

collectible elements and it will not be based on physics but rather on position,

more specifically the rotation parameters to achieve a simple animation effect. And,

the second type of motion will be defined for ball object and it will be based on

physics and dependent on user input.

To achieve this, we will have to write scripts for both implementations. The

language that is used in Unity is C#. In oreder to be called and executed, the script

must be attached to a GameObject in the scene.

-22-

To automatically rotate the collectable elements, first we will position to the

Prefabs folder in Assets window, and select the Collectible prefab. On Inspector we

will click on Add Component button found at the bottom and then select New

Script and give a name to the new script file. In this case CollectibleController was

used to name the script.

The script is automatically created on Assets window and it is attached to the

Collectible prefab. For better organization, we will create a new folder Scripts in

Assets, and move the just created file there. Finally, we with double click on the file,

the same can be opened for editing and the rotator code is as in the following

listing:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class CollectibleScript : MonoBehaviour

{

 // Update is called once per frame

 void Update()

 {

 // Rotate the game object that this script is attached to

by 15 in the X axis,

 // 30 in the Y axis and 45 in the Z axis, multiplied by

deltaTime in order to make it per second

 // rather than per frame.

 transform.Rotate (new Vector3 (15, 30, 45) *

Time.deltaTime);

 }

}

Listing 1 The rotator script

-23-

Some notes on the structure of code:

• Unity provides a very powerfull library that combined with standard C#

libraries it allows fast and easy game or app development. UnityEngine is

the fundamental library that has some very fundamental classes defined,

such as MonoBehavior, GameObject, Vectors, Time among others.

• It has some important event functions, such as Start() or Update(). Start(

) will be executed at the beginning and it is used for different initialization.

On the other hand Update() basically is an infinite loop that is executed

once per frame.

• So basically, in Update() event we change the rotation x,y and z values in

object transform component, an this gives the effect of rotating the object

over the time.

On the other hand, the motion of the Ball object will be based on physics and

dependent on user input. To achieve this:

• We will select the Ball object in Hierarchy, then position to Inspector and

click on the Add Component button. We will navigate to Physics-

>Rigidbody as in the figure.

Figure 15 Adding the Rigidbody component in the game object

-24-

• We will add or attach a new script similar to the Collectible object and

name it as BallController. We will move it to the Scripts folder and with

double click we will open and edit the code as in the Listing 2.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class BallController : MonoBehaviour

{

 Rigidbody rb;

 public float speed;

 // Start is called before the first frame update

 void Start()

 {

 rb=GetComponent<Rigidbody>();

 }

 // Update is called once per frame

 void Update()

 {

 float moveX=Input.GetAxis("Horizontal");

 float moveY=Input.GetAxis("Vertical");

 Vector3 dir=new Vector3(moveX,0.0f,moveY);

 rb.AddForce(dir*speed);

 }

}

Listing 2 Ball controller script

-25-

Some important notes on the script:

• A public variable speed is defined through which we can control how much

speed to add to the Ball object. Since it is public, this value can be set from

Unity IDE.

• The rb is used to link with Rigidbody component of the Ball object. This

connection is set on Start() event.

• On Update() event we check all the time if there is any input in the keboard

from the user. The Input object has a usefull method GetAxis which

requires a string input, with possible values “Horizontal” and “Vertical”. If

the first string value is used, than the Left and Right arrow from keyboard

will be checked. On the second string, the game will check if Up or Down

arrow from keyboard are pressed. GetAxis method returns -1, 0 or 1 as a

value depending if respective keys are pressed in the keyboard.

• moveX and moveY are used to define the direction vector of the pushing

force in the Ball object. Once the direction vector is defined, AddForce

method from Rigidbody component is used to define the pushing force

on the Ball. In this way, the motion of Ball object is determined by user

input.

Controlling the Camera

By default, the camera is fixed and it will not move from its current position. To

make the camera follow the Ball object, we will need to write a script for this

purpose. But, before we do this, the camera position and rotation angle need to

be adjusted. The camera will be lifted by 10 and tilted down for 45 degrees as

shown in the figure.

-26-

Figure 16 Setting the camera in the project

In Main camera we will add the CameraController script and we will update it as in

Listing 3.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class CameraController : MonoBehaviour

{

 Vector3 offset;

 public GameObject player;

 // Start is called before the first frame update

 void Start()

 {

 offset=transform.position-player.transform.position;

 }

 // Update is called once per frame

-27-

 void LateUpdate()

 {

 transform.position=player.transform.position+offset;

 }

}

Listing 3 The main camera controller script

An offset between the Ball object is defined and the same offset is preserved over

the time. So the camera position is updated all the time as the Ball position plus

the initial offset.

In script we have a public GameObject named as player. Since it is a public, in Unity

IDE we will have to make the link with the actuall Ball object and the player variable

in script. This is done by dragging the Ball object from Hierarchy and dropping in

the public component on selected camera script as shown in figure.

Figure 17 Linking the Ball with player object from camera script

-28-

Collision Detection

In the game, the Ball object should be capable of collecting the Collectible

GameObjects and show in UI text how many of them currently has collected. For

this purpose, we need to do the following settings:

• Select the Collectible prefab from Prefanbs folder, and on Inspector select

Tag component and Add Tag option as in figure. Define CollectibleTag and

set this value to the Tag component. Tags are very useful to identify an

object or a group of objects.

Figure 18 Defining tag for the Collectibe prefab object

• Update and extend the code in BallController script as in the listing below.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

public class BallController : MonoBehaviour

-29-

{

 public Text scoreText;

 int count;

 Rigidbody rb;

 public float speed;

 // Start is called before the first frame update

 void Start()

 {

 rb=GetComponent<Rigidbody>();

 count=0;

 }

 // Update is called once per frame

 void Update()

 {

 float moveX=Input.GetAxis("Horizontal");

 float moveY=Input.GetAxis("Vertical");

 Vector3 dir=new Vector3(moveX,0.0f,moveY);

 rb.AddForce(dir*speed);

 }

 void OnTriggerEnter(Collider other)

 {

 if(other.gameObject.CompareTag("CollectibleTag"))

 {

 other.gameObject.SetActive(false);

 count++;

 scoreText.text="Score: "+count.ToString();

 }

 }

}

Listing 3 The complete code in BallController script

-30-

• Since we will use UI element in the script, then UnityEngine.UI library needs

to be included in the script.

• A public Text variable named scoreText and a counter has been defined.

The first one will be linked with the UI text defined earlier, and the second

one will count how many collectible elements have been collected. The link

between scoreText and the UI CountText will be done as in the case of

camera and the Ball object.

• OnTriggerEnter will check and this event will be triggered if there is any

collision between the Ball object and any other object that has collider and

has checked IsTriger property. If the object with who collides has the tag

“CollectibleTag” then hide that object, and update the score appropriately.

Once the final steps have been completed, we need to run and test the project. We

see that the collectible elements rotate all the time, the Ball object moves and it is

controlled by keyboard inputs, the camera follows the intended object, collision

check work correctly and the score is updated as expected. Figure below shows the

project or the game in playing mode.

Figure 19 The project in playing mode

-31-

Building the Game

One of the great things in Unity is that it allows deploying the project to different

platforms, including mobile platforms and game consoles. To create a build of the

game, in top menu, we have to select File and Build Settings. A window as shown

in the figure will appear.

Figure 20 Build and run settings in Unity

We will add the open scene to be build and select all relevant parameters and click

the button Build And Rund. This will basically create and build a simple game in

Unity.

Unity support audio, animations, and a lot of other cool features, however they

have not included within the scope of this text.

External 3D Modelling Software and Tools

Unity allows to build simple 3D worlds as demonstrated earlier, but it has to be

underlined that Unity has limited capabilities in generating more complex 3D

models that form the basis of VR development. In many situations, Unity engine

-32-

can be considered as an intergral part of 3D content creation, yet it is not optimized

for the 3D modeling from scratch. Unity mainly supports the box modeling

approach or technique where the designer takes basic shapes such as the box,

sphere or the cylinder as a starting point and works along the process until the

desired model is complete. The process is straightforward and efficient, yet it is

difficult or impossible to achieve top-notch quality in this regard.

Therefore, when it comes to complex 3D modeling, a third – party modeling both

paid or free need to be considered. In general, currently Unity supports mashes

and animations from two different types of files:

• Files with extensions .obj or .fbx which are considered as generic exported

file format. These types of files are usually smaller that the equivalent

proprietary files and allow to be imported only part of the model, instead

of importing the whole model in Unity. They also encourage a modular

approach as it allows to use different components for collision or

interactivity.

• Proprietary files such as .max or .blend files. Besides the cost, such files are

generally not directly editable as well. These files can be edited, if

necessary only by the software that originally created them, such as

Autodesk 3ds Max or Blender.

Some of the best 3D modeling softwares around that can be used today are:

• Blender (https://www.blender.org/): it is a free and open-source 3D

modeling software that has been around for a while. It has a large

community of artists and other enthusiasts that supported its continous

development. It has become a software of choice for creation of virtual

reality content, interactive 3D content, animations, animated films and so

on.

-33-

Figure 21 A sample 3D modeling project created with Blender

(https://jakkijiji.artstation.com/projects/xzxzn1)

• Sketchup Free (https://www.sketchup.com/plans-and-pricing/sketchup-

free) advertises itself as a very simple 3D modeling tool with no strings

attached. Scetchup runs directly on web, has interoperability with different

image file formats such as JPG or PNG, and currently it offers 10 GB storage

for user projects and access to a numerous user-generated and

manufacturer-produced 3D models.

https://jakkijiji.artstation.com/projects/xzxzn1
https://www.sketchup.com/plans-and-pricing/sketchup-free
https://www.sketchup.com/plans-and-pricing/sketchup-free

-34-

Figure 22 The web interface of free sketchup

• Wings 3D (http://www.wings3d.com/) is a free, open source and cross

platform modeling tool that has been developed since 2001. The interface

may look a bit unusual, but it is user friendly and once accustomed, the

process of building models becomes straightforward based on polygons

and the smoothing technique adopted by the tool. Wings 3D offers a wide

range of modeling tools, supports lights and materials, however in current

version there is no support for animations.

http://www.wings3d.com/

-35-

Figure 23 Wings 3D a polygon modeler

Unity suppors proprietary 3D application files as well. Althoguh a licensed copy of

the software used must be installed on each machine that uses the Unity Project,

which consequently creates addional cost, some individuals and enterpresises may

consider such tools for creation of rich 3D models. Today, some of the best 3D

modeling paid-option softwares are:

• Autodesk Maya (https://www.autodesk.com/products/maya/overview) is

professional software and a standard for computer graphics disciplines,

which offer to artists unrivalled set of features and tools to deliver stunning

visuals. Although it is expensive and not easy to learn, a lot of artists rely

on Maya to create complex characters and worlds, and dazzling effects.

Maya offers vast features such as character animation, physics, realistic

effects and simulations ranging from explosions to cloth simulations.

https://www.autodesk.com/products/maya/overview

-36-

Figure 24 Overview of the Maya development environment

• Autodesk 3ds Max is another professional 3D modeling software that is

used to create premium designs. The tool is considered as easier to learn

compared to its sister software Maya, however it offers a wide range same

of capabilities, ranging from fluid simulations to character ragging and

animation.

• Cheetah 3D (https://www.cheetah3d.com/) is aimed for beginners or

medium artists designed for Mac platforms. It is easy to learn tool and it

offers an intuitive user interface and a wide range of tools for modeling,

rendering and animations.

The list presented in this section is far from definitive, and new tools may emerge

in near future. However, the foundation of every VR development relies on

modeling, especially on the 3D characters and worlds.

https://www.cheetah3d.com/

-37-

Asset Stores for Virtual Reality Development

Creation of 3D models and worlds for VR developments can be a daunting and

time consuming task. There is also a huge community that creates and shares game

and other type of assets which can be used to reduce costs, complexity and the

development time of virtual reality development.

Unity has its own asset store where large communities of people create and publish

various types of assets ranging from simple textures, models, animations, tutorials

up to complete projects. Developers have a huge catalog of assets at their disposal

to speed up the application or game development.

Figure 25 The Unity Asset Store

As the number of assets for VR development exceeds 500 in unity assetstore, some

of cool staff here that can be baught or find for free include VR hands models mega

pack, auto hand, VRIF (VR Interaction Framework) and many more.

Summary

This chapter introduces Unity as an effective environment to create virtual reality

applicatons or games. It explains the steps involved in setting up the development

-38-

environment and it explores the Unity interface through 5 main windows: the scene

view, the project window, the hierarchy window, the inspector window and the

game view.

VR mainly consists of the 3D objects and worlds, and the user engagement with

those elements through some natural way of interatctions. Unity offers some basic

capabilities of building 3D objects, such as planes, spheres, cubes and other regular

geometric shapes, yet it lacks more advanced capabilities to create more complex

worlds and dazzling effects.

Users seeking for professional 3D modeling capabilities, such as creating realistic

characters and effects, such as explosions or clothe simulation have to consider

external modeling softwares, both free or paid, such as Blender, Maya, Sketchup

and so on. A quick listing and overview of such tools is provided.

Finally, in certain situations, when we want to speed up the development process

or reduce the cost, stores such as Unity asset store may be considered to gain fast

access to a large catalog of simple textures, models, animations, tutorials and up

to complete projects. Once the VR world is created, the next important task is to

deal with the interaction of users in such context.

-39-

3
VR INTERACTIONS

VR development requires a user – centric approach to ensure enjoyable

experiences through interactions with the VR world in a natural way or close to it

as much as possible. As virtual objects and worlds are specific, a numerous specific

interaction techniques for VR have been developed.

Although there is no standard classification of interaction techniques for VR, they

broadly can support one of the three main actions:

• Selection

• Locomotion

• Manipulation

Interaction Techniques for Selection

In simple terms, selection enables the user to tell the system which object or user-

interface element wants to interact with. Once the object is confirmed to be

selected, it becomes the focus for further interactions.

Raycasting is the most common interaction technique used for selection of targets

at the distance. The user points a ray of light at the target and confirms its selection

with a button click, a motion guesture or a voice command. There are two

challenges with raycasting: accidental selection and occlusion. The first one occurs

due to intersection with other object while the pointer is moving toward the target

object, and the later one occurs when the target object is hidden behind another

object.

Gaze-based selection is another selection technique. The selection starts by

looking into the object and the selection is confirmed by an external controller

input or by dwelling into the object for some defined period of time. This approach

can be expensive and difficult to implement as will need eye tracking in a head-

mounted virual reality displays.

Gesture selection is another natural and efficient interaction method in the virtual

environment which can effectively express user demands for object selection. An

appropriate gesture interaction device such as data gloves will be required. Nearby

-40-

objects can be grabbed naturaly and user interaction with objects in virtual world

is more realistic.

Interaction Techniques for Manipulation

Once the virtual object is selected, the user may want to manipulate it. Some of

common manipulation action can include scaling, rotation or translation of these

objects. The choice depends on the available input controller’s capabilities. These

can range from simple scroll – wheel input controllers up to interaction systems

that are able to recognize more natural uestures such as pinch or stretch.

Interaction Techniques for Locomotion

Locomotion involves the use of controllers to enable the movement from one place

to another within a virtual reality environment. One problem when a user performs

locomotion in virtual world while being still in the real world is that it tends to

cause VR sickness.

There are different ways how to walk and run in VR worlds, yet on rails, gaze-

directed staring, teleport and real movement are more commonly used. On rails

the user movement is controlled by the system as like in a roll a coaster simulator.

However, this movement can be extended by allowing the user to look and

determine the direction they want to move through gaze directed steering. Gaze-

bazed or raycasting can be used also to teleport from one place to another one as

well.

Modern VR headsets can enable more intuitive locomotion such as real movement

as well, by simply walking around. This reduces vection, but yet it can increase the

risk of collision with real-world objects.

Implementation of specific interaction models is largely determined by the

capabilities offered by the available VR devices and the underlying development

software infrastructure. In the following sections, we will overview XR Toolkit which

is establishing as a new standard and Unity implements it as an input and

interaction software.

-41-

What is XR?

XR is an umbrealla term used to describe virtual reality, mixed reality and

augmeneted reality types of application. XR extends across these and future

immersive technologies to enable people not only to visit virtual environments, but

to engage in immersive experiences and to interact realistically with virtual entites

as in real life.

Unity works closely with different partners involved in XR development, to ensure

that developers will have the necessary tools to develop XR content that will be

supported by all platforms, such as Oculus, Play Station, Microsoft HoloLens and

other major players in the field.

Unity has developed a new XR plugin to integrate Unity engine to create XR

content that will support XR devices without having to modify the core engine.

XR Setting Configuration

The very first step in Unity projects that are enabled to use different XR interactions

is to install and configure the XR interaction toolkit. We need to use a software

package that provides simple managemtn of XR-plugins called XR Plugin

Management.

The installation can be initialized by going to Edit->Project Settings in Unity

environment as shown in the following figure.

-42-

Figure 26 Project Setting Options in Unity

The next step will be to select XR Plugin Management option located on the

bottom left of the new window, and click the button Install XR Plugin Management.

Figure 27 The Unity interface to install XR Plugin Management

-43-

After the installation process, the XR Plugin Management is changed to the options

provided below. Out of other options, the Open XR is selected.

Figure 28 The installation and configuration of Open XR plugin.

At the end of the process, a warning message similar to the one displayed down

may appear, and it will require to restart the Unity editor.

Figure 29 The warning window at the end of XR Plugin installation process

-44-

Open XR is an abstraction layer enabling high performance and open standard

access to different XR platforms and devices. This is essential to speed up the

development process as now developers can create cross-platform XR experiences

in a unified manner.

Figure 30 Open XR as an abstraction layer to cross-platform development

(https://www.khronos.org/openxr/)

XR Plug-in managaer will require to define an interaction profile as well, that is to

determine the type of headset you’ll be interacting with. In our case, we will

select Oculus Touch Controller Profile as shown in figure below.

https://www.khronos.org/openxr/

-45-

Figure 31 Setting up the interaction profile in Open XR

On the same window, the Renderer mode is changed from Single Pass to the

preferred Multi-pass options, which will renderer the Scene into two images

shown separately for each eye.

Installing XR Interaction Toolkit

The next step is to install the XR Interaction Toolkit, as it provides a framework that

makes 3D and UI interactions available from Unity input events. The installation

can be completed from the Package Manager from the Unity Window main menu.

The following steps should complete this process:

• Go to Window->Package Manager option

• Click on + sign located on the top – left corner of the window

• Select “Add package from git URL” option

• Write “com.unity.xr.interaction.toolkit” and click on Add button

-46-

Figure 32 Installing XR Interaction Toolkit

A warning window will appear and informe you that if you have an older XR

Interaction Toolkit version you should make a backup before updating to this

newer one. Click on “I Made a Backup” button of the window if you have a new

fresh project.

After installed, select the package and import the Default Input Actions as shown

below.

-47-

Figure 33 Importing Input Actions in XR Plugin Management

The Assets folder in the project tab should have additinal folders, such Samples,

XR and XRI.

In general, this is the daunting task that needs to be completed at the beginning,

so we have XR enabled project in Unity. In the following section, we will explain

through a simple example, how to create a simple 3D world by defining XR origin,

locomotion system and a grabbable object.

Scene Configuration

 Before we do any VR development and XR interactions, we will build a kind of a

floor and see what is going on the scene, and later we can setup the camera rig

and develop the rest of the elements.

We will use the plane 3D object to create the floor. By clicking on + sign on

Hierarchy, we can easily select 3D object category and then finally select Plane

option.

-48-

Figure 34 Creating the game floor

Now, we can setup the XR origin. The aim of the VR is to create immersive

experiences, and all the visual and audio experience, and the interactions happen

inside the VR device, such as Oculust Quest or Meta Quest.

In Unity, the camera and sound are attached to the XR origin. To create the XR

origin in Unity, we need to click on the empty space in hierarchy window and create

XR origin (action-based) game object.

-49-

Figure 35 Creating the XR origin

This step will not setup the head camera, but it will automatically add the

controllers. Both controllers have different actions, such as tracking, position action

and rotation action among other already configured. The XR Interaction Manager

game object that contains the script with the same name is automatically imported

in hierarchy as well.

Figure 36 The XR Origin with left and right controller

-50-

Once the steps above completed, the Unity editor is ready for checking if our

headset and hand controllers are identified by the Unity editor.

As we want to move around the scene, adding locomotion capabilities is easy. All

we have to do is to go to Hierarchy, right click and add a Locomotion System

(action-based).

Figure 37 Adding the locomotion system in Unity

We will configure the locomotion system for teleportation purposes. The simplest

solution will be to create teleportation area, and this area can be used to teleport

around. If we don’t define Teleportation Anchor, the Teleport Area will allow you

to teleport to any point on the plane. To create a teleportation area, we have to

right click on the empty part on the hirearchy, right click with the mouse and create

XR object Teleportation Area. The teleportation area will be the same size and

position as the plane, so basically the user can walk or move to any point of the

floor.

-51-

Figure 38 Creating a Teleportation Area in Unity

At the end we will create a grabbable object, namely a simple sphere object. The

interaction with this object is different of the teleportation. It will enable the user

to select and make the object interactable.

The following steps need to be followed:

• Create a Sphere object in hierarchy

• Change the Y position to 0.5

• Create a material in Asset folder and define the Albedo propery in red

colour

• Drag the material above the sphere in Scene to apply the material

• While the sphere is select in hierarchy, add a XR Grab Interactable

component in the inspector

When adding the XR Grab Interactable component to an object, it will

automatically add the physic componenet Rigidbody, so that we can pick up the

sphere object and interact with it in a physics-based way.

-52-

Figure 39 Adding the Grab Interactable component in the sphere object

For better performance, some parameter may be tunned. In this case, the

Movement Type value has been changed to Velocity Tracking, the Enable Smooth

Position and Rotation has been checked, and Collision Detection of Rigidbody

component has been changed to Continuous Dynamic.

-53-

Figure 40 Tunning the object interaction parameters

This steps will be sufficient to create a demo for creating a simple VR world based

on primitive Unity 3D objects with locomotion and object interactions.

Summary

Classical apps or games developed for PCs or tablets have a standardized set of

inputs which typically includes the keyboard, the mouse or some type of joystick,

and thus the ingteraction of users there is standardized as well. In contrast, VR

requires rich interactions for selection, manipulation and locomotion. Their

implementation is a key aspect to make VR compelling.

However, creating and tunning such interactions is a challenging and time

consuming task for developers. Here, we have explored the XR Interaction Toolkit

as a high – level, component based interaction system for creating VR experiences

which aims to speed up the iteration process, bringin more interactivity and

immersion to VR experiences.

-54-

Developers have to make critical decisions how the VR world is going to be

accessed and what type of interactions for users need to be enabled in such world.

But, such decisions are affected by the choice of hardware and the capabilities of

the tool for VR interactions. Natural interactions are essential, and XR interaction

toolkit forms a good basis for this purpose. Yet, other interaction tools are

developed and new one will emerge in the future, and they need to be evaluated

and maybe become a tool of choice in the development process.

-55-

4
WHAT’S NEXT?

The manuscript has been designed to offer an introduction to VR development

using Unity. The intention has been mainly to attract the attention from interested

parties not only to begin to understand the virtual reality, but to offer some basis

to create their own VR content and experiences as well.

There are a lot of important issues when developing for VR, both technical and

philosophical that need to be thought and worth considering. Some of them are:

1. Creation of immersive VR content can be daunting and time – consuming task.

On the other hand, the developer tools and the supporting hardware may come

with drawbacks and limitations. On top of this, as any other new or emerging

technology, the developer tools and the supporting hardware infrastructure has

high upfront cost. All these aspects may cause frustration at the beginning, yet as

the development tools will improve over the time and the cost of the technology

will decrease, we will see that the the VR technology will become more affrtable

and more widely adopted in different sectors.

2. VR sickness among developers and users. Among VR users, a new term known

as VR sickness has been coined. It is used to describe the negative physical effects

that VR utilization has over the users. Common symptoms include but not limited

to dizziness, disorientation, eye strain, and so on. Many hardware manufacturers

will use the term Interpupillary Distance (IPR) that refers to the relationship

between the distance of lenses on the headset and the distance between user’s

eyes. Headset manufacturers will usually include an IPR adjuster, as if IPR is not set

correctly, it may cause eye strain and discomfort. Although there is no cure to VR

sickness yet, there are some good practices and known techniques that can reduce

the likelyhood or avoiding sickness triggers.

3. Cybersecurity and data privacy. As many of VR content is consumed online and

through mobile devices as well, there is an increased concern about identity theft,

password stealing, data leackage, location tracking and all other security issues.

Developers must adhere to strong security policies and embed strong security

measures when create their VR apps, and ensure that user is protected and their

private data is secured. This will have also direct impact to increasing the adoption

rate and success of the VR technologies in the competitive market.

-56-

4. The VR can have also a philosophical dimension as well. Is VR real and if yes, how

real is it? The discussions and arguments usually are between two extreme views.

On one side, we have the most common view that cyberspace and virtual reality

are some type of consensual hallucination, and all what happens there is fictional

and not real. On the other side, an opposite view is presented and defended.

According to this view, virtual objects, avatars and virtual worlds are perceived and

considered a sort of genuine reality and what happens there is truly real. No matter

on the philosophical view, virtual reality is used as a catalyst for thought outside

the technological aspects and specifics, like raising questions about what we are

or what we choose to be.

-57-

REFERENCES

[1] Linowes, J. (2015). Unity Virtual Projects. Packt Publishing.

[2] Murray, J.W. (2020). Building Virtual Reality with Unity and SteamVR. CRC

Press.

[3] Unity. Unity Real-Time Development Platform (https://unity.com/).

[4] Unity Asset Store. Unity Asset Store - The Best Assets for Game Making

(https://assetstore.unity.com/)

[5] Home of the Blender (https://www.blender.org/)

[6] Sketrchup Free 3D modeling Software (https://www.sketchup.com/plans-and-

pricing/sketchup-free)

https://unity.com/
https://assetstore.unity.com/
https://www.blender.org/
https://www.sketchup.com/plans-and-pricing/sketchup-free
https://www.sketchup.com/plans-and-pricing/sketchup-free

-58-

