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ABSTRACT 
 
Human tolerance of chronic gravitational unloading, such as space-weightlessness, is 
reduced, in part, because larger animals are subjected to a much greater mass-related 
counter-gravity metabolic cost (CGMC), more specifically, enzyme-driven mass 
activity, that which powers & sustains life. Removing this component from the 
metabolic bottom-line leads to desynchrony between various interdependent 
metabolic reactions, as indicated by the basic, fundamental, metabolic life-equation 

which governs all biochemical reactions.1-6 On Earth, the CGMC1-G  contributes 35% 

& 10% to the minimum existential or basal metabolic rate (BMR) of a 100-kg human 
& 10-g mouse, respectively, due to the absolutely greater enzyme mass that comes 
with size; the non-linear discrepancy despite a 10,000-fold size difference is due to the 
lower pound-for-pound or mass-specific metabolic rate (MRS) of larger animals, here 
reduced to 1/12th. Furthermore, because elapsed (metabolic) time is just the inverse 
of MR per unit mass, a time-dose effect manifests so that the metabolic clocks become 
progressively more desynchronized & pathologies inevitably manifests.7-8 However, it 
is known that animals in a metabolic state of torpor, i.e., sub-BMR, can be rendered 
effectively immune to chronic unloading, even very large ones, e.g., hibernating bears 
tolerate up to 8 months of near-complete inactivity. Torpid states can so profoundly 
slow metabolic activity &, thus, biological times that animals appear as if metabolically 
down-sized & suspended in time, de-animated. Indeed, in this state many key 
pathways are temporarily decoupled, say, broken, &/or remodeled for greater 
protection, others are upregulated by the off-nominal exposure.9 This is not altogether 
surprising since the best way to protect an intricate metabolic machine is to temporarily 
Lego-like disassemble it. Indeed, since torpor is expressed in an extremely varied 
range of mammals & known to confer unmatched enhanced tolerance against a 
myriad of other major metabolic stressors, e.g., extreme acceleration/deceleration, 
thirst, starvation, isolation, confinement, inactivity, infection, intoxication (e.g., 
hypercapnia/oxia), hypoxia, hypo/hyperthermia, ionizing-radiation, darkness, 
decompression-illness, even time itself, if humans could express this state they might 
similarly manifest broad-spectrum biomedical protection, i.e., game-changer. 
Interestingly, because the CGMC contribution expands in torpor vis-à-vis the 
thermoregulatory burden, weightlessness should result in the most profound torpor &, 
thus, the most profound biological slowing & protection, it would transform 
weightlessness into a novel space-life-support resource that maximizes conservation 
of resource, including time, & well beyond what could be achieved on Earth, i.e., 
fortuitous given the extreme & austere environment; back-of-the-envelope calculations 
predict a biological time dilation factor of about 12, equivalent to what would be 

realized on reaching 99.5% the speed-of-light, as previously suggested.10 Now, the 
lowly physiological vitals of hibernating bears stand on par with that of similar sized 
breath-hold diving seals, an environment in which the CGMC is near-collapsed by 
buoyancy, leading some to suggest that “the bear may ‘dive’ into hibernation”, so that 
this strategy might be the long-suspected pathway that opens-up the possibility of 
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bear-like sustaining this state.10-15 Revealed here, seal/bear-like down-powered 
metabolic capabilities of some human breath-hold divers, including, a telltale 
constellation of classic physiological hallmarks that typify this state: spontaneous, 
ultra-fast & profound temperature-dependent & -independent sub-BMR, e.g., core-
body (brain) cooling.16 Efforts are presently geared towards determining the absolute 
depth & sustainability of this state.16 
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