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A New Perspective on the Cylindrical Antenna
Theory

Behailu Kibret,Member, IEEE, Assefa K. Teshome,Member, IEEE, and Daniel T. H. Lai,Member, IEEE

Abstract—This paper presents a new perspective on the anal-
ysis of the cylindrical antenna theory. It applies the cylindri-
cal surface waves on an infinitely-long cylindrical conductor,
which are similar to the Sommerfeld axial cylindrical surface
waves, to describe the conventional postulate of applying a
sinusoidal current distribution on a cylindrical dipole antenna.
This treatment leads to the derivation of simple expression for
the current on a cylindrical dipole antenna of finite conductivity,
which is in good agreement with the current obtained from
the three-term approximations. Also, it proposes an expression
for the current on an infinitely-long cylindrical dipole antenna
of finite conductivity, which is also in good agreement to the
current found from applying the Fourier transform technique.
Moreover, the paper shows that the complex propagation constant
used in the three-term approximation is similar to the complex
propagation constant of the principal Sommerfeld wave on the
surface of an infinitely-long cylindrical conductor. Therefore, a
more accurate representation of the current near the feeding
point is proposed based on the complex propagation constants
of multiple Sommerfeld waves.

Index Terms—cylindrical dipole antenna, three-term approxi-
mation, cylindrical surface wave.

I. I NTRODUCTION

T HE expression of the current on cylindrical antennas
has a long history with notable early contributors, such

as, Pocklington [1], Hallén [2] and R. W. P. King [3]. The
knowledge of the current on the antenna simplifies the cal-
culation of antenna parameters, such as, the input impedance
and far-field components. The calculation of the current is
usually carried out solving the Pocklington equation describing
the surface vector magnetic potential, which is related to
known source fields via boundary conditions. For a dipole
cylindrical antennas of finite conductivity, King approximated
the solution of this equation to express the current as the
sum of three sinusoidal functions [4]. On the other hand, for
infinitely-long and perfectly conducting dipole antenna, Hallén
[5] transformed a similar equation to the Fourier domain
and solved for the current as the sum of residues and a
convergent integral equation, which has a form of outgoing
traveling wave. As an alternative, in this paper, the general
form of the current on an infinitely-long cylindrical conductor,
which is excited by a rotationally symmetric external electric
field, is determined as a standing wave and travelling wave.
Since the electric field on the surface of a delta-gap and
center-fed dipole antenna is rotationally symmetric, the general
form of the current derived for the cylindrical conductor is
used in the Pocklington equation. This approach leads to the
expression of the vector magnetic potential as a product of the

The authors are with the College of Engineering and Science, Victoria
University, Footscray Campus, VIC 3011, Australia.

current and a constant, for both the finite and infinitely-long
dipole antennas. The definition of the magnetic vector potential
simplifies the solution of the Pocklington equation to derive
simple expressions for the current. The simple expressions
derived are in good agreement with the current obtained from
the three-term approximation and from the Fourier transform
technique for the case of infinitely-long dipole antennas.

The technique used in this paper also shows that the
complex propagation constant used in the three-term method
is similar to the complex propagation constant of the principal
wave of the Sommerfeld axial cylindrical surface waves [6].
Moreover, it is known that the analytic approximation methods
available today, such as the three-term approximation [4],
are not accurate at describing the current near the feeding
gap. As reported in [11], for conducting cylinders the higher
order of the Sommerfeld surface waves attenuates rapidly. This
suggests that the current near the feeding point can be more
accurately described if multiple Sommerfeld waves are used.
Consequently, we propose a more accurate form of the current
near the feeding point.

The paper is organized as follows. Firstly, the fields on the
surface of an infinitely-long cylindrical conductor, which is
excited by an incident rotationally symmetric axial electric
field, are expressed. Also, from the expression of the surface
electric and magnetic fields, the surface impedance per unit
length of the cylinder is defined. Applying the boundary con-
ditions of the magnetic fields, the general form of the induced
axial current is defined as a traveling wave and a standing
wave. In the following section, the standing wave general
form of the current is applied in the standard Pocklington
equation of a finite size, imperfectly conducting, and delta-
gap excited cylindrical dipole antenna. From this equation,
the complex propagation and coefficients of the current are
defined. Following this, the traveling wave general form of the
current is applied to the Pocklington equation of a delta-gap
excited and infinitely-long cylindrical dipole antenna of finite
conductivity, which is also used to define the complex propa-
gation constant and the coefficient of the exponential function
used to express the current. Lastly, from the comparison of
the complex propagation constants to Sommerfeld poles, an
expression of the current near the feeding point of a dipole
antenna is proposed based on multiple Sommerfeld poles, for
both types of dipole antennas.

II. F IELDS ON AN INFINITELY-LONG CYLINDRICAL

CONDUCTOR

This section expresses the axial electric field, current den-
sity, surface impedance per unit length and the axial current on
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an infinitely-long cylindrical conductor of finite conductivity
when it is excited by a rotationally symmetric electric field
on its surface. These expressions are used to describe the
axial current in a finite and infinitely-long cylindrical dipole
antennas that are excited by delta-gap electric field source, in
the following sections.

Assuming a rotationally symmetric and time harmonic
(ejωt) external electric field is maintained on the surface of
an infinitely-long and circular conducting cylinder of radius
a, conductivityσ, relative permittivityǫ and permeabilityµ0,
which extends along thez-axis of a system of cylindrical
coordinates (ρ, φ, z), the magnetic vector potential inside
A1 = A1z (ρ, z) ẑ + A1ρ (ρ, z) ρ̂ can be written, from the
Maxwell’s equations in Lorenz gauge, as

∇2
A1 + k21A1 = 0 (1)

wherek1 =
√

−jωµ0(σ + jωǫ0ǫ). Since all the magnetic or
electric field components can be obtained from either of the
two components ofA1z (ρ, z), we assumedA1ρ (ρ, z) = 0.
Therefore, expanding the vector identity∇2

A1 = ∇∇ ·A1−
∇×∇×A1 in cylindrical coordinates and substituting it into
(1) gives the following equation:

∂2A1z (ρ, z)

∂z2
+

1

ρ

∂

∂ρ
ρ
∂A1z (ρ, z)

∂ρ
+ k21A1z (ρ, z) = 0. (2)

The solution for (2) can be obtained by the method of
separation of variables, such thatA1z (ρ, z) can be written
as

A1z (ρ, z) = g(z)G(ρ). (3)

Substituting (3) in (2) yields the equation

1

g(z)

∂2g(z)

∂z2
+ k21 = − 1

G(ρ)

1

ρ

∂

∂ρ
ρ
∂G(ρ)

∂ρ
. (4)

It can be seen that the left side of the above equation is a
function of z and the right side is a function ofρ; thus, the
two sides can be equal if both of them are equal to a constant.
Denoting the constant byυ2

1 and expressing it asυ2
1 = k21−γ2

so that
∂2g(z)

∂z2
+ γ2g(z) = 0 (5)

and
1

ρ

∂

∂ρ
ρ
∂G(ρ)

∂ρ
+ υ2

1G(ρ) = 0. (6)

The expression in (5) is the well known one dimensional
wave equation that has a solution of a traveling wave in a
lossy medium given asg(z) = C1e

±jγz or the standing wave
representation asg(z) = C2 (sin(γz) + C3 cos(γz)), where
C1, C2 andC3 are arbitrary constants. From the wave equation
of g(z), γ is the complex propagation constant that can be
described asγ = β − jα, whereβ is the phase constant and
α is the attenuation constant.

Equation (6) can be written in terms of a new independent
variablex = υ1ρ as

∂2G
(

x
υ1

)

∂x2
+

1

x

∂G
(

x
υ1

)

∂x
+G

(

x

υ1

)

= 0, (7)

which is a Bessel equation with known solutions. One of
the solution for the expression in (7) isG(ρ) = C4J0(υ1ρ),
where J0 is the zeroth-order Bessel function andC4 is an
arbitrary constant. The Bessel function was chosen so that
the vector potential is non-zero at the center of the cylinder.
Consequently, the magnetic vector potential can be written as

A1z (ρ, z) = G (ρ) g (z) = C4J0 (υ1ρ) g (z) . (8)

Assuming the induced total axial current isI(z), from
Ampere’s law, the magnetic flux densityB2φ(a, z) on the
surface of the cylinder can be written as

B2φ (a, z) =
µ0I (z)

2πa
. (9)

From the expression of the magnetic vector potential, the
magnetic flux density inside the cylinder can be expressed
as

B1φ (ρ, z) = −∂A1z (ρ, z)

∂ρ
= C4υ1J1 (υ1ρ) g (z) (10)

where J1 is the first-order Bessel function. Defining the
arbitrary constantC4 as

C4 =
µ0

2πaυ1J1 (υ1a)
(11)

and applying the magnetic field boundary conditions at the
surface of the cylinder; the magnetic flux density at the surface
of the cylinder can be written as

B1φ (a, z) = B2φ (a, z) =
µ0g (z)

2πa
=

µ0I (z)

2πa
, (12)

which implies that
I (z) = g (z) . (13)

Equation (13) expresses the induced total axial current when
the cylinder is excited by a rotationally symmetric electric
field on the surface of the cylinder. Furthermore, if we are
interested in a traveling wave current, it is expressed as

I (z) = C1e
±jγz. (14)

On the other hand, if we are interested in a standing wave
form of the current, it can be expressed as

I (z) = C2 (sin(γz) + C3 cos(γz)) . (15)

The electric field inside the cylinder can be found from the
vector magnetic potential using the relationship

E1 =
−jω

k21

(

∇∇ ·A1 + k21A1

)

. (16)

From (16), the axial component of the electric fieldE1z (ρ, z)
can be derived as

E1z (ρ, z) =
jω

k21

1

ρ

∂

∂ρ
ρ

(

∂A1z (ρ, z)

∂ρ

)

= −jω
υ2
1

k21
A1z (ρ, z)

=
I (z) υ1

2πa(σ + jωǫ0ǫ)

J0 (υ1ρ)

J1 (υ1a)
. (17)

And the volume current densityJ1z (ρ, z) can be derived as

J1z (ρ, z) = (σ+jωǫ0ǫ)E1z (ρ, z) =
I (z)υ1
2πa

J0 (υ1ρ)

J1 (υ1a)
. (18)
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Thus, the surface impedance per unit length of the cylinderzi

can be defined as

zi =
E1z (a, z)

2πaH1φ (a, z)
=

E1z (a, z)

I (z)

=
υ1

2πa(σ + jωǫ0ǫ)

J0 (υ1a)

J1 (υ1a)
(19)

whereH1φ (a, z) is the magnetic field intensity on the surface
of the cylinder.

III. D ELTA-GAP EXCITED FINITE CYLINDRICAL DIPOLE

ANTENNA

When we consider a finite length cylindrical dipole antenna
of height2h, radiusa, conductivityσ, relative permittivityǫ,
permeabilityµ0, with axis aligned along thez-axis, and center-
fed by a delta-gap electric field source located atz = 0, the
current at the ends of the cylinder has to be zero. Consequently,
we expect the current to be even symmetric with respect to
z = 0 and form a standing wave with a general expression
similar to (15). Therefore, since the current vanishes atz = ±h
and evenly symmetric with respect toz = 0, for 0 < |z| ≤ h,
it can be expressed as

I (z) = C2 [sin(γ|z|)− sin(γh) +C3(cos(γz)− cos(γh))] .
(20)

The axial surface electric field atz = 0 is the delta-gap
electric field source that is defined as

E1z(a, z) = −V0δ(z) (21)

where V0 is the electromotive force (emf) applied on the
infinitesimal gap atz = 0. Since the electric field source at
z = 0 is rotationally symmetric, we expect the surface axial
electric field on the rest of the cylinder is also rotationally
symmetric. Therefore, from the expression in (19), the surface
axial electric field can be expressed as

E1z(a, z) = ziI(z), 0 < |z| ≤ h. (22)

As a result, the axial magnetic vector potential on the surface
of the cylinderA2z (z) due to the surface axial electric field
can be related as

ziI(z)− V0δ(z) =
−jω

k22

(

∂2

∂z2
+ k22

)

A2z (z) (23)

wherek2 = ω
√
ǫ0µ0 is the free space wave number. Also,

the vector magnetic potentialA2z (a, z) can be related to the
volume axial current densityJ1z (ρ, z) expressed in (18) as

A2z (a, z) =
µ0

4π

h
∫

−h

a
∫

0

2πJ1z(ρ
′, z′)K(z − z′)ρ′dρ′dz′

=
µ0

4π

h
∫

−h

I(z′)K(z − z′)dz′ (24)

whereK(z − z′) is the thin-wire approximate kernel defined
as

Kap (z − z′) =
e−jk2

√
(z−z′)2+a2

√

(z − z′)2 + a2
. (25)

From the above expressions, the standard Pocklington equation
can be written as

(

∂2

∂z2
+ k22

)

h
∫

−h

I (z′)K(z − z′)dz′

=
j4πk2
η0

(

I (z) zi − V0δ (z)
)

(26)

whereη0 = 120π is the free space impedance.
For |z| > 0, from the boundary conditions of the electric

field and the magnetic field on the surface of the cylinder, and
from the expression of the vector magnetic potential in (8),
the boundary conditions for the vector magnetic potential can
be written as

A2z (a, z) = −k22
υ2
2

υ2
1

k21
A1z (a, z) =

1

jω

k22
υ2
2

ziI (z) (27)

whereυ2
2 = γ2 − k22 . From the expressions in (24) and (27),

the following relation can be obtained

h
∫

−h

I (z′)Kap (z − z′) dz′ = ΨI (z) , 0 < |z| ≤ h (28)

whereΨ is a constant, which is defined as

Ψ =
j4πk2
k22 − γ2

zi

η0
. (29)

The relationship in (28), implies that the thin-wire kernel can
be approximated as

Kap (z) ∼ Ψδ (z) , (30)

which also implies thatΨ can be approximately computed as

Ψ ∼
h
∫

−h

Kap (z)dz. (31)

Therefore, the left-hand side expression in (26) can be simpli-
fied, replacing the expression of the current in (20), as

2γΨC2δ (z)+
(

k22 − γ2
)

ΨI (z)

− γ2ΨC2 (sin (γh) +C3 cos (γh)) . (32)

Equating the terms in the above expression with that of the
right-hand side of (26), the complex propagation constantγ
can be obtained as

γ = k2

√

1− j4πzi

k2Ψη0
, (33)

which can also be determined from (29). The complex prop-
agation constantγ (33) can be calculated by applying the
iteration procedure. First, the iteration is initialized by setting
γ = k2 and calculatingzi, which is used to calculateγ
iteratively until it converges. We have seen that such iteration
converges after a few cycles.

Similarly, the constantsC2 andC3 can be calculated as

C2 =
−j2πk2
γΨ

V0

η0
(34)
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and

C3 = − tan (γh) . (35)

Therefore, the axial currentI(z) can be written as

I (z) =
j2πk2

γΨcos (γh)

V0

η0
sin (γ (h− |z|)) (36)

The accuracy of the expression for the current in (36) is
validated by comparison with the current obtained from the
three-term approximation, which is obtained by approximately
solving the expression in (26) and involves an approximation
of the thin-wire kernel integral shown in (28). Kinget al [4]
derived the three-term expression of the axial current as

I1z (z) =
j2πk2

γΨdR cos(γh)

V0

η0
[sin γ(h− |z|)

+TU (cos γz − cos γh)+TD(cos
1

2
k2z − cos

1

2
k2h)

]

(37)

and

γ = k2

√

1− j4πzi

k2ΨdRη0
(38)

where the factorΨdR and the coefficientsTU andTD involve
the numerical computations of eight integrals. The calculation
of γ also applies the iteration procedure; the iteration is
initialized by settingγ = k2 to calculate the initial values ofzi

andΨdR. For very thin-wire dipole antennas, the expression
in (36) is a good approximation to the three-term expression
given in (37), as shown in Fig. 1. The three-term expression
is valid for 0 ≤ k2h ≤ 5π/4; thus, the values ofh within
this range are used for comparison. As shown in Fig. 1(a),
the two expressions are in good agreement with differences
start to appear as the height decreases. Fig. 1(b) shows
that the contributions of the two cosine terms in the three-
term equation is insignificant, which supports the agreement
between the proposed expression in (36) and the three-term
expression (37).

IV. D ELTA-GAP EXCITED INFINITELY-LONG

CYLINDRICAL DIPOLE ANTENNA

When we consider an infinitely-long cylindrical dipole
antenna of radiusa, with similar dielectric properties as the
finite one, that is excited with a delta-gap electric field source
at z = 0, the general form of the current is expected to be an
outgoing travelling wave similar to the one given in (14), but
with a little modification to take into account the presence of
infinitesimal gap atz = 0. Thus, the current can be defined as

I (z) = Iz0e
−jγ|z|, |z| > 0, (39)

whereIz0 is the current near the infinitesimal gap. Similar to
the finite case, the vector magnetic potentialA2z (a, z) on the
surface of the cylinder can be described as

A2z (a, z) =
µo

4π

∞
∫

−∞

I (z′)K (z − z′) dz′ (40)
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Fig. 1. Comparison of the proposed current expression with that of the three-
term expression for a cylindrical dipole of radiusa = 0.001 cm and skin-depth
to radius ratio of 0.1 at 400 MHz. (a) Compares the current in (36) (broken
line) to the three-term expression (37) (solid line) for the half-lengthh of 0.4,
0.3 and 0.1 m. (b) Compares the first sinusoidal term (broken line) and the
complete three-terms (solid line) in (37).

where the kernelK (z − z′) can either take the exact form,
which is given as

Kex (z − z′) =
1

2π

π
∫

−π

e−jk2

√
(z−z′)2+4a2 sin2(φ′/2)

√

(z − z′)2 + 4a2 sin2 (φ′/2)
dφ′,

(41)
which has a solution given in [7], [8] or the approximate form
given in (25).

Replacing the expression of the current into the integral in
(40), for z > 0, the vector magnetic potential can be obtained
as

A2z (a, z) =
µo

4π
I (z)

∞
∫

−∞

K (x) ejγxdx =
µo

4π
I (z) K̄ (γ)

(42)
where x is a dummy variable used for the integration and
K̄ (γ) is the Fourier transform of the kernel evaluated at the
complex propagation constantγ. For |γ| > k2, the Fourier-
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transform of the exact kernel is given in [9] as

K̄ex (γ) = 2I0 (υ2a)K0 (υ2a) (43)

and for the approximate kernel as

K̄ap (γ) = 2K0 (υ2a) (44)

where K0 and I0 are the modified Bessel functions; and
υ2 =

√

γ2 − k22 is defined previously in (27). Moreover, for
z < 0, A2z (a, z) has the same expression as (42) sinceK̄ (γ)
is an even function. Consequently, for|z| > 0, applying the
boundary condition of the vector magnetic potential on the
surface of the cylinder given in (27), the complex propagation
constant can be expressed as

γ = k2

√

1− j4πzi

k2K̄ (γ) η0
, (45)

which can be computed applying a similar iteration procedure
as the finite case. The iteration can be initialized by setting
γ = k2 + ε to computezi andK̄ (γ), whereε is a very small
number. Then, the value ofzi andK̄ (γ) is used to calculate
γ. This continues until the value ofγ converges. As shown in
an example below, this iteration is highly convergent.

In order to express the axial current completely, we need
to determineIz0. The differential equation relating the vector
magnetic potential and the axial electric field on the surface of
the cylinder, which is given in (23), can be solved by applying
Green’s functionF (z) satisfying the relation

(

∂2

∂z2
+ k22

)

F (z) = 2k2δ (z) . (46)

Thus, the vector magnetic potential can be expressed as

A2z (a, z) =− j
k2
2ω

[

C4 cos (k2z) + V0 sin (k2|z|)

− zi
∞
∫

−∞

I (q)F (z − q) dq
]

(47)

whereC4 is an arbitrary constant andq is a dummy variable
used for integration. By choosing the Green’s functionF (z) =
2 sin(k2z)u(z) with the unit step functionu(z), theA2z (a, z)
can be expressed forz > 0. Also, taking the limit of (47) as
z approaches zero from the right side,C4 can obtained as

C4 =
2k2z

iIz0
γ2 − k22

. (48)

Replacing the expression ofA2z (a, z) in (42) in (47), taking
the Laplace transform on both sides, and evaluating it at the
Laplace domain variables = 0, it can be simplified as

V0

k2
− 2ziIz0

jγk2
=

η0K̄ (γ) Iz0
2πγ

, (49)

which can be used to obtainIz0 as

Iz0 =
2πk2
γK̄ (γ)

V0

η0
. (50)

Then, the current on an infinitely-long cylindrical dipole
antenna can be expressed as

I (z) =
2πk2
γK̄ (γ)

V0

η0
e−jγ|z|. (51)

In order to validate the accuracy of the axial current
expression in (51), we compared it to the current obtained
from the Fourier transform method. The Pocklington equation
for the infinite case can be written as
(

∂2

∂z2
+ k22

)

∞
∫

−∞

I (z′)K (z − z′) dz′

=
j4πk2
η0

(

I (z) zi − V0δ (z)
)

.

(52)

Taking the Fourier transform of both sides, the above equation
can be written as

(

k22 − ξ2
)

Ī (ξ) K̄ (ξ) =
j4πk2
η0

(

Ī (ξ) zi − V0

)

(53)

whereĪ (ξ) is the Fourier transform of the current. Taking the
Inverse-Fourier transform of the above expression, the current
can be obtained as

I (z) =
j4πk2
2π

V0

η0

∞
∫

−∞

e−jξ|z|

Z (ξ)
dξ (54)

where

Z (ξ) =
(

ξ2 − k22
)

K̄ (ξ) + j4πk2
zi

η0
. (55)

Following the technique proposed by Hallén [10, p. 451], the
integral in (54) is simplified to a form suitable for computation
as the sum of a convergent branch cut integral and a sum of
residues

I (z) =
∑

n

In (z) + Ibc (z) (56)

where

In (z) = 4πk2
V0

η0

e−jξn|z|

Z ′ (ξn)
(57)

whereZ ′ = ∂Z/∂ξ and ξn is thenth root of Z when zi in
(19) is defined withυ1 =

√

k21 − ξ2. Also, the branch cut
integral, taking the exact kernel, can be written as

Ibc (z) =
2k22
jπ

V0

η0

∞
∫

0

{

dt
t√

t2 − 1

×
[

e−k2

√
t2−1|z|

−k22t
2J0 (ak2t)H

(1)
0 (ak2t) + 4ωǫ0zi

− e−k2

√
t2−1|z|

k22t
2J0 (ak2t)H

(2)
0 (ak2t) + 4ωǫ0zi

]}

(58)

whereH(1)
0 andH(2)

0 are the Hankel functions.
The integrand in (54) has poles atξn, which are sometimes

called Sommerfeld poles. Note that the surface field compo-
nents described in section II, which are directly proportional
to the axial current, are similar to the axial cylindrical surface
waves discussed by Sommerfeld. According to Stratton [11,
p. 530], the function (55) has multiple roots that represent the
propagation constants of multiple Sommerfeld waves. Also,
for conducting cylinders, the higher order waves attenuates
rapidly; therefore, it is sufficient to keep the principal wave,
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TABLE I
COMPARISON THE PROPAGATION CONSTANTγ TO ξ1 GIVEN IN [12] FOR
THE FREQUENCY OF300 MHz AND RADIUS a = 0.01 cm. δs/a IS THE

SKIN-DEPTH TO RADIUS RATIO.

δs/a γ ξ1 [12]

1 6.3564 − j0.3762 6.3580− j0.3765
0.5 6.3556 − j0.1122 6.3572− j0.1122
0.25 6.3247 − j0.0488 6.3262− j0.0488

which is represented by the first poleξ1. From solving the first
rootξ1 of (55), it can be seen thatξ1 is equal to the propagation
constantγ we derived in (45). Therefore, the current can be
written as

I (z) = Ires (z) + Ibc (z) (59)

where

Ires (z) = 4πk2
V0

η0

e−jξ1|z|

Z ′ (ξ1)
= 4πk2

V0

η0

e−jγ|z|

Z ′ (γ)
. (60)

Table I shows a comparison of the propagation constantγ
we calculated using (45) to the first rootξ1 of (55) that is
given in [12], which describes the admittance of infinitely-
long cylindrical dipole antenna with magnetic frill excitation.
The iteration used to calculateγ converged at the fourth cycle.

Figure 2 shows the comparison of the current calculated
using (51) to the one obtained by applying the Fourier trans-
form technique in (59), for an infinitely-long cylindrical dipole
of radiusa = 0.01 cm at 400 MHz. Different conductivities
of the dipole are compared by taking different skin-depth to
radius ratiob = δs/a; the conductivity can be obtained as
σ = 2/(ωµ0δ

2
s). As shown in Fig. 2(a), the two expressions

tends to be different near the gap orz = 0 due to the
contribution of the branch cut integral for smallz. But they
are in good agreement for larger values ofz. Moreover, it also
shows that the two expressions are in excellent agreement for
lower conductivities. From looking at the expression ofIres
in (60) and the current in (51), it might look like our derived
current approximates the residual currentIres. But, from the
comparison of these expressions in Fig. 2(b), it can be seen that
(51) is more closer to the total current (59) than the residual
current.

The three-term expression in (37) is derived based on the
condition that0 ≤ k2h ≤ 5π/4. This implies that, for large
h, the three-term expression is not accurate. The accuracy of
the expression proposed for finite cylindrical dipole in (36) is
assessed by comparing the current in long cylindrical dipole
antennas to the current on a lossy infinite cylindrical dipole
antenna. Fig. 3 compares the current on a dipole antenna
of half-length h = 10 m computed with (36) and (37) to
the current computed using (59), forb = δs/a = 1 and
radius of 0.01 cm. As expected the current from the three-
term approximation has ripples due to the numerical integrals
involved. But, the current from (36) and (59) are in excellent
agreement suggesting that the expression in (36) is valid for
electrically long lossy cylindrical dipole antennas.

From the comparison of the complex propagation constant
for the case of the proposed current on finite cylindrical dipole
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Fig. 2. The current calculated on infinitely long dipole of radiusa = 0.01
cm and at 400 MHz, (a) Comparison of the current calculated from (51), the
broken line, to from (59), the solid line, for case of different skin-depth to
radius ratios represented byb (b) Comparison of the currentIap from (51)
to the currents in (59)
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Fig. 3. Comparison of the proposed current for finite dipole (36), the three-
term approximation (37) and the infinitely-long dipole (59). The finite dipole
has a heighth = 10 m, radiusa = 0.01 cm andb = δs/a = 1; and the
infinite dipole has the same radius and conductivity.
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antenna (33), the three-term (38), and the infinitely-long dipole
antenna (45) shown in Table II, it can be seen that the complex
propagation constants used for the finite cylindrical dipole
antennas are similar to the complex propagation constant of the
principal Sommerfeld surface wave. It is known that one of the
limitations of the analytical expressions of the current, such as
the three-term approximations, is they are not accurate near the
feeding point of the dipole antenna. One of the factors of these
limitations is the use of a single propagation constant of the
principal wave in the expression of the current. But, very close
to the feeding point (the gap), the higher-order waves also
contribute. Therefore, a better approximation of the current
near the feeding point should include all the propagation
constants of the multiple Sommerfeld surface waves. Thus,
the current near the feeding pointIz0 for the finite dipole
antenna can be expressed as

Iz0 = lim
z→0

I (z) =
V0

η0

j2πk2
Ψ

∑

n

tan (ξnh)

ξn
(61)

and for the infinitely-long dipole antenna

Iz0 = lim
z→0

I (z) =
V0

η0
2πk2

∑

n

1

ξnK̄ (ξn)
(62)

whereξn is thenth Sommerfeld pole calculated as thenth root
of the expressionZ (ξ) = 0 in (55). The above expressions can
be applied to calculate the antenna admittance. Alternatively,
the expression ofZ (ξ) = 0 can be rewritten as

ξ2 − k22

(

1− 1

ak21
P (ξ)

)

= 0 (63)

where

P (ξ) =
υ1I0 (υ1a)

I1 (υ1a) I0 (υ2a)K0 (υ2a)
, (64)

which was derived based on the identity of the Bessel functions
that In (x) = (j)−nJn (jx). In this case, the variablesυ1 and
υ2 are defined as

υ1 =
√

ξ2 − k21 and υ2 =
√

ξ2 − k22 . (65)

A method to find the multiple Sommerfeld poles is discussed
in [11, p. 527]. The fields of a transverse magnetic (TM) mode
discussed in [11] are similar to those discussed in section II
of this paper. According to the discussion in [11], from the
boundary conditions of the TM mode, the following relation
can be obtained

k21
υ1a

I1 (υ1a)

I0 (υ1a)
= − k22

υ2a

K1 (υ2a)

K0 (υ2a)
, (66)

which can be used to rewrite the expression in (63) as

I0 (u)K1 (u)u− 1 = 0 (67)

whereu = υ2a is a complex argument. The roots obtained
ξn must satisfy (67). For example, for highly conductive
cylinders, the principal rootξ1 is close tok2; this implies that
the first rootu is very small. Therefore, taking the asymp-
totic expressionsI0(u) ∼ 1 and K1(u) ∼ 1/u, the above
equation can be satisfied. Moreover, the propagation constants
calculated from (33), (38) and (45) satisfy (67). For metallic

TABLE II
COMPARISON OFγ/k2 FOR THE CASE OF PROPOSED CURRENT ON A

FINITE CYLINDRICAL DIPOLE ANTENNA , THE THREE-TERM, AND FOR THE

INFINITELY-LONG DIPOLE ANTENNA, FOR THE FREQUENCY OF300 MHz
AND RADIUS a = 0.01 cm. FOR THE FINITE ANTENNAS, THE

HALF -LENGTHh = 0.4m IS TAKEN.

δs/a γ/k2 (45) γ/k2 (33) γ/k2 (38)

0.1 1.0024 − j0.0027 1.0038 − j0.0025 1.0034− j0.0036
0.25 1.0062 − j0.0075 1.0095 − j0.0069 1.0083− j0.0096
0.5 1.0111 − j0.0179 1.0177 − j0.0160 1.0148− j0.0212
1 1.0112 − j0.0599 1.0306 − j0.0570 1.0182− j0.0682

1.5 1.0114 − j0.1376 1.0536 − j0.1277 1.0242− j0.1498

conductors, the value of the higher order rootsξn are very
large so that their contributions in (61) and (62) are negligible.
But, as conductivity of the cylinder decreases, the higher order
roots start to take over and with contribution of the principal
wave vanishes for the case of dielectrics. For example, for an
infinitely-long cylinder of radiusa = 0.01 cm and conductivity
of 100 S/m, at 300 MHz,ξ1 = 52.6365− j62.4109, which is
much larger than obtained for metallic conductors.

V. REMARKS ON THE COMPUTATIONAL COMPLEXITY

The main objective of the paper is to present a new
perspective of the cylindrical antenna theory by defining the
general form of the current from an infinitely-long cylindrical
conductor that is exposed to a rotationally symmetric wave. We
also showed that such analysis leads to the derivation of simple
and reasonably accurate expressions for the current in finite
and infinitely-long cylindrical dipole antennas that have finite
conductivities. In addition to accuracy, the derived expression
reduces the computational effort to compute the current. For
example, implementing the computations on Matlab, the CPU
time required to compute the current on the finite dipole
antenna using the three-term approximation method at 400
MHz, radius=0.001 cm, and skin-depth to radius ratio of 0.1,
is 3.66 times more than that of our proposed expression.
Also, for the case of the infinitely-long antenna and similar
conditions, the CPU time required to implement the Fourier
Transform technique is 13.02 times more than that of our
proposed approach.

VI. CONCLUSION

The fields on the surface of an infinitely-long cylindrical
conductor, when it is excited by a rotationally symmetric
incident electric, were used to analyse imperfectly conducting
cylindrical dipole antennas of finite and infinite lengths. Gen-
eral forms of the induced current derived from the infinitely-
long conductor were used to simplify the solutions of the Pock-
lington equations involved. Consequently, simple expression
of the current for both finite and infinite cylindrical dipole
antennas were proposed. The proposed expressions for the
current were validated by comparison with the current obtained
from the three-term approximation method, for the case of the
finite dipole antenna, and the current obtained from applying
the Fourier method, for the case of the infinite one. The results
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showed that the currents are in good agreement. Moreover,
from the comparison of the complex propagation constants, an
expression for the current near the feeding gap was proposed
based on multiple Sommerfeld poles.
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