Easier Asynchronous Chip Design

April 2025

Ron Lavallee
You Know Solutions LLC
Belgrade, ME USA
ronl@youknowsolutions.com

Key Terms — FloPro: Microsoft DOS based PC industrial control software
Flowpro Software: Windows based PC hobbyist control software
Flowpro Machine: Patented asynchronous parallel hardware implementation of Flowpro Software

Before considering a new asynchronous design flow one
might ask “why hasn’t asynchronous Chip design become
mainstream?” Microsoft Copilot and OpenAl ChatGPT [1]
responses are basically the same: Complexity, Tools and
Support, Standardization, Awareness & Performance, Cost &
Efficiency Trade-Offs and Market Inertia. It’s a very
reasonable assessment by Al that’s easy to agree with. Any
fresh asynchronous design flow that replaces the existing
design flow would need to address all of these assessments.

I propose that research communities look into combining
parallel systems design and asynchronous circuits as a
research area. Task parallel systems is another way to reduce
power in chips because tasks only run when they are needed.
When implementing massively parallel systems, asynchrony
has advantages over synchrony.

Parallel asynchronous systems have been slow to arrive
probably because they are difficult to program and hard to
build. Implementing a one million task parallel architecture
chip using a synchronous design will be daunting. Clock
routing and gating in particular along with functional
decomposition will be very hard. On the other hand you
might say that asynchronous implies parallel as well as clock-
less. Asynchronous design is a natural fit for parallel systems
chip design. There is a big advantage to not using a clock
with massively parallel systems. Power savings would be
significant but alone it won’t be enough. A software and
hardware system is needed to take the advantages of a
parallel architecture and asynchronous circuit design to
casily build lower power systems. That system is called a
Flowpro Machine, a parallel asynchronous propagation
machine.

The Al assessment asserts what many believe, asynchronous
Chip design is just harder to do and managing all of the
handshaking is one of the reasons. A Flowpro Machine is an
event model that is built with parallel decision flowcharts
using asynchronous block circuits. With the combination
asynchronous circuits and a Flowpro Machine the ‘value
proposition’ now becomes; lower power, easier design flow
and true parallel execution.

A Flowpro Machine is a propagation flow based
computational machine and a common software and
hardware approach to parallel asynchronous chip design and

implementation. Flowpro machines support both state-less
and state-full design models. Design entry is via parallel,
hierarchical decision flowcharts (Fig. 1) that are synthesized
to parallel, asynchronous hierarchical flowchart circuit
constructs. Each flowchart circuit construct is traceable to a
design entry flowchart block. Flowpro Software is used for
design entry of parallel flowcharts. The flowcharts are
compiled to an object file which can be downloaded to a
Turing machine for multitasking (concurrent) execution or
compiled and synthesized for an FPGA (Field Programmable
Gate Array) or in the future an FPFA (Field Programmable
Flowpro Array).

A Flowpro Machine works by propagating multiple decision
flowcharts simultaneously and starting functions as the
parallel propagations proceed. The graphic decision
flowcharts (Fig. 1) consists of 2D Enable, Control and
Decision blocks which are low-level symbols that can be
combined and encapsulated into higher-level 3-D symbols
called Action, Test and Task objects. A 3-D flowchart object
(Fig. 1) indicates that there are additional flowchart
structures behind the 3-D object. A Flowpro Machine project
is an assembly of parallel flowcharts and Task objects
constructed in a hierarchical fashion. After constructing the
flowcharts the blocks and objects are ordered (numbered)
according to the flow lines with an algorithm that attempts to
order all blocks higher than any block leading to it. Ordering
defines all of the Atomic Paths on all flowcharts. An Atomic
Path is a sequence of only ascending numbered blocks. After
the system throughput time has been determined an Atomic
Time parameter can be applied to guarantee throughput
requirements for a Flowpro Machine system. Atomic Time is
defined as the maximum time allowed to propagate an
Atomic Path. When a flowchart is enabled, i.e. started, a
propagation signal flows out of the Enable Block and follows
the flowline. The leading edge of this signal triggers
flowchart block functions without stopping as they are
encountered. Once a flowchart begins propagating it is
always propagating somewhere until the flowchart is
disabled. Spiking signals (Fig. 3) are used to initiate and
terminate flowchart functions (Start, Abort, Outputs, etc.).

In a Flowpro Machine, Action Objects and Test Objects are
referred to as Recall Objects and each represents an
encapsulation of a portion of a flowchart (Fig.1). Recall

objects do not contain any flowline loopbacks within the
object encapsulation. Placing a Recall object on a flowchart
is equivalent to expanding the contents of the Recall object
in the flowchart between the object entry and exit points. A
Task Object, also referred to as a Reason Object, can have
flowline loopbacks and is equivalent to a flowchart in
construction. A Task Object cannot be the top level of a
Flowpro Machine project hierarchy. A flowchart is always
the project top level of the project hierarchy. Task objects can
be controlled and monitored from flowcharts and objects.
The Task Object controls (Fig.3) are: ‘Start’ (begin, resume
operation after a stop), ‘Restart’ (begin, resume operation
from the beginning of the Task Object), ‘Stop’ (pause
operation), ‘Abort’ (disable task operation), and monitoring
is: ‘Done’ (task complete) and ‘Running’ (task operation
enabled). When a task object is ‘Done’, the calling flowchart
or Task Object has the option to abort or not to abort the
called Task Object. When a Task Object is ‘Done’, all task
objects called by this Task Object will continue to run. When
a Task Object is aborted, all task objects called by this task
object will be aborted. This is an automatic function that is
handled by hardware and a signal called Hierarchy Abort. A
flowchart that becomes disabled will abort all of the Task
Objects in that flowchart’s project hierarchy. This is a
powerful and simple means to control when various portions
of circuitry are idle or running, thereby saving power.

A demonstration software utility for converting Flowpro
Machine flowcharts to Verilog code for FPGA execution has
been written. The utility (FM2VU) provides a basic Verilog
design of flowchart blocks and objects and their hierarchy of
execution. Flowcharts that comprise a Flowpro Software
project are compiled and downloaded to disk. Compiling the
flowcharts ensures that the project is error-free and ready to
run. The utility then reads this file and translates it to Verilog
code. The FPGA manufacturer’s development system is used
to synthesize (Fig. 2) and download to the FPGA chip.
Flowpro Software and Flowpro compatible MCU and 1/O
can be used for application behavioral debug.

A good example of a Flowpro Machine that shows hierarchy
and power saving is a parallel 8-bit adder (Figs 1 - 3). The 8
bit adder flowchart circuitry is defined by a Task Object
called “FM — 8BA 8-Bit Adder”. A Flowpro Machine project
was created using Flowpro Software and saved to disk. This
disc file was then used by the FM2VU to produce Verilog
code that was manually loaded into an Intel Quartus
development system and downloaded to an Altera Cyclone V
FPGA for demonstration. The adder consists of 19 parallel
propagating tasks, one flowchart and 18 Task Objects.
Adding more bits to the addition width would only require
adding more parallel flowcharts and have very a little effect
on throughput. All 4 bit partial-sums (carry in = 0 and = 1)
are calculated in parallel. Each partial-sum Task Object
flowchart ‘Start’ an individual Task Object flowchart

indicating ON status for each bit of the four per partial-sum.
When the partial-sum tasks are ‘Done’, the status of the carry
outs for bits 0-3 is known and the partial-sums that are not
valid for the current addition are aborted. A read command is
generated and processed only by the ON Task Object
flowcharts that are running.

The fact that the Flowpro Machine discussed above is
patented should not hold back Flowpro propagation
technology. A Flowpro Machine falls under the US Patent
10,181,003, “Processing Circuits for Asynchronous
Modeling and Execution”. The patent defines an
asynchronous propagation computational machine that is
decision graph based with common software and hardware
function processing. So how can academia do research into a
Flowpro Machine? US Patent 10,181,003 is a US only patent
meaning there can’t be claims against those developing,
researching or using the patented technology outside of the
United States. For those within the United States and wish to
do research into the patented technology we can provide a
document that releases any intellectual property claim
against a researcher or Institute, as long as there isn’t any
commercialization of devices within the United States that
incorporate the patented technology. The document further
states that a researcher or Institute will seek a license before
commercializing Flowpro Machine devices. Our intent is to
foster the infrastructure that is needed to advance
propagation flow technology.

Is a Flowpro Machine (FM) its’ own computational
machine? I believe it is, but a mathematical proof does not
exist, yet. A Flowpro Machine can implement a Turing
Machine but a Turing Machine can only simulate a Flowpro
Machine. If you are a researcher or someone interested in
doing a ‘deep dive’ and a Flowpro Machine paper, we will
support you. We will provide the FP2VU, Flowpro Software
and our expertise to help you with your evaluation. I am
hoping that this paper will enlighten and foster research into
asynchronous propagation machines and specifically a
Flowpro Machine.

If you always do what you’ve always done, you’ll always get
what you always got!
C5 Corvette development team

[1] Microsoft Copilot & OpenAl ChatGPT,
“Why hasn’t asynchronous chip design become
Mainstream?”, January 22, 2025

[2] US Patent 10,181,003, “Processing Circuits for Parallel
Asynchronous Modeling and Execution”, January 15,
2019, Ronald J Lavallee, Thomas C Peacock

[3] You Know Solutions LLC,
https://youknowsolutions.com, documentation

[814

Flowpro Machine Flow
“8 Bit Adder”

ject

to an Obje

High Level F\owchar\s

i\e
— o Softwareé

File

+ (Test_11-6) FPGA Hrdwr 8 Bt Adder Apr142024
&% 0: FM-8BA 8 Bt Adder Control
-4 CrSumLEDs SelOtherAddData
Clear Sum Bits 0-7
Load Byte A 255
Load Byte A 32
Load Byte B 64
Load Byte B 128
1: Output Sum to Verilog LEDs
2: FM 8BA 8 Bt Full Adder

>

' —

Using FloWe'

fcO_startblk2 start Task Output_Sum_to_verilc

?-ooule fco_startdlk2 (input fcO_clock, fcO_ctiblkl_6_out, 7<o <tlblu 9_out,

output fco_ startbik2 spk, fcO_ sunblkz out):

reg fco startblk2_Ql, fcO_startblk2_ D2, fcO, sunblkz_qz

assign fcO_startblk2_out = fcO_ctiblkl_6_out A fcO_ctlblkl_9_ out
assign fco_surtblkz_sgk tfco_startblk2 Q2 & f(o_sunblkz_out.
alwags @(posedge fco_clock or negedge fcO_startblk2_out)

egin
if (fcO_startblk2_out == 0)
begin
fco_startblk2_Ql <= 03
fcOo_startblk2_Q2 <= 0;

fcO_startblk2_Ql <= fcO_startblk2_out;
fco_startblk2_Q2 <= fcO_startblk2_Ql;

end
endmodule

fcO_decblk3 1-4 OFF
g-odule 1c0_decblk3 ("vut fco clock, fnput 4, fcO_startblk2_out,

output fco_ d«blk! out_yes, fcO_decblk3_out_no,output_8):
reg fcO_decblk3_0FFl1_Q, fcO_decblk3 _DFF2_Q, fcO_decblk3_OFF

assign fcO_decblk3_test_ena = fcO_startblk2_out A fcO_decblk3_out_no;
assign fcO_decblk3_test = fcoO_ c«bln_o“z_o & fcO_decblk3_test_ena;
assign fcO_decblk3 criteria = ~input_

alwags O(posedge fcO_clock or negedge uo decblk3 _test_ena)

H (fcO_decblk3_test_ena == 0)
begin
fcO_decblk3 _0FF1Q <= 0;

00

&)@ Clear Sum & Bt Canry Flags
Clear Sum Bts 0-7
Clear Bt Cany Flags
Abort Invalid Partial Sums
3: Bits0-3Cin0 SumAndCanyAddr
7:Cin0 Bt Ois ON Tsk Obj
8:Cin0 B 1is ON Tsk Obj
9: Cin0 Bt 2is ON Tsk Obj
10: Cin0 Bt 3is ON Tsk Obj
=30 4: Btsd-7 Cin0 SumAndCanyAddr
11:Cin0 Bt 4is ON Tsk Obj
12: Gin0 Bt 5is ON Tsk Obj
13:Gin0 Bt 6 is ON Tsk Obj
14: Cin0 Bt 7is ON Tsk Obj
=3 5: Bts4-7Cin1 SumAndCanyAddr
15:Cin1 Bt 4is ON Tsk Obj
16:Cin1 Bt 5is ON Tsk Obj
17:Cin1 Bt 6is ON Tsk Obj
18:Cin1 Bt 7is ON Tsk Obj
$o 6: Read Adder Value

I s FRRSISSIERE v 5 Translate Flowpro Software Object File to Verilog
& e “boqﬁn <

fcO_decbIk3_0FF1_Q <= fcO_decblk3_test_ena;
fc0. decbIk3 _0FF2.Q <= fcO_decblk3 _0FF1 Q:

end
l]-lgi ¢(posedge fcO_decblk3_test or negedge fcO_decblk3_test_ena)

egin
if (fcO_decblk3 _test_ena == 0)
begin

fcO_decblk3 _0FF3.Q <= O3
fcO_decblk3_0FF4_Q <= O3

else

(o] begin

fcO_decblk3 _0FF3_Q <= fcO_decblk3 criteria;
fcO_decblk3_0FFd4_Q <= ~fcO_decblk3_criteria;

Using Flowpro Machine to Verilog Utility FM2VU

Synthesize Verilog Code to RTL

end
assign fcO decblk3 out_no = fcO_decblk3 _oFFé_Q:
assign fcO decblk3 _out_yes = fcO_decblk3 _0FF3 Q:
assign output_8 = fcO_decblk3_out_no;
endmodule

FM Flow Pg 1 of 3

Using FPGA Vendor's Software

AL

Data Entry
and Bit Carry
Flags

Three 4 Bit Adder
Task Objects

>. Summations ¢ B Addex
3 Control . .
0 Carry Flags Flowchart Flowpro Machine 8 Bit Adder
*8 Bit Add
— \\ \ Task Objeec: RTL
Y \ \\ I Flowchart
e —0 . | II%— Monitor Points
—T3 T
L: o \
0—
| rj= \ \ S ti Output Sum t :
T x X ummation utput Sum to
‘|=._ Ti ===“==i- | : Results Flags VeriFI,og LEDs
=1 } = o0 Task Object
- r I Task :Objectls - * 8:‘:2‘:};6:
'==— | t] il - 4 .
; = t 2L ||| ' J | %
%-‘] l I ._::::;,:r L.::g | ‘ﬂ J ﬁé
'_.. : ; ! LE. : 3
N 3 . %—!§ - | = 00— o i
sl == ._Iu- H
_. =4 :l I 1 . I _=a_.
—{ If :h "‘.\ - _l L - .
_.iJL o 41 | | | Read Ad.der Value | —. 1 —l L .
— i Task Object _I
a
S E— = 0
= —4
= = Ll

FM Flow Pg 2 of 3

¢ 1

i a0 Vi 405 Flowpro Machine 8 Bit Full Adder <4—— 'Start Task Object Splke

‘Start’ ‘Abort’ ‘Done’ Task Control_Spikes Tree - ll-lieraw};;s’;bon" spﬁ&““
FM 8BA S Bnt Adder Control 44— Task 'Done’ Signal
Hierarchy Rules

Start Spike - Begins operation of a Task Object - Continues operation of a task object that is Stopped (paused) - Has no effect

FoAEA Bt £ Ao on a Task Object that is currently running
”" ‘a Abort Spike - Disables a Task Object and resets it to the Task Object Enable bubble
/ o Hierarchy Abort Spike - Occurs when an upper-level flowchart or Task Object is Aborted (disabled), thereby aborting all Tasks
— Fa Objects under it (chain of Task Objects)
/ = \ Done Signal - A Task Object is Done when the Task Object reaches the Task Done structure of the Task Object - A Task Done
/, is a user function that is application dependent. For instance, Task Object 1 is Started and runs continuously until it is Aborted
Dune /
Task Obj 4 Task Obj 5
Bitad-7 Cin=0 SumAndCarryAddr Bits4-7 Cin=1 SumAndCarryAddr
g
_________ FA-mm -
0
Task Obj 7 Task Obj 11
Cn0 Bt 0 s ON Tsk Obj —— Cin0 Bit 4 is ON Tsk Obj
\a NS

nOBnSisONTskObj

Cn0 B 1 5 O Tk O
\1 \.

&5 2 FM8BA 8 Br Full Adder
- @9 Cear Sum & Bt Cany Flags
Gear Sum Bes 0-7

Cear Bt Cary Rags Task Obj 9 Task Obj 13
£500 Fand Fal S G0 Bit 2 5 O Tek Ob) Cin0 Bit 6 15 ON Tek Obj
3: Bes0-30n0 SumAndCanyAdde
7:Cn0 B¢ 0is ON Tsk Oty e
8 Cn0 Bt 113 ON Tak Oty
9:Cnl Bt 218 ON Tak Oty i
10:Cn0 B2 31 ON Tek O}
e S ey ot T o
g .3 " . " s p .
12:Cn0 Bt Sis ON Tk Oty &~ Cin0 Bit 7is ON TskObj Cin1 Bit 7 is ON Tsk Obj
13:Cn0 Be 613 ON Tk Oty

14:Cn0 B¢ 7is ON Tak Oby
& 3o 5: Bsd-70n1 SumAndCanyAddr
15:Cn1 B2 4is ON Tek Oby
16:Cn1 B2 5is ON Tek Oty
17:Cn1 82 615 ON Tok Oty
18:Cn1 Bt 7is ON Tek Oty Figure 3 of 3

D 6 Read Adder Vaue

