
Pharmacological Investigations of the
PolC-type DNA polymerase III of the Human

Gut Microbiome

BY
JACOB K. MCPHERSON

A DISSERTATION PRESENTED TO
THE DEPARTMENT OF PHARMACOLOGICAL AND PHARMACEUTICAL SCIENCES

UNIVERSITY OF HOUSTON COLLEGE OF PHARMACY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE SUBJECT OF
PHARMACEUTICAL SCIENCES

COMMITTEE CHAIR: KEVIN W. GAREY
COMMITTEE CO-CHAIR: TAHIR HUSSAIN
COMMITTEE MEMBER: ASHOK KUMAR

COMMITTEE MEMBER: JULIAN G. HURDLE
COMMITTEE MEMBER: MATTHEW L. BAKER

UNIVERSITY OF HOUSTON
HOUSTON, TEXAS

MAY 2025

https://orcid.org/0000-0001-5486-4945
https://orcid.org/0000-0003-2063-7503
https://orcid.org/0000-0002-6353-2317
https://orcid.org/0000-0001-8571-2848
https://orcid.org/0000-0003-2214-8105
https://orcid.org/0000-0001-9039-8523


©2025 – JACOB K. MCPHERSON
ALL RIGHTS RESERVED.

https://orcid.org/0000-0001-5486-4945


FOR THE LOVE OF MY LIFE, MICHELLE – YOU ARE MY WORLD, YOU ARE MY SUNSHINE.

ii



Acknowledgments

M. JAHANGIR ALAM, for his mentorship and guidance in clinical microbiology.

KHURSHIDA BEGUM, for her mentorship and guidance in molecular biology.

EUGÉNIE BASSÈRES, for her mentorship and guidance in antibiotic biochemistry.

iii

https://orcid.org/0000-0002-2145-4103
https://orcid.org/0000-0001-9465-1100
https://orcid.org/0000-0001-8569-3931


Thesis advisor: Professor Kevin W. Garey Jacob K. McPherson

Pharmacological Investigations of the PolC-type DNA polymerase
III of the Human Gut Microbiome

ABSTRACT

Broad-spectrum antibiotics that deplete the commensal bacteria of the human gut microbiome can

leave a host organism susceptible to pathobionts through the loss of mechanisms collectively referred to as

colonization resistance. The principal infectious disease that takes advantage of the antibiotic-mediated

loss of colonization resistance, Clostridioides difficile, is also treated with antibiotics that may further

harm and limit the recovery of these commensal microbiota, often leading to recurrent C. difficile infec-

tions (rCDI). Thus, the development of narrow-spectrum antibiotics for the treatment of Clostridioides

difficile infection (CDI) that spares the commensal microbiota is a challenge at the crossroads of the hu-

man gut microbiome and antimicrobial resistance. One antibiotic target that has a phylogenetically re-

stricted evolution is the PolC-type DNA polymerase III alpha-subunit (PolC), the essential, catalytic sub-

unit of the Bacillota DNA replisome. Critically, the polC is devoid from the genomes of Actinomycetota,

Bacteroidoidota, and Pseudomonadota, other bacterial phyla that comprise a large proportion of the hu-

man gut microbiome, making the PolC an attractive drug target for narrow-spectrum antibiotic develop-

ment The small molecule competitive inhibitor of the PolC, ibezapolstat (IBZ), has entered clinical tri-

als for the treatment of CDI. However, the impact of IBZ, a selective PolC inhibitor, on the human gut

microbiome remained uncertain. While we observed orally administered IBZ was associated with an in-

creased relative abundance of polC−Actinomycetota in healthy adults, we curiously observed an increased

polC+Lachnospiraceae and Oscillospiraceae in adults with non-severe, non-recurrent CDI. Furthermore, we

associate the abundance of these bacterial taxa with alterations in microbial bile acid biotransformation,

a key mechanism of colonziation resistance to CDI. I hypothesized the observed increased abundance of

Lachnospiraceae and Oscillospirace was due to phylogenetically distinct variations in the IBZ-binding

pocket of PolC that decreased their antibiotic susceptibility, elevating their abundance in the human gut
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microbiome during oral IBZ treatment of CDI. Using genomics and microbiology, I associate the Lach-

nospiraceae and Oscillospiraceae reduced susceptibility to IBZ with their naturally occurring amino acid

substitutions near the IBZ-binding pocket of their PolC not found across the majority of the Bacillota phy-

lum. Furthermore, these non-synonymous mutations are not found in publicly available genomes of glob-

ally circulating C. difficile. Together, these findings suggest IBZ for the treatment of CDI will not only

inhibit the growth of C. difficile, but also restore colonization resistance via increased abundance of Lach-

nospiraceae- and Oscillospiraceae-mediated bile acid metabolism.
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Preface

I am the product of my father’s social experiment to create a clinician-scientist through early child-

hood exposure to medical drama and science-fiction pop-culture. From an early age I was exposed to ed-

ucational and entertaining media such as Bill Nye, the Science Guy (1993-1999), the Crocodile Hunter

(1996-2004), House M.D. (2004-2012), Iron Man (2008), The Big Bang Theory (2007-2019), Contagion

(2011), and the Martian (2015). What you may observe from this list is the absence of a specific direction

towards any one of the four realms of science, technology, engineering and medicine (STEM). This was

not by design, but rather my natural inclination. Following my college studies of biology, life steered me

towards a particular topic of great interest to me that is more relevant than ever today – infectious diseases.

I find a deep sense of purpose and meaning in the reduction and elimination of infectious diseases, not only

to help those suffering today, but also to protect those who may face these threats tomorrow and forever on.

I chose to study Clostridioides difficile infection (CDI) for its burden, and scientific position at the

intersection of the antimicrobial resistance crisis and the human gut microbiome revolution. This work

highlights my efforts in The Garey Lab studying the PolC inhibitor, ibezapolstat (IBZ), a Gram-positive se-

lective spectrum (GPSS) antibiotic in development for the treatment of CDI through a microbiome-sparing

mechanism. Although not new to the literature, I grew to appreciate the critical role of the ’unculturable’

microbiota, Lachnospiraceae and Oscillospiraceae, for their protective role in biotransformation of host-

derived bile acids and fermentation of dietary fiber to short-chain fatty acids (SCFA) against CDI.

xi



I initially set out to determine the intra-Bacillota differences in PolC structure and function using

electron cryogenic microscopy (cryo-EM) and rapid quench flow (RQF) enzyme kinetics. In particular,

a focus would be given to the PolC of C. difficile, Clostridium leptum (representative species of Oscil-

lospiraceae), Blautia coccoides (representative species of Lachnospiraceae). However, I stumbled many

times at both trivial and non-trivial wet-lab steps. I recommend trainees seek mentors with direct hands

on experience, and not attempt to accomplish these difficult methods on their own. I have learned through

these failures the importance of experience in mentorship of scientists.

In light of these setbacks, I sought a different path: rather than focus on data generation, I sought

to focus on data analysis. I reasoned this shift from upstream to midstream effort was still aligned with

Ackoff’s model of data ⇒ information ⇒ knowledge ⇒ wisdom. I initially struggled to move beyond

the experimental foundations of Receptor Theory into areas not traditionally taught to pharmacists or phar-

macologists, such as genomics, metagenomics, and metabolomics. Over time, as I identified my strengths,

I became less constrained by these artificial boundaries between biological disciplines, focusing instead

on the structure and visualization of data. Accordingly, throughout this document it can be assumed that

my direct experimental contributions were minimal. My primary responsibilities lay in data analysis—

curating both public and private datasets, writing and sharing reproducible code, and generating figures

and datasets. This shift reflected a natural adaptation of my strengths and limitations to the needs and con-

text of the study.
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Chance favors the prepared mind.

– Louis Pasteur

1
Introduction

Clostridioides difficile infection (CDI) 1–83 is the quintessential infectious disease at the in-

tersection of the human gut microbiome84–183 and the antimicrobial resistance crisis. 184–225 The obli-

gate anaerobe,226–228 C. difficile, is a toxigenic,229–257 biofilm-producing,258–298 spore-forming,299–311

Gram-positive312,313 pathobiont that germinates in the bile acid-rich upper duodenum,314–322 and exploits

the antibiotic-mediated depletion of commensal and symbiotic microbiota that otherwise confer host-

protective mechanisms referred to as colonization resistance.323–407 The current guideline-recommended408

antibiotics for the treatment of CDI, vancomycin408–439 and fidaxomicin,440–465 have their limitations in-

cluding the clinical efficacy of the former, the cost of the latter, and the early warning signs of resistance

to both.466–484 To address these concerns, continued investment into narrow-spectrum antibiotic develop-

ment is warranted. To this end, the Centers for Disease Control and Prevention designates C. difficile as an

Urgent threat.75 However, the World Health Organization has failed to designate toxigenic C. difficile as a

bacterial priority pathogen, raising concerns that investments in narrow-spectrum therapeutic development

are sub-optimal.83,184 Together, these concerns have renewed the public call for investment into narrow-

spectrum antibiotics that spare (or even – restore) the human gut microbiome in the treatment of CDI.73

One particular target for the development of narrow-spectrum antibiotics is DNA replication. Al-

though fluoroquinolones inhibit the DNA gyrase of bacteria upstream of the DNA replication fork, they are

clinically considered broad-spectrum, associated with massive microbiome disruption, and have a highly

1



evolvable target, the gyrA-encoded DNA gyrase subunit A.485 On the other hand, the essential catalytic

subunit of the DNA replisome, the DNA polymerase III α-subunit (Pol III), has a few fundamental features

for the development of narrow-spectrum antibiotics.486,487 While most bacteria conduct template-directed

DNA synthesis via the DnaE-type DNA polymerase III alpha-subunit (DnaE) encoded by the genes dnaE1,

dnaE2, or dnaE3, a limited number of bacteria, including the Bacillota to which C. difficile belong, uti-

lize the PolC-type DNA polymerase III alpha-subunit (PolC) encoded by the polC (formerly dnaF) gene.

The evolutionarily distinguishing feature between the PolC and DnaE is the insertion of a dnaQ homolog

(ε-subunit) within the polymerase and histidinol phosphatase domain of a dnaE in what is referred to as

the ”ancient dnaE hypothesis.”488 Critically, this ancient genetic event predates the radiance of bacteria,

thus limiting the polC to Bacillota, Fusobacteriota, and Mycoplasmatota; importantly, it is not found in the

genomes of Actinomycetota, Bacteroidota, or Pseudomonadota. Finally, not only is the PolC distinct from

the DnaE, it is more highly conserved at functionally critical residues – indicating a more precise machine

less tolerant to amino acid substitutions from non-synonymous mutations.489

As a consequence of the phylogenetically restricted evolution of the polC, the pre-clinical devel-

opment of PolC-selective inhibitors led to the small molecule compound, ibezapolstat (IBZ, ACX-362E,

7-MorEDCBG), to be further evaluated for its candidacy as a therapeutic drug for the treatment of CDI

that may spare the microbiota. Critically, IBZ is microbiologically active against Bacillota, including

C. difficile, and inactive against polC− Bacteroidota, Actinomycetota, and Pseudomonadota. However,

there exists not only pathogenic/pathobiont but also commensal/symbiotic polC+ Bacillota that are critical

mediators of colonization resistance to CDI. Specifically, polC+ Bacillota sub-taxa – Lachnospiraceae

(Clostridium cluster XIVa, or [Cl. coccoides] group) and Oscillospiraceae (formerly Ruminococaceae,

Clostridium cluster IV, or [Cl. leptum] group) are critical mediators of colonization resistance to CDI via

microbial biotransformation of host-derived bile acids and fermentation of dietary fiber to short-chain fatty

acids that inhibit C. difficile growth and CDI recurrence. Because these host-protective families of bacte-

ria, Lachnospiraceae and Oscillospiraceae, were historically referred to as the unculturable microbiota,

they were not previously characterized for their susceptibility to IBZ. To address this scientific gap in the

literature and unmet medical need, we identify the changes of the human gut microbiome associated with

2



orally administered IBZ for CDI, with attention to the Lachnospiraceae and Oscillospiraceae that play a

critical role in bile acid biotransformation.

Bacterial DNA Replication

DNA replication is the fundamental biological process that ensures the accurate transmission of

genetic information across generations of daughter cells for the inheritance of the central dogma of biol-

ogy.490–493 The earliest discoveries of enzymes that coordinate DNA replication were conducted in bac-

teria, including the model Gram-negative bacterium, Escherichia coli. For instance, in 1956, Arthur Ko-

rnberg discovered the first DNA polymerase capable of enzymatic DNA biosynthesis in E. coli, which

he named DNA Polymerase I (Pol I) shared with Severo Ochoa the 1959 Nobel Prize in Physiology or

Medicine.494–497 In 1970, Thomas Kornberg (Arthur Kornberg’s son) and Malcolm Gefter discovered

the DNA Polymerase II (Pol II) and Pol III, also in E. coli.498–500 For these reasons, Arthur Kornberg is

generally considered the father of DNA replication.501 In parallel to the discovery of Pol I, Pol II, and Pol

III from E. coli, that of the model Gram-positive bacterium, Bacillus subtilis, were identified by Gass and

Cozzarelli.502 Eventually, the discovery of several types of DNA polymerases with nuanced differences

led to their classification into families – A, B, C, D, X, and Y – based on phylogenetic sequence differ-

ences that confer their distinct structures and functions.503–505 Eventually, subtle differences between Pol

III of E. coli,506 B. subtilis,507 and Staph. aureus508 would spark further curiosity into their subtle differ-

ences in structure and function. The Pol III would later be classified as a C-family DNA polymerase and

recognized as the catalytic alpha (α)-subunit of the bacterial DNA replisome.509

It’s important to remember these DNA polymerases do not function in isolation, but rather as a

subunit of a larger multi-subunit ”machine of machines” known as the DNA replisome.510–513 Due to the

importance of high fidelity DNA replication, the components of the DNA replisome are present across the

tree of life.514 The DNA replisomes of bacteria generally consist of either 12 or 13 subunits that begin

their assembly at a single position on a bacterial chromosome, referred to as the OriC. The α (alpha) sub-

units of bacterial DNA replisome, the DNA-directed DNA polymerases (often simply referred to as DNA

3



polymerases), enzymatically incorporate nucleotides in (5’ -> 3’) leading- and (3’ -> 5’) lagging-strand

DNA synthesis; the β2-clamp (beta-clamp) re-anneals newly synthesized DNA strands to their template,

forming the double-stranded DNA (dsDNA) duplex; the τ3δδ’ (gamma-complex, or clamp-loader complex

[CLC]) loads the beta-clamp onto the DNA replisome and is comprised of 3:1:1 stoichiometry of subunits τ

(tau), δ (delta), δ’ (delta-prime); the ε (epsilon) proofreading exonuclease stabilized by the θ (theta) subunit

is bound to the α subunit for the removal of misincorporated nucleotides; accessory subunits ψ (psi) and χ

(chi) that mediate interactions with single-stranded binding (SSB) proteins on the lagging-strand trumbone

of single-stranded DNA (ssDNA); DnaB (DNA helicase) separates dsDNA and forms the classical ”repli-

cation fork;” DnaG (DNA primase) is a DNA-directed RNA polymerase that de novo synthesizes Okazaki

fragments515 to provide the essential 3’ hydroxyl primer for a lagging-strand DNA synthesis. However,

while the DNA replisomes differ considerably across different branches of life in their components, assem-

bly, and function, they generally possess the essential catalytic subunit, the DNA polymerase.509

The PolC-type DNA Polymerase III alpha-subunit

The evolutionary history, divergence, and phylogenetic distribution of Pol III plays an essential

role to the development of GPSS antibitoics. In E. coli strain K12, the Pol III is an 1,160 amino acid protein

encoded by the dnaE gene.516–518 Likewise, there exists a dnaE gene in B. subtilis that encodes a Pol III of

comparable sequence, structure, and function: the dnaE gene of B. subtilis strain 168 encodes a 1,115 amino

acid Pol III that also performs 5’ – 3’ (forward) DNA synthesis, but lacks 3’ – 5’ proofreading exonucle-

ase activity.519 However, unbeknownst to researchers at the time was the ancient evolutionary divide be-

tween E. coli of Pseudomonadota and B. subtilis of Bacillota: the polC gene of low-GC, Gram-positive

bacteria (Bacillota) encodes a second essential Pol III with a distinguishing dnaQ homolog insertion

within the polymerase and histidinol phosphatase (PHP) domain.520–524 The polC-encoded PolC was

identified in related low-GC, Gram-positibe bacteria, including Staphylococcus aureus525 Enterococcus

faecalis,526 Streptococcus pyogenes,527 and Clostridioides difficile. To distinguish these two Pol IIIs, I

choose to use their gene – protein nomenclature: dnaE – the DnaE-type DNA Polymerase III alpha-subunit

4



(DnaE); polC – the PolC-type DNA Polymerase III alpha-subunit (PolC).528

The earliest works in the PolC-type DNA polymerase III alpha (α)-subunit were conducted in the

model Gram-positive bacterium, B. subtilis. The literature sometimes interchangeably used the terms dnaF

and polC not only due to differences in methodological approach, but also a critical distinction between B.

subtilis and E. coli. Methodologically, temperature-sensitive mutants with impaired DNA replication had

mutations that mapped to the dnaF locus,529–531 whereas strains with PolC inhibitor resistance had muta-

tions that mapped to the polC gene.532–539 Perhaps the contemporary naming of genes created confusion

when it was unclear whether Pol III-related genes in B. subtilis would either sequentially follow that of E.

coli (dnaE of E. coli, and dnaF of B. subtilis), or the sequential discovery of Pol I, II and III as polA, polB,

polC. The improved understanding of the PolC encoding region would follow investigations into HPUra-

resistant azp-12 laboratory strain of B. subtilis that possessed a T-to-G transversion in the polC gene.540–543

Not long thereafter, the B. subtilis polC gene would be cloned,543 confirmed by sequencing,520–522 and its

encoded PolC – purified.522

To maintain clarity, the literature and antibiotic development effort would greatly bene-

fit from unification of the nomenclature to the polC gene and PolC protein. It is highly advisable to

not misconstrue the ”C” between the C-family and PolC, as this can potentiate confusion. It is recom-

mended that nomenclature avoid the use of ”Family C”, ”DNA Polymerase C” or ”Pol IIIC” in writing.

Additionally, it should be noted that DnaE-type Pol IIIs encoded by dnaE should never be referred to as a

PolC, PolC-type or DNA Polymerase C to denote their classification to the C-family of DNA polymerases.

Furthermore, the dnaE genes have been further sub-divided into the classifications as dnaE1, dnaE2, and

dnaE3.489,544 Finally, the bioinformatic databases sometimes use dnaF, or ”Gram-positive type;” both

terms are generally considered outdated and advised against. In summary, these recommendations aim to

clarify the nomenclature as the polC-encoded PolC-type DNA polymerase III alpha-subunit (PolC) and the

dnaE-encoded DnaE-type DNA polymerase III alpha-subunit (DnaE).
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(a)

(b) (c)

Figure 1.1: C. difficile PolC∙β2∙dsDNA complex. (a) The C. difficile PolC in complex with doule‐stranded DNA and the
beta‐clamp homodimer, generated by AlphaFold3 homology modeling545–549. (b) macroscopic view of residues of in‐
terest; (c) microscopic view of residues of interest: lachnospiraceae/oscillospiraceae variant (pink), associated with PolC
inhibitor resistance (red),550,551 and the catalytic residues (blue).552
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Structure

The structure of the PolC-type DNA polymerase III alpha-subunit (PolC) was determined by

Evans et al from that of Geobacillus kaustophilus (PolCGka) using x-ray cyrstallography.552 They found

the PolCGka forms the classical right-handed structure of a DNA polymerase, including the fingers, palm,

and thumb that ”wrap” around DNA. The prominent domains of the PolC include the oligonucleotide

binding (OB) domain, the polymerase and histidinol phosphatase (PHP) domain, the fingers-, palm- and

thumb domains, the duplex bindingβ-binding domain, and the proofreading 3’ -> 5’ exonuclease (Exo) do-

main.The similarities and differences between the structures of PolC- and DnaE-type DNA polymerase III

alpha-subunits have been previously reviewed.553 Crucially, the distinguishing feature of the PolC that

differentiates it from the DnaE is the presence of an Exo domain inserted within the Polymerase and

Histidinol Phosphatase (PHP) domain.488 This exo domain is evolutionarily related to the dnaQ-encoded

ε (epsilon)-subunit of E. coli. Another distinguishing feature of the PolC is the N-terminal domain (NTD),

which phylogenetic studies suggest originates from the V domain of the DNA polymerase III τ (tau) sub-

unit.554

Function

DNA replication relies on the formation of a phosphodiester bond between the nucleophilic 3’

hydroxyl of the terminal nucleotide on the growing single-stranded DNA and the electrophilic alpha (α)-

phosphate of an incoming deoxyribonucleotide triphosphate (dNTP).555,556 This reaction occurs within the

active site of DNA polymerases, coordinated by Chargaff’s rules of base pairing with the DNA template

strand,557 acidic residues such as aspartate and glutamate that stabilize the catalytic environment,558 and

divalent cations (e.g., Mg2+) that facilitate pyrophosphate departure.556

Although the fundamental catalytic mechanism is conserved across DNA polymerases559, subtle

structural differences among enzymes influence replication fidelity ,509,560–562 base substitution error rates,

and consequently, evolutionary rates563. The structural and functional relationships that govern template-

dependent nucleotide incorporation have been reviewed.509,564 Mechanistically, DNA and RNA poly-

7



merases share a common catalytic strategy for template-directed nucleotide addition555, but differ in sub-

strate discrimination between deoxyribonucleotides (dNTPs) from ribonucleotides (NTPs) based on the ri-

bose 2’ hydroxyl group.565–568 DNA polymerases also require the ribose to adopt the 3’-endo sugar pucker

conformation to correctly position the 3’ hydroxyl for catalysis.569 This combination of proper orientation

of the absence of a 2’ hydroxyl, the 3’-endo hydroxyl, and nitrogenous base facilitates the pyrophospho-

rolysis at the alpha (α)-phosphate, allowing for the metal-coordinated extrusion of the beta- (β)/gamma

(γ)-inorganic pyrophosphate (PPi). Additionally, accurate base pairing according to Chargaff’s rules (A -–

T/U, G –- C) ensures fidelity in template recognition.557 These combined elements—ribose conformation

and base identity—are coordinated through an induced-fit mechanism that underlies substrate specificity

and high-fidelity DNA (and RNA) synthesis.570

Current evidence supports the function of the PolC is to replicate the chromosomal DNA at

both leading- and lagging-strands of DNA.507,510,571–573 Early observations noted the contribution of

DnaE to lagging-strand DNA synthesis; from this, early hypotheses inferred the PolC was responsible

for only leading-strand DNA synthesis.524 However, recent inveestigations into the dynamics of B. sub-

tilis DNA replisomes suggest the DnaE (encoded by dnaE3) synthesizes a short stretch of lagging-strand

DNA synthesis, following the DnaG primase, before a dynamic exchange and handoff to PolC;507,510,571–573

Third, there is evidence to support the essentiality of the β-subunit, sometimes referred to as the processiv-

ity factor, not only increases the affinity of PolC to DNA, but also the rate of polymerization.574,575 Taken

together, these data support the PolC coordintes both leading- and lagging-strand DNA synthesis in the

DNA replisome of B. subtilis and related bacteria.

The complete kinetic cycle of the Staph. aureus PolC (PolCSau) has been previously elucidated by

the Pata lab using rapid quench flow enzyme kinetics.550,576–578 They showed the first step of the SauPolC

complete kinetic cycle – the binding to DNA and formation of the PolC • DNAn complex – occurs with

a calculated KDNA
D of 0.18 μM; the second step – nucleotide binding (e.g. dGTP) and formation of the

PolC • DNAn • dNTP complex at the template position (T0) – occurs with a calculated KdGTP
D of 14.4 μM;

the third step – phosphodiester bond formation556,579 – occurs with a kpol (rate of polymerization) of ap-

proximately 1,200 s−1,550,578 and dGTP-specific kpol/KdGTP
D (catalytic efficiency) of 92 μM−1s−1, increas-
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ing the length of the DNA by +1 in the complex PolC • DNAn+1 • PPi. Following phosphodiester bond for-

mation, the release of the PPi (inorganic pyrophosphate) is initially slow, approximately 20 s−1, much too

slow for reported processive rates s−1. Uniquely, the Pata lab reported the rate of PPi release is increased to

as high as 1,230 s−1 by the next incoming, correctly paired nucleotide (PolC • DNAn+1 • PPi • dNTP).578

The investigators posit the next incoming dNTP displaces the β−, γ−phosphate and Mg2+ at the catalytic

aspartate residues of the active site. Finally, the translocation of the polymerase to the next template posi-

tion (T+1) requires the bonds between the PolC • DNAn+1 to be broken and reformed; However, how the

finger domain transitions between the ’open’ or ’closed’ state to facilitate this increased processive speed

remains yet to be elucidated. To analogize, the weak affinity between the PolC and DNA is not similar to

the European locomotive freight train that exerts a significant force on its tracks, but rather the Japanese

bullet train that hovers just 10 cm above its tracks using magnetic levitation and more smoothly propels

itself forward using momentum rather than force.580

Mutations that result in target modifications is a major mechanism of antimicrobial resistance. 199

For example, the genetic changes associated with PolC inhibitor resistance was first reported in the HPUra-

resistant laboratory strain of B. subtilis: polCBsuazp-123523TΔG ⇒ TCAΔGCA ⇒ 1175SerΔAla.543,551,581 More

recently, investigators have uncovered the genetic and functional consequences of polC mutations that

confer resistance to 3�-ethyl-4’-methylanilino)uracil (EMAU), a chemical class of PolC inhibitors. Previ-

ous reports indicate the emergence of polC mutations that confer resistance, such as PolC1261PheΔLeu
Sau , occur

with a frequency of 7.4 ×10−10. This mutation, in particular, was associated with >13- to 26-fold increased

minimum inhibitory concentrations (MICs) and >1,000-fold increased Ki (apparent inhibition constant) to

3(4-hydroxybutyl)-6-(3-ethyl-4-methylanilino)uracil (HB-EMAU).582 More recently, the related compound

of 2-methoxyethyl-6-(3�-ethyl-4’-methylanilino)uracil (ME-EMAU) has a calculated KME−EMAU
D (disso-

ciation constant of ME-EMAU) of 0.014 μM to PolCSau; The HB-EMAU resistant polCSauSmith
1261PheΔLeu

confers a 1.6-fold reduction in KDNA
D (DNA binding), a 5.2-fold reduction in KdGTP

D (dGTP binding), an

8.5-fold reduction in kpol (rate of polymerization), and a 1.6-fold reduction in kpol/KdGTP
D (dGTP catalytic

efficiency).550 These very low rates of non-synonymous mutations in the polC that are associated with re-

duced PolC binding and inhibition by PolC inhibitors, but with markedly elevated fitness defects, suggest
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the PolC is not only an essential enzyme but also potentially promising antibiotic drug target.

CAN POLC BE A TARGET FOR

NARROW-SPECTRUM ANTIBIOTICS?

Evolution

The quest to understand the origins of life generally involves the comparative genomics analy-

ses of DNA replication in the oldest form of life – bacteria. However, while much of our current knowl-

edge on bacterial DNA replication stems from experiments in the model Gram-negative bacterium, Es-

cherichia coli, some literature suggests Bacillus subtilis of Bacillota (formerly Firmicutes), the most an-

cient form of bacterial life, might serve as a better model to understand the evolutionary origin of DNA

replication.489,583 Across most bacteria, the Pol IIIs are encoded by dnaE genes, sub-typed as either dnaE1,

dnaE2, or dnaE3. However, there does exist the distinct divergence of the polC, found in Bacillota, Fu-

sobacteriota, and Mycoplasmatota.489 For our purposes – where did the polC come from? The origin

of the polC gene is thought to be a dnaE homolog that evolved in what is referred to as the ”ancient dnaE

hypothesis.” Bacterial comparative genomic studies between E. coli, B. subtilis and more by Koonin and

Bork provided the early observations into the key similarities and differences between the polC from the

dnaE, leading to what is known as the ”ancient dnaE hypothesis” which generally states the polC di-

verged from the ancestor homolog dnaE, but with the distinguishing feature of an inserted exonuclease

domain from a dnaQ homolog of the epsilon subunit.488 A larger analysis of approximately 2,000 bacterial

genomes by Timinskas et al extended this theory further by proposing a most-probable evolutionary path-

way including (1) duplication with circular permutation that moved the oligonucleotide binding (OB) to the

N-terminal; (2) the insertion of the N-terminal domain upstream of the OB domain; (3) the distinguishing

dnaQ homolog exonuclease insertion within the poylmerase and histidinol phosphatase (PHP) domain.489

Critically, how widespread is the polC across the bacteria commonly found in the human gut mi-
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crobiome? The bacteria of the human gut microbiome, although varying considerably by diet, age and

geography, 111,169,584 generally consists of the Bacillota, Bacteroidota, Actinomycetota and Pseudomon-

adota. 115,139,585,586 The analysis by Timinskas et al showed not only the conservation of polC across Bacil-

lota, but also its absence from Bacteroidota, Actinomycetota and Pseudomonadota.489 Notably, the polC

is also found in Fusobacteriota and Mycoplasmatota, but these taxa do not typically achieve relative abun-

dances in the colon of healthy individuals or adults with CDI.

The presence of polC in one of the four bacterial phyla provides the basis for narrow-spectrum

antibiotic drug development. While this is correct, it is worth noting the Bacillota comprise a consider-

able and diverse proportion of the human gut microbiota, with some of the most prominent taxa includ-

ing classes – Bacilli and Clostridia [p_Bacillota]; orders – Bacillales, Lactobacillales [c_Bacilli]; Eu-

bacteriales, Lachnospiralales, and Erysipelotrichales [c_Clostridia]; families – Bacillaceae, paenibacil-

laceae, and Staphylococcaceae [o_Bacillales]; Enterococcaceae, Lactobacillaceae, and Streptococcaceae

[o_Lactobacillales]; Clostridiaceae, Peptostreptococcaceae, Oscillospiraceae [o_Eubacteriales]; Lach-

nospiralales [o_Lachnospiraceae]; Erysipelotrichaceae, Coprobacillaceae [o_Erysipelotrichales].

Many microbiologists and clinicians are trained and aware of the classical species of Bacillota,

such as the B. subtilis of Bacillaceae, Staph. aureus of Staphylococcaceae, E. faecium of Enterococ-

caceae, Strep. pneumoniae of Streptococcaceae, and C. difficile of Peptostreptococcaceae. However, the

previously ”unculturable” microbiota,587 largely including the Lachnospiraceae and Oscillospiraceae,

are not only difficult to culture, but also difficult to phylogenetically assign, as evidenced by the poly-

phyletic genera of [Ruminococcus] and [Clostridium]. For example, [Cl.] butyricum [f_Clostridiaceae],

[Cl.] scindens [f_Lachnospiraceae], and Thomoaslcavelia ramosa [f_Coprobacillaceae] (formerly [Cl.]

ramosum) can be phylogenetically assigned to distinct sub-taxa of Bacillota. Likewise, so can Mediter-

raneibacter gnavus [f_Lachnospiraceae] (formerly [Ru.] gnavus), [Ru.] torques [f_Lachnospiraceae], and

[Ru.] bromii [f_Oscillospiraceae] also be phylogenetically distinct. While these taxonomic and nomen-

clature changes may pose a challenge, they should not deter their study for the importance of their role in

colonization resistance to pathobionts of the human gut microbiome, such as C. difficile. These taxa are

not only difficult to study and important to the treatment of CDI, but also potentially innocent bystanders
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depleted by PolC inhibitor therapy.

The aforementioned Lachnospiraceae and Oscillospiraceae specifically contribute to the host-

protective mechanisms of colonization resistance to CDI through biotransformation of host-derived bile

acids and fermentation of dietary fibers to short-chain fatty acids. However, they too possess the polC,

making them potentially innocent bystanders of PolC inhibitors that aim to eliminate C. difficile and treat

CDI. The susceptibility of Lachnospiraceae and Oscillospiraceae, once referred to as the unculturable

microbiota,587 to PolC inhibitor-mediated depletion remains yet to be fully elucidated, and the primary

objective of my works described herein. The susceptibility of these taxa to PolC inhibitors was not pre-

viously studied as the development of PolC inhibitors predates their culturability.487,587 What you may

be surprised to learn is that these taxa may be less susceptible to a PolC inhibitor, ibezapolstat, through

amino acid substitutions in the PolC active site that leads to reduced susceptibility in vitro and expansion

in vivo.588–590 Furthermore, these amino acid substitutions that may confer reduced susceptibility in Lach-

nospiraceae and Oscillospiraceae, are devoid from thousands of publicly available C. difficile genomes,

suggesting the future efficacy of IBZ for the treatment of CDI.

THE POLC HAS A UNIQUE EVOLUTIONARY

DIVERGENCE. SO WHAT?

Honestly, why should a pharmacologist care about the ancient evolutionary origins of DNA repli-

cation? ”Just tell me if the drug worked or not.” While this is the common quip of the busy clinician,

the drug development pipeline has a twenty-first century duty to develop antibiotics not only with activ-

ity against pathogens, but also inactivity against the commensal and symbiotic bacteria of the human gut

microbiome.73 Historically, antibiotic targets were evolutionarily conserved across bacteria and devoid

from (or considerably divergent in) the genomes of eukaryotic mammalian lineages to limit undesirable

toxicities. These might include the beta-lactam antibiotics that target bacterial cell wall biosynthesis, likely

contributing to the general tolerability of these class of antibiotics, with some exceptions. However, un-

derstanding the phylogenetically distribution and divergence of an antibiotic target across bacteria
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that comprise the human gut microbiome is critical to the development of narrow-spectrum antibi-

otics. In the setting of C. difficile infection, the inactivity of antibiotics against the Lachnospiraceae and

Oscillospiraceae is of critical importance to the promotion or restoration of colonization resistance via bile

acid biotransformation and dietary fiber fermentation. Hence, understanding the evolutionary history of the

polC is critical to the development of Gram-positive selective-spectrum (GPSS) antibiotics that not only

treat CDI but also preserve or perhaps even restore colonization resistance to CDI.

The phylogenetically restricted evolution of the PolC-type DNA polymerase III alpha-subunit

(PolC) across the bacteria of the human gut microbiome has led to the development of the first-in-class

small molecule PolC inhibitor, ibezapolstat (IBZ), for the treatment of Clostridiodies difficile infection

(CDI).486,487 The gene of the target, polC, is generally limited to the Bacillota and devoid from the genomes

of Actinomycetota, Bacteroidota, and Pseudomonadota. Together, these four bacterial phyla comprise the

majority of bacteria in the human gut microbiome, and support the hypothesis that PolC inhibitors would

be narrow-spectrum antibiotics for the treatment of polC+ Bacillota infectious diseases caused by Staph.

aureus, E. faecium/faecalis, and C. difficile.489 Similar to the phylogenetically distinct susceptibility of

human gut bacteria to fidaxomicin,368 an RNA polymerase inhibitor for the treatment of CDI,447,451,454

we anticipated IBZ would be a more-narrow spectrum antibiotic that preserves even more bacteria of the

human gut microbiome.73,589,591,592

To fully appreciate the metagenomic spectrum of activity of IBZ, a deeper understanding of the

phylogenetic distribution and divergence of the polC is essential. While the polC+ may be devoid from

three of the four bacterial phyla that comprise the majority of the human gut microbiome, the divergence

of polC across the sub-taxa of Bacillota remains poorly understood. For instance, the Bacillota families

of Lachnospiraceae and Oscillospiraceae are critical mediators of host-protective colonization resistance

against the human gut pathobiont, C. difficile, via microbial biotransformation of host-derived bile acids

and fermentation of dietary fiber to the four-carbon SCFA, butyrate, may be further innocent bystanders of

PolC inhibitor-mediated depletion. The loss of these taxa and their host-protective mechanisms as a result

of other antibiotic classes have been associated with loss of colonization resistance to CDI.366,400,401

We originally anticipated the IBZ-mediated depletion of polC+ Lachnospiraceae and Oscillospiraceae,
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and potentially the loss of their host-protective mechanisms. However, the in vitro antibiotic susceptibil-

ity of these taxa have not been thoroughly evaluated due to their difficulty to culture, earning the well-

deserved name of the (previously) ”unculturable microbiota.”587 Furthermore, the microbiome recovery

following antibiotic exposure is considered a complex phenomenon that is individualized to an individ-

ual’s baseline composition, diet and environment.35,359,593–595 While these were valid considerations, we

were surprised to observe IBZ increased the relative abundance of Actinomycetota in healthy adults,588 and

Lachnospiraceae and Oscillospiraceae in CDI patients.589 From these observations, we asked ”can IBZ

increase the colonization resistance to CDI via restoration of the human gut microbiome, principally

the Lachnospiraceae and Oscillospiraceae that play a critical role in colonization resistance to CDI?”

Herein we describe the taxonomic differences in IBZ pharmacophore across a selection of com-

mensal microbiota, polC+ Lachnospiraceae and Oscillospiraceae, that was not previously studied; while

IBZ has activity for C. difficile, these investigations described herein suggest it might be possible to ex-

plore the differences in drug binding pockets between pathogens and symbionts to not only spare- but

possibly restore the human gut microbiome. The chapters of this work describe the impact of IBZ on

the metagenomics and metabolomics of the human gut microbiome (Appendix B), the mechanism of

restoration of the human gut microbiome through amino acid differences in the PolC active site of Lach-

nospiraceae and Oscillospiraceae (chapter 4), and the absence of predicted PolC inhibitor resistance

across globally circulating strains of C. difficile (chapter 5).

Ibezapolstat

The development of selective PolC inhibitors were instrumental in the determination of the polC

gene encoding the PolC-type DNA polymerase III alpha-subunit (PolC), made possible by 6(p-Hydroxyphenylazo)-

uracil (HPUra).502,532,581,596,597 Over time, the starting uracil moiety was modified for increased potency

and selectivity to the PolC of B. subtilis by chemists with training in structure-activity relationships (SAR),

eventually leading to substituted-anilouracils,598,599 and anilouracil-fluoroquinolone hybrids.600,601 How-

ever, a few limitations of these pyrmidine mimetics, including including poor clinical response, associated
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toxicity, and antibiotic resistance shifted the focus of attention to the development of guanine (purine)

mimetics. Beginning with an N2-(3�,4�-dichloro)-benzyl-guanines (DCBGs) The addition of a morpholino

group to the N7 position, yielded the N7-morpholinobutyl-DCBG (7-MorBDCBG). Notably, this final

synthesis reaction of the 7-MorBDCBG also produces an ethyl-linked N7-substituted morpholino DCBG,

the N7-morpholinoethyl-DCBG (7-MorEDCBG), also referred to as ibezapolstat (IBZ; ACX-362E). Fol-

lowing the SAR development of N2,N7-substituted guanines for improved potency and selectivity, one

compound become a lead compound for the treatment of a gastrointestinal disease, Clostridioides difficile

infection (CDI), that required a narrow-spectrumm antibitoic: ibezapolstat (IBZ).487

Figure 1.2: Ibezapolstat (IBZ). IUPAC name: 2‐[(3,4‐dichlorophenyl)methylamino]‐7‐(2‐morpholin‐4‐ylethyl)‐1H‐purin‐
6‐one. Image obtained August 12, 2025 from DrugBank602 by CC BY‐NC 4.0. Identifiers: DrugBank DB16189; NCBI
PubChem 136022209; EMBL‐EBI ChEMBL4571518; IUPHAR/BPS Ligand 11030.

Ibezapolstat (IBZ, PubChem 136022209; Figure 1.2), is a moderately lipophilic (2.23 consensus

LogPO/W 603) poorly water soluble (0.216 mg/mL, -3.3 AlogPS)604 small molecule with a molecular weight

of 423.3 grams/mol (computed by PubChem 2.2605,606) 6 rotatable bonds, 2 hydrogen bond donor groups,

7 hydrogen bond acceptor groups, and a topological polar surface area of 88.07 Å.607 The chemical syn-

thesis of IBZ has been previously described.487 Essentially, the dichlorobenzylguanines (DCBGs) possess

a guanine purine central moiety, an N2-substituted 3,4-dichlorophenyl and an N7-substituted morpholino

group that increased the in vitro potency of inhibition of the polC+ B. subtilis without significant alter-

ations to that of polC− E. coli.487 While the membrane permeability of IBZ across Caco-2 monolayers

has not yet been explicitly studied,608 these data suggest IBZ would be either a Class II or Class IV drug
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according the biopharmaceutical classification system (BCS) of drugs.

Pharmacologically, the in vitro and in vivo efficacy of IBZ against C. difficile infection (CDI) has

been shown across a couple notable studies. Using the Lineweaver-Burke method609 of Michaelis-Menten

kinetics,610,611 Torti et al showed IBZ competitively inhibits dGTP binding to C. difficile PolC with an esti-

mated in vitro potency of 325 nM.612,613 Furthermore, in vitro studies suggest even sub-inhibitory concen-

trations of IBZ growth can slow the cellular replication with a presumed slowed or stalling of DNA repli-

somes.614 Despite these tremendous efforts, an improved understanding of dynamics of DNA replisome

stalling or stopping in response to PolC inhibitors would further aid GPSS antibiotic drug development.

Microbiologically, Dvoskin et al showed the in vitro activity against 22 clinical isolates and one

ATCC strains was further evaluated according to the 2007 ed. of CLSI M11-A7 for the determination of

antibiotic susceptibility in anaerobes, per the investigators. They reported the MIC50/90 of these 23 strains

were 2/4 μg/mL, respectively. They comment the reduced MIC90 susceptibilities of these isolates to van-

comycin (VAN) and metronidazole (MTZ), 4 and 4 μg/mL, respectively, did not confer cross-resistance

to IBZ. Murray et al also reported the MIC50/90 of 2/4 μg/mL across a moderately sized collection of 104

clinical C. difficile.615 Van Eijk et al. reported the IBZ MIC50/90 of 2/4 μg/mL across a genetically diverse

collection of 363 clinical C. difficile isolates from Europe.614 Schwartz et al also reported IBZ MIC50/90 of

4/4 μg/mL across their collection of clinical isolates from the eastern Mediterranean region.616 Critically,

Basseres et al showed IBZ is microbiologically active in vitro against clinical C. difficile isolates with high

levels of resistance to VAN and fidaxomicin (FDX).617 In summary, several lines of in vitro evidence sug-

gest IBZ is microbiologically active against globally circulating C. difficile.

Torti et al also showed IBZ inhibits four strains of C. difficile, including ATCC 70057 with a min-

imum inhibitory concentration (MIC) range of 0.5 – 2 μg/mL, whereas that of polC− Bifidobacterium

brevi ATCC 3967, Eggerthella lenta ATCC 1274 [p_Actinomycetota], and Bacteroides fragilis ATCC

0123 [p_Bacteroidota] were > 32 μg/mL. How might this increased selectivity for the PolC of Bacillota

over the DnaE of Bacteroidota and Actinomycetota translate to a reduced impact on the human gut micro-

biome for the treatment of C. difficile infection (CDI)? To answer this question, Dvoskin et al also eval-

uated the in vivo efficacy of IBZ in an animal model of CDI compared to VAN.618 They showed orally
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Table 1.1: Commonly Discussed Bacteria.

Species Family Comment
Bacillus subtilis Bacillaceae Model Gram-positive
Escherichia coli Enterobacteriaceae Model Gram-negative
Clostridioides difficile Peptostreptococcaceae Pathobiont
Staphylococcus aureus Staphylococcaceae Pathobiont
Enterococcus spp. Enterococcaceae Pathobiont

Clostridium leptum Oscillospiraceae Clostridium Cluster IV
Blautia coccoides Lachnospiraceae Clostridium Cluster XIVa
Thomasclavelia ramosa Coprobacillaceae Clostridium Cluster XI

Table 1.2: Commonly Discussed Antibiotics.

Drug Acronym Target Target Process Reference
Ibezapolstat IBZ PolC DNA Replication 487

Vancomycin VAN D-Ala-D-Ala Cell-wall biosynthesis 435

Fidaxomicin FDX RpoB RNA Transcription 480

administered IBZ was protective against mortality in an animal model of CDI (subcutaneous clindamycin,

15 mg/kg once; oral 0.5 ×107CFU C. difficile strain ATCC 43255) with comparable efficacy to that of 50

mg/kg orally administered VAN. More specifically, how does the metagenomic composition of the micro-

biome change in response to IBZ in vivo? This question was answered by Wolfe et al using a microbiome-

humanized animal model of CDI treated with IBZ versus VAN, FDX, and MTZ. Using 16S rRNA metage-

nomics, they showed IBZ and FDX have reduced impacts on the metagenomic diversity than MTZ or

VAN; increased relative abundance in polC− Bacteroidota and Actinomycetota were observed in the IBZ-

treated animals.619 In summary, these data support the hypothesis that IBZ is a narrow-spectrum antibiotic

for the treatment of CDI with reduced collateral impact on the metagenomic diversity of the human gut

microbiome.

HOW DOES IBEZAPOLSTAT, A POLC

INHIBITOR, ALTER THE HUMAN GUT

MICROBIOME?
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One sometimes finds what one is not looking for.

– Alexander Fleming

2
Functional and Metagenomic Evaluation of

Ibezapolstat for Early Evaluation of

Anti-Recurrence Effects in Clostridioides

difficile Infection

Introduction

Clostridioides difficile infection (CDI) is the most common cause of infectious gastroenteritis in

hospitalized patients and the most common cause of death due to gastroenteritis in the United States of

America.3 The pathophysiology of CDI includes disruption of the healthy gut microbiome, usually with

high-risk antibiotics.381 Oral vancomycin, the antibiotic most commonly used to treat CDI, is effective at

killing vegetative C. difficile but disrupts the microbiota, leading to a high rate of recurrence after the end

of antibiotic therapy.408 A key change in the microbiome that increases the risk of CDI and recurrent CDI

is decreasing the abundance and diversity of microbiota, including key bacterial species responsible for

conversion of primary bile acids to secondary bile acids, in the gut. This dysbiosis allows the germination
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of C. difficile spores, which are ubiquitous in the environment, to cause disease.620 Ideally, a new drug in

development would display similarly potent activity against C. difficile but would not have activity against

key host microbiota preventing dysbiosis and would not allow for further germination and infection by

C. difficile once therapy is completed.621 Two recent Phase III clinical trials highlight the importance of

understanding the pathophysiology of C. difficile recurrence and antibiotic pharmacology earlier in the

drug development process.622–627

Cadazolid, a novel, nonabsorbable antibiotic primarily targeting Gram-positive Firmicute or Acti-

nomycetota phyla, has a minimal effect on Bacteroidota,622 and thus has a narrower spectrum than van-

comycin. Positive Phase II clinical trials led to a large Phase III trial, in which a sustained clinical cure

was not observed.623 Surotomycin, a cyclic lipopeptide, had a similar spectrum of activity as cadazolid

and similar positive Phase II clinical trial results.622,625 However, a sustained clinical response difference

was not observed in the Phase III clinical trial.626,627 Although each of these two antibiotics had a minimal

effect on host microbiota, in particular, the phylum Bacteroidota, more advanced microbiome evaluations

were not performed during the clinical trial drug development process. Ibezapolstat is a Gram-positive

selective spectrum (GPSS) PolC-type DNA Polymerase III inhibitor currently in the clinical trial drug de-

velopment process, having completed Phase I healthy volunteer studies.591 The design for the Phase I study

included a comparator arm with vancomycin and daily stool samples collected for microbiome analysis.

This provided a unique opportunity to develop an approach to assess the possible anti-recurrence effect of

ibezapolstat using the known pathophysiology of C. difficile recurrence. The goals of this study were to

assess the microbiome (taxa, alpha, and beta diversity) changes as well as the bile acid changes associated

with ibezapolstat compared to those associated with vancomycin by using samples obtained from the Phase

I healthy volunteer study.
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Methods

Materials

Standards for primary bile acids cholate (CA) and chenodeoxycholate (CDCA), conjugated pri-

mary bile acids glycocholate (GCA), taurocholate (TCA), glycochenodeoxycholate (GCDCA), and tau-

rochenodeoxycholate (TCDCA), secondary bile acids lithocholate (LCA), deoxycholate (DCA), ursodeoxy-

cholate (UDCA), and hyodeoxycholate (HDCA), and conjugated secondary bile acids glycolithocholate

(GLCA), taurolithocholate (TLCA), glycodeoxycholate (GDCA), and taurodeoxycholate (TDCA) were

purchased from Sigma. Description of clinical trial. Stool samples were collected daily as part of a recent

Phase I healthy volunteer study from the multiday, ascending dose arm that included ibezapolstat (300 or

450 mg, given twice daily) with a vancomycin comparator arm (125 mg four times daily) and a placebo,

as described.591 Institutional Review Board approval was obtained (Midlands Institutional Review Board

IRB no. 222220170383), and all volunteers signed an informed consent form prior to performing any study

procedures. For this analysis, stool samples were collected daily for Days 0 (baseline) to 13, along with

a Day 30 follow-up, if available. Stool samples were immediately frozen at –80C prior to shipping to the

University of Houston on dry ice for analysis. Stool DNA extraction and Shotgun Metagenomic Sequenc-

ing. Stool DNA was extracted using a DNeasy Power Soil Pro Kit (Qiagen, catalog number 1288-100) in a

QiaCube automated DNA extraction system, as previously described.591 Shotgun metagenomic sequenc-

ing was carried out at the University of Houston Sequencing and Gene Editing Core (Houston, TX, USA)

using a Nextera DNA Flex Library Prep Kit for DNA library preparation and an Illumina NextSeq 500

platform for sequencing. CLC Genomic Workbench version 12 (Qiagen) was used for the metagenomic

assembly and the creation of the abundance table. Specifically, the tutorial “Taxonomic profiling of whole

shotgun metagenomic data” was used to remove host DNA and perform quality control checks. (https:

//resources.qiagenbioinformatics.com/tutorials/Taxonomic_Profiling.pdf,

accessed Mar 28, 2022).

20

https://resources.qiagenbioinformatics.com/tutorials/Taxonomic_Profiling.pdf
https://resources.qiagenbioinformatics.com/tutorials/Taxonomic_Profiling.pdf


Extraction of bile acids from stool samples

Stool samples were aliquoted and weighed (ranging from approximately 10 to 150 mg). Each

aliquot was mixed well with 1 mL of 100% methanol containing the internal standards (LCA-d5 and CA-

d5, 200 μg/L) by vortexing and ultrasonication. The mixture was placed overnight at 4°C and was cen-

trifuged for 3 min at 10,000 g. The supernatant was transferred into a new tube and diluted 10-fold with

pure water. Subsequently, the diluted supernatant was applied to the preconditioned Sep-Pak C18 Classic

Cartridge or Waters Corp. Oasis HLB 96-well Plate (Waters, USA). After being washed with 5% methanol,

the bile-acid fraction was eluted with 100% methanol. The elution was dried under nitrogen, resuspended

in 2 mL of methanol/water (1:1, vol/vol), and stored at −20°C until further analysis was to be completed.

Bile acid analysis

Bile acids were quantified using a targeted liquid chromatography mass spectrometry (LC-MS)

analysis performed on a QTRAP 5500 mass spectrometer (Sciex, Framingham, MA, USA) adapted from

a previously described method.628 Briefly, chromatographic separation between bile acids of similar mass

and chemical structures was conducted on a C18 column (Phenomenex, Torrance, CA, USA) via a gradient

method using two mobile phases (Solvent A: methanol-water [1:1, vol/vol] with 10 mM ammonium acetate

and 0.1% [wt/vol] ammonium hydroxide [pH 9]; Solvent B: methanol with 10 mM ammonium acetate and

0.1% [wt/vol] ammonium hydroxide [pH 9]). Quantification of each type of bile acid was calculated from

the standard curves generated using unlabeled and stable isotope-labeled standards of bile acids. Bile acid

concentrations were normalized by the corresponding sample weights.

Bile acid-inducible (bai) gene abundance

A previously published species-specific quantitative polymerase chain reaction (qPCR), which de-

tected the bai gene abundance present in Clostridium scindens and Clostridium hylemonae (baiCD), was

adapted.629 The baiCD analysis was performed using the QuantStudio 5 Real Time PCR System (Applied
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Biosystems). Also, baiCD gene cluster-specific primers were used, including the forward primer baiCD-F

(5�-CAGCCCRCAGATGTTCTTTG -3�) and the reverse primer baiCD-R (5�-GCATGGAATTCHACTGCRTC-

3�). The DNA quantity was assessed, and qPCR was performed on each sample in triplicate in a final vol-

ume of 20 μL containing 25 ng DNA template, primers at 0.5 μM, and QuantiTech SYBR green Mixes

(Qiagen). Threshold cycle values were converted to copies per ng of DNA using a standard curve. Stan-

dards were prepared by genomic DNA related to the copy number of Clostridium scindens and a series of

serial 10-fold dilutions of the organism DNA. A range of 10-fold serially diluted standard DNA (3 × 106

to 30 copies) was run on each qPCR plate in triplicate. Standard curve R2 values were calculated for the

standards. Copies per gram of stool were calculated, accounting for initial sample DNA concentrations and

stool weights.

Statistical Analysis

Subject specific and summary changes in bacterial taxa and alpha diversity were generated using

the R software package. Linear regression models were built to assess proportional taxa differences at the

phylum, class, order, and family levels over time for subjects given vancomycin or ibezapolstat, normaliz-

ing to taxa present in at least five percent of the total samples. Linear regression models were also built to

assess daily changes in alpha diversity measures (Shannon, Simpson, and Pielous) over time for subjects

given vancomycin or ibezapolstat. The LEfSe algorithm was used to visualize and identify significant dif-

ferences in microbiota composition between baseline samples and Day 10 samples.630 Linear regression

models were also built to assess primary and secondary bile acid changes over time as well as the ratio of

primary:secondary bile acids over time from subjects given vancomycin or ibezapolstat. All linear regres-

sion models used placebo results as baseline values and controlled for subject age, weight, and sex. SAS

version 9.4 (SAS Institute, Cary, NC) or R were used for all statistical analyses. The correlation between

microbiota and bile acid changes were evaluated at the family taxa for primary and secondary bile acid

amounts. To account for multiple analyses per aim and limit the false detection rate, a reduced P value of P

< 0.005 was considered to be indicative of statistical significance (unless otherwise stated).631
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Data availability

All data associated with this study are available in the main text or in the supplemental material.

The Illumina paired-end FASTQ files have been deposited in NCBI under BioProject ID PRJNA847068.

Results

Description of clinical trial

Twenty-two subjects (female: 33%) aged 30 ± 8 years were enrolled. Six patients each were given

either vancomycin, ibezapolstat 300 mg, or ibezapolstat 450 mg, and an additional four were given a placebo.

A full description of the Phase I study, including safety, food effects, pharmacokinetics, and initial metage-

nomic analyses, has been described previously.591

Metagenomic analysis

Microbiota were not different at baseline (Day 0 samples) between study groups. The daily changes

of individual phyla and Shannon’s index alpha diversity for subjects given ibezapolstat, vancomycin, or the

placebo are shown in Figure 2.1. Interindividual phylum differences were evident. However, the proportion

of Pseudomonadota or Fusobacteria increased in subjects given vancomycin, while the proportion of Acti-

nomycetota increased consistently in subjects given ibezapolstat. In general, alpha diversity decreased on

therapy for individual subjects who received either ibezapolstat or vancomycin compared to those who re-

ceived the placebo. A statistical analysis of the changes in alpha diversity over time is shown in Table 2.1.

Using three separate alpha diversity indices (Shannon, Simpson, and Pielous), ibezapolstat 450 mg and

vancomycin showed statistically significant changes in alpha diversity over time compared to the placebo.

Ibezapolstat 300 mg did not demonstrate statistically significant changes compared to the placebo. Sum-

mary measures for alpha diversity changes (Shannon) over time by treatment group is shown in Figure 2.2.
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Figure 2.1: Participant‐Specific Changes in Intestinal Alpha‐Diversity and Metagenomic COmposition. (A) (B) From:
Functional and Metagenomic Evaluation of Ibezapolstat for Early Evaluation of Anti‐Recurrence Effects in Clostridioides
difficile Infection.588

Beta diversity changes confirmed that microbiota were significantly different between study groups (Fig-

ure 2.2). A principle coordinate analysis revealed that baseline samples were similar in all study groups,

while distinct ellipses representing 95% confidence bounds for each cluster were significantly different

for the vancomycin-treated subjects compared to subjects treated with either dosage of ibezapolstat or the

placebo. Cladograms at baseline compared to end of therapy, generated by the Linear Effect Size (LEfSe)

algorithm, are shown in Figure 2.3. Vancomycin had a more wide-ranging effect on the microbiome, in-

cluding significantly lower proportions of most taxa, except for an increased proportion of Gammapro-

teobacteria. Ibezapolstat demonstrated a decreased proportion of Eubacteriales and increased proportions

of Actinomycetota including certain species of Bifidobacteriaceae. Bacterial taxa changes at the phylum,

class, order, and family levels are shown in Table 2.2.

Bile acids

Seventeen baseline samples were available for bile acid analysis along with 17 samples from Day

5 and 14 samples from Day 10. Concentrations of bile acids for each drug and time period are shown in

Figure 2.4. Baseline samples were similar for all study groups and were comprised primarily (>95%) of

secondary bile acids. Primary bile acids increased and secondary bile acids decreased with exposure to all
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Figure 2.2: Intestinal Alpha‐ and Beta‐Diversity in Healthy Adults Administered Oral Ibezapolstat or Vancomycin. Mi‐
crobiomes of participants that received oral vancomycin (red), ibezapolstat (green), or placebo (blue) were characterized
by (A) Shannon’s Entropy and (B) Simpson’s Index. Beta diversity was calculated using Bray–Curtis dissimilarity and
visualized with classical (metric) multidimensional scaling (MDS) for participants at (C) baseline (Day 0 – 1) and (D) by end
of therapy (scaled: smaller/lighter = day 5; larger/darker = day 12). From: Functional and Metagenomic Evaluation of
Ibezapolstat for Early Evaluation of Anti‐Recurrence Effects in Clostridioides difficile Infection.588

Figure 2.3: Healthy Adult LeFSe with Oral Ibezapolstat or Vancomycin. Statistically significant changes in bacterial
taxa in the oral (A) vancomycin or (B) ibezapolstat groups by Linear discriminant analysis effect size (LEfSe) found taxa
enriched at baseline (red), end of therapy (EOT; green), or had no statistically significant difference (no color). From:
Functional and Metagenomic Evaluation of Ibezapolstat for Early Evaluation of Anti‐Recurrence Effects in Clostridioides
difficile Infection.588
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Table 2.1: Comparison of daily alpha‐diversity and bile acid changes during therapy for ibezapolstat versus oral van‐
comycin a

Analysis Ibezapolstat Vancomycin
300 mg (*) 450 mg (*) 125 mg (*)

A. Alpha-diversity
Shannon −0.12± 0.12 (0.31) −0.45± 0.12 (0.0001) −0.36± 0.11 (0.0014)
Simpson’s −0.013± 0.023 (0.59) −0.072± 0.022 (0.0019) −0.070± 0.023 (0.0020)
Pielous −0.0040± 0.024 (0.87) −0.051± 0.024 (0.031) −0.073± 0.024 (0.0016)

B. Bile acids
1◦ bile acids, μg/L −3.7± 172 (0.98) 307± 161 (0.061) 963± 146 (<0.001)
2◦ bile acids, μg/L −913± 675 (0.18) −971± 629 (0.13) −1, 266± 570 (0.030)
1◦:2◦ bile acid ratio −1.3± 4.1 (0.75) 6.2± 3.8 (0.11) 19± 3.5 (<0.0001)

aNumbers represent average change ± standard deviation over the study time period. A negative (−) number
represents decreased (A) diversity or (B) bile acid concentration. 1◦: primary; 2◦: secondary; *, P value versus
placebo, controlling for patient age, weight, and sex.

study drugs, but more pronounced findings were observed with vancomycin (Figure 2.5). Using a linear

regression analysis and after controlling for subject demographics, vancomycin was associated with signif-

icant increases in primary bile acids as well as primary:secondary bile acid ratios. Although similar effects

were noted with ibezapolstat 450 mg, these results were not statistically significant (Table 2.1).

Correlation between microbiota and bile acid changes

Correlations between family taxa and primary and secondary bile acid concentrations are shown

in Table 2.3.4. Enterobacteriaceae were most highly correlated with primary bile acid concentrations (r =

0.63; P < 0.0001) while Oscillospiraceae were negatively correlated with primary bile acid concentrations

(r = −0.37; P = 0.0025). Also, Oscillospiraceae were positively correlated with secondary bile acid con-

centrations (r = 0.44; P = 0.0002), and Pseudomonadaceae were positively correlated with secondary bile

acid concentrations (r = 0.38; P = 0.0017).
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Figure 2.4: Bile Acid Changes In Healthy Adults Administered Oral Ibezapolstat or Vancomycin. Quantile‐scaled heatmap
of bile acids (ng/mL) grouped by (pink) primary and (blue) secondary, or unconjugated (light pink/blue) versus conjugated
(dark pink/blue) in the vancomycin (red) or ibezapolstat (green) treatment groups through time (baseline = light gray;
mid‐therapy = darker gray; end of therapy = black). From: Functional and Metagenomic Evaluation of Ibezapolstat for
Early Evaluation of Anti‐Recurrence Effects in Clostridioides difficile Infection.588
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Figure 2.5: Ratios of Bile Acid Pools in Healthy Adults Administered Oral Ibezapolstat or Vancomycin. Concentration of
(A) Primary and (B) secondary bile acids in stool; (C) ratio of primary‐to‐secondary bile acids in stool From: Functional
and Metagenomic Evaluation of Ibezapolstat for Early Evaluation of Anti‐Recurrence Effects in Clostridioides difficile
Infection.588

Table 2.2: Proportional changes in taxa in healthy subjects given vancomycin or one of two doses of ibezapolstata

Taxa Vancomycin 125 mg Ibezapolstat 300 mg Ibezapolstat 450 mg

Change (mean ±
SE)

P Change (mean ±
SE)

P Change (mean ±
SE)

P

p_Bacteroidota −0.034 ± 0.024 0.16 −0.0055 ± 0.025 0.83 −0.013 ± 0.025 0.61

p_Bacillota −0.14 ± 0.058 0.014 −0.47 ± 0.060 < 0.0001 −0.50 ± 0.06 < 0.0001
c_Clostridia −0.50 ± 0.052 < 0.0001 −0.49 ± 0.054 < 0.0001 −0.52 ± 0.054 < 0.0001

o_Clostridiales −0.50 ± 0.052 < 0.0001 −0.49 ± 0.054 < 0.0001 −0.52 ± 0.054 < 0.0001
f _Lachnospiraceae −0.24 ± 0.024 < 0.0001 −0.22 ± 0.025 < 0.0001 −0.26 ± 0.025 < 0.0001
f _Oscillospiraceae −0.25 ± 0.033 < 0.0001 −0.27 ± 0.034 < 0.0001 −0.25 ± 0.035 < 0.0001

c_Bacilli 0.30 ± 0.043 < 0.0001 0.016 ± 0.044 0.72 0.017 ± 0.045 0.39
o_Lactobacillales 0.30 ± 0.043 < 0.0001 0.016 ± 0.044 0.7117 0.017 ± 0.045 0.6972

f _Lactobacillaceae 0.28 ± 0.041 < 0.0001 0.024 ± 0.042 0.5755 0.015 ± 0.043 0.7307

p_Actinomycetota −0.11 ± 0.05 0.032 0.31 ± 0.053 < 0.0001 0.31 ± 0.054 < 0.0001
c_Actinobacteria −0.074 ± 0.051 0.14 0.27 ± 0.052 < 0.0001 0.29 ± 0.053 < 0.0001

o_Bifidobacteriales −0.080 ± 0.051 0.1201 0.27 ± 0.053 < 0.0001 0.29 ± 0.053 < 0.0001
f _Bifidobacteriaceae −0.078 ± 0.051 0.1293 0.27 ± 0.053 < 0.0001 0.29 ± 0.053 < 0.0001

c_Coriobacteriia −0.038 ± 0.015 0.0145 0.036 ± 0.016 0.0221 0.024 ± 0.016 0.1431
o_Coriobacteriales −0.031 ± 0.015 0.0375 0.035 ± 0.016 0.0264 0.026 ± 0.016 0.1013

f _Coriobacteriaceae −0.032 ± 0.015 0.0338 0.034 ± 0.016 0.0298 0.025 ± 0.016 0.1122

p_Pseudomonadota 0.23 ± 0.045 < 0.0001 0.12 ± 0.05 0.0094 0.09 ± 0.05 0.053
c_Gammaproteobacteria 0.21 ± 0.045 < 0.0001 0.12 ± 0.046 0.0094 0.092 ± 0.046 0.0478

o_Enterobacterales 0.17 ± 0.042 < 0.0001 0.11 ± 0.043 0.0099 0.094 ± 0.044 0.0336
f _Enterobacteriaceae 0.17 ± 0.041 < 0.0001 0.11 ± 0.042 0.0082 0.087 ± 0.043 0.043

p_Fusobacteriota 0.036 ± 0.015 0.0165 0.0011 ± 0.015 0.9414 0.00046 ± 0.015 0.9762

ac: class; o: order; f: family. Dark gray shading indicates at least a 10% increase in relative proportion compared to
baseline, and light gray shading represents a 10% decrease in relative proportion compared to baseline (only
variables with a P < 0.005 significance colored).
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Table 2.3: Correlation of microbiota with bile acidsa (sorted by P for Secondary bile acids)

Family Primary bile acids P Secondary bile acids P

Oscillospiraceae –0.36391 0.0025 0.44424 0.0002
Pseudomonadaceae 0.27146 0.0263 0.37721 0.0060
Lachnospiraceae –0.33184 0.0061 0.01017 0.9349
Enterobacteriaceae 0.62888 < 0.0001 –0.16676 0.1774
Lactobacillaceae 0.26868 0.0279 –0.09527 0.4432
Coriobacteriaceae –0.23574 0.0548 –0.02838 0.8197
Erysipelotrichaceae –0.12744 0.3041 –0.03216 0.7962
Fusobacteriaceae –0.0662 0.5946 –0.04921 0.6925
Bacteroidaceae –0.20096 0.103 –0.10486 0.3984
Bifidobacteriaceae –0.07082 0.569 –0.03019 0.8084
Methanobacteriaceae 0.00194 0.9876 –0.01041 0.9333

aBoldface entries indicate analyses that were statistically significant.

BaiCD gene abundance analysis

Baseline and follow-up stool samples were available for five patients who received vancomycin

and ibezapolstat 450 mg and for four patients that received ibezapolstat 300 mg. The baiCD gene positivity

rate was similar between subjects, irrespective of the type of therapy given (80 to 90%). The proportion

positive and quantity of baiCD genes decreased during all three types of therapy (Figure 2.6).

Conclusion

The pathophysiology of CDI involves disruption of the human gut microbiota, usually with high-

risk antibiotics, and can lead to a dysbiosis that enables C. difficile spores to germinate and cause active

disease.381 Thus, ideal characteristics for a new drug directed toward CDI include potent activity against C.

difficile and minimal further disruption of host microbiota.621 Laboratory and animal models are generally

able to identify small molecules with potent in vitro activity against C. difficile isolates. However, due to

the complex nature of the gut microbiome, identification of a potential ability to reduce the likelihood of

CDI recurrence is generally not possible until large Phase III studies are undertaken. This leads to costly

and unfortunate mistakes in Phase III clinical studies of novel CDI-directed antibiotics, despite the fact
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Figure 2.6: Alterations in baiCD Expression in Healthy Adults Administered Oral Ibezapolstat or Vancomycin. From:
Functional and Metagenomic Evaluation of Ibezapolstat for Early Evaluation of Anti‐Recurrence Effects in Clostridioides
difficile Infection.588

that these antibiotics have different effects on the microbiota than comparator antibiotics do.623,627 Thus,

a method to identify possible anti-recurrence effects earlier in the clinical trial development process is ur-

gently needed. In this study, we used stool samples from the Phase 1 healthy volunteer study to compare

ibezapolstat, a PolC-type DNA Polymerase III inhibitor, to vancomycin, a glycopeptide antibiotic and the

most commonly used antibiotic to treat CDI, to a placebo. PolC-type DNA Polymerase III inhibitors tar-

get low G+C bacteria, namely, Bacillota, but have no effect on other Gram-positives (Actinomycetota) or

Gram-negatives (Bacteroidota, Pseudomonadota).487 Alternatively, vancomycin has broad spectrum ac-

tivity against all of these phyla and would be expected to have a larger effect on the microbiome.632 Using

metagenomic sequencing, we confirmed this pharmacology and demonstrated that both antibiotics affected

the human microbiome, though they did so in completely distinct manners and produced two distinct mi-

crobiome profiles. Using mass spectrometry, we then demonstrated that this change in the microbiome

was associated with a reduced effect on the ratio of primary to secondary bile acids in the gut for ibeza-

polstat compared to that of vancomycin. Family taxa differences observed in subjects given vancomycin or

ibezapolstat were highly correlated with concentrations of primary or secondary bile acids. These results

are highly suggestive of a possible anti-recurrence effect for ibezapolstat compared to the gold standard,

30

https://pubmed.ncbi.nlm.nih.gov/35862742/
https://pubmed.ncbi.nlm.nih.gov/35862742/


vancomycin. This represents the most thorough evaluation of functional metagenomic changes ever under-

taken during Phase I clinical trials for CDI-directed antibiotics. This extends and strengthens the ongoing

functional metagenomic work being performed during the Phase II clinical trials of ridinilazole.633,634

Taken together, these analyses could become a new standard in the drug development process for CDI-

directed antibiotics and, in general, could be understood alongside other systemic antibiotics to evaluate

their likelihood to increase the risk of CDI with use. Important advances in the understanding of the patho-

physiology of CDI and the mechanisms underlying colonization resistance to C. difficile have transformed

our understanding of how certain microbial taxa reduce the likelihood of CDI and recurrent CDI.635 Key

metagenomic findings in this study include a consistent decrease in the Clostridia class with both antibi-

otics, an expansion of the Actinomycetota class in ibezapolstat-treated subjects, and an expansion of the

Gammaproteobacteria class, the Enterobacterales order, and the Enterobacteriaceae family in vancomycin-

treated subjects. Within the Firmicute phylum, vancomycin was also associated with an increased propor-

tion of Bacilli class taxa.

Most metagenomic studies with C. difficile have focused on recurrent CDI and the effect of fecal

microbiota transplantation (FMT).636 An expansion of the Enterobacteriaceae family has been previously

identified as a significant risk factor for recurrent CDI.637,638 FMT studies have also shown that the resolu-

tion of CDI recurrence was associated with the restoration of secondary bile acids. An increasing amount

of laboratory evidence has helped to further elucidate the importance of bile acids in the pathophysiology

of CDI.317,401 These include findings that the presence of secondary bile acids prevent the germination of

C. difficile spores, while primary bile acids increase sporulation. Primary bile acids are metabolized by

key taxa in the human gut microbiota by the 7-alpha dehydroxylation pathway, and murine studies have

shown that antibiotic treatment leads to a loss of secondary bile acids.366 Prior to conversion to secondary

bile acids, primary bile acids are deconjugated by commensal bacteria that possess bile salt hydrolase

genes. These genes are present in widely distributed taxa. Thus, it is not surprising that no differences

were observed in the proportion of conjugated versus non-conjugated bile acids in our study, despite differ-

ences in the microbiome profiles. On the other hand, the 7-alpha dehydroxylation pathways are encoded

in the bile acid-inducible (bai) operon. Only a unique set of key species, most commonly Clostridium
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scindens, Clostridium sordelli, and a small subset of other Bacillota, are known to possess the full gene

for the bai operon.400,639 Proportions of all of these Eubacteriales would be expected to be reduced fol-

lowing vancomycin or ibezapolstat, as demonstrated by changes in baiCD gene abundance during therapy.

However, the preservation of secondary bile acids in our study is supported by the Phase II ridinilazole

clinical study, in which a similar preservation of secondary bile acids was observed, despite in vitro activ-

ity of ridinilazole to C. scindens and C. sordelli.633 This suggests that other bacterial taxa also contribute

to primary bile acid metabolism640 or that a group of bacteria that have a subset of the bai pathways could

collaboratively synthesize secondary bile acids from conjugated primary bile acids.641 This is a future

area of research, but these results suggest that the findings from this study will be applicable to future CDI

clinical trials with ibezapolstat. Our plans are to validate and expand these findings in upcoming Phase II

studies.

This study has certain limitations. We recruited young, healthy patients into the Phase I clinical

trial. The Actinomycetota phylum is more prevalent in younger adults and is replaced by Bacteroidota with

age.642 CDI is more prevalent in older patients, and thus, the baseline microbiota would not be indicative

of a healthy microbiome of an elderly patient. However, the Bacteroidota phylum was present in the ma-

jority of our samples and thus was represented as a minority phylum in our study. Whether an expansion

of Actinomycetota can be observed in elderly patients with CDI will require further study. If not, an in-

triguing possibility for a future clinical trial would be to add a probiotic that contains the Actinomycetota

phylum to promote Actinomycetota expansion. Likewise, the microbiome of CDI patients may already be

characterized by an expansion of Pseudomonadota.638 Whether ibezapolstat would be able to reduce this

phylum via the expansion of Actinomycetota will require further mechanistic and clinical studies. A com-

mon limitation of all human gut microbiome studies is the dependence on daily bowel movements for daily

sample collection. As this was not the case for all subjects, samples were not available for each study day

for all patients. Lastly, we plan to explore whether these types of analyses could be performed in preclini-

cal, mini-bioreactor models in the future.643

Using data from the Phase 1 healthy volunteer trials and a novel analysis technique, beneficial

changes suggestive of a lower risk of CDI recurrence were associated with ibezapolstat compared to van-
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comycin. This novel functional metagenomics approach may enable the better and earlier prediction of

anti-CDI recurrence effects for antibiotics in the clinical development pipeline.

HOW DOES IBZ IMPACT THE MICROBIOME OF

ADULTS WITH CDI?
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...I have strayed onto paths where the gold was still

lying by the wayside. It takes a little luck to be able

to distinguish gold from dross...

– Robert Koch 3
Efficacy, Safety, Pharmacokinetics, and

Microbiome Changes of Ibezapolstat in Adults

with Clostridioides difficile Infection: A Phase

2a Multicenter Clinical Trial

Introduction

Clostridioides difficile infection (CDI) is the most common cause of healthcare-associated in-

fections in the United States,4 where it is responsible for almost 500 000 incident infections and 29 000

deaths.3 Current treatment guidelines recommend only 2 antibiotics for initial treatment of CDI, namely,

oral vancomycin or fidaxomicin.408 Vancomycin is associated with unacceptably high recurrence rates and

both antibiotics are associated with the emergence of antimicrobial resistance.469,643,644 CDI recurrence is

due to the continued perturbation of the gut microbiome, most commonly characterized by decreased pro-

portions of Bacillota, Bacteroidota, and Actinomycetota phyla with subsequent overgrowth of Pseudomon-

adota.645 These taxa changes reduce colonization resistance to C. difficile by eliminating the taxa respon-
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sible for bile acid metabolism, leading to a higher concentration of primary bile acids which support spore

germination and onset of CDI or recurrent CDI.620 Ideally, new drugs in clinical development should have

a unique mechanism of action with similarly potent activity against C. difficile but without activity against

key host microbiota.621 This spectrum of activity is crucial to prevent the treatment-associated dysbiosis

that allows for further germination and infection by C. difficile after therapy completion.

Ibezapolstat (formerly ACX-362E) represents a unique class of gram-positive selective spectrum

antimicrobials that bind to and inhibit bacterial PolC-type DNA Polymerase III.487 The PolC-type DNA

Polymerase III enzyme is essential for replication of low–G + C content (fewer G and C DNA bases than

A and T bases) in gram-positive bacteria, including Bacillota such as C. difficile, yet it is absent in Actino-

mycetota and gram-negative host microbiota, including Bacteroidota species. Ibezapolstat was minimally

absorbed in a hamster model, leading to high colonic and low systemic concentrations and was shown to

be effective for CDI.614 A phase 1 healthy volunteer study demonstrated a similarly advantageous phar-

macokinetic (PK) profile and a favorable safety profile.591 In contrast to vancomycin, ibezapolstat did not

cause overgrowth of Pseudomonadota and preserved a favorable ratio of secondary-to-primary bile acids

that would be predictive of an anti-CDI recurrence effect.

This phase 2a study was conducted as the first human validation of the PolC-type DNA Poly-

merase III target in a diseased population of patients with CDI. The primary objectives of this study were

to assess CDI clinical cure rates 2 days after the end of treatment (EOT) and the safety/tolerability of

ibezapolstat given to adult patients with CDI. The secondary objectives were to evaluate plasma and fecal

PK characteristics, microbiologic eradication, quantitative microbiome changes in relevant fecal bacterial

communities and microbial diversity, bile acid effects, and sustained clinical cure (SCC) associated with

ibezapolstat in patients with CDI.
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Methods

Study Design

This was a single-arm, open-label, phase 2a segment of a multicenter phase 2 trial, and enrolled

adults at 4 centers in the United States in 2019–2020 (protocol no. ACX-362E-201; ClinicalTrials.gov

identifier NCT04247542). Patients received three 150-mg ibezapolstat capsules (total dose, 450 mg) orally

every 12 hours for 10 days. After the EOT, patients were followed up for an additional 28 days to evaluate

clinical response, adverse events (AEs), and status of the fecal microbiome. The study was conducted in

accordance with the Declaration of Helsinki. The study protocol and amendments were approved by an

institutional review board at each study site, and written informed consent was obtained for each enrolled

subject before the study commenced.

Patients

Eligible participants included adults aged 18–90 years with CDI defined as >3 watery bowel move-

ments in the 24 hours before enrollment and classified as nonsevere CDI, as defined by Infectious Diseases

Society of America/Society for Healthcare Epidemiology of America guidelines (white blood cell count

≤15 000/mL and serum creatinine level <1.5 mg/dL).432 Enrolled patients must have had CDI diagnosed

using a positive free toxin–based fecal test (C. DIFF QUIK CHEK COMPLETE [TechLab] or Immunocard

Toxin A&B [Meridian Bioscience]). Patients were excluded if they had >24 hours of other CDI-directed

antibiotics at the time of enrollment, probiotic or laxative receipt, >3 episodes of CDI in the previous 12

months or >1 prior episode in the last 3 months, immunocompromising conditions or medications, inflam-

matory bowel disease, pregnancy or lactation, active gastroenteritis due to another microorganism, major

gastrointestinal surgery within 3 months of enrollment (appendectomy or cholecystectomy permitted), or

elevated liver function values (defined as >2 times the upper limit of normal for alanine aminotransferase

or aspartate aminotransferase).
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Safety Assessments

Safety evaluations included AE assessment, physical examination, vital signs, clinical laboratory

tests (chemistry, hematology, and urinalysis), and electrocardiography. Safety end points for all subjects

were recorded including nature, frequency, and severity of AEs. AEs were assessed at each visit beginning

from the time of enrollment and classified according to the Medical Dictionary for Regulatory Activities

(MedDRA; version 15.0). AE severity (mild, moderate, or severe) and causality (unrelated, possibly re-

lated, or probably related to the study medication) were assessed by the investigator at each site.

Pharmacokinetic Evaluations

Plasma samples were obtained 2 and 4 hours after the first daily ibezapolstat administration on

days 1, 5, and 10. Fecal samples were collected at baseline and daily during days 1–10 of ibezapolstat re-

ceipt. Plasma and fecal concentrations were assayed by AltaSciences (Laval), and PK analyses were per-

formed by Learn and Confirm.

Microbiology

Stool samples were cultured for C. difficile growth on a selective cycloserine-cefoxitin fructose

agar at 37°C under anaerobic conditions for 48 hours.643 Isolates were identified as C. difficile based on

growth and morphology and confirmed by PCR for C. difficile toxin and tpi genes. C. difficile was strain

typed using a PCR-based ribotyping method, as described elsewhere [14].646 Minimum inhibitory concen-

trations were determined for ibezapolstat by broth microdilution in 0.1% sodium taurocholate brain heart

infusion media.647
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Microbiome and Bile Acid Evaluations

Fecal samples for microbiome analysis were collected daily during ibezapolstat dosing and on days

2, 10, 20, and 28 after the EOT. Stool DNA extraction was performed using the Qiagen DNeasy PowerSoil

Pro Kit (Qiagen; catalog no. 12888-100) in a QIAcube automated DNA extraction system (Qiagen) accord-

ing to the manufacturer’s instructions. Microbiome characterization was performed by sequencing the V1–

V3 region of the 16S ribosomal RNA gene, using the MiSeq system (Illumina) [16, 17].648,649 Each sample

was amplified using a barcoded primer, which yielded a unique sequence identifier tagged onto each indi-

vidual sample library. Genomic DNA was normalized before polymerase chain reaction (PCR) analysis,

and PCR products were normalized before pooling. Illumina-based sequencing yielded >15 000 reads per

sample. Bile acids were quantified using targeted liquid chromatography mass spectrometric analysis per-

formed on a QTRAP 5500 mass spectrometer (Sciex), adapted from a previously described method.628

Bile acid levels were normalized by the corresponding stool sample weight.

Efficacy Assessments

The primary efficacy outcome measure was initial clinical cure at the EOT, defined as resolution

of diarrhea in the 24-hour period before the EOT and maintained for ≥48 hours after the EOT. SCC was

defined as clinical cure with no recurrence of CDI within 28 (±2) days after the EOT.

Statistical Analysis

An intent-to-treat analysis of patients receiving ≥1 dose of ibezapolstat was conducted. Descrip-

tive statistics were calculated for efficacy, safety/tolerability, and PK data generated using SAS version 9.4

software (SAS Institute). Results are expressed as means with standard deviations (SDs) unless otherwise

stated. Microbiome summary plots and data visualization was prepared using R software, version 4.1.1 (R

Core Team 2021).650 Alpha diversity for each sample was assessed with the VeganR package version 2.4-

2, using the Shannon diversity index and the inverse Simpson index. Differences in alpha diversity (with

38



both indexes) and bile acids between baseline and during or after therapy were determined using linear re-

gression models. Proportional changes of bacterial taxa over the 10-day dosing interval were calculated

using linear regression models for taxa with a ≥1% proportional change during the study time period. Dif-

ferences were considered significant at P < .05.

Results

Patients

Ten patients aged were enrolled, with a mean (SD) age of 49 (15) years (50% female; 100% white

race; 80% Hispanic or Latino ethnicity). All 10 patients received ibezapolstat and completed the study

(Supplementary Figure 3.1). The median number of unformed bowel movements in the 24 hours before the

start of therapy was 4 (range, 3–10). Two of 10 patients received <24 hours of antibiotics, either metronida-

zole or vancomycin, before starting ibezapolstat. No patients were hospitalized before or after enrollment.

Table 3.1: Phase IIa Adverse Events in Adults with CDI Receiving Ibezapolstat. Adapted from: Efficacy, Safety, Phar‐
macokinetics, and Microbiome Changes of Ibezapolstat in Adults with Clostridioides difficile Infection: A Phase 2a
Multicenter Clinical Trial.589

Adverse Event Frequency Severity Relationship Treatment Required Outcome
Headache Intermittent Mild Unrelated No Resolved
Headache Intermittent Mild Unrelated No Resolved
Intertriginous Candidiasis Continuous Moderate Unrelated Yes Resolved
Migraine Headache Continuous Severe Unrelated Yes Resolved
Nausea Intermittent Moderate Probable No Resolved
Nausea Intermittent Moderate Probable No Resolved

Safety

A summary of the AEs is provided in Supplementary Table 3.1. Seven AEs were reported in 4

of the 10 patients, with 4 occurring in a single subject. None of the AEs were serious AEs. The severity

of AEs was mild (n = 2), moderate (n = 4), and severe (n = 1; drug-unrelated migraine headache). The
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Figure 3.1: Ibezapolstat pharmacokinetics in plasma (A) and stool (B) samples. From:Efficacy, Safety, Pharmacokinetics,
and Microbiome Changes of Ibezapolstat in Adults with Clostridioides difficile Infection: A Phase 2a Multicenter Clinical
Trial589

most common AEs were headache (n = 2) or nausea (n = 2); both episodes of nausea were regarded by the

investigator as “probably related” to the study drug. No treatment was required for these AEs, and no AE

required a change to the study drug schedule or withdrawal of dosing. All AEs were resolved by the end of

the study. No significant clinical laboratory test abnormalities were detected

Pharmacokinetic Results

The 2–4-hour postdose ibezapolstat plasma levels ranged from 233 to 578 ng/mL, with higher

concentrations observed at 4 hours (range, 373–578 ng/mL) than at 2 hours (234–299 ng/mL). The mean

ibezapolstat stool concentration (SD) was 416 (494) µg/g stool by day 3 of therapy, >1000 µg/g stool by

days 8–10, and 535 (748) µg/g stool 2 days after the EOT. Three of 4 stool samples collected on day 38

continued to have detectable stool concentrations of ibezapolstat (mean [SD], 136 [161] µg/g stool). Base-

line stool and plasma concentrations (before drug administration) were undetectable. Full stool and plasma

PK data are shown in Figure 3.1.

Microbiology Results

Toxigenic C. difficile grew in 6 of 7 baseline stool samples (86%) available for microbiology stud-

ies but not in stool samples from any other sampling day (range, 7–9 samples per day). Identified ribotypes
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Figure 3.2: Summary estimates of changes in alpha‐diversity over time with the Shannon (A) and inverse Simpson (B)
[1 ‐ Dominance] diversity indeces. From:Efficacy, Safety, Pharmacokinetics, and Microbiome Changes of Ibezapolstat in
Adults with Clostridioides difficile Infection: A Phase 2a Multicenter Clinical Trial589

included F078–126 (n = 2), F014–020 (n = 2), F106 (n = 1), and FP435 (n = 1). The minimum inhibitory

concentrations of ibezapolstat were 0.25 (n = 1), 0.5 (n = 3), or 1.0 (n = 1) ug/mL.

Microbiome and Bile Acid Results

Eight participants provided stool samples for microbiome and bile acid analysis. Although in-

terindividual changes were noted, a rapid increase in alpha diversity was noted from baseline samples

using both the inverse Simpson and Shannon diversity indexes (Figure 3.2). Compared with baseline, in-

verse Simpson index diversity increased by a mean (SD) of 0.14 (0.06) points during ibezapolstat therapy

(P = .02) and by 0.22 (0.10) points after the EOT (P = .003).
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Figure 3.3: Effects of ibezapolstat on relative abundance of taxa by phylum (A), class (B), order (C), and family (D). From:
Efficacy, Safety, Pharmacokinetics, and Microbiome Changes of Ibezapolstat in Adults with Clostridioides difficile Infec‐
tion: A Phase 2a Multicenter Clinical Trial.589

Similar results were observed using the Shannon diversity index; diversity increased by a mean

(SD) of 0.98 (0.48) points during ibezapolstat therapy (P = .049) and by 1.7 (0.87) points after the EOT

(P = .04), compared with baseline. Taxa changes during and after ibezapolstat therapy are shown in Fig-

ure 3.3. A proportional decrease in Bacteroidota phylum was observed (mean change [SD], −10.0% [4.8%];

P = .04), most commonly owing to a decreased proportion of Bacteroidia class taxa (−10.0% [4.8%]) and

Flavobacteriaceae family taxa (−8.8% [4.8%]). An increased proportion of Bacillota phylum was observed

(mean change [SD], +14.7% [5.4%]; P = .009), most commonly owing to an increased proportion of Lach-

nospiraceae (+12.7% [6.0%]) and Oscillospiraceae (+2.8% [2.7%]). Other Bacillota had decreased pro-

portions, most notably Bacillales (mean change [SD], −4.4% [2.3%]) and Lactobacillales (−3.7% [2.2%])

order taxa. Abundance tables for individual patients are shown in Supplementary Figure 3.4.

Results of the bile acid analysis are shown in Figure 3.5. Compared with baseline, total primary

acid concentrations in stool samples decreased by a mean (SD) of 40.1 (9.6) ng/mg stool during therapy

(P < .001) and 40.5 (14.1) ng/mg stool after the EOT (P = .007). Compared with baseline, total secondary

bile acid concentrations increased by a mean (SD) of 65.6 (146.7) ng/mg stool during therapy (P = .66) and

97.5 (215.4) ng/mg stool after the EOT (P = .65).
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Figure 3.4: Participant‐level view of ibezapolstat’s impact on microbiota. The panels are different taxonomic levels of
the same dataset, such that bacterial phyla (top‐left), class (top‐right), order (bottom‐left), and family (bottom‐right) show
the participant‐specific changes in Actinomycetota (purple); Bacteroidota (blue); Bacillota (green); Peptostreptococcaceae
(red) through time. From:Efficacy, Safety, Pharmacokinetics, and Microbiome Changes of Ibezapolstat in Adults with
Clostridioides difficile Infection: A Phase 2a Multicenter Clinical Trial589

43

https://pubmed.ncbi.nlm.nih.gov/35134880/
https://pubmed.ncbi.nlm.nih.gov/35134880/


Figure 3.5: Bile acid changes over time. Changes in primary (A) and secondary (B) bile acid concentrations and the ratio
of secondary to primary bile acid concentrations (C). Values represent means with standard errors. From:Efficacy, Safety,
Pharmacokinetics, and Microbiome Changes of Ibezapolstat in Adults with Clostridioides difficile Infection: A Phase 2a
Multicenter Clinical Trial589

44

https://pubmed.ncbi.nlm.nih.gov/35134880/
https://pubmed.ncbi.nlm.nih.gov/35134880/
https://pubmed.ncbi.nlm.nih.gov/35134880/


Efficacy Outcomes

The initial clinical cure rate at the EOT was 100% (10 of 10 patients). The mean time to resolution

of diarrhea was 5 days (range, 3–7 days). The SCC rate at 28 ± 2 days after the EOT was also 100% (10 of

10 patients).

Conclusion

In this open-label, phase 2a study, ibezapolstat was well tolerated and had a safety profile con-

sistent with results from the phase I study.591 PK findings were also similar to those seen in the healthy

volunteer study. Ibezapolstat achieved high stool concentrations and plasma concentrations that did not

exceed 1 ug/mL. Favorable changes to the microbiome were observed, most notably C. difficile eradication

by day 3 and an increased proportion of healthy microbiota, including Eubacteriales order taxa known to

metabolize primary bile acids to secondary bile acids via the 7α-dehydroxylation pathway.651 These pro-

portional changes were associated with bile acid changes, including a reduction in primary and an increase

in secondary bile acids during ibezapolstat therapy, predictive biomarkers of a lower chance of CDI recur-

rence. Finally, clinical efficacy evaluations demonstrated that 100% of the 10 patients experienced initial

clinical cure and SCC evaluated at 28 days.

There are currently only 2 Food and Drug Administration–indicated antibiotics for the treatment

of CDI: vancomycin and fidaxomicin.408 As resistance to both these antibiotics has been noted, new CDI-

directed antibiotics are urgently needed.469,643 The first-in-class gram-positive selective-spectrum antimi-

crobial ibezapolstat is a novel PolC-type DNA Polymerase III inhibitor with a unique mechanism of action

that targets low–G + C content gram-positive bacteria.652

The microbiome studies in this phase 2a study provide additional insight into the effect of ibeza-

polstat on a mixed bacterial community such as the gut microbiome. Because ibezapolstat has no direct

activity on gram-negative organisms, the decrease in Bacteroidota phylum was perhaps a secondary result

of ibezapolstat’s effect on other targeted gram-positive bacteria. Likewise, the increased proportion of the
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favorable Eubacteriales order taxa demonstrates ibezapolstat selectivity within low–G + C content bacteria.

PolC-type DNA Polymerase III is thought to be present in most Bacillota, and the reasons for this selectiv-

ity will require further study.

Although the current study is underpowered to statistically evaluate secondary bile acid changes,

an increased concentration of secondary bile acids was observed during and after ibezapolstat therapy,

which is known to be correlated with colonization resistance against C. difficile.403 In addition, the de-

crease in primary bile acids and the favorable increase in the ratio of secondary to primary bile acids sug-

gest that ibezapolstat may reduce the likelihood of CDI recurrence compared with vancomycin. Phase 2b

and 3 studies will allow further investigations of these mechanistic findings. Finally, although favorable

efficacy results were demonstrated, these will need to be validated in a larger population using a double-

blind study design.

In conclusion, in the current study, ibezapolstat was well tolerated in adults with CDI and demon-

strated a PK profile ideal for a CDI antibiotic with low systemic absorption and high colonic concentra-

tions. Advantageous microbiome abundance and bile acids changes coupled with successful efficacy data

support the continued development of ibezapolstat for use in the adult CDI population.
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It is not difficult to make microbes resistant to penicillin

in the laboratory... and the same thing has occasionally

happened in the body.

– Alexander Fleming 4
The microbiome-restorative potential of

ibezapolstat for the treatment of Clostridioides

difficile infection is predicted through variant

PolC-type DNA polymerase III in

Lachnospiraceae and Oscillospiraceae

Introduction

Clostridioides difficile is the most common healthcare-associated pathogen in the United States

and causes C. difficile infection (CDI) affecting approximately 500,000 patients per year.7 The pathogen-

esis of CDI involves disruption of a healthy gut microbiome leading to a dysbiotic environment enabling

C. difficile spores to germinate and cause disease. Antibiotics used to treat CDI can also further disrupt

the microbiome contributing to high rates of disease recurrence. Of the two guideline-recommended an-

tibiotics for the treatment of CDI, the RNA polymerase II inhibitor, fidaxomicin (FDX) is a more narrow-
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spectrum antibiotic on healthy gut commensal organisms than vancomycin (VAN), a glycopeptide antibi-

otic that inhibits D-ala-D-ala cell-wall synthesis. In head-to-head comparison, FDX was shown to be su-

perior to VAN in the prevention of recurrent CDI (rCDI).451,454,653 This supports drug discovery efforts to

identify drug targets that kill C. difficile without affecting the healthy gut commensal organisms.

Ibezapolstat (IBZ; formerly ACX-362E) is a first-in-class antibiotic that targets the PolC-type

DNA polymerase III alpha-subunit (PolC) found in Bacillota and not in other important human gut mi-

crobiota phyla including Actinomycetota, Bacteroidota, or Pseudomonadota. IBZ has completed phase

2 clinical trials for the treatment of CDI. Data from the phase 1–2 clinical trials showed IBZ minimally

disrupted certain Bacillota, specifically Lachnospiraceae, Oscillospiraceae (formerly Oscillospiraceae),

and Coprobacillaceae within Erysipelotrichales despite also having the PolC.588,589,591 The reason for this

unexpected IBZ sparing of select commensal Bacillota is unknown. We hypothesized that polymorphic

differences in PolC among different G + C species would influence IBZ spectrum of activity. In silico

studies have discovered antibiotic mechanism of action for targeted antibiotics for the fatty acid synthesis

protein enoyl-ACP reductase II (FabK).654 In this regard, we utilized in silico methods to better under-

stand this narrower than expected spectrum of activity of IBZ for Lachnospiraceae, Oscillospiraceae, and

Erysipelotrichaceae/Coprobacillaceae during therapy.

Methods

Phylogenetics of PolC Variations

Protein Sequence Acquisition and Phylogenetic Tree Construction

Genomic analyses were performed in the CLC Genomics Workbench version 24.0 (Qiagen). A

custom microbial database was built comprising 620 RefSeq-deposited reference and representative com-

plete genome assemblies within the phylum Bacillota. From each genome, the polC gene was extracted us-

ing their automated homology annotations, resulting in 1,113 gene sequences. These 1,113 genes were trans-
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lated to their respective protein sequences using their coding sequence (CDS) track annotations, resulting

in 1,158 protein sequences. These 1,158 protein sequences were further annotated via HMMER (v.3.1b1;

May 2013) with Pfam (v.35.0) functional domains to identify the PolC-defining RNaseT (PF00929.27)

inserted within the Polymerase and Histidinol Phosphatase (PHP) domain (PF02811.22). Manual screen-

ing for protein sequences for this RNaseT insertion within the PHP domain resulted in 620 final PolC se-

quences (9–11).655–657 These 620 PolC sequences were aligned with the CLC Genomics Workbench “Cre-

ate Alignment” tool (v.1.02) using the very accurate multiple sequence alignment (MSA) algorithm, a gap

open cost = 10.0, gap extension cost = 1.0, end gap cost = “as any other,” re-do alignments = “no,” and use

fixpoints = “no.” The resulting MSA served as input for the “Create Tree” tool in CLC Genomics Work-

bench using the Neighbor-Joining algorithm, the Jukes-Cantor distance measure, and 100 replicates of

Bootstrapping. The resulting phylogenetic tree was subsequently visualized as a circular phylogram with

color-coded to taxonomic family, and node annotations of clinically relevant families. Leaves were manu-

ally annotated with general susceptibility to IBZ as either generally IBZ non-susceptible (red), or generally

IBZ susceptible (green) based on the results of our metagenomic studies.588,589

Protein Structure Prediction

In the absence of clinically relevant three-dimensional protein structure data, AlphaFold2658 was

used to predict the structure of the PolC-type DNA polymerase III (protein ID = CBE03476.1) from the

polC gene (gene = dnaF; locus tag = CDR20291_1146) of the C. difficile strain R20291 (NCBI accession =

NC_013316.1; GenBank = FN545816.1; RefSeq Assembly = GCF_000027105.1). Using C. difficile strain

R20291 PolC (CdiPolC) protein sequence, the three-dimensional structure was predicted via a Colab-

Fold (Google) colab notebook.659 Relevant ColabFold parameters include MSA_method = MMseqs2,660

pair_mode = ”unpaired,” num_relax = 0, use_ptm = ”True,” rank_by = ”pLDDT” (predicted local distance

difference test), num_models = 5, num_samples = 1, num_ensemble = 1, max_recycles = 3, is_training

= ”False,” and use_templates = ”False.” Output quality metrics of prediction accuracy include the MSA

coverage, predicted contacts, predicted distograms, predicted alignment error (PAE), the predicted local

distance difference test (pLDDT), and a settings log file.
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Molecular Docking

The top-ranked AlphaFold2 CdiPolC structure (model 3, pLDDT: 88.5, and pTMscore: 0.7481)

served as the input for parallel structure- and template-blind molecular docking of IBZ (PubChem Con-

former3D_CID_136022209). The best binding pose was detected using structure- and template-based

docking via the CB-Dock2549 server that combines CurPocket661 curvature-based cavity detection with

AutoDock-Vina546,662 blind docking of the three-dimensional IBZ conformer. The five top-ranked binding

poses in CdiPolC cavities were produced, ranked by Vina Score and cavity volume. Visual inspection of

the CdiPolC•IBZ complexes was performed in (Schrodinger) Maestro663,664 and UCSF ChimeraX.547

Binding Pocket Homology Modeling

Using prior knowledge of Bacillus subtilis azp12 strain resistant to IBZ-predecessor compounds,551

the third rank docked complex was modeled homology modeling of the IBZ binding site near this same

active site. The CdiPolC residues that mediated good contacts with IBZ were visually identified using

Schrodinger Maestro, and further confirmed by the protein-ligand interaction profiler.665 Following the

identification of contact residues, conservation analysis of these residues across two MSAs was performed

using CLC Genomics (Qiagen). First, the conservation per residue was analyzed across the same 620 PolC

amino acid sequence used above. Second, the conservation of these residues was modeled across 16 repre-

sentative PolC from 16 clinically relevant species. Data were presented using sequence logos generated via

WebLogo.666 Figures were made using BioRender.

Results

Phylogenetic Relatedness of Bacillota PolC

An amino acid phylogenetic tree was constructed for the PolC from 620 representative Bacillota

species (Figure 4.1). The tree was annotated with color-coded taxonomic families from the NCBI (col-
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ored branches, nodes, outer ring, and name). The intra-phylum phylogenetic relatedness of PolC coincided

with the established 16S rRNA evolutionary determinants of taxonomy. Visualization of the tree identi-

fied a section of one PolC clade that largely consisted of the Eubacteriales (formerly Clostridiales; coined

Clade 3) that contained the IBZ-sparing Lachnospiraceae , Oscillospiraceae, and Erysipelotrichales. An-

other section of Clade 3 PolC with a root taxonomic family of Thermoactinomycetaceae (cerise magenta)

contained Clostridiaceae (C. butyricum, H. histolytica, C. septicum, and C. sporogenes) and Peptostrep-

toccaceae (C. difficile and Paeniclostridium sordellii) that were generally killed during IBZ-therapy in the

phase 2 clinical trial.

Molecular Structure Analysis

To further understand the predicted pharmacological affinity of IBZ, in silico template-based cav-

ity detection and structure-based molecular docking via CB-Dock2 were used to identify the binding site

pocket and best pose of PolC for C. difficile, Lachnospiraceae , Oscillospiraceae, and Erysipelotrichales.

A three-dimensional predicted protein structure of the PolC from C. difficile strain R20291 (CdiPolC) was

generated using a ColabFold notebook running python 3.10 on a Google Cloud A10 GPU using the MM-

seqs2 sequence alignment algorithm.(Figure 4.2) The AF2_CdiPolC quality metric of the pLDDT showed

a drop in model confidence around positions 180–200, corresponding to a 20-residue stretch of residues

preceding the Exo domain. Otherwise, the majority of the AF2_CdiPolC had a high level of model con-

fidence (average pLDDT 88.5), including the oligonucleotide binding (OB) domain, the duplex binding

(DB) domain, and the polymerase palm, thumb, index, and middle fingers. Given the global confidence of

AlphaFold2 in the predicted AF2_CdiPolC, the top-ranked model was docked to IBZ using CB-Dock2 us-

ing parallel CurPocket for cavity detection and AutoDock-Vina for virtual docking. Upon visual inspection

of the top five docked complexes, one complex whose binding pocket was close to the enzymatic active site

of the Polymerase palm where oligonucleotide extension occurs was used for further study. This complex

was chosen for further study due to the proximity to the enzymatic active site and prior evidence that the B.

subtilis azp12 mutant PolC identified a single-amino acid change near this site that confers resistance to the

azopyrimidine predecessor compound to IBZ, 6-(p-hydroxyphenylazo)-uracil (HPUra) (22, 25).551,667
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Figure 4.1: Phylogenetic Conservation of the PolC across the Bacillota phylum. From: The microbiome‐restorative po‐
tential of ibezapolstat for the treatment of Clostridioides difficile infection is predicted through variant PolC‐type DNA
polymerase III in Lachnospiraceae and Oscillospiraceae.590
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Figure 4.2: AlphaFold2‐based docking with AutoDock‐Vina finds the binding pocket and pose of ibezapolstat to the C.
difficile PolC. From: The microbiome‐restorative potential of ibezapolstat for the treatment of Clostridioides difficile
infection is predicted through variant PolC‐type DNA polymerase III in Lachnospiraceae and Oscillospiraceae.590

Homology Modeling of the PolC Binding Pocket of IBZ

Visual inspection of the IBZ•AF2_CdiPolC complex using Maestro (Schrodinger) identified PolC

residues within 5 Å of IBZ (Figure 4.3). Notably, several residues mediated the binding pocket, but only

a fraction provided a phylogenetically conserved explanation for the observed IBZ PolC narrower spec-

trum of activity. First, upon visual inspection, two distantly encoded but closely positioned lysine residues,

CdiPolCLys1148 and CdiPolCLys1327 were identified near the N2-substituted ((3,4-dichlorophenyl)methyl)amino

functional group of IBZ. This would allow electrostatic interaction between the negatively charged chlo-

rines and positively charged nitrogen to lock the two lysine residues in a rare (<10%) rotamer conformation

that could bind and hold IBZ. These two lysine “gates” across 16 representative species PolC demonstrated

that CdiPolCLys1327 was a highly conserved residue throughout representative PolC species, except Blau-

tia coccoides and C. scindens ( Lachnospiraceae ), C. leptum (Oscillospiraceae), and Thomasclavelia

ramosa (Coprobacillaceae). The second lysine “gate,” CdiPolCLys1148, was also a highly conserved

residue that followed an evolutionary selection of positively charged arginine or lysine across the Bacil-
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lota phylum except for the Lachnospiraceae (negatively charged aspartate), the Oscillospiraceae (histidine

residue), and the Coprobacillaceae (methionine residue). The CdiPolCThr1327 predicted binding to the

polar hydrogens of the IBZ central guanine moiety and via the formation of a hydrogen bond network may

have an IBZ “anchoring” interaction. This residue is conserved throughout the 16 representative species

except for the Lachnospiraceae , Oscillospiraceae, and Erysipelotrichales. Finally, the N7-substituted

(2-(4-morpholinyl)ethyl) IBZ functional group was in proximity to a handful of potentially interacting

residues including CdiPolCThr1291, CdiPolCLys1292, CdiPolCIle1094, and CdiPolCAsp1090. Possibly,

the morpholino group of IBZ may interact with CdiPolCThr1291 in a C. difficile-nearly specific manner

that also locks the residue in a rare rotamer conformation. Phylogenetically, CdiPolCThr1291 aligned

across the 16 representative species reveals a phylum-conserved preference for aliphatic residues valine

or isoleucine, including B. coccoides ( Lachnospiraceae ) and C. leptum (Oscillospiraceae). This residue,

CdiPolCThr1291, may be a C. difficile-specific sensitizer residue specifically or perhaps for other Pep-

tostreptococcaceae. T. ramosa also has threonine at this relative position, which may balance its sensitiv-

ity to moderately de-sensitized to IBZ, second to Lachnospiraceae and Oscillospiraceae. Finally, aspar-

tates are considered the catalytic residues of DNA synthesis reactions, the proximity of IBZ to CdiPol-

CAsp1090 may explain the competitive inhibition observed in prior studies of steady-state C. difficile

PolC kinetics (26).613 Taken together, the homology modeling of the binding pocket of PolC predicted

several variant residues that confer IBZ non-susceptibility in Lachnospiraceae , Oscillospiraceae, and

Erysipelotrichaceae/Coprobacillaceae.

Conclusion

IBZ is a PolC-type DNA polymerase III alpha-subunit (PolC) inhibitor currently in clinical devel-

opment for the treatment of CDI. During clinical trials, a narrower than expected spectrum of activity was

observed that included increased proportion of certain key microbiota of the Bacillota phylum known to

confer health benefits, specifically Lachnospiraceae , Oscillospiraceae (formerly Oscillospiraceae), and

Coprobacillaceae within Erysipelotrichales. The purpose of this study was to use in silico techniques
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Figure 4.3: Binding Pocket Differences Associated with Reduced Ibezapolstat Susceptibility. From: The microbiome‐
restorative potential of ibezapolstat for the treatment of Clostridioides difficile infection is predicted through variant
PolC‐type DNA polymerase III in Lachnospiraceae and Oscillospiraceae.590

to hypothesize the mechanism underlying this finding. Recent evidence combining structural biology

and phylogenetics of the fidaxomicin-RNAP II interaction identified a single polymorphic “sensitizer

residue” at the RNAP β� (K84) sufficiently confers a more narrow-spectrum of activity to only two of

the four phyla of the human gut microbiota (27).368 We hypothesized that a similar phenomenon could

be responsible for the narrow-spectrum activity of IBZ within the Bacillota phylum. The major find-

ing of this study was that the predicted pharmacophore ensemble of interactions between IBZ and PolC

(PolC•IBZ) is conserved across the majority of the Bacillota phylum except for Lachnospiraceae and Os-

cillospiraceae, and Erysipelotrichales (including Erysipelotrichaceae and Coprobacillaceae), taxa that

were not killed or regrown in IBZ-treated subjects while on therapy. Within this taxa, residues that were

predicted to be phylogenetic variants that may ablate key PolC•IBZ interactions were: two lysine “gates”

(CdiPolCLys1148 and CdiPolCLys1327) that are predicted to “latch” onto the compound; an “anchoring”

interaction (CdiPolCThr1331) to the central moiety; and a stabilized set of C. difficile sensitizer residues

(CdiPolCThr1291 and CdiPolCLys1292) that may result in the prolonged inhibition of a catalytic residue

(CdiPolCAsp1090). While these results will need to be confirmed in experimentally determined structures
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and molecular genetic approaches, they provide a working hypothesis for the selective narrow spectrum of

activity of IBZ.

This study has certain limitations. We used AlphaFold2 with AutoDock-Vina to in silico predict

key binding site residues IBZ. Despite the accuracy of AlphaFold2 to predict structures from millions of

structures from the primary amino acid structures, there are still limitations of the tool. There are only

three deposited PolC structures from one species (PDB 3F2B, 3F2C, and 3F2D, Geobacillus kaustophilus)

for model training. IBZ MICs were higher for commensal bacteria than C. difficile; however, these re-

sults will need to be confirmed in larger studies using clinical isolates. These results need to be confirmed

structurally using the C. difficile PolC and in enzymatic, molecular interaction, and cellular genetic assays.

Finally, whether the regrowth of these Lachnospiraceae and Oscillospiraceae in IBZ treatment subjects

confers a health benefit will require further study.

In conclusion, our in silico model predicts that the, in vivo, observed IBZ sparing of Lachnospiraceae

, Oscillospiraceae, and Erysipelotrichaceae/Coprobacillaceae is due to phylogenetically variant PolC•IBZ

binding pocket residues. Further in vitro studies that confirm a PolC structural basis for the IBZ narrower

than expected activity needed to confirm these in silico findings.
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I told my three sons stories about germs more than

fifty years ago as fanciful bedtime tales

– Arthur Kornberg

5
Globally circulating Clostridioides difficile are

Devoid of Mutations Associated with PolC

Inhibitor Resistance

Introduction

Understanding how the human gut microbiome influences human health is an incredibly exciting

and challenging field of biomedical science. The ecological diversity of bacteria of the human gut micro-

biome (microbiota) provide a vast breadth, depth and diversity of host-microbe and microbe-microbe in-

teractions. For example, how oral antibiotics destroy the microbiota, predisposing a host to pathobiont and

pathogenic infections, is an area of active research often called ’colonization resistance’. One leading hu-

man gut pathobiont, Clostridioides difficile, is the quintessential dysbiosis infectious disease. CDI patho-

genesis often occurs by loss of microbiota diversity upon receipt of oral broad-spectrum antibiotics that re-

duces host colonization resistance, C. difficile toxin-mediated damage of host intestinal epithelium, and re-

sulting life-threatening infectious diarrhea that spurs the fecal-oral route of transmission. The limited ther-

apeutic options for the treatment of CDI is a public health threat that warrants the development of narrow-
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spectrum, C. difficile-active oral antibiotics that preserve the bacteria of microbiome, or microbiota, in the

human gut. Currently available guideline recommended antibiotics for the treatment of CDI include broad-

and narrow-spectrum agents, vancomycin and fidaxomicin, respectively. To develop microbiota-sparing

antibiotics, the ideal druggable target would be present in a fraction of microbiota, providing a phyloge-

netically restricted basis for narrow-spectrum activity. One such target, the PolC-type DNA polymerase

III (PolC), is phylogenetically found in the bacterial phylum Bacillota and not other common gut bacterial

phyla, including Pseudomonadota, Bacteroidota, and Actinomycetota. Biologically, the PolC is the essen-

tial catalytic subunit of the twelve-subunit DNA replisome that conducts template-directed DNA synthesis

during DNA replication. Pharmacologically, the PolC has been studied for its role as a potential drug target

for the development of nucleotide analogs as Gram-positive selective spectrum (GPSS) antibiotics for the

treatment of common Gram-positive bacterial infections. Recent evidence suggests the C. difficile PolC is

inhibited by PolC inhibitor nucleotide analogs, such as the dichlorobenzylguanine (DCBG) ibezapolstat

(IBZ) through a competitive mode of inhibition (Torti 2011). Microbiological studies found IBZ inhibits

the C. difficile in vitro with relatively low minimum inhibitory concentration (MIC) values in the range

of 2 - 4 μg/mL, including 67 strains of multi-drug resistant C. difficile. Ibezapolstat (IBZ) is a semisyn-

thetic small-molecule inhibitor of the PolC-type DNA Polymerase III (PolC) that belongs to the chemical

class of dichlorobenzylguanine (DCBG) analogs. The chemical structure of IBZ includes a central gua-

nine moiety with an N7-morpholino-ethyl and an N2-dichlorbenyzl (Figure 5.1). Clinically, dose finding

studies have shown IBZ has a low bioavailability per oral administration with average plasma concentra-

tions of less than 1 μg/mL and average stool concentrations of 2,000 μg/g (Garey 2020). Metagenomic

studies performed on healthy human subjects and CDI patients treated with per oral IBZ have shown a

preservation of key commensal microbiota responsible for coordinating host colonization resistance to C.

difficile, including Lachnospiraceae and Oscillospiraceae (formerly Oscillospiraceae) (McPherson 2022;

Garey 2022). Comparative modeling studies suggest of the Bacillota PolC have shown family-level differ-

ences in the PolC active site and proposed IBZ binding site may be correlated with reduced susceptibility

in Lachnospiraceae and Oscillospiraceae (formerly Oscillospiraceae) at the PolC lysine 1327, lysine 1148,

and threonine 1331 associated IBZ resistance (McPherson 2025). Taken together, these studies suggest

the IBZ inhibition of the phylogenetically restricted PolC will not only treat CDI but also promote host
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(AF3) C. difficile PolC•β-clamp•dsDNA
Key Residues in C. difficile 
PolC 
● Catalytic (C. difficile aligned; 

Evans et al. 2008)
 
● Ser1169Ala: HPUra-R B. 

subtilis (Ott et al. 1986)
 
● Phe1258Leu: EMAU-R  

Staph. aureus, E.faecalis, B. 
subtilis (Butler et al. 2002; 
Nelson-Riggs et al. 2023)

 
● Lys1148, Lys1327, 

Thr1331: Lachnospiraeae/
Oscillospiraceae IBZ-R variant

HPUra HB-EMAU IBZ

Figure 5.1: Currently Known or Suspected Determinants of PolC Inhibitor Resistance.

colonization resistance through sparing and promotion of the commensal microbiota. These findings in

narrow-spectrum antibiotic development for the treatment of CDI are encouraging, however little is known

about the susceptibility of globally circulating C. difficile to IBZ. This observation poses the question, how

might IBZ resistance arise or already be present in C. difficile? How widespread is IBZ resistance in C.

difficile? To address these clinically relevant questions, we applied previously reported findings of resis-

tance to related PolC inhibitor resistance in laboratory strains of related Bacillota. With these data, we

used AlphaFold3 homology models and publicly available genomic data to characterize the conservation

and phylogeography of the polC from globally circulating C. difficile.

Methods

Genomic sequence acquisition, annotation, and alignment of the key polC residues associated with

PolC inhibitor resistance to that of C. difficile was performed in the commercial bioinformatics software,

CLC Genomics Workbench (Qiagen). We validated the changes in the HPUra-resistant B. subtilis strain

azp12 (parent strain 168) partial polC [NCBI accession M33543.1] and complete polC [NCBI M22996.1]

against the polC [locus BSU_16580] from the Bacillus subtilis parent strain 168 complete genome [NCBI

accession NC_000964.3]. Consistent with the prior experimental findings, the EMAU-resistant polC [lo-
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cus CFC57_RS06555] previously identified in Staphylococcus aureus ATCC 13709 ‘Smith’ strain [NCBI

accession CP029751.1] (Panthee et al 2020) was translated and manually annotated to match the serine

1261 leucine substitution previously reported (Barnes 2002; Nelson-Rigg 2023). To unify these findings,

EMAU-resistant Staph. aureus PolC serine 1261 was aligned with to B. subtilis strain 168 PolC phenylala-

nine 1264. Third, the amino acid differences associated with IBZ-resistant polC from Blautia coccoides

ATCC 29236 (representative Lachnospiraceae ) [NCBI accession CP136422.1, locus BLCOC_RS06105]

and Clostridium leptum DSM 753 (representative Oscillospiraceae; formerly Oscillospiraceae) [NCBI ac-

cession ABCB02000020.1, locus CLOLEP_02966]. Finally, we aligned these positions to the PolC from

Clostrdioides difficile epidemic ribotype NAP1/B1/F027 strain R20291 [NCBI accession NC_013316.1,

locus CDR20291_RS06355].

DNA sequence acquisition, alignment and translation of the amino acid changes in focus from that

of B. subtilis strain 168 (model Gram-positive bacterium), C. difficile R20291 strain (pathobiont of inter-

est), Blautia coccoides ATCC 29236 (a representative Lachnospiraceae ) and Clostridium leptum ATCC

29065 (a representative Oscillospiraceae) were performed using CLC Genomics Workbench (CLC) ver-

sion 25 (Qiagen). AlphaFold3 (DeepMind AlphaFoldServer) predicted homology models of the PolC•β-

clamp•dsDNA macromolecular complex from the above four species were used to estimate the general

proximity of these five important residues. UCSF ChimeraX was used to superimpose and inspect the rela-

tive positions of residues associated with PolC inhibitor resistance.

We analyzed 32,938 Clostridioides difficile (NCBI txid1496) nucleotide sequences comprising

approximately 22,000 genomes of any level of assembly. From these nucleotide sequences, we extracted

1,482 polC coding sequences (CDS) using the ‘extract annotated regions’ tool for annotations including the

annotation ‘polC’ from automated homology annotations via the NCBI Prokaryotic Genome Annotation

Pipeline (PGAP). Of note, the above 218 polC sequences from ‘circular’ genomes are included among

these 1,482 sequences, for their inclusion in further conservation analysis. Of these 1,482 polC sequences,

1,258 polC sequences with 4,299 nucleotide length and the polC-distinguishing insertion of an exonuclease

into the polymerase and histidinol phosphatase domain; 14 polC sequences were of length 4,297, 4,298 or

4,300 nucleotide length were excluded. These 1,258 polC sequences of length 4299 nucleotide and their
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translations were included for conservation analysis. These sequences were aligned using the algorithm

described above and their conservation data was visualized using R (R Core Team).

Bioinformatic sequence retrieval, typing, extraction, annotation, alignment, and tree building was

performed in CLC. From the 32,938 nucleotide sequences include 240 ‘circular’ genomes with complete

assembly and previously annotated by automated sequence homology via the PGAP as Clostridioides dif-

ficile (NCBI txid1496). From these complete sequences, 226 ‘polC’ coding sequences (CDS) of 4,297 to

4,300 nucleotide length were extracted using the tool ’extract annotated regions’. These 226 CDS were

further annotated with ’annotated CDS with PFAM domains’ with PFAM A-v35. Manual inspection of

these 226 annotated CDS led to the removal of 8 of 226 CDS that are annotated as ‘polC’ but were not

only much shorter (average nucleotide length of 500 versus the consensus 4299 nucleotide length) but

also lacked the PolC-distinguishing feature of an exonuclease domain [ [PF00929]] inserted into the poly-

merase and histidinol phosphatase domain [CD07435]. We included one CDS of 4,297 nucleotide length

(locus RHN71_06505 CP133824) and two CDS of 4,300 nucleotide length (RHN80_06735 CP133827;

polC CP026597) for their consistency with these parameters; these three non-4,299 CDS were also in-

cluded in the fourteen CDS analyzed for insertion/deletion codon analysis. These 218 polC sequences

were aligned using a Smith-Waterman-based algorithm with a gap open cost of 10.0, gap extension cost

of 1.0, and end gap cost as any other. Manual dataset cleaning of these sequences for country, year and

host-organism of sample collection was performed. Phylogenetic tree construction used Neighbor Joining

and Jukes-Cantor nucleotide distance with 100 replicates of bootstrapping.

Results

Current knowledge of PolC inhibitor resistance is limited to target biding pocket changes conferred

by polC non-synonymous mutations. Prior findings in laboratory strains of related Bacillota have shown

the B. subtilis PolC serine 1175 is associated with HPUra resistance (C. difficile PolC serine 1169), Staph.

aureus phenylalanine 1261 associated with EMAU resistance (C. difficile PolC phenylalanine 1258), and the

C. difficile PolC lysine 1327, lysine 1148, and threonine 1331 associated with Lachnospiraceae and Oscil-
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(AF3) PolC•β-clamp•dsDNA 
B. subtilis
C. difficile

B. coccoides
C. leptum

Figure 5.2: Superimposed AlphaFold3 PolC of Determinants of Resistance to PolC Inhibitors.

lospiraceae IBZ resistance (McPherson et al 2025), are in general proximity to one another, as well as the

3’ OH of the primer DNA near the enzyme active site, consistent with the proposed competitive slow-off

mode of action of PolC inhibitors (Figure 5.1). To better understand the proximity of these residues asso-

ciated with PolC inhibitor resistance in a single binding pocket, we predicted the homology model of the

PolC•β-clamp•dsDNA using AlphaFold3 (Figure 5.2). This progressive approach describes the ability of

AlphaFold3 to accurately model not only three-dimensional protein structures but also protein-protein and

protein-nucleic acid macromolecular complexes.

Next, we curated 32,938 complete and partial C. difficile genomes with any level of assembly,

including 240 complete genomes. From dataset we curated a larger dataset of 1,258 distinct C. difficile

polC sequences; of note, these 1,258 sequences also includes the 215 of the 218 sequences from complete

genomes of C. difficile that are used in further phylogeographic analysis (Figure 5.3). The conservation

of these 1,258 C. difficile polC sequences of 4,299 nucleotide length extracted from were analyzed at the
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Figure 5.3: Data Acquisition Flowchart of Publicly Available C. difficile Genomes.

nucleotide and translated amino acid levels (Figure 5.4A). At a high-level view, we found the C. difficile

polC is highly conserved, with only seven single nucleotide polymorphisms (SNPs) that fall below 75%

conservation: polC SNP C/T 612, A/G/T 1245, A/G 1701, C/T 2143, A/G 2871, C/T 3651 and C/T 3669.

Interestingly, we find that the conservation of these seven SNPs below 75% (herein an arbitrary

cutoff) are the result of synonymous codon mutations the C. difficile polC (Figure 5.4B). Codon analy-

sis found SNP C/T 612 results in synonymous codons AGT, AGC encoding PolC serine 204; polC SNP

A/G/T 1245 results in synonymous codons TCA, TCG, and TCT encoding PolC serine 415; SNP A/G

1701 results in synonymous glutamic acid codons GAA, GAG encoding PolC glutamic acid 567; SNP

C/T 2143 results in synonymous codons CTA and TTA encoding PolC leucine 714; SNP A/G 2871 results

in synonymous codons AAA and AAG encoding PolC lysine 957; SNP C/T 3651 results in synonymous

codons AGC and AGT encoding PolC serine 1217; SNP C/T 3669 results in synonymous codons AGC and

AGT encoding PolC serine 1223. Consistent with these findings, we find remarkable conservation at the
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Figure 5.4: Conservation Analysis of Publicly Available C. difficile polC/PolC Sequences.

translated amino acid level of the C. difficile PolC. We found no residue across the 1,432 amino acids of

these 1,258 C. difficile PolC sequences below 75% in conservation, and most notably – the five residues in

question aligned to the C. difficile PolC phenylalanine 1258 (associated with EMAU resistance in B. sub-

tilis, Staph. aureus, and E. faecalis), serine 1169 (associated with HPUra resistance in B. subtilis), lysine

1327, lysine 1148, and threonine 1331 (associated with relative abundance of B. coccoides and C. leptum

in humans and CDI patients treated with oral IBZ), are 100.0% conserved in these C. difficile PolC (Fig-

ure 5.4B).

Furthermore, we analyzed fourteen polC sequences that contained the characteristic exonuclease

insertion within the PHP domain, but were non-4,299 nucleotide length. Notably, nine of these fourteen C.

difficile contain internal stop codons, resulting in truncated translations. Among the five sequences without

internal stop codons that still resulted in full-length translations, we found the aligned serine 1169 (5/5),

phenylalanine 1258 (5/5), lysine 1327 (5/5), lysine 1148 (5/5), and threonine 1331 (5/5) were conserved in

the translated protein sequences of these five non-4,299 nucleotide polC.

Last, we sought to curate and characterize the phylogeographic distribution of the polC from com-

plete genomeic sequences of C. difficile (Figure 5.5). Using CLC Genomics Workbench (Qiagen), we man-
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ually cleaned the associated metadata of these 218 C. difficile polC for sample collection country, year

and presumed host species. The collection source of these 240 C. difficile complete genomes resulting

in 218 polC from C. difficile of length 4,297 to 4,300 were geographically isolated from the countries

of the United States, Canada, Australia, New Zealand, South Korea, Japan, Belgium, Germany, Ireland,

the Netherlands, Switzerland, the United Kingdom, Ghana, China, Taiwan, Thailand and Indonesia be-

tween the years 1982 and 2023. The documented sources of these C. difficile polC include Homo sapiens

(humans, 135/218), unknown (54/218), Canis lupus familiaris (the domestic dog, 22/218), Equus caballus

(the domestic horse, 3/218), Sus domesticus (the domestic pig, 2/218), Sarcophilus harrisii (the Tasmanian

devil, 1/218), and Tiliqua rugosa (the shingleback lizard, 1/218). In our resultant phylogeographic analy-

sis of polC from complete genomes of C. difficile , we generated a circular phylogram that focuses on the

country of isolation. We found that the C. difficile polC is rooted from the United States and South Korea.

Conclusion

The development of PolC-selective inhibitors was instrumental to the discovery of PolC, begin-

ning with cytosine arabinoside (ara-C), followed by 6-(p-hydroxyphenylazo)-uracil (HPUra), leading to the

ethyl-methyl-anilouracils (EMAU) and dichlorobenzylguanine (DCBG) analogs with increased selectivity

towards the PolC of Bacillus subtilis and not DnaE of Escherichia coli. Today, the prototypical DCBG,

ibezapolstat (IBZ), is in clinical development for the treatment of Clostridioides difficile infection (CDI)

for its proposed narrow-spectrum activity. However, the major hurdle to IBZ effectiveness would be PolC

inhibitor resistance in globally circulating C. difficile. Our knowledge of PolC inhibitor resistance is cur-

rently limited to target gene mutations in laboratory strains, such as the Staph. aureus PolC Ser1261Leu

and B. subtilis Azp12 PolC Ser1175Ala. Here we sought to characterize the predicted susceptibility profile

of globally circulating C. difficile via knowledge of polC mutations associated with resistance to HPUra,

EMAU, and DCBGs in laboratory strains of related Bacillota. Our approach uses a combination of three-

dimensional protein structure modeling and large genomic databases to predict the likelihood of globally

circulating IBZ-resistance before the introduction of IBZ to the clinic.
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Figure 5.5: Phylogeography of polC from Complete Genomes of C. difficile.

66



To scale these extrapolations to the real-world for inference of globally circulating IBZ-resistant

CDI. Consistent with other studies, most of these C. difficile polC sequences originated from countries

with genomic sequencing capacity and a relatively higher burden of CDI, such as North America, Europe

and East Asia. After scaling up our scope in data from a couple hundred complete genomes to over thirty-

thousand complete and partial genomes, we found the C. difficile polC is highly conserved, with single-

nucleotide polymorphisms (SNPs) in the polC leading to synonymous codons. Correspondingly, we found

the globally circulating C. difficile PolC is highly conserved. However, the most striking feature we found

was the 100.0% conservation of the five C. difficile PolC-aligned residues associated with PolC inhibitor

resistance in related Bacillota: the phenylalanine 1258 (extrapolated from Staph. aureus and E. faecalis

resistance to EMAUs), serine 1169 (extrapolated from B. subtilis resistance to HPUra), lysine 1327, lysine

1148, and threonine 1331 (extrapolated from Lachnospiraceae and Oscillospiraceae resistance to IBZ). We

find these data support the lack of predicted PolC inhibitor resistance in globally circulating C. difficile.

This study has several strengths and weaknesses to be considered. First, our progressive approach

to model the positions of PolC inhibitor associated residues in silico with AlphaFold3 generates highly

informative insights but not experimental truth. We find these models highly informative in the limited

amount of structural data on the PolC, currently limited to Geobacillus kaustophilus. It remains unclear

how the bias in data availability of the E. coli DnaE-type DNA Polymerase III influences the AlphaFold

homology models of the more sparsely available PolC. Furthermore, although we now have the power to

generate an informative model of macromolecular structures, recent efforts suggest molecular docking

compounds via AutoDock-Vina to AlphaFold2 structures in silico does not correlate with experimental

results in vitro. Although this progressive approach needs further improvement and validation, we find

these in silico algorithms and large amounts of genomic data will overall empower us in the ever-evolving

landscape of antimicrobial drug development and resistance.

A second limitation of this study is our extrapolation of PolC inhibitor cross-resistance from not

only different chemical classes but also species of polC+ Bacillota. To the best of our knowledge at the

time of this writing, the HPUra-resistant B. subtilis azp12 strain (PolC Ser1175Ala) has not been well char-

acterized in detail for its cross-resistance to either of the prominent EMAUs (HB-EMAU, ME-EMAU),
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IBZ or other DCBGs; likewise, the EMAU-resistant Staph. aureus PolC Phe1261Leu, E. faecalis PolC

Phe1264Leu, or B. subtilis POLC27 strain Phe1264Ser, have not been characterized in detail for their re-

sistance to HPUra or IBZ (or other DCBGs). Despite the lack of data on PolC inhibitor cross-resistance,

we find the proximity of amino acid changes to the enzyme active site across different species and chemi-

cal classes generally points toward the likelihood of PolC inhibitor cross-resistance. Taken together, these

extrapolations of PolC inhibitor cross-resistance need further validation in vitro.

Third, a limitation of this paper is the narrow definition of PolC inhibitor resistance as those polC

single nucleotide polymorphisms encoding PolC amino acid changes, falling under the larger mechanism

of ‘target modification’ antimicrobial resistance. We do not currently know how PolC inhibitors penetrate

the cell membrane and peptidoglycan wall, or whether it is extruded by efflux. Additionally, it is possible

that other mechanisms of PolC inhibitor resistance may yet exist, such as those emerging mechanisms of

resistance in related Bacillota of significant clinical importance, such as E. faecium and Staph. aureus. An

improved understanding of the bacterial cell influx and efflux of PolC inhibitors would give insight into the

diverse possibilities of PolC inhibitor resistance.

Finally, we find a major strength of this paper is the scale by which publicly available genomic

data can aid inference to guide research on antibiotic resistance across space and time. For many years,

the amount of publicly available C. difficile genomic data has grown as a product of increased genomic

sequencing capacity and decreased costs. To ensure high reliability of curated sequencing datasets, we

used professional bioinformatic software to curate, inspect and annotate these datasets. In this study, we

collected more than 32,000 complete and partially assembled genomes, most of which being very small

scaffolds and contigs, and extracted more than 1,000 full-length polC that specifically belong to C. dif-

ficile. These sequences are automatically annotated in NCBI by protein homology models and identify

these sequences as belonging to C. difficile. Furthermore, these sequences are annotated by their original

depositors for their origin, including host species, country and year. Despite these advantages, we find a

limitation of this approach is the bias of these data to academic teaching hospitals and research microbiol-

ogy labs in wealthy countries. The genomics and epidemiology of C. difficile in less affluent regions of the

world are less clear, but no less important to the development of C. difficile-active antibiotics.
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In conclusion, we found the C. difficile polC/PolC is remarkably conserved within the species

across publicly available genomic data. Furthermore, we found these globally circulating C. difficile polC/PolC

are devoid of genetically encoded amino acid changes near the PolC enzyme active site associated with

HPUra, EMAU and IBZ PolC inhibitor resistance. Notwithstanding additional mechanisms of resistance,

these data suggest the future effectiveness of IBZ for the treatment of CDI. Further studies are needed to

better understand the mechanisms of PolC inhibitor resistance at the genetic, protein structure, protein

function and epidemiological levels.
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INSERT THE QUOTE

– INSERT THE QUOTE’S AUTHOR

6
Conclusion

In conclusion, toxigenic Clostridioides difficile infection (CDI) 1 represents one of the most Urgent

Threat antimicrobial resistant (AMR) bacterial infectious diseases that should also be classified as a Bac-

terial Priority Pathogen.75,184 The agent, C. difficile, is a sporulating, toxigenic, biofilm-producing, Gram-

positive pathobiont of the human gut microbiome. 1 Broad-spectrum antibiotics, such as fluoroquinolones

and carbapenems, are considered high-risk antibiotics to the epidemiology of CDI due to their damage to

the human gut microbiome that is essential to establishing colonization resistance via bile acid biotrans-

formation, and short-chain fatty acid (SCFA) fermentation.44,314 The current guideline-recommended

antibiotics used to treat CDI, vancomycin and fidaxomicin, have significant limitations, including but

not limited to diminished sustained clinical cure, microbiological cure, cost of treatment, and increasing

rates of resistance. Fecal microbiota transplantation (FMT) was a treatment modality that showed supe-

riority for the prevention of recurrent CDI (rCDI) by re-introduction of bacteria that confer colonization

resistance,369 however safety concerns372 has spurred the advent of defined consortia live biotherapeutic

products (LBPs).378 Despite the promise of LBPs, their administration and strain engraftment is limited

by their own susceptibility to vancomycin and fidaxomicin.379 Hence, a narrow-spectrum antibiotic with

reduced activity against these taxa, Lachnospiraceae and Oscillospiraceae, but high activity against toxi-

genic C. difficile is sorely and urgently needed.

To address this unmet medical need, the PolC-type DNA Polymerase III alpha-subunit (PolC) is
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the exciting drug target for narrow-spectrum antibiotic drug development.486,487 The PolC is the essen-

tial replicative subunit of the bacterial DNA replisome.510,543 The gene polC has a unique genetic origin

that limits its presence to the genomes of only one of the top bacterial phyla of the human gut microbiome,

Bacillota, and are devoid from the genomes of Actinomycetota, Bacteroidota, and Pseudomonadota.489

However, metagenomic studies of a lead PolC inhibitor, ibezapolstat (IBZ), has found a surprisingly more

narrow-spectru, microbiome-sparing activity than originally anticipated that may suggest reduced suscepti-

bility in commensal bacteria, Lachnospiraceae and Oscillospiraceae.588–591 This was a moment of positive

serendipity because not only are these taxa the previously unculturable microbiota587 not previously tested

for their antibiotic susceptibility to antibiotics, like IBZ, but also because these taxa play a critical role

in establishing colonization resistance to CDI through bile acid biotransformation and SCFA fermenta-

tion.366,400

WHAT NEW KNOWLEDGE WAS
GENERATED?

We initially set out on this journey with the specific aims to capture and compare the structure and

function of the PolC-type DNA polymerase III (PolC) from C. difficile, B. subtilis, B. coccoides (represen-

tative species of Lachnospiraceae ), and C. leptum (representative species of Oscillospiraceae). There have

been several very inspiring works that study the structure, function, and pharmacology of receptors and

enzymes using cryo-EM with functional assays of target inhibition.

Here I attempt to show early in silico efforts to predict the mechanism by which IBZ potentially

”restores” the human gut microbiome occurs through phylogenetic differences between the PolC-IBZ

pharmacophore of Lachnospiraceae /Oscillospiraceae and C. difficile. Critically, the differences in PolC

structure are an important feature for PolC inhibitor development for infections caused by Staphylococcus

aureus,525,550,577,578 Enterococcus faecium,526,668 and C. difficile. While these early investigations require

more in-depth follow-up with confirmatory studies, this has been a worthwhile investigation into the im-
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portance of antibiotic resistance in commensal and symbiotic bacteria for the restoration of colonization

resistance.

WHAT DID I LEARN ABOUT SCIENCE?

While these data have their own limitations, the computational approaches utilized herein repre-

sent the potential applications of an analyst approach to biological data to more efficiently and effectively

predict outcomes of biological significance. Even though I experienced my own learning curve through

these efforts, I have benefited from learning (R) statistics, data-science, (python) bioinformatics, artificial

intelligence, (Ubuntu; AWS) server management, (GitHub) version-control, and (LaTeX) typesetting for

academic writing. My expectation is the future application of these approaches can empower biomedical

scientists to better answer questions and discover newfound knowledge regarding the human gut micro-

biome, antimicrobial resistance, and transmission dynamics of infectious diseases.
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A
Calculations

Ibezapolstat Molarity

Example Basis: 1,000 ng/mL, or 1 μg/mL Ibezapolstat

Step 1: Convert to g/L

= 1,000 ng/mL × 10−9 g/mL

= 1× 10−6 g/mL × 1,000mL/L

= 0.001 g/L

Step 2: Convert to mol/L

= 0.001 g/L × 1 mol
423.3 g

≈ 2.36× 10−6 mol/L

= 2.36 μM
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Alpha (α)–Diversity

Shannon’s Entropy (H)669

H′ = −
S∑

i=1
pi ln(pi)

Simpson’s Diversity (1 - Dominance)670

1−D = 1−
S∑

i=1
p2i

Beta (β)–Diversity

Bray–Curtis Dissimilarity671

BC(x, y) =
∑S

i=1|xi − yi|∑S
i=1(xi + yi)

∈ [0, 1].
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B
Ibezapolstat: Additional Clinical Trials

Table B.1: Summary of dosing and group design for the randomized, placebo‐controlled study. From: A randomized,
double‐blind, placebo‐controlled, single and multiple ascending dose Phase 1 study to determine the safety, pharmacoki‐
netics and food and faecal microbiome effects of ibezapolstat administered orally to healthy subjects591

Study Period Period 1 Period 2 Period 3
Design Single ascending dose

(SAD)
Food effect crossover
(FEC)

Multiple ascending dose
(MAD)

Regimen (PO) once once twice-daily × 10 days
Dose (mg) 150, 300, 600, 900 300 300, 450
Comparator (n) Placebo (2) — Placebo (2), Vancomycin

(6)
Cohort Size (N) 6 8 6

Purpose Safety Safety Safety
PK Blood, Stool Blood, Stool Blood, Stool
MGX — — Stool
MBX — — Stool

Note: PO = per os; PK = Pharmacokinetics; MGX = Metagenomics; MBX = Metabolomics.
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Figure B.1: Phase I Trial Profile. From: A randomized, double‐blind, placebo‐controlled, single and multiple ascending
dose Phase 1 study to determine the safety, pharmacokinetics and food and faecal microbiome effects of ibezapolstat
administered orally to healthy subjects591

Figure B.2: Absorption of Oral Ibezapolstat. Concentrations in plasma (ng/mL) from (a) single ascending dose (SAD)
study period; (b) food effect crossover (FEC) study period (300 mg PO once); (c) multiple ascending dose (MAD) study
period (PO twice daily× 10 days); From: A randomized, double‐blind, placebo‐controlled, single and multiple ascending
dose Phase 1 study to determine the safety, pharmacokinetics and food and faecal microbiome effects of ibezapolstat
administered orally to healthy subjects.591
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Figure B.3: Fecal Excretion of Oral Ibezapolstat. Concentrations in stool (µg/g) from (a) single ascending dose (SAD)
study period; (b) food effect crossover (FEC) study period (300 mg PO once); (c) multiple ascending dose (MAD) stud
period (PO twice daily× 10 days); From: A randomized, double‐blind, placebo‐controlled, single and multiple ascending
dose Phase 1 study to determine the safety, pharmacokinetics and food and faecal microbiome effects of ibezapolstat
administered orally to healthy subjects.591

Figure B.4: Effects of ibezapolstat on relative abundance of taxa. The specific taxa of bacteria quantified include two
genera, [top‐left] Bacteroides and [bottom‐left] Prevotella, of the Bacteroidota phylum (formerly Bacteroidetes); the
families, [top‐center] Oscillospiraceae (formerly Oscillospiraceae, C. leptum Group, or Clostridium Cluster IV) and [bottom‐
center] Lachnospiraceae (formerly C. coccoides Group, or Clostridium Cluster XIVa), of the Bacillota phylum (formerly
Firmicutes); the species, [top‐right] E. coli, of the phylum Pseudomonadota (formerly Proteobacteria); and the [bottom‐
right] domain Bacteria (formerly Eubacteria). From: A randomized, double‐blind, placebo‐controlled, single and multiple
ascending dose Phase 1 study to determine the safety, pharmacokinetics and food and faecal microbiome effects of
ibezapolstat administered orally to healthy subjects.591
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Figure B.5: Phase IIb Trial Profile.
From: Efficacy, safety, pharmacokinetics, and associated microbiome changes of ibezapolstat compared with vancomycin
in adults with Clostridioides difficile infection: a phase 2b, randomised, double‐blind, active‐controlled, multicentre
study.592
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Figure B.6: Efficacy in the per‐protocol population. From: Efficacy, safety, pharmacokinetics, and associated microbiome
changes of ibezapolstat compared with vancomycin in adults with Clostridioides difficile infection: a phase 2b, ran‐
domised, double‐blind, active‐controlled, multicentre study.592

Figure B.7: Ibezapolstat concentrations in plasma and stool of the per‐protocol population. Adapted from: Efficacy,
safety, pharmacokinetics, and associated microbiome changes of ibezapolstat compared with vancomycin in adults with
Clostridioides difficile infection: a phase 2b, randomised, double‐blind, active‐controlled, multicentre study.592
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Table B.2: Drug‐related Adverse Events in Healthy Adults Administered Ibezapolstat in Multiple Ascending Dose *. From:
A randomized, double‐blind, placebo‐controlled, single and multiple ascending dose Phase 1 study to determine the
safety, pharmacokinetics and food and faecal microbiome effects of ibezapolstat administered orally to healthy sub‐
jects.591

Dose (mg), PO BID × 10 days Adverse Event Number of Events CTCAE672 Severity
300 COUGH 1 Mild (Grade 1)

CYSTITIS–NON INFECTIVE 1 Mild (Grade 1)
DIZZINESS 1 Mild (Grade 1)
EPIGASTRIC PAIN* 1 Mild (Grade 1)
HEADACHE* 3 Mild (Grade 1)
HEADACHE 1 Moderate (Grade 2)*

NASAL CONGESTION 1 Mild (Grade 1)
TWITCHING SENSATION 1 MILD (Grade 1)

450 DYSPEPSIA* 1 Mild (Grade 1)
NAUSEA* 1 Mild (Grade 1)
PROLONGED PR INTERVAL* 1 Mild (Grade 1)
SHORTNESS OF BREATH* 1 Mild (Grade 1)
TACHYCARDIA* 1 Mild (Grade 1)

*Possibly or probably related; PO = per os; BID = twice daily; AEs in placebo group (n=2): Headache, rash, left
hand ecchymosis;
No AE required a change to intervention.

Table B.3: Drug‐Related Adverse Events in Healthy Adults Administered Oral Ibezapolstat. From: A randomized, double‐
blind, placebo‐controlled, single and multiple ascending dose Phase 1 study to determine the safety, pharmacokinetics
and food and faecal microbiome effects of ibezapolstat administered orally to healthy subjects.591

Single Ascending Dose (SAD) Food Effect Crossover (FEC) Multiple Ascending Dose (MAD)
Dose (mg) IBZ (n=6) Placebo (n=2) IBZ (n=8) IBZ (n=6) Placebo (n=2)

300 0% 50% 37.50%## 33% 50%
450 X X X 0% 0%
600 33% 50% X X X
900 33% 50% X X X

Total AEs 5 5 3 5 1
in No. of Participants 5 4 2 2 1

##Fed: n=2; Fast: n=1; X: not tested
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Figure B.8: Bile acid changes in the per‐protocol population. Adapted from: Efficacy, safety, pharmacokinetics, and asso‐
ciated microbiome changes of ibezapolstat compared with vancomycin in adults with Clostridioides difficile infection: a
phase 2b, randomised, double‐blind, active‐controlled, multicentre study.592
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Table B.4: Demographics and baseline characteristics in the per‐protocol population.
From: Efficacy, safety, pharmacokinetics, and associated microbiome changes of ibezapolstat compared with vancomycin
in adults with Clostridioides difficile infection: a phase 2b, randomised, double‐blind, active‐controlled, multicentre
study.592

Ibezapolstat (n=16) Vancomycin (n=14)
Age

>65 years 8 (50 %) 5 (36 %)
>75 years 5 (31 %) 2 (14 %)

Sex
Female 13 (81 %) 11 (79 %)
Male 3 (19 %) 3 (21 %)

Race
White 16 (100 %) 13 (93 %)
Black 0 1 (7 %)

Ethnicity
Hispanic or Latino 11 (69 %) 11 (79 %)
Other 5 (31 %) 3 (21 %)

Charlson Comorbidity Index 2 (1–4) 2 (1–4)
Prior antibiotic use (≥3 doses VAN) 2 (13%) 2 (14%)
C. difficile test for initial diagnosis* 13 (81%) 11 (79%)
Unformed bowel movements at
baseline

6 (4–7) 6 (4–8)

Ribotypes of C. difficile Isolated†
014–020 0 3 (27 %)
027 1 (9 %) 2 (18 %)
106 3 (27 %) 1 (9 %)
002 1 (9 %) 1 (9 %)
116 0 1 (9 %)
Other 6 (55 %) 3 (27 %)

Data are n (%) or median (IQR); VAN = vancomycin
* All participants diagnosed using a C. difficile free toxin test within 24 h before treatment (C. difficile Quik Chek
Complete, Techlab®).
† Not all patients had C. difficile growth at baseline.
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Table B.5: Drug‐related adverse events.
Adapted from: Efficacy, safety, pharmacokinetics, and associated microbiome changes of ibezapolstat compared with
vancomycin in adults with Clostridioides difficile infection: a phase 2b, randomised, double‐blind, active‐controlled,
multicentre study.592

Drug-Related Adverse Events (AEs) Ibezapolstat (n=17) Vancomycin (n=14)
Mild # 3 (18%)† 0
Moderate # 0 1 (7%)*

Serious 0 0
Treatment Withdrawal 0 0

Intention-to-Treat (ITT) population evaluated for safety.
#Possibly drug-related; *headache; †two (12%) gastro-oesophageal reflux disease and one (6%) nausea.
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C
Clostridioides difficile infection: an Overview

Toxigenic Clostridioides difficile Infection

Clostridioides difficile was identified by John G. Bartlett in 1978 as the causative agent of antibiotic-

associated pseudo-membranous colitis42,43 later referred to as C. difficile infection (CDI), 1,13,66–69,314 a

life-threatening gastrointestinal infectious disease. The disease, CDI, is also sometimes referred to in the

literature as clindamycin-associated colitis,70,365 or C. difficile-associated disease (CDAD).71,72 CDI has a

rich history as an ongoing global epidemic230 with limited therapeutic options,73 increasing resistance,466

and substantial burden of cost,74 morbidity and mortality.3,7 Yet, while C. difficile is a top-ranked Urgent

Threat according to the CDC Antibiotic Resistance Threats Report,75 it is not listed among the WHO

Bacterial Priority Pathogens list. 184

The origin of CDI as a global epidemic of major concern is generally attributed to fluoroquinolone

use for other indications of bacterial infections in the 1990s, Canada, where clinicians reported a signifi-

cant increase in the incidence and mortality CDI cases in a single center between 1991 and 2003.76 Around

this time period, twelve more hospitals in the region reported an increased incidence and mortality due to

single strain of C. difficile containing gyrA mutation conferring GyrA Thr82Ile conferring fluoroquinolone-

resistance, and a partial deletion in the tcdC repressor of the pathogenicity locus (PaLoc) leading to consti-
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tutive toxin de-repression.45 Preceding oral administration of fluoroquinolones for other infectious indica-

tions were strongly associated with CDI incidence, presumably through giving fluoroquinolone-resistant C.

difficile a fitness advantage in the human gut microbiomes of patients that received oral fluoroquinolones.

Not long thereafter, this strain, also known as the pulsed-field gel electrophoresis North American

Pulsotype 1 (NAP1), or the fluorescence PCR ribotype 027 (F027) (commonly referred to in the literature

as NAP1/F027), was identified around the world in CDI patients across the United States,77,229 Europe,78

Australia,79,80 and Japan,81, indicating widespread geographic dispersal. Notably, subsequent phyloge-

nomic analyses identified the amino acid change at GyrA Thr82Ile was twice separately selected for in cir-

culating clones of North American C. difficile strain NAP1/F027, leading to the separate lineages of FQR1

and FQR2.230 To minimize further global spread, a risk assessment framework was proposed giving atten-

tion to international travel, livestock trade, and antibiotic use - such as clindamycin and fluoroquinolones.82

Together, the history of the origin and global dispersal of an antibiotic-resistant, hyper-virulent strain of C.

difficile highlights the the need for integrated surveillance systems with operational genomic and microbi-

ologic capabilities, and an appreciation for the within-host evolution of bacterial pathobionts of the human

gut microbiome upon exposure to highly potent selective pressures, such as antibiotics.

WHAT ARE RISK FACTORS FOR

C. DIFFICILE INFECTION

Epidemiology

Clostridioides difficile infection (CDI) is a major cause of morbidity, mortality and cost in the

United States.2–4 While efforts to vaccinate the public against toxigenic C. difficile is ongoing,5 the epi-

demiological identification of modifiable risk factors assocaited with CDI have led to the fruitful imple-

mentation of antibiotic stewardship practices and reduction in CDI.6,7 Hence, the epidemiological risk

factors associated with CDI have been extensively reviewed.8–13 The nosocomial transmission of CDI was
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recognized early through environmental studies that revealed frequent contamination of hospital rooms,

patients, and the hands of healthcare workers. 14 In response, infection control practices for managing CDI

have emphasized the use of soap and water over alcohol-based hand sanitizers, 15 along with enhanced en-

vironmental cleaning using hypochlorite disinfectants. 16 Despite these targeted infection control strate-

gies, whole-genome sequencing studies have shown that a substantial proportion of CDI cases arise from

genetically diverse strains, 17 consistent with the One Health nature of CDI. 18 Prominent reservoirs of tox-

igenic C. difficile include but are not limited to animals 19 our shoes20–22 community23–25 and healthcare

settings. 16,26–30

However, specific hospital environments such as intensive care units (ICUs) remain high-risk due

to intense antibiotic use and elevated colonization pressure.31 One study demonstrated that ICU patients

colonized with toxigenic C. difficile were nine times more likely to progress to symptomatic infection.32

These findings are further supported by genomic evidence confirming CDI transmission within ICUs.33,34

Not all antibiotics exert equal effects on the gut microbiome.35,176,201 Generally, antibiotics ad-

ministered orally, or per os (PO), are associated with an elevated risk of CDI.36–39,44 Different antibiotic

classes have different relative CDI risk categories ranging from low- to high-risk.40 For example, clin-

damycin is among the highest-risk antibiotics and was historically linked to ”clindamycin-associated coli-

tis.” In 1977, John G. Bartlett and colleagues identified the causative agent as toxigenic C. difficile.41 Sim-

ilarly, fluoroquinolones are considered high-risk due to their role in selecting for the hypervirulent F027

ribotype, which carries a fluoroquinolone resistance–conferring mutation in the gyrA gene.45,229 More-

over, the cumulative exposure to oral antibiotics over time further increases the likelihood of developing

CDI.39,46,47 This disruption is linked to multiple CDI-related outcomes, including asymptomatic coloniza-

tion,48,49 community-acquired CDI (CA-CDI),50–52 hospital-onset CDI (HO-CDI),53–56 and recurrence

following treatment (rCDI).44,57–59

In addition to antibiotics, several non-antibiotic drugs also disrupt the gut microbiome. 177 Among

these, proton pump inhibitors (PPIs) are especially notable for their association with increased CDI risk.60–65

Although PPIs are indicated for conditions such as gastroesophageal reflux disease and stress ulcer prophy-

laxis, the precise mechanisms by which they predispose patients to CDI remains incompletely understood.
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WHAT IS C. DIFFICILE?

Microbiology

Clostridioides difficile (Cd; Table 1.1; NCBI:txid1496 ) is an anaerobic,227) toxigenic,249 endo-

sporulating,304–306 Gram-positive312,673 bacterium originally identified in 1935 as Bacillus difficilis for its

rod-shaped cellular morphology and difficulty to grow.674 Shortly thereafter, in 1938, B. difficilis was re-

named to Clostridium difficile, to reflect its re-classification to the polyphyletic (no single recent common

ancestor) Clostridium genus on the differentiating basis of anaerobiosis, a ”drumstick” distortion upon en-

dosporulation, and the absence of catalase activity.675 More recently, in 2016, C. difficile was re-classified

once more to the Clostridioides genus of the Peptostreptococcaceae family on the basis of its phylogenetic

distance to the type species, C. butyricum, thus changing its name to the current nomenclature of Clostrid-

ioides difficile.676 The laboratory conditions for the growth and isolation of C. difficile mimics that of an

antibiotic-disrupted human gut microbiome, including broad-spectrum antibiotics, primary bile salts, and

anoxia.

So why do some bacteria grow at atmospheric levels of oxygen while others do not? Generally

speaking, there are five categories of bacteria on the phenotypic basis of aerotolerance: (1) obligate aer-

obes, (2) obligate (or ’strict’) anaerobes, (3) facultative anaerobes, (4) microaerophiles, and (5) aerotoler-

ant bacteria. Advances in anaerobe microbiology paved the way for the study of C. difficile and other obli-

gate anaerobes, such as the Hungate Method,677,678 a simplified glove box679, and advances in culturomics

(the generation of collections of cultures) that allow us to culture the ”unculturable” microbiota. 135,680

Together these advances in anaerobe microbiology made possible to grow and characterize C. difficile,

Lachnospiraceae and Oscillospiraceae from the human gut microbiome.587,674,675

Obligate anaerobiosis in bacteria has several mechanisms involved in the protection against ox-

idative stress. 175 Early investigators suggested the superoxide dismutase (SOD) theory of anaerobiosis, 174
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stating the absence of the enzyme SOD, responsible for the metabolism of toxic radical superoxide an-

ions (O2
•−) to less toxic oxygenic molecules, explains the intolerance of anaerobes to atmospheric levels

of oxygen.681 This theory has been refined over the years as more data became evident,682,683 shifting the

focus to additional reactive oxygen species (ROS) capable of intoxicating iron-sulfur (Fe-S) clusters, or

inorganic cofactors of critical enzymes involved in reduction-oxidation (redox) reactions of fermentation.

A few mechanisms linked to iron and sulfur homeostasis protect C. difficile against oxidative

stress. To list a few, investigators have connected cysteine desulfurase enzyme, IscS2,227 the heme-sensing

membrane protein system (HsmRA),342 and the ferrosome iron homeostasis membrane protein, FezB,684

to C. difficile anaerobiosis. Furthermore, the critical enzyme, pyruvate:ferredoxin oxidoreductase (PFOR),

encoded by nifJ in C. difficile, is responsible for not only the conversion of pyruvate to acetyl-CoA during

fermentation, but also the reduction of the anti-anaerobe antibiotic, metronidazole, to its reactive nitroso

intermediate.470,685,686 It’s worth noting that while metronidazole is an anti-anaerobe antibiotic introduced

decades ago for the treatment of CDI418,687 it is no longer guideline recommended408,688 due to inferiority

to vancomycin for severe CDI,423 increasing rates of resistance689 and decreasing clinical efficacy.429,690

Curiously, however, heme is was recently shown to be a critical component in the determination of metron-

idazole resistance in C. difficile, further lending weight to the relationship between iron homeostasis and

protection against oxidative stress.691 In summary, an anoxic environment is essential to the growth of

C. difficile, Lachnospiraceae and Oscillospiraceae, and the theory of oxygen intolerance in bacteria has

evolved from the absence of SOD to the ROS intoxication of Fe-S clusters in enzymes responsible for re-

dox reactions during fermentation.

Antibiotics and primary bile salts, similar to the environment of a dysbiotic patient, also aid the

laboratory isolation of C. difficile similar to the environment of the antibiotic-perturbed (dysbiotic) human

gut microbiome. For instance, an optimized protocol typically utilizes an induction of C. difficile spores

with 0.1 % (w/v) sodium taurocholate (1,860 μM, 537.7 g/mol molecular weight)692 followed by isolation

on the selective media, cycloserine-cefotixin fructose agar (CCFA),693,694 containing 10.0 % (w/v) cy-

closerine (100,000 μg/mL; 9,795 μM, 102.09 g/mol) and 1.56 % (w/v) cefoxitin (15,600 μg/mL; 34,700

μM, 449.45 g/mol).695 At these concentrations, this selective media inhibits the growth of representative
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bacterial species of other phyla of the human gut microbiome, such as Bacteroides fragilis ATCC 25285

(Bacteroidota), Escherichia coli ATCC 25922 (Pseudomonadota), and Fusobacterium nucleatum ATCC

25586 (Fusobacteroidota) (Anaerobe Systems, CCFA Product Insert).

Mechanistically, cycloserine inhibits two bacterial enzymes responsible for cell wall biosynthesis,

the L-alanine racemase (alr) responsible for the conversion of D-alanine to L-alanine,696 and D-alanyl-D-

alanine synthetase (ddlA) responsible for incorporation of D-alanyl-D-alanine incorporation into the pen-

tapeptide cross-linkage of peptidoglycan.697 While data on the C. difficile susceptibility to cycloserine are

not described in great detail, the standard CCFA medium concentration of 250 μg/mL suggests a mecha-

nism of C. difficile resistance to cycloserine.

Cefoxitin, a cephalosporin β-lactam antibiotic, inhibits several penicillin-binding proteins (PBPs)

responsible for the removal the terminal D-ala from the peptidoglycan pentapeptide, creating the tetrapep-

tide necessary for cross-linking peptidoglycan strands in cell wall biosynthesis,698 such as some noteable

PBPs of E. coli K12: dacA, dacB, dacC, pbpG, mrcA, mrcB, ftsI;699 and that of Streptococcus pneumoniae

ATCC BAA-255/R6: pbpA, pbp1b, pbp2a, pbp3.700 Critically, cefoxitin has reduced activity against C.

difficile as a consequence of genomically encoded class D β-lactamases (CDD) that are intrinsic to the C.

difficile species, such as cdd1 and cdd2, that have have a high catalytic efficiency against several β-lactams

from both the penicillin and cephalosorins chemical classes. Crucially, this cefoxitin non-susceptibility

enhances the isolation of C. difficile on CCFA.701,702 In summary, β-lactam antibiotics, one of the most

important discoveries to revolutionize modern medicine,703 not only disrupts the human gut microbiome,

but also aids the laboratory isolation of C. difficile from human stool samples of CDI patients for further

laboratory characterization using CCFA selective media, primary bile salts, and anoxic growth conditions.

Genomics

Whole-genome sequencing of C. difficile isolate collections estimates suggests while the species

diverged approximately 1.1 - 85 million years ago (mya), virulence mechanisms were independently intro-

duced through horizontal gene transfer (HGT) into distinct lineages of ”virulent” ribotypes through this
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highly dynamic, mosaic genome.704 The C. difficile genome is generally regarded as ”open” to reflect a

dynamic and mosaic genome that is adaptable to distinct environmental conditions.705 On average, the 4.1

to 4.3 Mbp genome consists of a larger, diverse pan-genome of up to 9,640 coding sequences (CDS) and a

much smaller core genome (600 to 3,000 CDS), representing as low as 16% of the pan-genome.

The global clinical use of orally administered antibiotics significantly shapes the evolution of C.

difficile, including the selection of genetic mechanisms of resistance and virulence. While HGT of antibi-

otic resistance genes (ARGs) on plasmids are a major global health concern,706 C. difficile genomes are

rich (11%) in mobile genetic elements (MGEs), such as conjugative transposons that transmit ARGs or

toxin-encoding genes such as those found in the first complete genome of C. difficile belonging to strain

630.707 Some examples of these ARGs on MGEs may include tetracycline resistance on Tn916, Tn5397,

or TnB1230; chloramphenicol resistance on Tn4453a/b; macrolide resistance on Tn5398; the multidrug-

resistance gene, cfr, on Tn6218. Fluoroquinolones, broad-spectrum antibiotics with high oral bioavailabil-

ity that inhibit bacterial DNA gyrase, selected for a fluoroquinolone-resistant hypervirulent strain, ribo-

type F027, with a tcdC mutation in the pathogenicity locus (PaLoc), resulting in toxin de-repression and

elevated mortality.45,230 The PaLoc has a curious history of HGT into the C. difficile genome after spe-

ciation, leading to both toxigenic and non-toxigenic strains.236 The two major toxins of PaLoc, tcdA and

tcdB, were also the first published sequences of C. difficile.241,708 TcdB, a major virulence factor, has since

diverged into several clades.709

Beyond resistance and virulence, the influence of C. difficile genomic plasticity on metabolic se-

lection driven by nutrient availability also remained an important question to understand the species’ evo-

lution. To address this, researchers developed an advanced computational model, named iCN900, to un-

derstand genotypic-phenotypic divergences of strain 630 cultures in over 180 nutrient environments to

identify metabolic pathways prone to evolution. They observed genes that encode enzymes involved in

fiber metabolism and iron acquisition were more likely to diverge, whereas those involved in Stickland fer-

mentation were more conserved.710 These findings raise the question what is the impact of host diet on the

evolution of C. difficile.

Hence, the fluoroquinolone-resistant, hypervirulent F027 strain has become a global epidemic lin-
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eage with limited treatment options, necessitating the discussion of a global risk assessment.82 To track the

epidemiology of such strains of concern, researchers developed a typing method that amplified the 16S-23S

rRNA intergenic spacer region (ISR)711–713 for noteworthy pathobionts, such as C. difficile,714 and Staph.

aureus.715 Over time, the availability of 5’ fluorescently-tagged DNA primers led to fluorescence PCR Ri-

botyping that could be evaluated by capillary electrophoresis716,717 As a results, technical challenges718

were addressed by an international schema for the fluorescence ribotyping of C. difficile.719,720

WHICH ANTIBIOTICS TREAT CDI?

Antibiotic Treatment for CDI

Vancomycin

From bacteria to humans, water is a fundamental molecule to the processes of life. With the aid

of aquaporins that allow for the passage of water across cell membranes, differences in salinity determines

the osmosis of water into or out of the cell. However, too much water inside a cell can lead to increased

swelling, turgor pressure, and catastrophic lysis. To maintain an intracellular volume of water at an other-

wise lethal pressure of turgor, different forms of life have evolved rigid external structures known as cell

walls to prevent lysis during hypo-osmotic excursions. For example, bacteria have a cell wall made of pep-

tidoglycan, fungi – chitin, and plants – cellulose.

Notably, the absence of a cell wall is a fundamental distinguishing feature of animals from plants,

contributing to our increased cellular flexibility, movement and specialization. This distinguishing feature

not only separates animals from plants, but also provides the basis for the treatment of bacterial infectious

diseases with antibiotics that have a desirable safety profile by targeting cell wall biosynthesis. Although

the experimental ascertainment is tricky, previous works suggest Gram-positive bacteria with a thicker

peptidoglycan layer, like Bacillus or Clostridium, can tolerate an elevated maximal turgor pressure of up

to 20 atmospheres (atm); Gram-negative bacteria, like E. coli, have a thinner cell wall and can tolerate
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Figure C.1: Vancomycin binding to D‐Ala‐D‐Ala. Target of vancomycin (Table 1.2). (Left) Vancomycin DrugBank (Right)
RCSB464,722,723 Illustration of vancomycin (blue) bound to D‐Ala‐D‐Ala (red) based on PDB 1FVM (Nitanai et al, 2009).

approximately 3 – 5 atm of turgor. That is why videos (from Howard Hughes Medical Institute) show bac-

teria burst in the presence of β-lactam antibiotics.721 For these reasons, antibiotics that target cell wall

biosynthesis are generally considered safe and effective bactericidal agents.

While the cell walls of different organisms serve a similar purpose, they have fundamentally dis-

tinguishing features.431 The cell walls of bacteria form a mesh-like structure that maintains their structure

and function.421 However, while some bacteria have a thick cell wall (monoderm), others have a thin cell

wall, protected by an additional outer cell membrane (diderm). In this way, we generally refer to bacte-

ria based on the staining results of cell walls with crystal violet versus a safranin counterstain as either

”Gram-positive” or ”Gram-negative,” respectively.312 Crucially, while Gram-negative and -positive bacte-

ria possess similar biosynthetic machinery that incorporate lipid II molecules into their outwardly growing

peptidoglycan (PG) cell walls, Gram-positive bacteria are particularly susceptible to inhibition of the in-

corporation of PG by the D-Ala-D-Ala terminal dipeptide of the lipid II molecule.

Around the mid-twentieth century, industrial chemists and microbiologists were prospecting soil

samples from around the world for antibiotics. Thus, many strains of Streptomyces spp. of the phylum

Actinomycetota yielded some of our earliest antibiotics, some still used today: In 1947, chloramphenicol

92

https://go.drugbank.com/drugs/DB00512
https://pdb101.rcsb.org/motm/192
https://www.rcsb.org/structure/1FVM
https://doi.org/10.1016/J.JMB.2008.10.026
https://www.youtube.com/watch?v=jlyy1gN2UNY
https://www.youtube.com/watch?v=jlyy1gN2UNY


(Chloromycetin) was isolated from a Streptomyces spp. of Venezuela;409–411 In 1948, chlortetracycline

(Aureomycin) was isolated from a bacterial species originally identified as Streptomyces aureofaciens (re-

named to Kitasatospora aureofaciens);724 In 1952, erythromycin (Ilomycin) was isolated from Actinomyces

erythreus (twice renamed: [former] Streptomyces erythreus; [current] Saccharopolyspora erythraea) from

the Philippines.412,413

Around 1951, a former US Army chaplain on a mission trip to Borneo, Rev. William Conley, sent

soil samples to his friend, E.C. Kornfeld. Unable to isolate any antibiotic-producing bacteria, Conley’s

colleague, William Bouw, sent a second batch to Kornfeld. From this second batch, compound ’05856’

was isolated from a species originally identified as Streptomyces orientalis (renamed to Amycolatopsis

orientalis).725,726 Compound 05856 would later become known as vancomycin, named for its ability to

”vanquish” bacteria.414 However, vancomycin proved difficult to purify, gaining the unfortunate nickname

”Mississippi Mud”. These impurities led to serious adverse infusion reactions, such as the inappropri-

ately named and outdated ”Red Man Syndrome”, now referred to as the IDSA/HIVMA/SHEA/PIDS/SIDP-

endorsed ’Vancomycin Infusion Reaction’.433,433

Vancomycin (VAN) (Pubchem CID 14969) is a large (1449.2 g/mol) hydrophilic (-2.6 XLogP3-

AA) compound. It has a very low to negligible oral bioavailability and volume of distribution (~0.4 – 1

L/kg) when administered intravenously, achieving high concentrations and intestinal exposure when ad-

ministered orally per os. The mechanism of action of vancomycin is the selective inhibition of the D-

Ala-D-Ala terminal dipeptide.415–417,419 The pharmacokinetics of intravenously administered VAN have

been reviewed in detail for the treatment of bloodstream infections due to Staph. aureus.422 Over the years,

these physiochemical properties made orally administered (per os, or PO) vancomycin (VAN) a treatment

for Clostridioides difficile infection (CDI). Despite its long utility for CDI, the evaluation of microbiome

dynamics in response to orally administered VAN intestinal exposure is an ongoing research endeavor.465

For instance, following the quantitation of VAN in stool,439 estimates suggest orally administered VAN

can achieve up to 4,000 µg/g stool, but with a slower ”Tmax” of around Day 9 of therapy due to intestinal

transit time.437

Early clinical studies showed VAN had comparable rates of clinical cure and recurrent CDI (rCDI)
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to that of PO metronidazole (MTZ).418 However, follow-up studies determined VAN was superior to MTZ

for more severe cases, but with similar recurrence rates across severity groups.423 Unfortunately, VAN

and MTZ both further disrupt the microbiome, and even promote the growth of Enterococci at comparable

rates.424 Such overgrowth of Enterococci in particular was long suspected to enhance C. difficile patho-

genesis,420 which was definitely confirmed in recent studies.341 Not long-thereafter, additional findings

suggested that VAN and MTZ had similar clinical efficacy, MTZ was associated with delayed and incon-

sistent microbiological cure.425 Additional findings further suggested that MTZ was inferior to VAN for

CDI.429

To combat the recurrence rates associated with VAN, recent investigations have been trying to pair

its use with fecal microbiota transplantation (FMT),727–729 a live biotherapeutic product (LBP) treatment

modality that has potential safety concerns.372 However, not long thereafter, VAN made room for the next

antibiotic with comparable clinical cure and superior sustained clinical cure, orally administered fidax-

omicin (FDX).451,452,461,730–732 The evaluation of these data for the strengths and limitations has supported

the ongoing guideline recommendation of VAN for CDI.408,426,432 Orally administered vancomycin pro-

foundly alters the human gut microbiome with impacts on host cardiometabolic signaling and bile acid

metabolism427,428,430

A prominent mechanism by which Gram-positive bacteria have reduced susceptibility to van-

comycin is the D-Ala-D-Ala to D-Ala-D-Ser switch in cell wall biosynthesis.212,438 C. difficile resistance

to the antibacterial activity of vancomycin by have been reviewed in the literature.434,435 Around the turn

of the twenty-first century, surveillance studies of collections of C. difficile isolates found an estimated 3%

of intermediate resistance to vancomycin.473 However, in the last couple of years there have been increas-

ing concerns for creeping non-susceptibility to vancomycin.474 Additionally, there is concern for selection

of vancomycin-resistant Enterococci (VRE) that may enhance C. difficile pathogenesis.341,436 To this end,

the extent and clinical relevance of vancomycin ”MIC creep’ in C. difficile remains the subject of active

investigation.475,476 Analyses of publicly available genomic data suggests the genetic determinants of van-

comycin resistance are infrequent among globally circulating strains of C. difficile.477 However, critically,

reduced in vitro susceptibility has been linked to worse clinical outcomes (in vivo).468
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Fidaxomicin

The expression of genetic information, the transcription of DNA to RNA, is a fundamentally es-

sential process to the central dogma of biology.493 Fundamentally, the ribonucleotide sugar, ribose, differs

from deoxyribose by the presence of a 2’ hydroxyl.733,734 The enzyme responsible for this transcription,

the DNA-directed RNA polymerase (RNAP),735 is found in bacteria,736 archaea,737 and eukarya.738 Like

that of DNA-directed DNA polymerases, RNAP coordinates the phosphodiester bond formation between

the 5’ phosphate of an elongating nucleic acid chain and the 3’ hydroxyl group of an incoming template-

directed ribonucleotide.556 In bacteria, several proteins come together to form the DNA-directed RNA

Polymerase (RNAP) holoenzyme to coordinate the transcription of DNA to RNA.739 One particular fac-

tor in this holoenzyme, the sigma factor, such as σ70 in E. coli,740 regulates transcription by directing the

RNAP to a particular promoter sequence.739 Unlike sigma factors that can be swapped in and out, partic-

ular subunits are essential to the function of the RNAP holoenzyme. For instance, the rpoB subunit of the

RNAP holoenzyme is essential in both E. coli741 and B. subtilis.742

The contemporary endeavors into RNAP inhibitor antibiotics began with the discovery of five sub-

stances, named rifamycin A through E, identified from a soil bacterium, Amycolatopsis mediterranei (ini-

tially identified as Streptomyces mediterranei) by Piero Sensi et al.444,458 Among them, Rifamycin B was

chemically modified to rifampin (rifampicin), a breakthrough antibiotic that has been reviewed in the liter-

ature.446 Early works showed rifamycins inhibit the initiation of bacterial RNA transcription by binding to

the β-subunit of the RNAP holoenzyme,440 a mechanism later confirmed by structural biology studies.743

In parallel to the rifamycins, the distinct class of lipiarmycins441 from Actinoplanes deccanen-

sis,442 was also characterized for the antibacterial properties at the inhibition of bacterial transcription.443

In particular, lipiarmycin A3 (fidaxomicin [FDX], OPT-80, tiacumicin B), later referred to as fidaxomicin,

was isolated from Dactylosporangium aurantiacum.459,460

Fidaxomicin (Dificid) is a 1,058.0 g/mol compound with a 6.4 XLogP3-AA (Table 1.2). Al-

though the pharmacokinetic/pharmacodynamic (PK/PD) modeling of FDX in stool is an area of ongoing

research, the oral adminsitration of FDX achieves high high intestinal intestinal exposure, upwards of 1,000
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Figure C.2: Fidaxomicin bound to C. difficile RNAP. (Left) Chemical structure DB08874.602,695 (Right) PDB 7L7B368

Multi‐subunit Clostridioides difficile RNAP bound to IBZ (Gaussian space‐filled structure) in RCSB PDB464,722,723.

μg/g stool.455,462,465 These intestinal exposures in stool are dramatically higher than the historically docu-

mented range of in vitro susceptibility of between 0.001 – 1 ug/mL.450,453

FDX possesses a more narrow spectrum as a result of a unique RNAP-binding site that differed

slightly across the microbiota,368 and caused less disruption to the human gut microbiome, a critical con-

cept to the treatment of Clostridioides difficile infection (CDI).447–449,454 This phenomenon has trans-

lated into clinical efficacy of FDX for CDI that is non-inferior to VAN and superior for prevention of re-

current CDI (rCDI).451,452 Furthermore, FDX not only spares the commensal microbiota, but also has

reduced impact on the overgrowth of pathogenic Candida and vancomycin-resistance Enterococci com-

pared to vancomycin.744 Clinical trials later confirmed the clinical efficacy of FDX for CDI with a more

narrow-spectrum, microbiome-sparing activity than vancomycin (VAN).449,451,452,454,456,461 However, even

though several lines of evidence strongly support the place in therapy of FDX, its cost limits the clinical

adoption.457,463 Despite these tremendous efforts, resistance to antibacterial RNAP inhibitors is a clas-

sical phenomenon across bacteria, from E. coli to Mycobacterium tuberculosis,203,204,445 and C. difficile

is no exception. For example, an outbreak of CDI with reduced susceptibility to FDX has been recently

reported.478 Genetic studies have determined that rpoB mutations in C. difficile confer reduced FDX sus-

ceptibility in vitro, but at a fitness cost.479 A systematic review identified the Δ rpoB T3428 that yields Δ
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RpoB Val1143 may confer in vitro MICs as high as 64 μg/mL.480 To prevent a future without antibiotic

treatments for CDI, many ongoing surveillance studies have found very little FDX resistance over the last

several years.467,481–483 However, while one study suggests genetic determinants of FDX resistance are rare

among publicly available C. difficile genomes,477 a case study of a 38-year old patient with multiply re-

current CDI suggests that resistance determinants can arise in vivo over a single course of FDX, giving us

pause.484

WHY IS THE MICROBIOME IMPORTANT TO

CDI?

Pathophysiology

Colonization Resistance

In 1954, researchers observed mice treated with streptomycin became more susceptible to Salmonella

infection.324 In 1964, ten years later, the same researchers observed this streptomycin treatment was asso-

ciated with an increased (alkaline) pH and decreased short-chain fatty acid (SCFA) production.325 In 1971

van der Waaiji et al first defined ”Colonization resistance (CR) was expressed as the log of the oral bac-

terial dose followed by a persistent take in 50% of the contaminated animals” to quantify the antibiotic-

mediated loss of murine intestinal resistance to E. coli colonization.323 In 1994, CR was reviewed and

solidified in the scientific literature by Vollard and Clasener.326

Today, CR is generally understood to be a highly diverse and interconnected web of competitive

mechanisms that have been reviewed.327–330 For example, Salmonella, a well-studied pathogen, has pro-

vided foundational insights into our understanding of CR. During gut inflammation, Salmonella takes ad-

vantage of host inflammation-derived tetrathionate,331 and ethanolamine.332 These resources give Salmonella

the opportunity to grow and compete with butyrate-producing Clostridia that typically dominate the anaer-
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obic gut through fermentation.333 Other bacteria also confer CR to Salmonella via SCFAs: acetate-producing

Bifidobacteria;334,335 proprionate-producing Bacteroides.336,337 C. difficile also takes advantage of nutri-

ents released during host inflammation,338 including host-derived sorbitol339 ornithine,340,341 and heme.342,343

While the mechanisms of CR nutrient exclusion during inflammation is an ongoing area of research, it

plays a major role in mediating CR.344

Exogenously administered food,345,346 drugs 176,177,177,347 and microbiota-derived small molecules 128

can reshape the structure and function of the human gut microboime. Fortunately, extensive research is

being done to understand348 and restore the microbiome.349 Some noteable classes of these microbiota-

derived small molecules being utilized for microbiome-based therapeutic development include lantibi-

otics350 bacteriocins351,352 and antimicrobial peptides.353 Some specific examples of ongoing research into

these molecules include a lipopeptide-producing strain of Bacillus subtilis that inhibits Staphylococcus au-

reus354,355; a lantibiotic-producing strain of Blautia producta that inhibits vancomycin-resistant Enterococ-

cus faecium (VRE);356,357 Clostrdial fermentation of fiber to butyrate can activate host PPAR-γ signaling to

inhibit Enterobacteriaceae expansion.358

Antibiotics and proton pump inhibitors have extensive, lasting impact on the human gut micro-

biome. 176,177,177,347,359–364 For example, clindamycin365 fluoroquinolones359 and third-generation cephalosporins366

Yet, the development of narrow-spectrum antibiotics that spare the microbiome,73 such as loamicin for

treatment of Gram-negative bacterial infections,367 and fidaxomicin for the treatment of CDI,368 remains

limited. To restore the loss of colonization resistance induced by antibiotics and PPIs, researchers have

attempted to restore the microbiome through a few different approaches, such as fecal microbiota trans-

plant (FMT), probiotics, and prebiotics.348,349 However, while many lines of evidence support the effec-

tiveness of FMT for recurrent CDI (rCDI),369–371 there are major safety concerns regarding the potential

for transfer of unknown phenotypes or undetected pathogens.372 While probiotics are less regulated, their

availability and safety have made them safe for over-the-counter use.373 However, probiotics have histor-

ically yielded mixed results for the prevention of antibiotic-associated diarrhea.374,375 In my opinion, this

is most likely due to the failure of strain engraftment.376 It is possible that CR prevents the invasion of not

only pathogens, but any exogenous species, consistent with observations of drivers of FMT strain engraft-
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ment. 179,180 To address these several issues, one potentially promising live biotherapeutic product (LBP),

VE303, is a defined bacterial consortium comprised of mostly Lachnospiraceae and Oscillospiraceae for

the prevention of rCDI.377,378 To enhance VE303 strain engraftment in CDI patients, investigators em-

ployed vancomycin and fidaxomicin, but with limited success due to the susceptibility of the strains to

vancomycin and fidaxomicin.379

While colonization resistance was first mentioned in the literature in 1971, the first study focus ex-

clusively on CR to C. difficile was in 1984 by Rolfe.380 Rolfe identified in vivo inhibitory concentrations

of the 4-carbon SCFA, butyrate, for preventing CDI. Today, it is understood that the microbiome plays

a central role in CDI increasing the risk of healthy individuals and patients alike to C. difficile infection

(CDI) through the loss of colonization resistance.327,328,381–384 However, the very antibiotics used to treat

CDI, including PO vancomycin (guideline recommended) and metronidazole (no longer guideline rec-

ommended), while inhibitory of C. difficile growth, also further disrupt the human gut microbiome and

disrupting the restoration of CR.385 The majority of bacteria in the human gut microbiome, Bacillota and

Bacteroidota, are typically reduced during antibiotic therapy386 – and incompletely restore to their initial

potential following the removal of the offending agent.359 Though less well understood, mutations in the

genes that encode antibiotic targets are also selected for in commensal bacteria of recovering microbiomes.

Bile is synthesized in the liver and stored in the gall bladder. Upon the presence of food, these bile

salts are released from the gall bladder in into the upper duodenum to aid the digestion of fats and lipids.

They pass through the small intestine acting as detergents of fats and lipids until they reach the terminal

ileum, where they are 95% reabsorbed. However, these bile salts play much more important physiological

roles. 145,387–392

In the large intestine, bacterial bile salt hydrolases (BSH), enzymes that steal the conjugated tau-

rine or glycine, creating de-conjugated (primary) bile acids. Some prominent examples of well charcter-

ized BSHs include that of Lactobacillaceae393,394 Bacteroidaceae,395 and C. difficile.396 While bsh are

widespread across bacteria of the human gut microbiome,397, the bai operon encoding the enzymes nec-

essary for 7α-dehydroxylation in the primary to secondary bile acid conversion, are more phylogenetically

restricted to OSCILLOSPIRACEAE (formerly Ruminococcaceae; C. leptum Group; Clostridium Cluster
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IV)398 and LACHNOSPIRACEAE (formerly C. coccoides Group; Clostridium Cluster XIVa)314,366,399–402

These taxa possess enzymes that convert host gall bladder-derived ”primary” bile acids to ”sec-

ondary” forms (secondary bile acids) through BSH, 7α-dehydroxylation, and epimerization via 3α/β-

hydroxysteroid dehydrogenase (3α/β-HSDH), thereby inhibiting C. difficile spore germination, vegetative

outgrowth, and toxin pathogenicity.403–406 Notably, the epimers of lithocholate (LCA), including isolitho-

cholate (iLCA) and isoallolithocholate (iaLCA), and that of CDCA, ursodeoxycholic acid (UDCA), further

inhibit C. difficile growth and pathogenicity while sparing members of the gut microbiota407

Germination

Bacterial spores are metabolically dormant and highly resistant to environmental pressures.299,300

To initiate disease, C. difficile spores must pass through the mouth, esophagus, and stomach to reach the

small- and large-intestine. Host-derived bile acids synthesized in the liver, stored in the gall bladder and

released into the upper duodenum, play a dual role in the process of germination, whereby some act as

activators of germination, and others – inhibitors.314 This bile salt pool significantly influences C. difficile

spore germination, the critical step in the initiation of the transmission cycle.304

The conjugated primary bile salts, taurine- and glycine-conjugated cholate (taurocholate/TCA

and glycocholate/GCA, respectively), and unconjugated cholate (CA), act as germinants of C. difficile

spores.315 Deoxycholate (DCA), the unconjugated secondary bile acid of CA produced by 7α-dehydroxylating

bacteria that posess the bai operon, such as Lachnospiraceae and Oscillospiraceae, can also induce spore

germination but inhibits vegetative growth.315 In contrast to the above germinants, chenodeoxycholate

(CDCA), another unconjugated primary bile acid like CA, acts as a competitive inhibitor of CA and TCA-

mediated germination. The structural basis for this competitive inhibition is thought to be mediated through

the absence of the 12α-hydroxyl group found in CA/TCA/GCA/DCA, lending to the crucial nature of

this functional group in interactions with the receptor. Similar to DCA, CDCA also inhibits vegetative

growth.316

While specific bile acids are necessary for germination, they alone are not sufficient.315,317,318
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CspC, a pseudoprotease bile acid receptor in C. difficile, is activated by primary bile salts, such as TCA.317

However, CspC requires the amino acid glycine as an essential co-germinant.315 CspA, also a pseudopro-

tease co-germinant glycine receptor, is thought to directly interact with CspC.319–321 CspB, a catalytically

active protease bile salt receptor is activated upon germinant recognition, cleaves an inhibitory peptide

from pro-SleC, a lytic enzyme that degrades the spore cortex.322

Sporulation

Bacteria survive harsh environments through formation of metabolically dormant, heavily pro-

tected spores.299 The process of sporulation is an exciting area of research in both the model Gram-positive

bacterium, Bacillus subtilis,301–303 and our pathobiont of interest, C. difficile.304–306 Generally speaking,

different environmental signals will stimulate histidine kinases to phosphorylate the Spo0A protein, a mas-

ter regulator of sporulation. In doing so, phosphorylated Spo0A then increases the abundance of sigma

factor-H. (σH or SigH), leading to the increased expression of several genes required for forespore forma-

tion.307

While sigma factor regulatory networks in both B. subtilis and C. difficile control forespore forma-

tion, they differ in the architecture of their network, indicating the process is not uniform across the Bacil-

lota phylum.308–310 Generally speaking to location of the sigma factors during mother cell and forespore

compartment formation, SigE (σE) and SigK (σK) are generally upregulated in the mother cell, whereas

while SigF (σF) and SigG ((σG)) are localized to the forespore in both B. subtilis and C. difficile309,311 Crit-

ical to the sporulation-germination life-cycle, the pseudoprotease, CspA, is responsible for the insertion of

the bile salt germinant receptor, CspC.318,320 In that way, CspC can sense the presence of taurocholate,317

indicating to the spore it has successfuly been reintroduced into the anoxic environment of an animals up-

per duodenum, a warm and nutrient rich environment, free to begin its transmission cycle once again.
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Toxigenicity

Even though the two major toxins of Clostridioides difficile, Toxin A and Toxin B, are essential

virulence factors to C. difficile infection (CDI),231–233 not all lineages within the species are toxigenic (pos-

sess toxin-producing genes).234,235 This has been attributed to the highly dynamic and open nature of the

genome that permits the horizontal gene transfer (HGT) of mobile genetic elements (MGEs), like conjuga-

tive transposons, to insert the set of genes that encode toxins, the pathogenicity locus (PaLoc), into lineages

of the species.236

The epidemic strain of ribotype F027 strain of Clostridioides difficile was originally reported to

possess two separate mutations – one gyrA mutation conferring fluoroquinolone resistance; one tcdC muta-

tion conferring toxin de-repression.45,229,237 While genomic epidemiology confirmed the spread of gyrA

fluoroquinolone resistance, the tcdC mutation may have contributed less to the outbreak than initially

thought, with in vitro assays suggesting no change in toxin expression,238,239 and the absence of PaLoc

mutations in large F027 isolate collections from pre- and post-emergence.230,240

The PaLoc is a 19-kb locus that comprises five genes, including tcdA, tcdB, tcdC, tcdD, and tcdE,

and is typically located at a specific chromosomal insertion site in the genomes of toxigenic C. difficile.241

Critically, the sigma factor, TcdR, directs RNA polymerase to the PaLoc, initiating toxin gene expres-

sion.242 The two potent exotoxins of the PaLoc, TcdA243 (Toxin A) and TcdB244 (Toxin B), considered

part of the ”large clostridial toxins” (LCT) family of toxins,245 were first purified and characterized in

1982.246 Notably, the cdtA- and cdtB-encoded binary toxins are present in most F027 and F078-126 ribo-

types, and also contribute to disease.247,248 These exotoxins bind to several human receptors,249 followed

by receptor-mediated endocytosis, endosomal acidification and membrane translocation, cysteine-protease

auto-catalytic cleavage and payload delivery,250,251 followed by Rho glycosylation and GTPase inactiva-

tion.252

A deeper understanding of how the human body responds to Clostridioides difficile toxins is es-

sential for advancing therapeutic and vaccine strategies. Foundational studies have highlighted the roles

of both innate and adaptive immune responses to these toxins,253–255,338 demonstrated the efficacy of anti-
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toxin monoclonal antibodies as therapeutics,256,257 and explored the potential of vaccination approaches.5

Biofilm Production

The attachment and aggregation of microbes to surfaces is what we generally refer to as biofilms.258,259

The capacity to build biofilms is widespread across bacteria,266,267 fungi,268,269 and archaea.270 The life-

cycle of biofilms, including their formation,271–275 and dispersal276–278 have been extensively reviewed for

the model Gram-negative bacterium, Escherichia coli,279,280 the model Gram-positive bacterium, Bacillus

subtilis,281–284 and that of Clostridioides difficile.285–287

Notably, biofilms play an important role in gastroenteric health and disease288, such as their ability

to survive antimicrobials at concentrations otherwise lethal to the planktonic cells.289–292 Although exper-

imental models are moving towards more accurate biological recapitulation,293 notable groups have es-

tablished experimental models of C. difficile biofilms.294–298 While the data is limited, one study suggests

that sub-inhibitory concentrations of metronidazole can induce C. difficile biofilm formation;297 whether

this phenomenon is an agent- or class-specific phenomenon limited to metronidazole or extends to other

antibiotics, such as vancomycin, fidaxomicin, or other antibiotics, remains yet to be uncovered. In general,

evidence suggests biofilms serve as a reservoir for recurrent C. difficile infection (rCDI) and warrant further

research.286
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D
Antimicrobial Resistance Crisis

Forecasts estimate an average 2 million deaths attributable to antimicrobial resistance (AMR)

could occur annually by the year 2050. 185 Despite the challenges and pressures of anti-infective drug de-

velopment, 186–192 economic analyses suggest anti-infective approvals return a net benefit to society. 193 The

inability of antibiotics to inhibit the growth of bacteria, or bacterial antimicrobial resistance (antibiotic re-

sistance), is a global grand challenge of urgent clinical concern. 185,194–196 Bacteria can sometimes lead to

multidrug-resistant (MDR), extensively drug-resistant (XDR) and even pandrug-resistance. 197 To combat

the antibiotic resistance crisis, the mechanisms of bacterial antimicrobial resistance have been previously

reviewed in the literature. 198–200 In general, there are six broad categories by which bacteria thwart antibi-

otic activity: (1) decreased influx, (2) increased eflux, (3) antibiotic inactivation, (4) target modification,

(5) target protection, and (6) target bypass. 199 However, this is an incomplete list able to incorporate addi-

tional categories that have yet to be discovered or established.

Understanding the mechanisms by which oral antibiotics and non-antibiotic drugs remodel the

human gut microbiome is an exciting scientific endeavor. 176,177,201,202,205,359,391 While the research unrav-

eling these mechanisms remains ongoing, the resistance determinants in the human gut microbiome are

often referred to as ”the resistome”206–208 Although a great amount of attention has, rightfully so, been

dedicated towards understanding the resistome in bacterial pathogens and pathobionts, less attention has

been given to undestanding the antibiotic susceptibility of commensal and symbiotic bacteria within the
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human gut microbiome for their influence on the changing human gut microbiome in response to antibiotic

exposure. This discrepancy in attention is likely due to the history of inconsistent results374,375 with pro-

biotics209; only recently have the drivers of strain engraftment been more fully elucidated. 179,180 Despite

this, a few prominent examples have demonstrated the potential of commensal and symbiotic bacteria in

the prevention of disease caused by pathogenic and pathobiont bacteria. For example, the administration of

Bacillus subtilis prevents the translocation of Staphylococcus aureus from the gut into the bloodstream;355

Blautia producta restores colonization resistance against vancomycin-resistant Enterococcus (VRE);356,357

non-toxigenic C. difficile strain prevents against toxigenic C. difficile infection (CDI).234

ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics210

boucher 2009 Science Bad Bugs, no Drugs: No ESKAPE! 194 arias 2009 nejm antibiotic-resistant bugs

in the 21st century - a clinical super-challenge211 Global burden of bacterial antimicrobial resistance in

2019: a systematic analysis 195 Global burden of bacterial antimicrobial resistance 1990-2021: a system-

atic analysis with forecasts to 2050 185 causes, challenges, and responses213 mechanisms and drivers214 the

need for global solutions215 WHO priority list of antibiotic-resistant bacteria and tuberculosis216 utilization

of data217 The scope of the antimicrobial resistance challenge 196 Antimicrobial resistance: a concise up-

date218 The global consumption rate of antibiotics increased between the years of 2000 and 2015, driven

mostly by low- and middle-income countries, and correlated with economic productivity.219 The increased

burden of bacterial antimicrobial resistance have been found in the European economic area220 South-East

Asia,221 Africa,222,223 the Americas,224,225

105



E
The Human Gut Microbiome

A microbial biome, or MICROBIOME, is the ecosystem of microbial biotic factors - including

the communities of bacteria, fungi, and protists; abiotic factors - metabolites and viruses; environmental

factors - oxygen, temperature, and water.84 Microbiomes are found on multicellular organisms, such as

plants85,86 and animals,87,88 and different environments of the earth,89–92 such as air,93 soil,94 oceans,95,96

deep-sea hydrothermal vents, glaciers, rivers, and wastewater. The most prominent body sites of human-

associated microbiomes include the mouth (oral microbiome),97 lungs (pulmonary microbiome),98 in-

testinal tract (gut microbiome),99–101 vaginal tract (vaginal microbiome), 102–104 and skin (skin micro-

biome). 105,106 At the level of biological analysis, the communities of fungi (mycobiome), 107 bacteria (mi-

crobiota), 108 viruses (virome), 109 and their metabolites (metabolome) are often characterized by different

methods and approaches.

The HUMAN GUT MICROBIOME (interchangeably referred to herein and the literature as

’the microbiome’) is arguably the pre-eminent human microbiome with significant associations to human

health across several large-scale studies of various diseases. 101,108,110–124 This prominence is due to the con-

venience of sampling human stool, and the majority of resident bacteria in the large intestine. 125,126 127–129

One fascinating feature of the microbiome is its capability of person-to-person transmission87,130,131 and

transfer of host-associated metabolic phenotypes, 132–134 further underscoring its importance at popula-

tion levels of health and disease. In the search for mechanisms of the microbiome with therapeutic po-
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tential, the literature has established biobanks, 135 robust scientific frameworks, 100,136–140,140–147,147 ap-

proaches, 148–152, reporting guidelines, 153 and consensus statements 154,155 to guide microbiome researchers.

The ABIOTIC FACTORS that determine the enterotypes 101,118 of the microbiome might include

the temperature, water, oxygen, pH, nutrient availability that differ along the human alimentary tract. For

instance, the mouth and nasopharynx are generally considered rich in oxygen, a slighly acidic to neutral

pH, frequent exposure to nutrients from food stuck in teeth, and a temperature of about 35 - 37 °C are

favorable to facultative anaerobes such as Streptococcus spp. The stomach, known for its acidic pH and

lower oxygen generally favors acid-tolerant bacteria, such as Helicobacter pylori. The small-intestine, in-

cluding the duodenum, ileum and cecum, is generally considered the start of a strictly anaerobic, 156,157

nutrient-rich environment favorable to facultative and obligate anaerobic bacteria, such as Lactobacillus,

Streptococcus and Enterobacteriaceae. Finally, the large intestine (or colon), comprising the ascending,

transverse and descending colon, is generally considered ANOXIC and rich in nondigestible carbohydrates

and unabsorbed bile acids.

The placement of BACTERIA on the tree of life next to other domains, Archaeota and Eukary-

ota, depends on the 16S rRNA. 158,159 The differences among regions of the 16S rRNA gene of bacteria

also allows researchers to quantify the relative abundance of different species in a community 160,161 and

even predict their collective functional capacity. 162,163 The bacterial phyla of the human gut microbiome

predominantly consist of Bacillota, Bacteroidota, Actinomycetota, Pseudomonadota, Fusobacteriota, Ver-

rucomicrobiota. These communities of microbes interact with each other in interesting and complicated

economies, sometimes referred to as bacterial guilds. Together, they produce many biomolecules that are

beneficial to their human hosts, including the metabolism of dietary biomolecules (such as fiber fermenta-

tion) 122,164,165 the production of essential vitamins 166–169 and modulation of inflammation (often through

bile acid biotransformation). 170–172

The human gut microbiome is particularly responsive to dietary fiber as a consequence of the

ANAEROBIOSIS associated with FERMENTATION. 173 Bacterial fermentation of complex carbohy-

drates from nondigestible fibers into short-chain fatty acids (SCFAs) generally consists of using NADH

as an electron donor instead of oxygen. This process is generally considered sensitive to oxygen through
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the Fe-S enzymes that are sensitive to oxygen intoxication. An early theory explaining why oxygen was

believed to be ’toxic’ to some species of bacteria was the absence of a defensive enzyme, superoxide dis-

mutase (SOD), that detoxify the bacterial cell by converting superoxide (O−
2 ), a free radical byproduct of

molecular oxygen (O2) – into less harmful molecules. 174 However, recent investigations suggest the ab-

sence of SOD insufficiently describes the phylogenetic and biochemical basis of anaerobiosis. Rather, the

fermentative enzymes involved in redox reactions during anerobiosis depend on low-potential electron flow

and metal coordinated active sites that are critically disrupted by O2 and O−
2 . 175 Taken together, the envi-

ronmental conditions, such as the anaerobic nature of the lumen of the small- and large intestine, are a key

determinant of the microbial composition of the human gut microbiome.

Finally, major additional abiotic factor that shapes the human gut microbiome include orally ad-

ministered ANTIBIOTICS 176 and NON-ANTIBIOTIC DRUGS. 177 Researchers have described pro-

found combinatorial- and dose-dependent impacts of drugs on the human gut microbiome. 178 Several lines

of evidence support antibiotic depletion of the microbiome not only reduce diversity, but also reduce colo-

nization resistance to invading bacterial strains. For instance, oral antibiotics are a driver of strain engraft-

ment of orally administered therapeutic bacteria. 179,180 One mechanism by which colonization resistance

prevents such invasion is hypothesized to be metabolic nutrient exclusion.344

Bacteria

The most prominent bacteria found in the human gut include (in descending relative abundance)

Bacteroidota (formerly Bacteroidetes; NCBI:txid976), Bacillota (formerly Firmicutes; NCBI:txid1239),

Actinomycetota (formerly Actinobacteria; NCBI:txid201174), Verrucomicrobiota (formerly Verrucomicro-

bia; NCBI:txid74201), Fusobacteriota (formerly Fusobacteria; NCBI:txid32066), Pseudomonadota (for-

merly Proteobacteria; NCBI:txid1224). Notably, a majority of these bacteria were historically considered

’unculturable’, with recent The relative abundances of these taxa vary across age and geography, with dif-

ferent community structures called enterotypes. For example, the gut microbiomes of infants have elevated

levels of Bififobacteria (genus of Actinomycetota), especially in breastfed infants, and Pseudomonadota,
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and corresponding diminished levels of Bacillota and Bacteroidota that increase with age after weaning.

That of healthy human adults generally comprise a majority of increased Bacillota and Bacteroidota, a

minor increase in Verrucomicrobiota, and decreased Actinomycetota and Pseudomonadota, relative to in-

fants. Finally, as adults age towards elderly status, their enterotypes change with a decreased abundance of

Bacillota, varying Bacteroidota, and increased Pseudomonadota that reflect frailty and inflammation.

The ability to culture anaerobic bacteria in anoxic environments has an essential history to un-

derstanding the bacteria in the human gut microbiome, both harmful (e.g. C. difficile) and beneficial (e.g.

Lachnospiraceae, Oscillospiraceae). Pasteur is sometimes referred to as the earliest to grow anaerobic

bacteria in sealed flasks and displacement by inert gases.745 Veillon and Zuber is credited with the earliest

descriptions of anaerobic cocci, later named Veillonella after Veillon.746 Hungate provided his method, the

Hungate Method, that utilized roll tubes, reducing agents (e.g. cysteine and thioglycolate), and CO2/H2

gas.677 More recently, these anaerobic bacteria belonging to the ’unculturable’ microbiota, such as Lach-

nospiraceae, Oscillospiraceae and Erysipelotrichaceae, were able to be grown and isolated on yeast-

casitone fatty acid (YCFA) agar.587
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Deoxyribonucleic Acid: a History

In 1871, Johann Friedrich Miescher discovered the fundamental molecule, nucleic acid, from the

nuclei of cells.747,748 In 1893, Albrecht Kossel described the individual components of nucleic acid, in-

cluding adenine, guanine, cytosine, thymine, and uracil, for which he was awarded the 1910 Nobel Prize

in Physiology or Medicine749 In 1919, the structure of nucleotides was determined by Phoebus Levene

for which he was nominated the 1932 Nobel Prize in Physiology or Medicine.750 In 1928, Frederick Grif-

fith showed a ”transforming principle” was capable of transferring traits between strains of Streptococcus

pneumoniae, however he failed to identify the nature of this principle.490 In 1944, Oswald Avery, Colin

MacLeod, and Maclyn McCarty made a transformative finding – deoxyribonucleic acid (DNA) is the the

molecule of heredity, or the ”transforming principle” from their virulent transformation experiments of

an avirulent strain of Streptococcus pneumoniae.491 In 1950, Erwin Chargaff published his rules for the

base-pairing rules of nucleotides, guanine to cytidine, and adenine to thymidine (or uracil in RNA).557 In

1958, Meselson and Stahl determined the semi-conservative mode DNA replication.492 In 1953, Rosalind

Franklin and her student, Raymond Gosling, published the iconic Photograph 51, an X-ray diffraction im-

age that proved essential to elucidating the B-form double helix structure of DNA.751,752
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