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Abstract

We further establish self-similar and scaling fractal properties in the
space of real numbers R by inverting the principles of the Collatz function
to create a directed acyclic graph (DAG) framed in the form of a rooted
tree to measure these behaviors. Here, focus pivots from conjectural in-
tents of the Collatz problem to study the system’s generative, non-linear
aspects. Analogous ancestry is used to compare sibling nodes’ progressive
lineage defined as their respective sub-tree node count. The study begins
with a notable disproportional lineage at the first branching point of the
tree. We extend this analysis to six additional pairs to confirm invari-
ant, power-law scaling behavior within the tree’s hierarchical structure
by visually observing self-similar patterns and by calculating fractal di-
mensions and Hurst Exponents using log-log analysis. From this, a novel
instance of scaled fractality emerges in a deterministic number system,
fully contained in R.

Keywords: self-similar, fractal, scaling fractal, fractal dimension, power law,
box counting, Hurst Exponent, rescaling, R/S, maximum lag, Collatz Conjec-
ture, Collatz function

1 Introduction
Complexity and fractals have gained notice this past century. Once termed
"monsters" as Mandelbrot recounts in The Fractal Geometry of Nature (p. 4, 9)
[9], their foundations have been furthered established in various aspects of math
and science. They are embedded in natural systems, integral in computational
theories, like Wolfram’s A New Kind of Science [17], and even found at the
heart of The Clay Institute’s Riemann Hypothesis million-dollar question [7].

Focusing on number theory, these concepts are firmly established in the
complex plane C and connect with the real number system R in many ways,
almost always through intended design. Though those monster-adjacent may
argue such constructs are scripts expressing a play acted upon an unseen stage
and backdrop. Yet finding fractal structure emerging naturally absent intent or
reliance upon complex numbers is uncommon.

But such could be possibly less so, perhaps waiting for further evolution of
a vocabulary to be described. The topic is exemplified outside formal academic
literature in an online mathematical forum: a user questions whether self-similar
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visuals constructed from OEIS sequence A001511 [13] imply fractal behavior and
associated complexity. An apt, first reply follows: ’How do you define it...’ [18].

Aware of this gap, Mandelbrot provided a new term, scaling fractal, where
the adjective (possibly implying a form of order) mitigates the noun (potentially
denoting pure chaos) (p. 18) [9]. It is in this spirit we 1) provide a firm
example of fractional complexity in the real number system and 2) offer data
and observations to help navigate this gray area. All of this is facilitated by the
Collatz Conjecture.

The conjecture is one of the most studied number systems in mathemat-
ics. In 1937, Lothar Collatz propositioned a faultless map to 1 for any natural
number n ∈ Z+ by repeating: halve n if it is even; otherwise, triple it, then
add 1. Still unresolved [8] and possibly unprovable [5], the problem’s potential
unassailability could be described monster-ish itself.

The system’s fractal properties in C have been established in academic lit-
erature [12, 6, 15, 16]. However, within the domain of R, self-similar qualities
are observable [4], as well as persistent power-scaling properties [3]. We add to
this niche intersection where Collatz dynamics again demonstrate this form of
structured complexity in what is considered real.

2 Methodology

2.1 Definitions and Terminology
We focus on a perspective outside the conjecture’s proof. Probabilities and
cycles are exempt by definition. Determinism creates one path to reach 1 and
then halts. We specifically employ the "Collatz function" C(x) and not the "3x
+ 1 function" T (x) as distinguished by Lagarias (2012, p. 1) [8].

Here, using the Collatz function above, we define and express it as:

For n ∈ Z+, C(n) =

{
f(n) = n

2 , if n ≡ 0 (mod 2),

g(n) = 3n+ 1, if n ≡ 1 (mod 2).

Mandelbrot’s framework for fractals provides a reference point of formal
definitions [9]. Except for Analogous Ancestry, Lineage, and Sibling Lineage,
tree-oriented terms were adapted from Cormen et al [2].

• (Scaling) Fractal: A geometric object in Euclidean space RE character-
ized by fractal dimension D strictly exceeding its topological dimension
DT , exhibiting self-similarity and scaling.

• Self-Similar: A structure that maintains consistent patterns across mul-
tiple scales.

• Scaling: A property where structural relationships remain invariant un-
der transformation.

• Node: An integer value mapped into the directed tree via C−1.

• Lineage: The total count of descendant nodes in a sub-tree plus the node
itself.
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• Analogous ancestry: An extensible, comparative framework for analyz-
ing hierarchical relationships.

• Sibling lineage: The proportional lineage within a sibling pair.

2.2 Method
With C(n) we create rules of its inverse C−1(x) to construct a directed tree
graph starting at Node 1 and iterating to infinity. To invert C(n), exchange de-
pendent and independent variables, then solve for the new dependent variable.
We ensure the partitioned domains of C(n) are reflected in the co-domains of
C−1(x). This results in the following (with one added exception):

For x ∈ Z+,

C−1(x) =

{
f−1(x) = 2x,

g−1(x) = x−1
3 , if x ≡ 1 (mod 2) and x ∈ {6m+ 4 | m ∈ Z≥0}, except g−1(4) → 1.

We note:

• g−1(x) is constrained to produce only odd numbers, while f−1(x) innately
produces only evens.

• C−1(x) cannot produce an iterate with equal numbers and thus strictly
implies only one calculation by C−1(x) can produce any number. This
results in unique paths.

• All nodes are parent nodes, producing either one even-numbered child node
or a pair of even and odd (sibling) children. Thus, it must have a least
one or possibly two egress edges to its children.

• A node cannot be its own parent.

• A node has only one ingress from its parent (except the root node).

The resulting structure is not novel, recreated anew for various purposes.
For example, it is currently visible on Wikipedia’s Collatz Conjecture page to
represent a bottoms-up approach towards a proof [1]. At OEIS, A122824 is an
instance described as triangle numbers to the Collatz problem [10]. It was de-
rived to study Mersenne primes and create faster code towards the conjecture’s
proof [11].

Figure 1 shows the first branching at Node 16 in level 4 to create siblings N5
and N32 for level 5. Past here all return paths must utilize one of these siblings.
The study begins here and after descends to six additional pairs shown in the
continued tree graph found in the Results section. Please note: The rooted,
(directed) tree graph represents both C(n) (going up) and C−1(x) (going down);
however, contextually not at the same time. Direction is assumed understood,
so edges are visualized without arrows.
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Figure 1: Top-down, rooted tree graph after six iterations from Node 1 (level
0). Dark blue edge colors indicate f−1(x) and light blue edges indicate g−1(x).
The highlighted gray nodes in both figures are included in this analysis.

2.3 Analogous Ancestry
After tree construction, we then in sequential order apply C(n) to numbers n =
1 to 107. We track the complete sequence of ancestor nodes transversed. After
each number completes this process, data increments for impacted ancestors,
and then all calculations are updated. This sequencing serves as the domain of
independent variability for event and time basis in this study.

Analogous ancestry intends to be a set of tools to study C(n) and C−1(x).
For now, it collects lineage data of sibling pairs. We note lineage is a conserved
quantity, and so, comparisons of lineage groupings are inherently proportional.

Potential additional tools, such as level lineage and odd density are under
review. Deeper discussion can be found in Appendix A.1.1.

2.4 Visualization Analysis
Scatter plots help visually identify self-similarity and fractal behaviors. Specific
examples N5, N80, N85, and N320 are highlighted in the results.

Given the basis of conserved quantity, a sibling node’s data equals or mirrors
its counterpart as shown in Figure 2. Given such, we present only one of the
pair as needed for brevity. All pattern data is found in Appendix A.2.1.

Figure 2: Pattern sample from proportional lineage data for siblings N5 and
N32. It is the full set of the fastest sampling rate from the smallest range.
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2.5 Data Set Definition
Proportional sibling lineage data was collected for four data sets per node, sam-
pled at increasing factors of 10 (1, 10, 100, 1000). 10,000 elements per set was
partly informed from a preliminary examination of the Hurst exponent calcula-
tion method. These findings added to the preference for a basic design, which
was was employed to reduce possible external factors and increase visibility for
properties tested. Table 1 details:

Sampled Range (1 to ...) Sampling Rate (every nth element) Reference Name

10,000 (104) 1 (100) N5_4x0
100,000 (105) 10 (101) N5_5x1
1,000,000 (106) 100 (102) N5_6x2
10,000,000 (107) 1,000 (103) N5_7x3

Table 1: Data collection range, sampling rate, and nomenclature. The left
and middle columns translate to conditionals used in the code to regulate set
size. Reference Name reads: "Node Number _ Sampled Range by (x) Sampling
Rate" (in terms of base-10 order of magnitude).

2.6 Data Set Code
The N5-N32 example below is illustrative of the general code 1. A list index
method, where node number equals the index, tracks lineage. The code is preset
to bypass levels 0-4. This preset and division-by-zero exclusion cause datasets
to nominally vary under 10,000 in size. Actual set sizes can be referenced in
Table 6.

%%% Variables %%%
fiveOr32 = ([0]*33) % Lineage index list
fiveOr32[5] = 11 % Preset
N5_’x’, N32_’x’ = [] , []

%%% Function Definition %%%
def find_And_Set_Ancestor_Path(number):

path=[number]
while number != 1:

if number % 2 == 0:
number = number // 2

else:
number = (3 * number) + 1

path.append(number)
path.reverse()
if len(path) >= 5:

fiveOr32[path[5]] += 1
return

1Code and dataset available at https://github.com/claddblog/
CollatzRealScaleFractals.
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%%% Main Code %%%
for n in range(17,10000001):

find_And_Set_Ancestor_Path(n)

%%% Conditionals %%%
if (x % 10^[0... 3] == 0) and (x <= [10^[3... 7]) and (sum(fiveOr32) != 0):

N5_’x’.append(fiveOr32[5]/sum(fiveOr32))
N32_’x’.append(fiveOr32[32]/sum(fiveOr32))

Path lists of the first sixteen numbers are below to help visualize data col-
lection and motivation for the code preset.

N: [1, ...Reversed Path Sequence..., n]
----------------------------------------------------------
1: [1]
2: [1,2]
3: [1,2,4,8,16,5,10,3]
4: [1,2,4]
5: [1,2,4,8,16,5]
6: [1,2,4,8,16,5,10,3,6]
7: [1,2,4,8,16,5,10,20,40,13,26,52,17,34,11,22,7]
8: [1,2,4,8]
9: [1,2,4,8,16,5,10,20,40,13,26,52,17,34,11,22,7,14,28,9]
10: [1,2,4,8,16,5,10]
11: [1,2,4,8,16,5,10,20,40,13,26,52,17,34,11]
12: [1,2,4,8,16,5,10,3,6,12]
13: [1,2,4,8,16,5,10,20,40,13]
14: [1,2,4,8,16,5,10,20,40,13,26,52,17,34,11,22,7,14]
15: [1,2,4,8,16,5,10,20,40,80,160,53,106,35,70,23,46,15]
16: [1,2,4,8,16]

2.7 Empirical Analysis
The methodology designed intended a smaller group of well-established indi-
cators for this study. Indeed, other methods, such as Recurrence Qualification
Analysis, wavelet transforms, and FFT analysis would contribute. Box-counting
for D and rescaling for H were selected due to early results indicating both as
separate, strong indicators.

Historically and generally they are used in complementary fashion; the frac-
tal dimension is thought of as a local indicator, the Hurst component as global.
Both are related by the equation H + D = 2 from which one is often derived
from the other. This was not the case here. Both were estimated from different
log-log scaling methods and without assuming any level of interdependence (this
does not mean they are not correlated to some degree). Both were examined at
a high level for details towards final application. These details are explained in
their respective sections.
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2.7.1 Fractal Dimension Estimation and Data Preparation

The log-log scaling box-counting method involves dividing the data range N into
progressively smaller intervals ("boxes") and counting the number of non-empty
boxes. The relationship between box size ϵ and box count N(ϵ) is expected to
follow a power-law behavior:

D = lim
ϵ→0

logN(ϵ)

log(1/ϵ)

By taking the logarithm of both sides, the relationship becomes linear. The slope
is computed using least-squares method and signifies the fractal dimension:

log(N(ϵ)) = D · log(1/ϵ) + C

Results could vary significantly depending on methods used. We explored
and evaluated options for normalization, box sequence, and box scaling aspects
to gauge output validity.

Data was normalized before estimating D. Min/max and Z-score methods
were explored. Both produced essentially the same results. We selected Z-score
for its high level of application as a standard. Equations for both methods:

XMin/Max norm =
X −Xmin

Xmax −Xmin

XZ-Score norm =
X −Xmean

Xstd

Regarding sequence and scale, we selected three nodes (N5, N85, N320) of
varying analogous ancestry in sibling lineage and level. The two most oppos-
ing sample rates, 4x0 and 7x3, were bookends to range our evaluation. Three
sequence types were examined (geometric, exponential, pseudo-linear) across
three scales (9, 11, 13). Fractal dimension D was calculated for all combina-
tions (described in the below table) including normalization methods.

Table 2: Box sequence and scaling repeated for both normalization methods
(i ≥ 0, j ≥ 1).

Sequence Type Scale 9.. 11... 13

Geometric: 2i [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]
Exponential ⌊jπ⌋ [1, 8, 31, 77, 156, 278, 451, 687, 995, 1385, 1869, 2456, 3159]
Pseudo-Linear [1, 2, 5, 10, 15, 20, 35, 55, 75, 105, 135, 190, 205]

Overall the results were effectively the same. Data can be found in Ap-
pendix A.3. The geometric sequence using scale of 11 was selected for its in-
trinsic power-scaling and heuristic significance. We note the same conclusions
would be arrived at using any combination above.
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2.7.2 Hurst Exponent Estimation and Analysis Preparation

The Hurst exponent (H) was computed using the rescaling method (R/S) to
quantify long-term memory and persistence across data sets. It does this by
examining the time series decrease in auto-correlations against longer periods or
lagging periods of time by splitting the time series into equal, non-overlapping
segments where the logarithm is taken of the range of cumulative differences
from the mean (R) divided by the standard deviation of the segment (S). This
is plotted against the logarithm of the size of the segment. The slope is computed
using least-squares method and signifies H.

For data set size, various intervals of contiguous block sizes for N5 (1000,
2000, 5000, 10000, 25000, 50000) within n = 1 to 106 were examined. For
maximum lag, we studied several segment lengths (50, 100, 250, 500) across
all node by data sets. For reasons between converging stability and optimal
parameterization, data set size of 10,000 and maximum lag of 100 were selected.
Details are found in Appendix A.4.

The definition used here:

H = lim
s→∞

log(R/S)

log(s)
,

Where R is the range of cumulative deviations from the mean, S is the stan-
dard deviation, and s is the segment size. Data normalization is considered part
of the Rescaled Range (R/S) calculation.

H values:

• H ≈ 0.5 suggests a random process.

• H < 0.5 indicates mean-reverting behavior.

• H > 0.5 implies persistence and long-range dependence.
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3 Results
Opening Note: Although there were interesting point results in the prelimi-
nary analysis from here and through the Conclusion section, references to fractal
dimension and Hurst exponent only regard the parameters defined and decided
upon in the Methodology section: Data Sets as detailed in Section 2.5, D calcu-
lated using Z-Score normalization with the geometric box sequence 2i, i ∈ [0, 10],
and H with a maximum lag of 100.

3.1 Summary Lineage Data

Figure 3: Continuation of tree structure from Figure 1. Sibling lineage percent-
ages are found on the upper-outside corners of the sibling pairs. Lineage table
data can be found here in Table 5.

3.2 Summary Log-Log Analysis Data
Note on removed table2

Table 3: Highlighted Basic Statistics: Noting H +D = 1.953

Metric Hurst Exp. (H) R-Value Fractal Dimension (D) R-Value

Mean 0.9572 – 0.9960 –
Stnd. Dev. 0.0305 – 4.52x10−4 –
Median 0.9659 0.9998 0.9659 1.000
Minimum 0.8990 0.9748 0.9949 1.000
Maximum 0.9950 0.9999 0.9970 1.000

2An earlier correlation data table was removed due to inconsistency across revisions. In
addition to correlations among log-log methods (D and H) exhibiting high sensitivity, rela-
tionships between fractal dimension and associated fit metrics (e.g., R-values) also varied
significantly with data preparation and scale parameters.
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Table 4: Annotated Log-Log Linear Regression Data, highlighting 4x0 and 7x3
data sets for selected nodes N5, N80, N85, and N320, from levels 5, 9, and 11.
All data can be found in Appendix A.1.2.

Data Set H R-Value P-Value D R-Value P-Value

N5_4x0 0.9810 0.9998 2.18x10−167 0.9970 1.000 1.25x10−23

N5_7x3 0.9611 0.9998 5.12x10−167 0.9959 1.000 2.39x10−25

N80_4x0 0.9763 0.9997 1.86x10−157 0.9970 1.000 1.25x10−23

N80_7x3 0.9476 0.9998 2.07x10−161 0.9959 1.000 2.39x10−25

N85_4x0 0.9093 0.9825 7.80x10−72 0.9959 1.000 7.85x10−24

N85_7x3 0.9096 0.9996 1.38x10−150 0.9959 1.000 2.39x10−25

N320_4x0 0.9858 0.9998 9.63x10−162 0.9969 1.000 1.13x10−23

N320_7x3 0.9577 0.9998 5.10x10−168 0.9959 1.000 2.39x10−25

Figure 4: Box Counting Log-Log Plots for Node 5. All node plot visuals are
essentially the same and can be found in Appendix A.3.

3.3 Visualization Analysis
3.3.1 Scatter Plots

Nodes N5, N80, N85, and N320 are highlighted for cross-level and varying pat-
tern details. The nodes have all four data sets overlaid. To conserve graphic
space, data set coloring is standardize: 4x0 - Blue, 5x1 - Orange, 6x2 - Green,
7x3 - Red.

Two graphics are shown for each node to show relative alignment across data
sets, while noting no x-axis data adjustments were made to achieve this. The
top graphic spans the entirety of data sets (1 to 10K), and the bottom displays
the last 30% (7K to 10K). This is intended to show a top level view and an
underscoring of the progression.

For all, the y-axis boundaries are set to the minimum and maximum values
of the last 80% of the upper visual and last 30% of the one or two below it; this
allows better pattern expression. All individual scatter plots can be found in
Appendix A.2.1.

The following commentary is far from exhaustive, yet covers the objectives
of addressing the potential behaviors studied and acting as working examples
of the methodology.
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Figure 5: Node 5, Level 5. Clear similarity in patterns across datasets are seen
in the lower plot. In the upper plot, the 4x0 (blue) data set seems to have
lengthening periods of patterns. This seems matched in the lower plots by the
other data sets with synchronous behavior. Comparative frequency assessment
across data sets could provide further insights.

Figure 6: Node 80, Level 9. Here the lower graphic has two versions as the
4x0 (blue) data set’s difference somewhat mutes the other three wave forms;
however, the 5x1 (orange) dataset depicts a quick pivot to align (upper graphic
between index 1 to 2000). This rate of change (retention of large values and quick
pivoting to converge) is different and may depict a distinction among patterns
and behaviors. Also the breakout shows "converging" becoming distinct at a
range of 10,000ths.
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Figure 7: Node 85, Level 9. As the only descendant highlighted from N32, its
sibling lineage 38.2% is comparatively higher to others, while its cumulative
lineage is 2.4%. The peaks in its patterns are distinct. Similar to N80, there is
a sharp pivot to converge but in data set 6x2 (green). This is contrasted to the
other nodes converging faster overall.

Figure 8: Node 320, Level 11. Its sibling lineage at 1.4% is comparatively low
yet the patterns remain prominent and distinct compared to other nodes in
comparable linage scenarios, like those in level 7 (see Figure 10). Arguably, it
has the most uniformity in shape considering angles and straight lines.
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4 Key Observations
• Regarding D and H data output, the fractal dimension values come close

to 1.0 at times while not reaching it. The consistency reinforces a near-
perfect fractal self-similarity across multiple scales.

• D and H obey the linear relationship of time-series self-affine models:
D +H ≈ 2 with a value of 1.9853.

• The persistent R-values with median values of 0.9998 (H) to 1.0 (D) indi-
cate a highly structured log-log relationship, suggesting that the observed
power-law behaviors are intrinsic to the system rather than random arti-
facts.

• With few exceptions, the Hurst exponent is > 0.9 throughout, showing
high degree of memory in the system.

• The sensitivity and considerable change to correlation values observed in
initial testing for box sizes and the Hurst exponent engenders skepticism to
apply correlation analysis across methods, like Pearson values in analyzing
H and D3.

• Close-to-zero P-Values for much of data demonstrate clear statistical sig-
nificance, supporting scale-invariant properties.

• For the Hurst exponent extended analysis for maximum lag by node data
set (see Appendix A.4.2), a somewhat similar pattern is seen for sibling
node pairs N13-N80 and N53-N320, both descendants of N5.

• Regarding the visual graphics of the four selected nodes, periodic patterns
for node pairs are visible and seemingly distinct.

• The visual of rooted tree graph itself can be considered a fractal form. As
iterations persist, the known growth behavior will carry forward.

• As sampling rates scale, patterns trend to converge in value and decrease
in amplitude. For most nodes, this is exhibited for the 5x1 (orange) data
set in its increasing proximity to 6x2 (green) and 7x3 (red) data.

• The bottom visuals show data sets 6x2 (green) and 7x3 (red) seemingly
converging to proximate proportional values.

• While not always perfectly synchronous, a notable portion of patterns’
oscillatory behavior is in alignment. This implies a substantial degree of
self-organization within the system.

• In this aspect of synchronicity, all data sets seem to extend in length of
periodicity.

3This ultimately extended to within methods.
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5 Discussion
Using datasets spanning multiple orders of magnitude within a hierarchical sys-
tem to notable depth, we confirm that self-similar and scaling fractal properties
hold across all sampling scales for the Collatz-inspired systems, demonstrating
their fundamental role in the system’s structure within R. This further expands
their definition and relevance beyond complex systems.

Considering data sets sampling rates and maximum lag values, the similar
patterns of Hurst exponents for descendants of N5 conveys an interesting per-
sistence that appears more stable compared to other nodes. Given these nodes
inherit the most lineage, this continues establishing the system’s scaling behav-
ior and acts as a working example of what analogous ancestry was created to
do.

Earlier before the above results, the consistent near-1.0 fractal dimension
was considered most likely only a strong linear scaling behavior with fractal-like
properties. This was combined with understandable misconceptions of fractal
dimensions inability to be an integer value. Still, the near-unitary value suggests
a more constrained form of self-similarity beyond pure recursive fractal growth.

This is considered with observing complex behavior rising from natural num-
bers based on two simple rules regarding even and odd properties involving the
keystone primes 2 and 3. Such complexity from simple rules is a hallmark of
fractal behavior and complex systems.

These findings raise questions about the fundamental nature of iterative
number systems and linearity, particularly given the exact input of sequential
counting numbers effected a known non-linear system to express further un-
known non-linear characteristics.

The presence of power-law scaling within Collatz-like systems in R may sug-
gest such structuring is more common in discrete mathematics than previously
assumed.

5.1 Interpretation of Results
The dataset exhibits extremely strong fractal self-similarity across all scales.
The power-law scaling is nearly perfect (R = 1.0000, slope 0.996). This is
joined with almost no statistical uncertainty (extremely low P-values).

The resulting, unintended summation of the means of H +D = 1.953 pro-
vides further validation of the behaviors tested for.

The system is highly structured, deterministic, and follows hierarchical self-
organization. Long-range correlations (Hurst > 0.90 ) confirm that the structure
persists across time and scale.

The presence of self-similarity across scatter plots compels. Data sets show
a high degree of synchronicity across scaling of nodes. This includes other scale-
invariant properties, like patterns, proximal value convergence, and oscillatory
behavior.

5.2 Methodological Limitations
• Sampling Effects: While sampling rates and data sets were design specific,

basic geometric progression can be expanded upon and examined, e.g.,
exponential and random sampling methods.
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• Specificity of Construct: The logic in inverting the Collatz function for
purposes here is sound, but other interpretations of the conjecture exist.
Exploring these alternate methods could prove insightful.

• Sensitivity of Data: Slight changes to data collection and preparation
greatly impact resulting values, leaving tools like correlation analysis ac-
curacy suspect and unusable at this time.

• Restriction of Values: n ≤ 107. Whether the observed properties hold for
significantly larger numbers remains an open question. Future research
could extend this study by employing parallel computing techniques to
analyze a broader numerical range.

6 Conclusion
This study introduced lineage and sibling lineage from the tool set of analogous
ancestry and applied it to artifacts of known number systems in analyzing and
confirming suspected properties. While its underlying mathematical concept is
not new, possibly mundane, and application specific, here it shows potential
and aptitude in revealing patterns related to this topic.

Using visual and empirical analysis with scatter and log-log plots and log-log
scaling to evaluate Fractal Dimension and Hurst Exponents, the study estab-
lishes invariant properties of self-similarity and scaling fractal behaviors in R
for the considered number systems.

Though fractal properties have been established, the near 1.0 value of fractal
dimension remains a notable area to explore. An intriguing hypothesis could
explore if proximity below the unit mark relates to the topological dimension’s
DT placement at zero.

Overall, the results establish significant evidence of scale-invariant properties
that adhere to some form of determinism that is neither fully ordered nor fully
chaotic. The strong correlation to memory supported by hierarchical empirical
output in descendant nodes makes this topic a promising candidate for further
quasi-chaotic and complexity studies.

6.1 Future Work - Extended Fractal Dimension Studies
We limited this study’s methodology to baseline behavior by focusing on fewer,
well-known analytic methods given the uncommon scenario of interest. Cer-
tainly, the topic would benefit from RQA, FFT, wavelet, and multi-fractal anal-
ysis. Additionally, future work could extend to:

• Further down-tree analysis

• Analogous ancestry examination of level lineage and odd density

• Oscillatory patterns and peak behavior

• Analysis of comparative output by adjusting restrictions on g−1
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A Appendix

A.1 Analogous Ancestry Results and Summary Data
A.1.1 Analogous Ancestry - Extended Topics

Level Lineage: Similar to comparing sibling lineage data but for all nodes
on the same level. The motivation comes from adding level 7 to the analysis,
where N3 and N21 lineage total to 19 and 18, respectively, yet carry the frac-
tality with other sibling nodes. This could be passive causality driven by their
sibligs, something more systemic, or something else. Level lineage would include
non-sibling nodes.

Odd Density: The is a mature concept in the Collatz paradigm and was
inspired by ideas/graphics from Souza’s study of the topic[14]. This would ex-
tend lineage of sub-trees to include relative count of odd numbers transvesed by
descendant nodes.

A.1.2 Analogous Ancestry - Summary Table Data
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Table 5: Summary Analogous Ancestry Data
Node Number Tree Level Lineage Sibling Lineage Level Lineage

N5 5 5 9,379,077 93.8% 93.8%
N32 32 5 620,917 6.2% 6.2%

N3 3 7 19 0.0% 0.0%
N20 20 7 9,379,046 100.0% 93.8%
N21 21 7 18 0.0% 0.0%
N128 128 7 620,896 100.0% 6.2%

N12 12 9 19 — 0.0%
N13 13 9 4,755,822 50.7% 47.6%
N80 80 9 4,623,222 49.2% 46.2%
N84 84 9 16 — 0.0%
N85 85 9 237,641 38.2% 2.4%
N512 512 9 383,252 61.8% 3.8%

N48 48 11 17 — 0.0%
N52 52 11 4,755,820 — 47.6%
N53 53 11 4,559,258 98.6% 45.6%
N320 320 11 63,961 1.4% 0.6%
N336 336 11 14 — 0.0%
N340 340 11 237,639 — 2.4%
N341 341 11 377,301 98.5% 3.8%
N2048 2048 11 5,948 1.5% 0.1%
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Table 6: Basic Statistics for all Nodes by Data Sets: Set Size, Mean, and
Standard Deviation (Stnd Dev.)

Data Set Set Size Mean Stnd Dev.

N5_4x0 9984 0.9389 0.0023
N5_5x1 9999 0.9381 0.0013
N5_6x2 9999 0.9373 0.0006
N5_7x3 10000 0.9377 0.0003
N32_4x0 9984 0.0611 0.0023
N32_5x1 9999 0.0619 0.0013
N32_6x2 9999 0.0627 0.0006
N32_7x3 10000 0.0623 0.0003

N3_4x0 9984 0.0034 0.0061
N3_5x1 9999 0.0006 0.0020
N3_6x2 9999 0.0001 0.0006
N3_7x3 10000 0.0000 0.0001
N20_4x0 9984 0.9966 0.0061
N20_5x1 9999 0.9994 0.0020
N20_6x2 9999 0.9999 0.0006
N20_7x3 10000 1.0000 0.0001
N21_4x0 9959 0.0457 0.0784
N21_5x1 9996 0.0083 0.0273
N21_6x2 9999 0.0013 0.0079
N21_7x3 10000 0.0002 0.0013
N128_4x0 9959 0.9543 0.0784
N128_5x1 9996 0.9917 0.0273
N128_6x2 9999 0.9987 0.0079
N128_7x3 10000 0.9998 0.0013

N13_4x0 9984 0.4962 0.0242
N13_5x1 9999 0.5049 0.0092
N13_6x2 9999 0.5066 0.0022
N13_7x3 10000 0.5070 0.0007
N80_4x0 9984 0.5038 0.0242
N80_5x1 9999 0.4951 0.0092
N80_6x2 9999 0.4934 0.0022
N80_7x3 10000 0.4930 0.0007
N85_4x0 9926 0.4326 0.0767
N85_5x1 9993 0.4047 0.0267
N85_6x2 9999 0.3846 0.0119
N85_7x3 10000 0.3822 0.0028
N512_4x0 9926 0.5674 0.0767
N512_5x1 9993 0.5953 0.0267
N512_6x2 9999 0.6154 0.0119
N512_7x3 10000 0.6178 0.0028

N53_4x0 9978 0.9893 0.0018
N53_5x1 9998 0.9871 0.0011
N53_6x2 9999 0.9860 0.0005
N53_7x3 10000 0.9861 0.0002
N320_4x0 9978 0.0107 0.0018
N320_5x1 9998 0.0129 0.0011
N320_6x2 9999 0.0140 0.0005
N320_7x3 10000 0.0139 0.0002
N341_4x0 9850 0.9822 0.0074
N341_5x1 9985 0.9803 0.0026
N341_6x2 9998 0.9831 0.0014
N341_7x3 10000 0.9845 0.0007
N2048_4x0 9850 0.0178 0.0074
N2048_5x1 9985 0.0197 0.0026
N2048_6x2 9998 0.0169 0.0014
N2048_7x3 10000 0.0155 0.0007
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Table 7: Log-Log Analysis Data for Hurst Exponent H (R-Value, P-Value) with
Maximum Lag of 100 and Fractal Dimension D (R-Value, P-Value) with Scale
11 for Geometric Box Sequence (2i, i ∈ [0,10]) for all Nodes by Data Sets.

Data Set H R-Value(H) P-Value(H) D R-Value(D) P-Value(D)

N5_4x0 0.9810 0.9998 2.18x10−167 0.9970 1.000 1.25x10−23

N5_5x1 0.9776 0.9998 1.02x10−167 0.9959 1.000 2.34x10−25

N5_6x2 0.9679 0.9998 5.92x10−169 0.9959 1.000 2.34x10−25

N5_7x3 0.9611 0.9998 5.12x10−167 0.9959 1.000 2.39x10−25

N32_4x0 0.9810 0.9998 2.18x10−167 0.9970 1.000 1.25x10−23

N32_5x1 0.9776 0.9998 1.02x10−167 0.9959 1.000 2.34x10−25

N32_6x2 0.9679 0.9998 5.92x10−169 0.9959 1.000 2.34x10−25

N32_7x3 0.9611 0.9998 5.12x10−167 0.9959 1.000 2.39x10−25

N3_4x0 0.9950 0.9998 5.43x10−169 0.9970 1.000 1.25x10−23

N3_5x1 0.9939 0.9998 2.35x10−169 0.9959 1.000 2.34x10−25

N3_6x2 0.9939 0.9998 4.00x10−169 0.9959 1.000 2.34x10−25

N3_7x3 0.9941 0.9998 5.37x10−169 0.9959 1.000 2.39x10−25

N20_4x0 0.9950 0.9998 3.6x10−169 0.9970 1.000 1.25x10−23

N20_5x1 0.9939 0.9998 2.35x10−169 0.9959 1.000 2.34x10−25

N20_6x2 0.9939 0.9998 4.00x10−169 0.9959 1.000 2.34x10−25

N20_7x3 0.9941 0.9998 5.37x10−169 0.9959 1.000 2.39x10−25

N21_4x0 0.9170 0.9849 7.09x10−75 0.9965 1.000 8.98x10−24

N21_5x1 0.9394 0.9985 1.29x10−123 0.9958 1.000 2.06x10−25

N21_6x2 0.9769 0.9997 2.18x10−157 0.9959 1.000 2.34x10−25

N21_7x3 0.9902 0.9998 4.40x10−162 0.9959 1.000 2.39x10−25

N128_4x0 0.9016 0.9856 6.30x10−76 0.9965 1.000 8.98x10−24

N128_5x1 0.9234 0.9981 2.10x10−118 0.9958 1.000 2.06x10−25

N128_6x2 0.9737 0.9997 3.76x10−158 0.9959 1.000 2.34x10−25

N128_7x3 0.9888 0.9998 2.72x10−161 0.9959 1.000 2.39x10−25

N13_4x0 0.9762 0.9997 2.08x10−157 0.9970 1.000 1.25x10−23

N13_5x1 0.9639 0.9998 2.03x10−168 0.9959 1.000 2.34x10−25

N13_6x2 0.9569 0.9998 4.78x10−165 0.9959 1.000 2.34x10−25

N13_7x3 0.9476 0.9998 2.07x10−161 0.9959 1.000 2.39x10−25

N80_4x0 0.9763 0.9997 1.86x10−157 0.9970 1.000 1.25x10−23

N80_5x1 0.9639 0.9998 2.03x10−168 0.9959 1.000 2.34x10−25

N80_6x2 0.9569 0.9998 4.78x10−165 0.9959 1.000 2.34x10−25

N80_7x3 0.9476 0.9998 2.07x10−161 0.9959 1.000 2.39x10−25

N85_4x0 0.9093 0.9825 7.80x10−72 0.9959 1.000 7.85x10−24

N85_5x1 0.889 0.9979 1.63x10−115 0.9958 1.000 1.88x10−25

N85_6x2 0.9166 0.9998 4.25x10−161 0.9959 1.000 2.34x10−25

N85_7x3 0.9096 0.9996 1.38x10−150 0.9959 1.000 2.39x10−25

N512_4x0 0.9126 0.9767 5.88x10−66 0.9959 1.000 7.85x10−23

N512_5x1 0.9034 0.9979 2.85x10−116 0.9958 1.000 1.88x10−25

N512_6x2 0.9198 0.9998 3.05x10−162 0.9959 1.000 2.34x10−25

N512_7x3 0.9106 0.9996 7.56x10−150 0.9959 1.000 2.39x10−25

N53_4x0 0.9823 0.9998 1.82x10−161 0.9969 1.000 1.13x10−23

N53_5x1 0.9767 0.9999 1.36x10−171 0.9959 1.000 2.23x10−25

N53_6x2 0.9682 0.9999 6.24x10−174 0.9959 1.000 2.34x10−25

N53_7x3 0.9577 0.9998 5.10x10−168 0.9959 1.000 2.39x10−25

N320_4x0 0.9858 0.9998 9.63x10−162 0.9969 1.000 1.13x10−23

N320_5x1 0.9767 0.9999 1.33x10−171 0.9959 1.000 2.23x10−25

N320_6x2 0.9682 0.9999 6.24x10−174 0.9959 1.000 2.34x10−25

N320_7x3 0.9577 0.9998 5.10x10−168 0.9959 1.000 2.39x10−25

N341_4x0 0.9245 0.9817 5.95x10−71 0.9949 1.000 1.59x10−22

N341_5x1 0.8983 0.9964 1.76x10−104 0.9957 1.000 1.50x10−25

N341_6x2 0.9437 0.9995 1.32x10−147 0.9959 1.000 2.23x10−25

N341_7x3 0.9682 0.9998 2.12x10−165 0.9959 1.000 2.39x10−25

N2048_4x0 0.9373 0.9748 2.19x10−64 0.9949 1.000 1.59x10−22

N2048_5x1 0.9265 0.9963 4.71x10−104 0.9957 1.000 1.50x10−25

N2048_6x2 0.9613 0.9997 3.05x10−157 0.9959 1.000 2.23x10−25

N2048_7x3 0.9685 0.9998 1.24x10−165 0.9959 1.000 2.39x10−25
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A.2 Visual Data
A.2.1 Scatter Plots for all Nodes By Data Sets

Figure 9: Level 5 Scatter Plots for Node by Data Sets
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Figure 10: Level 7 Scatter Plots for Node by Data Sets
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Figure 11: Level 9 Scatter Plots for Node by Data Sets
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Figure 12: Level 11 Scatter Plots for Node by Data Sets
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A.3 Fractal Dimension Methods and Exploration Results

Table 8: Box Sequence Test Results For nodes N5, N85, and N320 at sample
rates of 4x0 and 7x3: By Row - Normalization in Upper (Z-Score) and Lower
(Min/Max) halves, each half separated in thirds for scaling (S9, S11, S13).
Column data is in thirds for the three number sequences tested, Geometric (G),
Exponential (E), and Psuedo-Linear (PL).

Z-Score Slope (G) R-Value Slope (E) R-Value Slope (PL) R-Value

N5_4x0 (S9) 1.0000 1.0000 0.9914 0.9999 0.9989 1.0000
N5_7x3 0.9966 1.0000 0.9915 0.9999 0.9993 1.0000
N85_4x0 0.9987 1.0000 0.9960 1.0000 0.9991 1.0000
N85_7x3 0.9966 1.0000 0.9915 0.9999 0.9993 1.0000
N320_4x0 0.9999 1.0000 0.9913 0.9999 0.9987 1.0000
N320_7x3 0.9966 1.0000 0.9915 0.9999 0.9993 1.0000

N5_4x0 (S11) 0.9970 1.0000 0.9857 0.9999 0.9988 1.0000
N5_7x3 0.9959 1.0000 0.9859 0.9999 0.9982 1.0000
N85_4x0 0.9959 1.0000 0.9879 0.9999 0.9988 1.0000
N85_7x3 0.9959 1.0000 0.9859 0.9999 0.9982 1.0000
N320_4x0 0.9969 1.0000 0.9855 0.9999 0.9986 1.0000
N320_7x3 0.9959 1.0000 0.9859 0.9999 0.9982 1.0000

N5_4x0 (S13) 0.9877 0.9998 0.9754 0.9997 0.9985 1.0000
N5_7x3 0.9875 0.9999 0.9757 0.9997 0.9983 1.0000
N85_4x0 0.9868 0.9999 0.9764 0.9996 0.9979 1.0000
N85_7x3 0.9875 0.9999 0.9757 0.9997 0.9983 1.0000
N320_4x0 0.9877 0.9999 0.9753 0.9997 0.9984 1.0000
N320_7x3 0.9875 0.9999 0.9757 0.9997 0.9983 1.0000

Min/Max Slope (G) R-Value Slope (E) R-Value Slope (E) R-Value

N5_4x0 S(9) 1.0000 1.0000 0.9914 0.9999 0.9988 1.0000
N5_7x3 0.9966 1.0000 0.9915 0.9999 0.9993 1.0000
N85_4x0 0.9979 1.0000 0.9955 1.0000 0.9982 1.0000
N85_7x3 0.9966 1.0000 0.9915 0.9999 0.9993 1.0000
N320_4x0 0.9972 1.0000 0.9879 0.9999 0.9979 1.0000
N320_7x3 0.9966 1.0000 0.9915 0.9999 0.9993 1.0000

N5_4x0 (S11) 0.9970 1.0000 0.9857 0.9999 0.9988 1.0000
N5_7x3 0.9959 1.0000 0.9859 0.9999 0.9982 1.0000
N85_4x0 0.9953 1.0000 0.9875 0.9999 0.9979 1.0000
N85_7x3 0.9959 1.0000 0.9859 0.9999 0.9981 1.0000
N320_4x0 0.9937 1.0000 0.9821 0.9999 0.9972 1.0000
N320_7x3 0.9959 1.0000 0.9859 0.9999 0.9982 1.0000

N5_4x0 (S13) 0.9877 0.9998 0.9754 0.9997 0.9985 1.0000
N5_7x3 0.9875 0.9999 0.9757 0.9997 0.9983 1.0000
N85_4x0 0.9863 0.9999 0.9760 0.9997 0.9971 1.0000
N85_7x3 0.9875 0.9999 0.9757 0.9997 0.9983 1.0000
N320_4x0 0.9846 0.9999 0.9720 0.9997 0.9965 1.0000
N320_7x3 0.9875 0.9999 0.9757 0.9997 0.9983 1.0000
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Figure 13: Fractal Dimension Levels 5, 7 Log-Log Plots (includes N13).
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Figure 14: Fractal Dimension Levels 9, 11 Log-Log Plots (excludes N13).
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A.4 Hurst Exponent Methods and Exploration Results
A.4.1 Data Set Size Preliminary Analysis Using Data Set N5_6x0

Various sized contiguous blocks of data were examined within the span of the
first million numbers. We found a certain minimum data set size helped reduce
outliers. For a high-level examination, we collected N5 sibling lineage data for
the range n = 1 to 106, to create data set N5_6x0, and calculated the a Hurst
exponent for a range of data blocks (1000, 2000, 5000, 10000, 25000, 50000),
starting ever 100K point in the range. The results are in Figure 15 and Table 9.
The convergence around 10,000 guided the study’s standard set size.

Figure 15: Graphic for preliminary exploratory Hurst exponent analysis: Con-
tiguous data blocks with a maximum lag of 100 at varying length intervals
starting every 100K point within a 1M span starting at 1. While informative
for determining data set size, later importance included other aspects, such as
maximal lag.

A.4.2 Data Set Rescaling Preliminary Analysis Using Various Max-
imum Lags

We explored maximum lag values of 50, 100, 250, and 500 across all nodes by
data sets with the optimal value collecting at 100 as seen in the next graphic.
Three sibling pairs have notably similar trends and values (blue outline plots).
Four of the nodes (N5, N80, N13, N53) hold the vast majority of lineage and
could lead to further study of the factors underlying this data.
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Table 9: Data table for preliminary exploratory Hurst exponent analysis for
preceding graphic, Figure 15.

Interval H R-Value Interval H R-Value

1:1001 0.9356 0.9992 500001:501001 0.9804 0.9994
1:2001 0.9569 0.9996 500001:502001 0.9838 0.9997
1:5001 0.9736 0.9998 500001:505001 0.9900 0.9998
1:10001 0.9801 0.9998 500001:510001 0.9875 0.9998
1:25001 0.9840 0.9998 500001:525001 0.9882 0.9998
1:50001 0.9839 0.9998 500001:550001 0.9873 0.9998

100001:101001 0.9947 0.9995 600001:601001 1.0000 0.9991
100001:102001 0.9922 0.9996 600001:602001 0.9898 0.9996
100001:105001 0.9899 0.9998 600001:605001 0.9901 0.9998
100001:110001 0.9867 0.9998 600001:610001 0.9878 0.9998
100001:125001 0.9864 0.9998 600001:625001 0.9876 0.9998
100001:150001 0.9866 0.9998 600001:650001 0.9882 0.9998

200001:201001 0.9888 0.9994 700001:701001 0.9932 0.9993
200001:202001 0.9907 0.9997 700001:702001 0.9811 0.9996
200001:205001 0.9896 0.9998 700001:705001 0.9822 0.9998
200001:210001 0.9883 0.9998 700001:710001 0.9878 0.9998
200001:225001 0.9871 0.9998 700001:725001 0.9883 0.9998
200001:250001 0.9870 0.9998 700001:750001 0.9882 0.9998

300001:301001 1.0019 0.9993 800001:801001 0.9994 0.9991
300001:302001 0.9923 0.9996 800001:802001 0.9892 0.9996
300001:305001 0.9901 0.9997 800001:805001 0.9890 0.9998
300001:310001 0.9891 0.9998 800001:810001 0.9900 0.9998
300001:325001 0.9877 0.9998 800001:825001 0.9891 0.9998
300001:350001 0.9873 0.9998 800001:850001 0.9882 0.9998

400001:401001 0.9969 0.9994 900001:901001 0.9970 0.9995
400001:402001 0.9896 0.9997 900001:902001 0.9912 0.9997
400001:405001 0.9898 0.9998 900001:905001 0.9877 0.9998
400001:410001 0.9890 0.9998 900001:910001 0.9903 0.9998
400001:425001 0.9865 0.9998 900001:925001 0.9890 0.9998
400001:450001 0.9871 0.9998 900001:950001 0.9878 0.9998
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Figure 16: Graphic for preliminary exploratory Hurst exponent analysis: Vary-
ing maximum lags (x-axis: 50, 100, 250, 500) for all Nodes by Data Sets.
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Table 10: Hurst Exponent Analysis Using Various Maximum Lags Across all
Nodes by Data Sets [Part 1 of 2]

Data Set Max. Lag H R-Value Data Set Max. Lag H R-Value

N5_4x0 50 0.9777 0.9996 N32_4x0 50 0.9777 0.9996
N5_4x0 100 0.9810 0.9998 N32_4x0 100 0.9810 0.9998
N5_4x0 250 0.9703 0.9998 N32_4x0 250 0.9703 0.9998
N5_4x0 500 0.9388 0.9991 N32_4x0 500 0.9388 0.9991
N5_5x1 50 0.9777 0.9996 N32_5x1 50 0.9777 0.9996
N5_5x1 100 0.9776 0.9998 N32_5x1 100 0.9776 0.9998
N5_5x1 250 0.9518 0.9996 N32_5x1 250 0.9518 0.9996
N5_5x1 500 0.9090 0.9984 N32_5x1 500 0.9090 0.9984
N5_6x2 50 0.9717 0.9997 N32_6x2 50 0.9717 0.9997
N5_6x2 100 0.9679 0.9998 N32_6x2 100 0.9679 0.9998
N5_6x2 250 0.9451 0.9997 N32_6x2 250 0.9451 0.9997
N5_6x2 500 0.9098 0.9990 N32_6x2 500 0.9098 0.9990
N5_7x3 50 0.9689 0.9997 N32_7x3 50 0.9689 0.9997
N5_7x3 100 0.9611 0.9998 N32_7x3 100 0.9611 0.9998
N5_7x3 250 0.9297 0.9995 N32_7x3 250 0.9297 0.9995
N5_7x3 500 0.8946 0.9988 N32_7x3 500 0.8946 0.9988

N3_4x0 50 0.9902 0.9996 N20_4x0 50 0.9901 0.9996
N3_4x0 100 0.9950 0.9998 N20_4x0 100 0.9950 0.9998
N3_4x0 250 0.9976 0.9999 N20_4x0 250 0.9976 0.9999
N3_4x0 500 0.9987 0.9999 N20_4x0 500 0.9987 0.9999
N3_5x1 50 0.9894 0.9996 N20_5x1 50 0.9894 0.9996
N3_5x1 100 0.9939 0.9998 N20_5x1 100 0.9939 0.9998
N3_5x1 250 0.9965 0.9999 N20_5x1 250 0.9965 0.9999
N3_5x1 500 0.9989 0.9999 N20_5x1 500 0.9989 0.9999
N3_6x2 50 0.9895 0.9996 N20_6x2 50 0.9895 0.9996
N3_6x2 100 0.9939 0.9998 N20_6x2 100 0.9939 0.9998
N3_6x2 250 0.9962 0.9999 N20_6x2 250 0.9962 0.9999
N3_6x2 500 0.9954 0.9999 N20_6x2 500 0.9954 0.9999
N3_7x3 50 0.9899 0.9996 N20_7x3 50 0.9899 0.9996
N3_7x3 100 0.9941 0.9998 N20_7x3 100 0.9941 0.9998
N3_7x3 250 0.9960 0.9999 N20_7x3 250 0.9960 0.9999
N3_7x3 500 0.9947 0.9999 N20_7x3 500 0.9947 0.9999
N21_4x0 50 1.0007 0.9763 N128_4x0 50 0.9943 0.9798
N21_4x0 100 0.9170 0.9849 N128_4x0 100 0.9016 0.9856
N21_4x0 250 0.8699 0.9928 N128_4x0 250 0.8545 0.9929
N21_4x0 500 0.8996 0.9961 N128_4x0 500 0.8872 0.9961
N21_5x1 50 0.9316 0.9967 N128_5x1 50 0.9129 0.9958
N21_5x1 100 0.9394 0.9985 N128_5x1 100 0.9234 0.9981
N21_5x1 250 0.9706 0.9992 N128_5x1 250 0.9610 0.9989
N21_5x1 500 0.9841 0.9995 N128_5x1 500 0.9781 0.9993
N21_6x2 50 0.9583 0.9997 N128_6x2 50 0.9544 0.9997
N21_6x2 100 0.9769 0.9997 N128_6x2 100 0.9737 0.9997
N21_6x2 250 0.9933 0.9998 N128_6x2 250 0.9915 0.9998
N21_6x2 500 0.9963 0.9998 N128_6x2 500 0.9952 0.9998
N21_7x3 50 0.9749 0.9997 N128_7x3 50 0.9726 0.9997
N21_7x3 100 0.9902 0.9998 N128_7x3 100 0.9888 0.9998
N21_7x3 250 0.9995 0.9999 N128_7x3 250 0.9989 0.9999
N21_7x3 500 0.9994 0.9999 N128_7x3 500 0.9990 0.9999

N13_4x0 50 0.9707 0.9994 N80_4x0 50 0.9708 0.9994
N13_4x0 100 0.9762 0.9997 N80_4x0 100 0.9763 0.9997
N13_4x0 250 0.9654 0.9998 N80_4x0 250 0.9654 0.9998
N13_4x0 500 0.9621 0.9998 N80_4x0 500 0.9621 0.9998
N13_5x1 50 0.9595 0.9997 N80_5x1 50 0.9595 0.9997
N13_5x1 100 0.9639 0.9998 N80_5x1 100 0.9639 0.9998
N13_5x1 250 0.9379 0.9996 N80_5x1 250 0.9379 0.9996
N13_5x1 500 0.9228 0.9995 N80_5x1 500 0.9228 0.9995
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Table 11: Hurst Exponent Analysis Using Various Maximum Lags Across all
Nodes by Data Sets [Part 2 of 2]

Data Set Max. Lag H R-Value Data Set Max. Lag H R-Value

N13_6x2 50 0.9582 0.9997 N80_6x2 50 0.9582 0.9997
N13_6x2 100 0.9569 0.9998 N80_6x2 100 0.9569 0.9998
N13_6x2 250 0.9119 0.9990 N80_6x2 250 0.9119 0.9990
N13_6x2 500 0.8646 0.9979 N80_6x2 500 0.8646 0.9979
N13_7x3 50 0.9562 0.9997 N80_7x3 50 0.9562 0.9997
N13_7x3 100 0.9476 0.9998 N80_7x3 100 0.9476 0.9998
N13_7x3 250 0.8785 0.9977 N80_7x3 250 0.8785 0.9977
N13_7x3 500 0.8155 0.9958 N80_7x3 500 0.8155 0.9958
N85_4x0 50 1.0037 0.9749 N512_4x0 50 1.0238 0.9705
N85_4x0 100 0.9093 0.9825 N512_4x0 100 0.9126 0.9767
N85_4x0 250 0.8101 0.9881 N512_4x0 250 0.8320 0.9870
N85_4x0 500 0.8257 0.9942 N512_4x0 500 0.8434 0.9937
N85_5x1 50 0.9061 0.9954 N512_5x1 50 0.9265 0.9958
N85_5x1 100 0.8890 0.9979 N512_5x1 100 0.9034 0.9979
N85_5x1 250 0.8680 0.9989 N512_5x1 250 0.8763 0.9988
N85_5x1 500 0.8720 0.9991 N512_5x1 500 0.8770 0.9991
N85_6x2 50 0.9283 0.9997 N512_6x2 50 0.9337 0.9998
N85_6x2 100 0.9166 0.9998 N512_6x2 100 0.9198 0.9998
N85_6x2 250 0.8557 0.9977 N512_6x2 250 0.8572 0.9976
N85_6x2 500 0.8196 0.9974 N512_6x2 500 0.8205 0.9973
N85_7x3 50 0.9321 0.9998 N512_7x3 50 0.9337 0.9998
N85_7x3 100 0.9096 0.9996 N512_7x3 100 0.9106 0.9996
N85_7x3 250 0.7989 0.9926 N512_7x3 250 0.7993 0.9926
N85_7x3 500 0.6951 0.9856 N512_7x3 500 0.6953 0.9856

N53_4x0 50 0.9676 0.9997 N320_4x0 50 0.9730 0.9996
N53_4x0 100 0.9823 0.9998 N320_4x0 100 0.9858 0.9998
N53_4x0 250 0.9937 0.9998 N320_4x0 250 0.9955 0.9998
N53_4x0 500 0.9791 0.9997 N320_4x0 500 0.9801 0.9997
N53_5x1 50 0.9756 0.9997 N320_5x1 50 0.9756 0.9997
N53_5x1 100 0.9767 0.9999 N320_5x1 100 0.9767 0.9999
N53_5x1 250 0.9665 0.9998 N320_5x1 250 0.9665 0.9998
N53_5x1 500 0.9433 0.9994 N320_5x1 500 0.9433 0.9994
N53_6x2 50 0.9707 0.9997 N320_6x2 50 0.9707 0.9997
N53_6x2 100 0.9682 0.9999 N320_6x2 100 0.9682 0.9999
N53_6x2 250 0.9413 0.9996 N320_6x2 250 0.9413 0.9996
N53_6x2 500 0.9163 0.9992 N320_6x2 500 0.9163 0.9992
N53_7x3 50 0.9656 0.9998 N320_7x3 50 0.9656 0.9998
N53_7x3 100 0.9577 0.9998 N320_7x3 100 0.9577 0.9998
N53_7x3 250 0.9161 0.9992 N320_7x3 250 0.9161 0.9992
N53_7x3 500 0.8866 0.9989 N320_7x3 500 0.8866 0.9989
N341_4x0 50 1.0300 0.9748 N2048_4x0 50 1.0401 0.9633
N341_4x0 100 0.9245 0.9817 N2048_4x0 100 0.9373 0.9748
N341_4x0 250 0.8310 0.9878 N2048_4x0 250 0.8472 0.9853
N341_4x0 500 0.8593 0.9934 N2048_4x0 500 0.8745 0.9924
N341_5x1 50 0.8956 0.9918 N2048_5x1 50 0.9281 0.9916
N341_5x1 100 0.8983 0.9964 N2048_5x1 100 0.9265 0.9963
N341_5x1 250 0.9397 0.9982 N2048_5x1 250 0.9565 0.9984
N341_5x1 500 0.9522 0.9989 N2048_5x1 500 0.9626 0.9991
N341_6x2 50 0.9309 0.9991 N2048_6x2 50 0.9551 0.9994
N341_6x2 100 0.9437 0.9995 N2048_6x2 100 0.9613 0.9997
N341_6x2 250 0.9529 0.9998 N2048_6x2 250 0.9625 0.9998
N341_6x2 500 0.9400 0.9994 N2048_6x2 500 0.9457 0.9994
N341_7x3 50 0.9623 0.9997 N2048_7x3 50 0.9628 0.9997
N341_7x3 100 0.9682 0.9998 N2048_7x3 100 0.9685 0.9998
N341_7x3 250 0.9469 0.9997 N2048_7x3 250 0.9470 0.9997
N341_7x3 500 0.9247 0.9994 N2048_7x3 500 0.9247 0.9994
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