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Introduction

The Editors

We are all connected. Following the year of 2020, everyone must recognize
this not as an abstract statement or mere platitude, but a concrete reality
with its potential catastrophic risks that we are obligated to grapple with.

While our ability to connect with one another offers many opportunities
for collaboration and cooperation, it also brings with it risks of cascade
from multiplicative processes that propagate via these connections. With
the COVID-19 pandemic, everyone now has a clear firsthand experience of
such complexity and its unimaginable consequences: how remote events in
far regions can endanger one’s survival, literally, in a matter of few months.

The COVID-19 pandemic, which continues into 2021 with no certain
bound, has unfortunately demonstrated what many have been warning
about for years: we are vulnerable to global contagion. A very important
question is why? Given all advances in sciences and technologies, our
unprecedented computational ability with supercomputers, why almost all
countries in the world failed badly in dealing with the COVID-19 outbreak?
What went wrong?

We argue that due to nonlinear scaling behavior in complex systems
(say, our connected world today), we need a fundamental shift in paradigm,
tactics and strategy when it comes to treating diseases at the collective scale.
Individual medicine does not simply ‘scale up’ to the collective, and neither
does collective mitigation necessarily ‘scale down’ to the individual. For
example, rapid tests that are viewed as too unreliable as an individual
diagnostic instrument, could be sufficiently reliable at the collective scale
when deployed widely.

In general, multi-scale problems demand multi-scale solutions. The
macroscopic behaviors must be addressed first in order to gain a foothold
from which one can pursue more granular approaches. This includes,
for instance, pausing or imposing mitigation like testing or quarantine for
travel between regions when many locales may be spared or otherwise have
much more tractable problems when not seeded from external arrivals. This
also includes identifying the statistical profile of the collective that allows a
pathogen to persist and amplify in a population.

The COVID-19 pandemic shows that the tail of the distribution – the
so-called “super-spreader” events – can be enough to sustain an epidemic
even when most individuals that become infected are able to avoid infecting
others. In other words, it is possible, within some range of parameters, to



6 Introduction

induce decay of an epidemic simply by removing the extreme spreading
events, effectively reducing the replication rate R0 to below 1.

Early in the COVID-19 outbreak, many precautionary measures were
dismissed in reaction to their perceived costliness. The overwhelming costs
we have witnessed since, in terms of human life and well-being, societal
tension and unrest, and economic hardship should be testament enough
to the relative cheapness of paying for insurance up front to avoid paying
much more over a much longer time.

In this volume we have included a variety of studies from varying per-
spectives. The unifying theme in these studies is that the COVID-19 pan-
demic (and all epidemics and potential pandemics) are essentially systems
problems, and must be studied and combated as such. In this selection of
papers on COVID-19, the problem has been investigated using a complex
systems approach, including agent-based models, cellular automata, net-
works, population dynamics, spatial-temporal patterns, risk management,
analysis of fat-tails, data analysis and visualization.

We can categorize this collection into the following parts:

• Perspectives: papers discuss policies and strategies against an out-
break, especially when nothing is clear enough yet, and there are lots
of unknown and uncertain factors involved.

• Probabilities: papers elaborate on the importance of proper under-
standing of probability and its role in decision-making against a con-
tagion outbreak.

• Modeling: papers explain different approaches to model the spread of
a virus in a population.

• Data: the main focus of these papers is on data, data collecting, wran-
gling and manipulation, and its relevance in a fight against a contagion
outbreak.

• Policy: these papers elaborate on effective policies and strategies one
can adapt for future.

We believe this collection can help scientists and decision-makers alike in
the direction of a paradigm shift in tactics and strategies when dealing with
a pandemic. Last but not least, despite the destructiveness of COVID-19
pandemic, we can’t lose track of the fact that until we learn how to grapple
with contagion in our connected world, we will be at risk of much more
damaging events.
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Note added after original publication: This short note was originally pub-
lished online on January 26th, 2020. At that time the COVID-19 out-
break was not considered a pandemic (how widespread it was then
remains an open question), and authorities such as the World Health Or-
ganization were actively discouraging any lifestyle modifications that
would mitigate the risk of spreading the disease. The note focuses pri-
marily on exercising precaution via macroscopic mobility constraints
given how little was known at the time. It remains that taking these
actions would have produced a much better posture from which to
attack the COVID-19 outbreak, and nothing in the interim has altered
that conclusion.

1 Introduction

The novel coronavirus emerging out of Wuhan, China has been identified
as a deadly strain that is also highly contagious. The response by China to
date has included travel restrictions on tens of millions across several major
cities in an effort to slow its spread. Despite this, positively identified cases
have already been detected in many countries spanning the globe and there
are doubts such containment would be effective. This note outlines some
principles to bear in relation to such a process.

Clearly, we are dealing with an extreme fat-tailed process owing to
an increased connectivity, which increases the spreading in a nonlinear
way [1,2]. Fat tailed processes have special attributes, making conventional
risk-management approaches inadequate.
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2 General Precautionary Principle

The general (non-naive) precautionary principle [3] delineates conditions
where actions must be taken to reduce risk of ruin, and traditional cost-
benefit analyses must not be used. These are ruin problems where, over
time, exposure to tail events leads to a certain eventual extinction. While
there is a very high probability for humanity surviving a single such event,
over time, there is eventually zero probability of surviving repeated expo-
sures to such events. While repeated risks can be taken by individuals with
a limited life expectancy, ruin exposures must never be taken at the sys-
temic and collective level. In technical terms, the precautionary principle
applies when traditional statistical averages are invalid because risks are
not ergodic.

3 Naive Empiricism

Next we address the problem of naive empiricism in discussions related to
this problem.

Spreading rate

Historically based estimates of spreading rates for pandemics in general,
and for the current one in particular, underestimate the rate of spread be-
cause of the rapid increases in transportation connectivity over recent years.
This means that expectations of the extent of harm are underestimates both
because events are inherently fat tailed, and because the tail is becoming
fatter as connectivity increases.

Global connectivity is at an all-time high, with China one of the most
globally connected societies. Fundamentally, viral contagion events depend
on the interaction of agents in physical space, and with the forward-looking
uncertainty that novel outbreaks necessarily carry, reducing connectivity
temporarily to slow flows of potentially contagious individuals is the only
approach that is robust against misestimations in the properties of a virus
or other pathogen.

Reproductive ratio

Estimates of the virus’s reproductive ratio R0—the number of cases one case
generates on average over the course of its infectious period in an otherwise
uninfected population—are biased downwards. This property comes from
fat-tailedness [4] due to individual ‘superspreader’ events. Simply, R0 is
estimated from an average which takes longer to converge as it is itself a
fat-tailed variable.
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Mortality rate

Mortality and morbidity rates are also downward biased, due to the lag
between identified cases, deaths and reporting of those deaths.

Increasingly fatal rapidly spreading emergent pathogens

With increasing transportation we are close to a transition to conditions in
which extinction becomes certain both because of rapid spread and because
of the selective dominance of increasingly worse pathogens. [5]

Asymmetric uncertainty

Properties of the virus that are uncertain will have substantial impact on
whether policies implemented are effective. For instance, whether con-
tagious asymptomatic carriers exist. These uncertainties make it unclear
whether measures such as temperature screening at major ports will have
the desired impact. Practically all the uncertainty tends to make the problem
potentially worse, not better, as these processes are convex to uncertainty.

Fatalism and inaction

Perhaps due to these challenges, a common public health response is fatalis-
tic, accepting what will happen because of a belief that nothing can be done.
This response is incorrect as the leverage of correctly selected extraordinary
interventions can be very high.

4 Conclusion

Standard individual-scale policy approaches such as isolation, contact trac-
ing and monitoring are rapidly (computationally) overwhelmed in the face
of mass infection, and thus also cannot be relied upon to stop a pandemic.
Multiscale population approaches including drastically pruning contact
networks using collective boundaries and social behavior change, and com-
munity self-monitoring, are essential.

Together, these observations lead to the necessity of a precautionary
approach to current and potential pandemic outbreaks that must include
constraining mobility patterns in the early stages of an outbreak, especially
when little is known about the true parameters of the pathogen.

It will cost something to reduce mobility in the short term, but to fail
do so will eventually cost everything—if not from this event, then one in
the future. Outbreaks are inevitable, but an appropriately precautionary
response can mitigate systemic risk to the globe at large. But policy- and
decision-makers must act swiftly and avoid the fallacy that to have an
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appropriate respect for uncertainty in the face of possible irreversible catas-
trophe amounts to "paranoia," or the converse a belief that nothing can be
done.
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1 Introduction

Consider the guidance from the scientific establishment and government
agencies in the early days and weeks of the 2020 U.S. Covid-19 outbreak.

• Masks don’t work.

• Travel restrictions are xenophobic.

• No evidence of asymptomatic spread.

• No evidence for human-to-human transmission.

• No evidence that animals can get Covid-19.

• The risk to the general public is low.

We were told these repeatedly by the World Health Organization (WHO),
Jerome Adams (U.S. Surgeon General), Anthony Fauci (Director of the
U.S. National Institute of Allergy and Infectious Diseases), and a num-
ber of other experts in virology, epidemiology and public health. Similar
statements downplaying the threat were made by a number of public in-
tellectuals, including Cass Sunstein, John Ioannidis, Richard Epstein, Carl
Bergstrom, and several others from academia.

Every one of the above assertions was later disavowed or disproved. In
many cases the initially extreme underreaction was matched with an equal
overreaction to the opposite extreme. In many jurisdictions, masks were
mandated by law in all public places, under penalty of fine. Travel restric-
tions to, from and within many countries in North America and Europe
became the norm. Large gatherings were deemed “superspreader events”
because of their tendency for large-scale, human-to-human transmission
by asymptomatic participants. Family members were prohibited from vis-
iting hospitalized relatives who were sick and dying from Covid-19. The
state of California limited Thanksgiving gatherings to at most 3 house-
holds and “strongly discouraged” singing, chanting or shouting. Religious
gatherings were severely curtailed and even outlawed in some parts of the
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United States, a restriction that was later judged unconstitutional by the
U.S. Supreme Court.

The earliest missteps contributed to higher death tolls, prolonged lock-
downs, and diminished trust in science and government leadership. The
later post hoc counter-reactions in the form of indefinite lockdowns, ex-
panded government mandates, and extended use of emergency powers
contributed further to economic and psychological distress while increasing
distrust of the scientific establishment. Yet the organizations and individu-
als most responsible for misleading the public and damaging institutional
credibility suffered little or no consequences compared to the losses their
decisions inflicted on the rest of society. In fact, several of these individuals
benefited from their consequential mistakes.

I discuss here how the mistakes listed above result from two related
consequences of applying formulaic decision procedures to address highly
uncertain and complex problems:

(i) Naive Probabilism, the belief that decision-making under uncertainty
boils down to probability calculations and statistical analysis; and

(ii) Freeroll Effect, the phenomenon by which those responsible for risky
policies suffer none of their negative consequences, while benefiting
from their upside.

Though both are widespread throughout society, academia, business,
medicine, finance, law and politics, I focus here on Naive Probabilism and
the Freeroll Effect in U.S. Covid-19 response. In a series of three vignettes,
I discuss how Naive Probabilism negatively impacted the U.S. response,
and how those responsible for poor policy decisions benefited from the
Freeroll Effect, in many cases enjoying increased public profile and greater
influence even after negatively impacting the lives of hundreds of millions
in the United States and around the world. The “axioms” corresponding
to each section give an insight into the thought process underlying Naive
Probabilism, and should be interpreted as “anti-axioms” for those wishing
to avoid the mistakes highlighted below.

2 A mask is a thing

[First Axiom of Naive Probabilism] The more complex the problem, the more
complicated the solution.

A hallmark of naive decision making, and especially naive probabilism,
is the belief that the more complex the problem, the more sophisticated the
solution needs to be. Without question, the Covid-19 outbreak was highly
complex due to the uncertainty of its origins, the novelty of the virus,
and the interconnectivity of global economies and societies. Of its many
complexities, however, the question of masks wasn’t one of them. And
because of the initial mistakes on masks—in not only failing to recommend
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but in actively discouraging mask use early on—the U.S. and global agencies
(WHO, CDC), its leaders (Fauci), and much of the scientific establishment
caused even greater confusion, delayed necessary precautions, and lost
public trust to an extent which undermined their credibility on all Covid-
19-related matters moving forward.

The mask mistake was consequential not because masks were the anti-
dote to Covid-19—the extent to which masks help remains unknown—but
because they were a low cost measure whose effect would be neutral at
worst. Expressed in common sense (Northeast Philadelphia) logic: a mask
is a thing. Plain and simple. A mask is a thing, a virus is a thing; when one
thing gets in the way of another thing, it can prevent that other thing from
getting by; therefore, wearing a mask, in worst case, can’t hurt in reducing
the spread of a virus. This argument is common sense to every plumber
(union and non-union), cop, used car salesman, and Uber driver, but not
to Drs. Fauci, Adams, and the many other MDs, PhDs and MPHs whose
advice influenced early Covid-19 response in the United States.

These experts neglected common sense in favor of a more “scientific
response”, one based on “rigorous peer review” and sufficient data. Two
months after the initial U.S. outbreak, a peer-reviewed study [6] confirmed
what common sense knew all along: masks are things. Based on this
science, not common sense, masks went from strongly discouraged1 to
mandated by law. Precious time wasted, thousands of lives lost, the econ-
omy stalled out, indefinite uncertainty for hundreds of millions around the
world, and a drastic reversal from active discouragement of mask-wearing
to government decree. First, ill-informed and misleading guidance. Later,
over-bearing and disproportionate mandates in response to the initial folly.

As naive, and costly, as the initial mask denial was, it was naive in a way
that the “experts” agreed. Even at the time, the mask mistake, which seemed
easily avoidable from a common sense perspective, was unavoidable from
the government bureaucrat’s. Prior to Covid-19, the status quo in the United
States was to not wear masks and there was no data to support a departure
from this norm. Preserving the status quo was the natural instinct of those
who sought to manage the public perception of the risk, rather than manage
the risk itself. The initial argument for masks relied on the non-scientific
influences of common sense and gut instinct, both anathema to government
bureaucrats and academic researchers who fear being held responsible for
a decision more than they care about getting the decision right.

The same bureaucratic logic and perverse incentive structure that led
to the initial folly of discouraging mask use led to the later over-correction
of focusing almost entirely on masks. Once “the science” revealed that
masks were things, recommending—in fact, mandating—masks became
safe haven for the government bureaucrat. For a period of time masks

1Discouraged because wearing a mask may scare others into thinking you are sick, or it
may lull you into a false sense of security, or virus particles can get stuck in the mask.
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weren’t just a part of the solution, they became the solution, just months
after they were initially written off as unnecessary and even harmful.

Almost a year later, in January 2021, Fauci applied NE Philly logic almost
verbatim while advocating that people wear not just for one, but two masks.
Fauci told the New York Times, “If you have a physical covering with one
layer, you put another layer on, it just makes common sense that it likely
would be more effective.” Common sense indeed: a mask is a thing, two
masks are two things, and two is better than one. Yet it took almost a year
to come to this realization. By that time, it was too late. When the virus was
still somewhat contained, one (or two) masks can possibly help slow the
spread in the initial stages; they can’t kill the virus once it’s already spread
throughout the population.

Fauci’s conversion to common sense came at significant cost—just not
to Fauci. By early February 2021, the United States had the highest number
of Covid-19 deaths of any country in the world by a factor of two, it had
also experienced a year of economic, political and societal turmoil, due in
no small part to the collateral damage of prolonged lockdowns, economic
uncertainty and overbearing mandates put in place to counter the fallout of
the initially laissez faire response. Fauci, meanwhile, remained the face of
U.S. government response, his influence over U.S. policy having increased
substantially in the Biden administration.

3 Data-Driven Drones

[Second Axiom of Naive Probabilism] Until proven otherwise, assume that the
future will resemble the past.

At first, there was no data that masks work, no data that travel restric-
tions work, no data of human-to-human transmission, and so on. Indeed,
there was no data for anything. And in the absence of data, the naive de-
cision protocol is to maintain the status quo, in strict adherence to Axiom
3.

There’s some validity to Axiom 3—the future often resembles the past,
and in most cases there’s little or no harm in assuming that it will—but
as with all things naive, blind adherence to this axiom can have ruinous
consequences. We already saw the consequences of this assumption in the
case of masks. But the logic was applied much more widely in advocating
against other precautionary measures to prevent the early spread of Covid-
19.

Flights from China to the U.S. were shut down in late January—much
to the chagrin of the Naive Probabilist—but flights from Europe continued
until mid-March, long after outbreaks had gotten out of control in Italy and
elsewhere in Europe. American universities were among the earliest and
biggest super-spreaders of Covid-19, with students and faculty regularly
traveling to and visiting from all parts of the world. Despite their central
status, both as vectors of disease spread and as leaders of the response,
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universities set the tone for delayed and naive action. Stanford waited
(patiently) to close campus until a faculty member contracted the disease,
and others followed suit, with most remaining open for more than a week
after the Stanford shutdown, citing “no confirmed cases" on their own
campuses. (Remember Axiom 3: the future resembles the past. There
have been no past cases of Covid-19 on campus, and therefore one should
assume there will be no future cases until proven otherwise.) University of
Chicago was among the most lackadaisical, announcing on March 12 that
it would wait until March 30 to begin remote activity, not wanting the virus
to disrupt its final exam schedule. All the while, UChicago administrators
maintained that there were no confirmed cases of anyone affiliated with the
university, even though there were cases in its immediately surrounding
neighborhood.

The delayed responses of the above and many other universities is a mi-
crocosm of the Naive Probabilist’s worldview: whatever can’t be explained
in terms of something that happened in the past is speculative, non-scientific
and unjustifiable. This argument was put forward by John Ioannidis in mid-
March 2020, as the pandemic outbreak was already spiraling out of control.
Ioannidis wrote that Covid-19 wasn’t a “once-in-a-century pandemic”, as
many were saying, but rather a “a once-in-a-century data fiasco” [5]. Ioan-
nidis’s main argument was that we knew very little about the disease, its
fatality rate, and the overall risks it poses to public health; and that in face
of this uncertainty, we should seek data-driven policy decisions. Until the
data was available, we should assume Covid-19 acts as a typical strain of
the flu (a different disease entirely). Under Ioannidis’s analysis, there were
scenarios under which Covid-19 would be much more fatal than the annual
flu and other scenarios under which it is much less fatal. The prudent ap-
proach, according to Ioannidis, was to delay response until we had a more
definitive answer.

In academic circles, Ioannidis’s article was regarded not as a misguided
and potentially disastrous recommendation by an influential scientist but as
“good contrarian writing”, as epidemiologist Marc Lipsitch described it [7].
As a member of the academic establishment, Lipsitch was in the unfamiliar
situation in which his advice had real consequences in real time. Rather than
focus on the problem at hand, he instead focused on the academic exercise
of “starting a discussion” about whether there was “sufficient data” to draw
a conclusion about the dangers of Covid-19. For their participation in this
thought exercise, Ioannidis and Lipsitch, like Fauci above, gained greater
personal exposure and influence while delaying necessary action on the
pandemic.

The problem with the “lack of evidence” argument was that there was,
in fact, plenty of evidence well before the virus was spread throughout
the United States [2]. China had locked down a city of 10 million; Italy
had locked down its entire northern region, with the entire country soon to
follow. There was overwhelming evidence, in fact worldwide consensus,
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that the virus was novel. The drastic measures taken in China, Italy and
elsewhere were enough to conclude that (i) the virus was spreading fast and
(ii) the medical communities in those countries had no idea how to treat it.
That’s data. It’s not the kind of data that is curated by a lab or organized in
a spreadsheet. But it’s plenty of information to act on.

4 Sunstein–Costanza Fallacy

[Third Axiom of Naive Probabilism] In the presence of uncertainty, derive
wisdom from ignorance.

Think of all the times you’ve been wrong in the past. If you could
have just done the opposite, you’d have been right. This, in a nutshell,
is the Sunstein–Costanza Fallacy, named after George Costanza, a fictional
character from the 1990s sitcom Seinfeld, and Cass Sunstein, a real-life aca-
demic who repurposed Costanza’s sitcom fallacy as a catchall strategy for
dealing with uncertainty in real world problems. The Sunstein–Costanza
fallacy takes the Naive Probabilist’s credo—the future resembles the past
(until proven otherwise)—one step further. It derives knowledge out of
ignorance by analyzing past situations in which we’ve been ignorant, see-
ing how we reacted then, observing that those reactions were sub-optimal
in hindsight, and concluding that we should do the opposite of what our
instincts tell us in the present situation.

On February 29, 2020, there were 1,129 confirmed cases in Italy, up from
79 cases a week before. On that same day, Cass Sunstein chided Americans
concerned over Covid-19 in a Bloomberg column:

“At this stage, no one can specify the magnitude of the threat
from the coronavirus. But one thing is clear: A lot of people are
more scared than they have any reason to be.”

The two sentences are contradictory on their own—if the magnitude of
threat is unknown, then how does Sunstein know the level of fear is
unreasonable?—but that’s not the worst part of Sunstein’s commentary.
Rather than acknowledge that the uncertainty about the magnitude of the
threat warrants a precautionary response to the pandemic—only after being
definitively proven wrong did Sunstein later reverse course and advocate
for precaution in another Bloomberg article three weeks later2—Sunstein ap-
plied Axiom 4 to derive wisdom from his ignorance about the magnitude
of the threat. Sunstein diagnoses anyone concerned about Covid-19 with
a cognitive defect known as ‘probability neglect’, which he defines as the
tendency to fixate on very low probability, but highly impactful outcomes
(good or bad) instead of focusing on what is most likely. With Covid-19,
Sunstein argues that focusing on the possibility (small according to Sun-
stein) of a global pandemic, instead of the more likely outcome that the

2“This Time the Numbers Show We Can’t Be Too Careful”.3
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disease is about as dangerous as the flu, is a prime example of probability
neglect.

Applying Axioms 2-4, Sunstein argues first that (i) most previous times
of mass panic (e.g., the H1N1 outbreak) fell far short of the extreme outcome
that caused the panic and, therefore, (ii) future instances of panic are also
likely to fall short of their projected worst-case scenario. In other words,
since we’ve overreacted unnecessarily (according to Sunstein) in the past,
we are most likely overreacting unnecessarily this time. Since our future
panic resembles our past panic, we can apply Axiom 4 and derive wisdom
from our ignorance about the specific situation at hand: Don’t panic over
Covid-19, not because of anything we know about it, but because of our
extreme ignorance. When we’ve been ignorant in the past, we’ve over-
reacted, therefore we’re likely to be over-reacting again this time.

The above reasoning is an example of the Sunstein–Costanza Fallacy. In
the episode of Seinfeld called “The Opposite”, George Costanza reasons
that he can improve his decision making by doing the opposite of what his
instincts tell him.

Costanza: “It became very clear to me sitting out there today,
that every decision I’ve ever made, in my entire life, has been
wrong. My life is the opposite of everything I want it to be.
Every instinct I have, in every aspect of life, be it something to
wear, something to eat ... It’s all been wrong.”

Seinfeld: “If every instinct you have is wrong, then the opposite
would have to be right.”

(Seinfeld, Episode #86, “The Opposite”.
https://www.seinfeldscripts.com/TheOpposite.htm)

Channeling Costanza, Sunstein’s argument wasn’t based on data or
evidence, but rather an appeal to ignorance. A call to do the opposite of
what we’ve done before. As Sunstein argues, we’ve been in this kind of
situation before: before every big storm, the supermarket shelves empty;
during the Zika virus, Ebola outbreak or swine flu, people cancel travel. In
all of the previous cases, we can assess in hindsight that the virus either
wasn’t as deadly or contagious as originally feared. Sunstein concludes
that that we were irrational to be concerned in those situations, and since
we are now in a similar state of uncertainty relative to Covid-19 as we once
were relative to Zika, swine flu, or a snowstorm, we’re irrational to have
such concerns over Covid-19. Indeed, because I survived one pull of the
trigger in Russian roulette, I was irrational to think that I could have died
on the first round, and thus also irrational to think that the next pull poses
risk.
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5 The Freeroll Effect and Covid-19

In gambling terms, a freeroll is a bet that can be won but not lost. In the
worst case scenario, the bet breaks even. For the gambler, there is no risk,
only upside. For the party on the other side, there’s no upside, only risk.
The gambler is said to be freerolling; the other side is getting freerolled.4

Outside of gambling, the Freeroll Effect arises when an influential party
is allowed to reap the rewards of its influence without suffering the con-
sequences. Businesses deemed “too big to fail” are bailed out rather than
suffer the consequences of their neglect for excessive risks. In academia,
“peer review” indemnifies scientists against publication of flawed findings
on the grounds that the work has been vetted by expert peer reviewers in
their field. In all cases, the ones responsible for the decisions are inoculated
from the ill-effects of those decisions. And in the case of public policy mak-
ing, such as pandemic response, those who influence the policy enjoy the
benefits of their influence while facing none of the negative consequences
when those policies backfire.

In the case of Covid-19, the above stories of Fauci, Ioannidis and Sun-
stein offer three high profile instances of the impact of Naive Probabilism
and the Freeroll Effect. All three were influential in the early and ongoing
public perception and response to the pandemic, and all three were wrong
in their initial recommendations over impactful decisions. Despite their
negative impact, Fauci, Ioannidis and Sunstein enjoyed increased influence
as the pandemic wore on: Fauci’s influence and public appearances in-
creased after the transition to the Biden administration; Ioannidis gained
increasing media attention throughout March and April 2020; and Sunstein
was named to chair a Covid-19 technical advisory group at the World Health
Organization. All were benefactors of the Freeroll Effect: they were indem-
nified (by society) against the large-scale risks of their mistakes, while they
enjoyed the benefits of public influence.

In any complex system with competing incentives, there is usually some-
one in the position of a Fauci, an Ioannidis or a Sunstein, who standard to
benefit at the expense of the rest. The specific individuals mentioned above
are by no means unique in their benefiting from the Freeroll Effect. Except
for their serving as vehicles of potentially widespread harm, they need not
be particularly villainous or mean-spirited. The Freeroll Effect arises almost
any time there is an asymmetric sharing of risk and of consequences be-
tween those who influence consequential decisions and those who are most
impacted by those decisions.

4Note that freeroll is not synonymous with arbitrage. Arbitrage is a financial concept de-
scribing opportunities for risk-free profits in financial markets. Most simply, arbitrage exists
when it is possible to simultaneously buy and sell an asset at prices that generate profit. The
arbitrageur’s profits need not be at the expense of the buying or selling counterparties. The
buyer and seller, as participants in a market, voluntarily offered to buy and sell at specific
bids and asks, and therefore willingly entered into the transaction. The party being freerolled
rarely enters voluntarily into such an arrangement.
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6 The Naive Probabilist

The Naive Probabilist believes that all decisions under uncertainty boil
down to probability calculations; that sound decision making is a just math
problem, a simple matter of collecting data and “turning the crank” given
to us by probability theory. As any “good Bayesian”, the Naive Probabilist
updates based on new information, but often waits too long to act on that
information, or fails to recognize information that doesn’t come in the form
of a well-manicured dataset.

The Naive Probabilist believes that the future is like the past, the house
always wins, that all available information is “priced in”, debts always get
paid, that the real world obeys the theory (on average), that deviations from
theory indicate a problem with the real world, that good intentions are more
important than good results, that ignorance begets knowledge, and above
all, that all models are wrong, but some are useful. In practical terms, he
(or she) waits until the car is buried in the ditch to put on his seatbelt. At
the poker table, he waits until the cards are tabled to fold the worst hand.
He waits until the disease is a six-continent pandemic, the global economy
is in disarray, and the hospitals are full to determine, with certainty, that
Covid-19 is a public health threat.

To be clear, Axioms 2-4 are axioms to the Naive Probabilist, but fallacies
to everyone else. Complex problems call for simple, actionable solutions
(i.e., a mask is a thing); the past doesn’t repeat indefinitely (i.e., Covid-19 was
never the flu); and ignorance is not a form of wisdom (i.e., contrary to nudge
theory and behavioral economics, de-training our instincts isn’t a sound
approach to decision making). The Naive Probabilist’s primary objective—
to be accurate with high probability rather than to protect against high
consequence, but low probability outcomes—goes against common sense
principles of decision making in severe uncertainty, severe consequence
situations. As I and others have written elsewhere, in the presence of severe
uncertainty, precautionary principles, common sense and basic survival
instincts should predominate [1, 4, 8, 9]. In such situations, accuracy is the
least of our concerns.

With that said, I stress that the hallmark of Naive Probabilism is naiveté,
not ignorance, stupidity, crudeness or other such base qualities. In fact, the
typical Naive Probabilist lacks not knowledge nor refinement, but the expe-
rience and good judgment that comes from making real decisions with real
consequences in the real world; see Sections 2-4 for three examples. Far from
ignorant, the most prominent naive probabilists are recognized (academic)
experts in mathematical probability, or relatedly statistics, physics, psy-
chology, economics, epistemology, medicine or so-called decision sciences.
Beyond their sterling credentials, the best known (and most dangerous)
naive probabilists are quite sophisticated, skilled in the art of influencing
public policy decisions without suffering from the risks those policies im-
pose on the rest of society.
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Thanks to the Freeroll Effect, naive probabilists continue to influence
important decisions with far-reaching impact on the way society operates,
government runs, and the economy progresses. The above commentary on
Naive Probabilism and the Freeroll Effect in Covid-19 is a cautionary tale of
the widespread influence of Naive Probabilism throughout society, science,
academia, business, medicine, finance, law and politics. Naive Probabilism
is responsible for prospect theory, the GRE, “libertarian paternalism”, Mitt
Romney, ill-fated attempts to “solve” the replication crisis, and the early and
ongoing response to the Covid-19 pandemic in the U.S. and throughout the
West.

Naive Probabilism persists with the help of the Freeroll Effect, and also
because in many, non-complex domains the tenets of Naive Probabilism
have little or no major impact. But as we’ve seen in this case study of
Covid-19, Naive Probabilism is most noticeable and most detrimental in
complex systems, where its core axioms are the most wrong and have their
most severe consequences. Drawing from this case study, we may better
recognize the occurrence of Naive Probabilism and the Freeroll Effect in
other domains, and hopefully mitigate or entirely avoid similar catastrophes
in the future, whether economic, political, or health-related.

7 The Enlightened Probabilist

In contrast to the Naive Probabilist stands the Enlightened Probabilist, who
unlike Sunstein and Co. understands that decision making is situational.
Context is everything. The Enlightened Probabilist knows the theory inside-
out, but isn’t blinded by it. He realizes that the theory applies only under
specific circumstances. Decision making under uncertainty is practical,
emotional and psychological.

The Enlightened Probabilist adheres to common sense. He (or she)
wears a seatbelt, looks both ways before crossing (even when the light is
green), locks his (or her) doors, keeps cash on hand (“dry powder”), stores
extra ammo (dry powder), and avoids dark alleys. There are times when
the Englightened Probabilist neglects to do these things, and no bad comes
of it. He forgets to wear a seatbelt—no accident; forgets to look before
crossing—no car coming; forgets to lock the door—no robbery; runs out
of cash—didn’t need it; runs out of bullets—no altercation; walks down
a dark alley—nobody there. The Enlightened Probabilist knows ahead of
time that these precautions safeguard against things that are all unlikely to
happen, but also knows that probability isn’t just about what’s “likely”.

The Naive Probabilist denies that what’s “rational” for one person may
be irrational for another, and that the right decision in one context may be
the wrong decision in another. The Naive Probabilist rejects the Enlight-
ened Probabilist’s Mantra:
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The Enlightened Probabilist’s Mantra

When gambling, think probability.
When hedging, think plausibility.
When preparing, think possibility.
When this fails, stop thinking. Just survive.

To the extent that the Naive Probabilist follows the Mantra, he gets stuck
on the first line: everything comes down to a gamble, an expected value,
or a utility calculation. The Enlightened Probabilist knows that the Mantra
applies from bottom up. First, survive (avoid ruin). Second, maintain
(avoid loss). Third, thrive (win), time and resources permitting.

The Enlightened Probabilist would much rather be alive than look smart.
To quote Warren Buffet, in the context of investing, “In order to succeed,
you must first survive." To invest successfully requires capital; and to have
capital one mustn’t be broke. But the principle applies much more widely,
at individual and societal levels. To do anything, one must first survive, and
survival isn’t a matter of probability, but of possibility. Seatbelts, locks, “dry
powder”, dry powder, extra food and water all guard against the possibility
of a crash, break-in, economic hardship, altercation, famine or drought, no
matter how unlikely any of them may be.

Beyond survival, the Enlightened Probabilist hates being squeezed,
stays liquid, buys insurance, hedges his bets. He doesn’t assume that
his best explanation is the best explanation, or that his understanding in-
corporates all available information. He realizes that he is error prone, and
therefore needs to protect against not only the most likely scenarios but
also any additional plausible scenarios, especially those that would lead to
substantial harm. At this stage, the Enlightened Probabilist isn’t trying to
win the most, but to lose the least.

Only after shoring up survival and protecting against excessive loss does
the Enlightened Probabilist even consider profiting, winning, or “being
right” in any sense. At this point the Enlightened Probabilist has the luxury
of considering the probability of the outcomes, but it’s a long road to get
there.

The many levels of risk and uncertainty

• (easy) Theory: what they taught in school.

• (hard) Practice: what you learned in the schoolyard.

• (harder) Psychology: how much you can handle.

• (hardest) Ethics: who you really are.

An understanding of the many levels of risk and uncertainty distin-
guishes Naive from Enlightened. For the Naive Probabilist, the theory is
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the only part. For the Enlightened Probabilist, the theory is just the easy
part. Indeed, there are situations in which probability is the right concept
and probability theory is the correct framework for decision making: when
the probabilities are known or reasonably well estimated, and when the
payoffs (especially downside) is bounded. For all the reasons discussed
previously, the early days of Covid-19 was not such a situation, and the
major individuals and organizations who influenced pandemic response
were far from enlightened, and far from ethical.

A crucial step in bringing the theory to practice is to identify all the ways
that the theory fails to apply. Hypotheses of uniformity, independence,
infinite-population, and large-scale asymptotics all assume behaviors that
don’t exist in the real world. Beyond the practical, there are the emotional
and ethical aspects of decision making. Decisions under uncertainty impose
a psychological burden: the right decision may go badly wrong, and the
Enlightened maintains composure under this situation. They also impose
an ethical imperative: one mustn’t impose risks upon others which they
don’t subject themselves. Refer to Section 5 for discussion of how this
ethical imperative was violated in the Covid-19 response, and is regularly
violated in large-scale decisions under uncertainty in complex systems.

Naivete repeats itself

The above case studies have the benefit of hindsight to illustrate the impact
of Naive Probabilism on early Covid-19 response. As I write this a year after
the initial outbreak of March 2020, many of the post hoc over-reactions (e.g.,
lockdowns, mandates, travel restrictions) remain in force in some parts of
the United States. Meanwhile a number of new interventions, vaccines
chief among them, are being implemented at large scale. Several Covid-
19 vaccines have begun distribution on an Emergency Use Authorization
(EUA) by the U.S. Food and Drug Administration (FDA). For some people,
the vaccine will be a lifesaver. But for others, it presents another source of
severe uncertainty and unwanted risk.

Much like early detractors of precautionary measures, the Naive re-
sponse to concerns over vaccine risk has been to dismiss context depen-
dence in decision making—what’s rational for one person may be irrational
for another—in favor of a public outreach initiative that seeks 100% adop-
tion. June Raine, CEO of the United Kingdom’s Medicines and Healthcare
products Regulatory Agency (MHRA) assured the public that “the benefits
outweigh any risk” of Covid-19 mRNA vaccines. Indeed, for some people,
the benefits do outweigh any risk, as Raine suggests. For many others,
however, the untold risks far outweigh any benefits. Naive Probabilism
arises from the belief that risks are uniformly shared across everyone, and
that there is a unique correct decision to every challenge. In doing so,
Naive Probabilists replace one relatively known risk (Covid-19) with an-
other much lesser known one (uncertainty of the vaccine risks).
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As with the initial handling of masks and precautions, efforts to squash
vaccine concerns have only shed more doubts about the credibility of lead-
ing scientists. In the minds of those concerned, the Covid-19 vaccines
approved for EUA in the U.S. were developed at “warp speed”5 to treat a
novel virus using a technology (messenger RNA, mRNA) which has never
before been approved for use in humans. Compounding this natural skep-
ticism is the fact that many of the same people who denied the early risks
of Covid-19 are now dismissing potential risks of widespread vaccination,
and doing so in an admittedly deceitful way. When polls suggested that
about half of Americans would refuse to get the vaccine due to concerns
over its safety, Drs. Fauci and Adams made a number of media appearances
to assure the public that the vaccines were safe. Fauci told the New York
Times:

“When polls said only about half of all Americans would take
a vaccine, I was saying herd immunity would take 70 to 75
percent,” Dr. Fauci said. “Then, when newer surveys said 60
percent or more would take it, I thought, ‘I can nudge this up a
bit,’ so I went to 80, 85.” 6

The above observations about masks, data, rationality, and risk assess-
ment of vaccines highlight the failed thought process underlying all of these
decisions. The problem with these decisions isn’t that they were “right” or
“wrong” with the benefit of hindsight—whether current vaccine recom-
mendations prove beneficial remains unknown—but that they originated
from a naive understanding of probability and its proper place in decision
making under severe uncertainty.
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We discuss common errors and fallacies when using naive "evidence
based" empiricism and point forecasts for fat-tailed variables, as well
as the insufficiency of using naive first-order scientific methods for tail
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from the statistical properties and associated risks. In doing so, we also
respond to the points raised by Ioannidis et al.(2020)
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Main Statements

(i) Forecasting single variables in fat-tailed domains is in violation of
both common sense and probability theory.

(ii) Pandemics are extremely fat-tailed events, with potentially destruc-
tive tail risk. Any model ignoring this is necessarily flawed.

(iii) Science is not about making single points predictions but about un-
derstanding properties (which can sometimes be tested by single point
estimates and predictions).

(iv) Sound risk management is concerned with extremes, tails and their
full properties, and not with averages, the bulk of a distribution or
naive estimates.

(v) Naive fortune-cookie evidentiary methods fail to work under both
risk management and fat tails, because the absence of raw evidence
can play a large role in the properties.
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Figure 1: A high variance log-normal distributions. 85% of observations fall below
the mean. Half the observations fall below 13% of the mean. The log-normal has
milder tails than the Pareto which has been shown to represent pandemics.

(vi) There are feedback mechanisms between forecast and reaction that
affects the validity of some predictions.

(vii) Individuals risks fail to translate into systemic risks under multiplica-
tive processes.

(viii) One should never treat the "costs" of mitigation without taking into
account the costs of the disease, and in some cases naive cost-benefit
analyses fail (for sure when statistical averages are nonconvergent or
invalid for tail risk purposes).

(ix) Historically, in the aftermath of the Great Plague, economies were less
fragile to pandemics, equipped to factor-in effective mechanisms of
containment (quarantines) in their operating costs. It is more cogent
to blame overoptimization than reaction to disease.

The article is organized at three levels. First, we make general comments
around the nine points in the Main Statements, explaining how single point
forecasts is an unscientific simplification incompatible with processes with
richer properties. Next we go deeper into the technical arguments. Finally
we address specific points in Ioannidis et al. [16] and answer their arguments
concerning our piece.
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Figure 2: A Pareto distribution with a tail similar to that of the pandemics. Makes no
sense to forecast a single point. The "mean" is so far away you almost never observe
it. You need to forecast things other than the mean. And most of the density is
where there is noise.

Commentary

Both forecasters and their critics are wrong

At the onset of the COVID-19 pandemic, many research groups and agen-
cies produced single point "forecasts" for the pandemic—most relied upon
trivial logistic regressions, or upon the compartmental SIR model, some-
times supplemented with cellular automata, or with agent-based models
assuming various social rules and behaviors. Apparently, the prevailing
idea is that producing a single numerical estimate is how science is done, and
how science-informed decision-making ought to be done: bean counters
producing precise numbers. And always within a narrowly considered set
of options identified by the researchers.

Well, no. That is not how "science is done", at least in this domain, and
that is not how informed decision-making should develop.

Furthermore, subsequently and ironically, many criticized the plethora
of predictions produced, because these did not play out (no surprise there).
This is also wrong, because both forecasters (who missed) and their critics
(complaining) were wrong. Indeed, forecasters would have been wrong
anyway, even if they had got their predictions right. In fact, as we will clar-
ify throughout this article, 1) in some domains (i.e. under fat tails) naive
forecasts are poor descriptors of a system (hence highly unscientific), even
when they might appear reasonable; 2) for some functions (risk manage-
ment related), or some classes of exposures (systemic ones), these forecasts
are extremely misplaced.
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Statistical attributes of pandemics

Using tools from extreme value theory (EVT), Cirillo and Taleb [6] have
recently shown that pandemic deaths are patently fat-tailed1–a fact some
people like Benoit Mandelbrot (or one of the authors, in The Black Swan
[32]) had already guessed, but never formally investigated. Even more,
the estimated tail parameter α is smaller than 1, suggesting an apparently
infinite risk [6], in line with destructive events like wars [4, 5], and the so-
called "dismal" theorem [39]. Pandemics do therefore represent a source
of existential risk. The implication is that much of what takes place in the
bulk of the distribution is just noise, according to "the tail wags the dog"
effect [6, 33]. And one should never forecast, pontificate, or theorise from
noise! Under fat tails, all relevant and vital information lies in fact in the
tails themselves (hence in the extremes), which can show remarkably stable
properties.

Remark 1 (Observed events vs Observed Properties) Random variables with
unstable (and uninformative) sample moments may still have extremely stable and
informative tail properties, centrally useful for robust inference and risk taking.
Furthermore, these reveal evidence.

This is the central problem with the misunderstanding of The Black Swan [32]:
some events may have stable and well-known properties, yet they do not lend
themselves to prediction.

Fortune-cookie evidentiary methods

In the early stages of the COVID-19 pandemic, scholars like Ioannidis [14]
suggested that one should wait for "more evidence" before acting with
respect to that pandemic, claiming that "we are making decisions without
reliable data".

Firstly, there seems to be some probabilistic confusion, leading towards
the so-called delay fallacy [13]: "if we wait we will know more about X,
hence no decision about X should be made now."

In front of potentially fat-tailed random variables, more evidence is
not necessarily needed. Extra (usually imprecise) observations, especially
when coming from the bulk of the distribution, will not guarantee extra
knowledge. Extremes are rare by definition, and when they manifest them-
selves it is often too late to intervene. Sufficient –and solid – evidence,
in particular for risk management purposes, is already available in the tail
properties themselves. An existential risk needs to be killed in the egg, when
it is still cheap to do so. Events of the last few months have shown that

1A non-negative continuous random variable X has a fat-tailed distribution, if its survival
function S(x) = P(X ≥ x) is regularly varying, formally S(x) = L(x)x−α, where L(x) is a slowly
varying function, for which limx→∞

L(tx)
L(x) = 1 for t > 0 [7, 9, 10]. The parameter α is known as

the tail parameter, and it governs the fatness of the tail (the smaller α the fatter the tail) and
the existence of moments (E[Xp] < ∞ if and only if α > p).
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waiting for better data has generated substantial delays, causing thousands
of deaths and serious economic consequences.

Secondly, unreliable data2–or any source of serious uncertainty–should,
under some conditions, make us follow the "paranoid" route. More uncer-
tainty in a system makes precautionary decisions more obvious. If you are
uncertain about the skills of the pilot, you get off the plane when it is still
possible to do so. If there is an asteroid headed for earth, should we wait
for it to arrive to see what the impact will be? We might counter that there
were asteroids in the past that had devastating impacts, and besides we
can calculate the physics. The logical fallacy runs deeper: "We did not see
this particular asteroid yet" misses the very nature of the power of science
to generalize (and classify), and the power of actions to possibly change
the outcome of events. Similarly, if we had a hurricane headed for Florida,
a statement like "We have not seen this hurricane yet, perhaps it will not
be like the other hurricanes!" misses the essential role of risk management:
to take preventive actions, not to complain ex post. And if people take
action boarding up windows, and evacuating, the claim "look it was not so
devastating", that someone might afterwards make, should be considered
closer to a lunatic conspiracy fringe than scientific discourse.

By definition, evidence follows and never precedes rare impactful events.
Waiting for the accident before putting the seat belt on, or evidence of fire
before buying insurance would make the perpetrator exit the gene pool. An-
cestral wisdom has numerous versions such as Cineri nunc medicina datur
(one does not give remedies to the dead), or the famous saying by Seneca
Serum est cavendi tempus in mediis malis (you don’t wait for peril to run its
course to start defending yourself).

However, just as there are frivolous lawsuits there are frivolous risk
claims and, as we will see further down, we limit these precautionary
considerations to a precise class of fat tailed multiplicative processes –when
there is systemic risk.

Remark 2 (Fundamental Risk Asymmetry) For matters of survival, particu-
larly when systemic, and in the presence of multiplicative processes (like a pan-
demic), we require "evidence of no harm" rather than "evidence of harm."

Technical Comments

The Law of Large Numbers (LLN) and Evidence

In order to leave the domain of ancient divination (or modern anecdote)
and enter proper empirical science, forecasting must abide by both eviden-
tiary and probabilistic rigor. Any forecasting activity about the mean (or

2Many of those complaining about the quality of data and asking for more evidence before
taking action, even in extremely risky situations, rarely treat the inputs of their predictive
models as imprecise [4, 38], stressing them, and performing serious robustness checks of their
claims.
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Figure 3: Above, a histogram of 106 realizations of r, from an exponential distribution
with sole parameter λ = 1

2 . Below, that of X = er. We can see the difference between
the two distributions. The sample kurtosis are 9 and 106 respectively (in fact it is
infinite for the second) –all values for the second one are dominated by a single
large deviations.

the parameter) of a phenomenon requires the working of the law of large
numbers (LLN), guaranteeing the convergence of the sample mean at a
known rate, when the number n of observations increases. This is surely
well-known and established, except that some are not aware that, even if
the theory remains the same, the actual story changes under fat tails.

Even in front of the most well-behaved and non-erratic random phe-
nomenon, if one claimed fitness or non-fitness of a forecasting ability on
the basis of a single observation (n = 1), he or she would be rightly accused
of unscientific claim. Unfortunately, with fat-tailed variables that "n = 1"
error can be made with n = 106. In the case of events like pandemics, even
larger n→∞ can still be anecdotal.

Remark 3 (LLN and speed of convergence) Fat-tailed random variables with
tail exponent α ≤ 1 are simply not forecastable. They do not obey the LLN, as their
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theoretical mean is not defined, so there is nothing the sample mean can converge
to. But we can still understand several useful tail properties.

And even for random variables with 1 < α ≤ 2, the LLN can be extremely slow,
requiring an often unavailable number of observations to produce somehow reliable
forecasts.

As a matter of fact, owing to pre-asymptotic properties, a conservative
heuristic is to consider variables with α ≤ 2.5 as not forecastable in practice.
Their sample mean will be too unstable and will require way too much data
for forecasts to be reliable in a reasonable amount of time. Notice in fact
that 1014 observations are needed for the sample mean of a Pareto "80/20",
with α ≈ 1.13, to emulate the gains in reliability of the sample average of a
30-data-points sample from a Normal distribution [33].

Assuming significance and reliability with a low n is an insult to every-
thing we have learned since Bernoulli, or perhaps even Cardano.

Also notice that discussing the optimality of any alarm system [3,18,31]
trying to perform predictions on averages would prove meaningless under
extremely fat-tails, i.e. when α ≤ 2, that is when the LLN works very slowly
or does not work. In fact, even when the expected value is well-defined (i.e.
1 < α < 2), the non-existence of the variance would affect all the relevant
quantities for the verification of optimality [8], from the size of the alarm
to the number of correct and false alarms, from the probability of detection
of catastrophes to the chance of undetected events. For all these quantities,
the naive sample estimates commonly used would prove misleading. A
solution could be the implementation on EVT-based approaches, possibly
with the additional tools of [5] or [21], but at this stage nothing similar
exists, to the best of our knowledge.

For this and other reasons specified later, the application of a non-naive
precautionary principle [23] appears to be the viable solution in front of
potentially existential risks.

Science is about understanding properties, not forecasting single out-
comes

Figures 1 and 3 show the extent of the problem of forecasting the average
(and so other quantities) under fat tails. Most of the information is away
from the center of the distribution. The most likely observations are far from
the true mean of the phenomenon and very large samples are needed for
reliable estimation. In the lognormal case of Figure 1, 85% of all observations
fall below the mean; half the observations even fall below 13% of the mean.
In the Paretian situation of Figure 3, mimicking the distribution of pandemic
deaths, the situation gets even worse: the mean is so far away that we will
almost never observe it. It is therefore preferable to look at other quantities,
like for example the tail exponent.

In some situations of fast-acting LLN, as (sometimes) in physics, prop-
erties can be revealed by single predictive experiments. But it is a fallacy to
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assume that a single predictive experiment can actually validate any theory;
it is rather a single tail event that can falsify a theory.

Sometimes, as recently shown on the International Journal of Forecasting
by one of the authors [34], a forecaster may find a single quantity that is
actually forecastable, say the survival function. For n observations a tail sur-
vival function has an error of o( 1

n ), even when tail moments are not tractable,
which is why many predict binary outcomes–as with the "superforecasting"
masquerade. In [33], it is shown how–paradoxically–the more intractable
the higher moments of the variable, the more tractable the survival function
becomes. Metrics such as the Brier score are well adapted to binary survival
functions, though not to the corresponding random variables. That is why
survival functions are essentially useless for risk management purposes. In
insurance, for instance, one never uses survival functions for hedging, but
rather expected shortfalls–binary functions are reserved to (illegal) gam-
bling.3

We do not observe properties of empirical distributions

A commentator (Andrew Gelman) [12] wrote "The sad truth, I’m afraid, is
that Taleb is right: point forecasts are close to useless, and distributional
forecasts are really hard."

The problem is actually worse. In fact, distributional forecasts are more
than hard–and often uninformative. Building so-called empirical distri-
butions by survival functions does not reveal tail properties since it will
necessarily be censored and miss tail observations –those that under very
fat tails (say α ≤ 2) harbor not most, but literally all of the properties [33]. In
other words, probabilities are thin-tailed (since they are bounded by 0 and 1)
but the corresponding payoff is not, so small errors in probability translate
into large changes in payoffs. However, as further discussed in [6], the tail
parameters are themselves thin-tailed distributed, hence reveal their prop-
erties rather rapidly. Simply, tail parameters extrapolate–while survival
functions don’t–and methods to measure the tail are quite potent.4

Uncertainty goes one way; errors in growth rates induce biases and mas-
sive fat tails for the quantity of interest

Consider the simple model

Xt = X0er(t−t0),

3The main problem is that the conditional expectation is not convergent: limK→∞
1
K E(X|X >

K) > 1, see [34] for a lengthy discussion.
4This also relates to the superforecasters masquerade mentioned earlier: building survival

functions for tail assessments via sports-like "tournaments" as in [37], instead of using more
rigorous approaches like EVT, is simply wrong and violates elementary probability theory.
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where Xt represents the quantity of interest (say the number of fatalities in
pandemics) between periods t0 and t,

r =
1

(t − t0)

∫ t

t0

rsds

and rs is an instantaneous rate.
Using the histograms of r and X, Figure 3 shows something fundamental:

a well-behaved distribution, that of r, may lead to an intractable one, that
of X; furthermore, the more volatile r, the more downward-biased your
observation of the mean of X.

Implication: one cannot naively translate between the rate of growth r
and XT, because errors in r could be small (but surely not zero), but their
impact will be explosive on X, because of exponentiation.

Simply, if r is exponentially distributed (or part of that family), X will
be power law. The tail α is a direct function of the variance: the higher the
variance of r, the thicker the tail of X.

Remark 4 (Errors in Exponential Growth) 1) Errors in growth rates of a dis-
ease increase the fatness of tails in the distribution of fatalities.
2) Errors in growth rates translate, on balance, into higher expected casualties.

We note that in the context of dynamical systems an exponential dy-
namics is defined as chaotic [19]. While the study of chaos often considers
systems with fixed parameters and variable initial conditions, the same
sensitivities arise due to variations in parameters; in this case, the value of
contagion rate (R) and the social behaviors that affect it. Indeed this means
that by changing human behavior, the dynamics can be strongly affected,
thus allowing for the opening of opportunities for extinction.5

Never cross a river that is 4 feet deep on average

Risk management (or policy making) should focus on tail properties and
not on the body of probability distributions. For instance, The Netherlands
have a policy of building and calibrating their dams and dykes not on the
average height of the sea level, but on the extremes, and not only on the
historical ones, but also on those one can expect by modelling the tail using
EVT, via semi-parametric approaches [7, 9].

5One of the authors has shown [25] that with increasing global transportation there is a phase
transition to global extinction with probability 1. This indicates that historical distributions
don’t account for the severity or frequency of current or future extreme events because the fat
tailed distributions themselves are coalescing to unit probability extreme events over shorter
time intervals due to global changes in societal behaviors. During this process the probability
distributions for events in any time interval becomes progressively more weighted to large
scale events. Thus historical decadal or century intervals between pandemics are inadequate
descriptors of current risk.
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Science is not about safety

Science is a procedure to update knowledge; and it can be wrong provided
it produces interesting discussions that lead to more discoveries. But real
life is not an experiment. If we used a p-value of .01 or other methods of
statistical comfort for airplane safety, few pilots and flight attendants would
still be alive. For matters that have systemic effects and/or entail survival,
the asymmetry is even more pronounced.

Forecasts can result in adjustments that make forecasts less accurate

It is obvious that if forecasts lead to adjustments, and responses that affect
the studied phenomenon, then one can no longer judge these forecasts on
their subsequent accuracy. Yet the point does not seem to be part of the
standard discourse on COVID-19.

By various mechanisms, including what is known as Goodhart’s law
[30], a forecast can become a target that is gamed by participants–see also
the Lucas’ critique applying the point more generally to dynamical systems.
In that sense a forecast can be a warning of the style "if you do not act, these
are the costs" 6.

More generally, any game theoretical framework has an interplay of
information and expectation that causes forecasts to become self-canceling.
The entire apparatus of efficient markets–and modern economics–is based
on such self-canceling aspect of prediction, under both rational expectations
and an arbitrage-free world.

Remarks Specific to Ioannidis et al.

Systemic risks vs individual risks

A fundamental problem, in both [15] and [16], lies in ignoring scaling:
systemic risks do not resemble (even qualitatively) individual risks. The
macro and the micro-properties of contagious events, given their infective
multiplicative nature, don’t map directly onto one another.

Ioannidis et al. [15] write: "the average daily risk of dying from coron-
avirus for a person <65 years old is equivalent to the risk of dying driving
a distance of 13 to 101 miles by car per day during that COVID-19 fatality
season in 17 of the 24 hotbeds (...) For many hotbeds, the risk of death is in
the same level roughly as dying from a car accident during daily commute."

Even if Ioannidis et al.’s computation were to hold true for one individ-
ual (it does not), conditionally on an excess of 103 of such individuals dying,
the probability that the cause of death is COVID-19 and not a car accident

6For instance Dr. Fauci’s warning that the number of (verified) infections could reach 100K
per day (New York Times, June 30, 2020) should not be interpreted as a forecast to be judged
according to its accuracy; rather a signal about what could happen should one avoid taking
action.
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converges to 1. When you die of a contagious disease, people around you
are at risk of contagion, and they can then infect other people, in a cascad-
ing effect. It is quite elementary: car accidents are not contagious, while
COVID-19 is. You cannot conflate the two objects: one is additive in the
aggregate, the other is multiplicative. In [33], it has been shown that this is
a severe error, leading to macroscopic blunders7.

Remark 5 (Scaling of Probabilities) Under multiplicative effects the risks for
a collective do not scale up from the risks of an individual. Trivially, systemic risks
can be extreme, where the individual ones are low, or vice-versa.

Trade-offs and Ergodicity

One could say: panic saves lives, but at what economic price? Let us put
aside ethical arguments, and answer it, ignoring for a moment the value of
human life.

The fact is that some classes of (systemic) risks require being killed in the
egg, also from an economic point of view. The good news is that there are
not so many–but pandemics as we said fall squarely within the category.

The "dismal" theorem [39] mentioned earlier tells us that it is an er-
ror to use trade-off analysis under existential risk. There have been many
proofs of similar arguments on grounds of ergodicity, well-known by in-
surance companies since Cramèr: simply, you cannot use naive B-school
costs-benefit analyses for Russian roulette, because of the presence of an
absorption barrier [32]. But one should not blame Ioannidis et al. [15] for
this error in reasoning: it has been shown to be unfortunately prevalent in
the decision-science literature [24].

Remark 6 (Ruin Problems) Traditional cost-benefit analysis fails to apply to
situations where statistical averages are unreliable, if not invalid.

Moreover, it is not correct to assume, more or less implicitly, that a
disease brings no or little costs, while mitigation is burdensome. There are
indeed severe nonlinearities at play.

First of all, risk is beyond the simple and direct disease-specific mor-
tality rate. In fact, letting the disease run above a certain threshold would
compound its effect (in an explosive manner), because of the saturation of
services, causing for example the displacement of other patients, many in
potentially critical conditions; something that we have seen happening in
the Region of Lombardy in Italy, in New York City, and elsewhere for sev-
eral weeks during the spring of 2020 [29]. Furthermore, for survivors the
illness itself represents a large economic drain, be it only from lost work-
ing hours, not counting the costs of hospitalization. And for every severe

7Note that this is also a typical example of "size fallacy," in which different risky events
are compared just on the basis of their probabilities of occurrence, without caring about their
different nature [13].
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Figure 4: Zipf plots (log-log plots of the empirical survival function P>) for nine
random selections of 30 out of the 72 pandemics in [6]. The number in the center
represents the a naive (OLS) estimate of the tail parameterα, readable as the absolute
slope of the red negative line. The values of α appear to be stable notwithstanding
the sampling, signalling the robustness of the approach and the inconsistency of
the "selection bias" critique. The values are also in line with the more rigorous
EVT-based findings of [6].

infection, there is an unspecified number of morbidities, with unknown
(but definitely larger than zero) additional mortality and long term costs
for the health system [1, 29], as it has been the case for other diseases like
SARS [22].8

Remark 7 (False Dichotomies) One should not treat the economy and the dis-
ease as separate independent items, particularly by viewing a naive trade-off be-
tween economic costs and pandemic mitigation.

Moreover, never underestimate consumers’ (nonlinear) behavior. When
risks are visible (and a pandemic definitely is), people tend to modify their

8Geronticide: This discussion does not even cover the ethical discussion of trade-offs and
their inapplicability in some domains, perhaps the most central discussion. At what price will
you kill your parents/grandparents? A million dollars? Ten million? A billion? Furthermore,
the fact that older people are more vulnerable to the disease brings considerations of geronticide
(senicide): one misses that the silver rule [32] commands treating older generations under
a moral liability, as one wishes to be treated by the next generation. Letting the disease
run through older generations violates the interdicts on geronticide and inter-generational
obligations. The fact that your parents did not sacrifice their own parents creates an obligation
to not sacrifice them; your children will spare you in turn, under the same rule.
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behavior, rationally or not, also switching to alternatives, with nonlinear
effects on the businesses concerned [26]. This is the reason why the airline
industry in the U.S. manages to have fewer than 1 fatal crash in 25 × 106

flights (and aims at an even more favorable ratio). One may claim that it is
irrational to spend so much of our resources mitigating plane crashes, but
airline companies know that, in case of fewer checks and efforts, consumers
would then probably switch to other companies, if not directly to other
types of transportation.

Take the hospitality industry. Unless there is once again comfort on the
part of the public, restaurants and hotels will be unprofitable. The rule of
thumb in NYC is that a drop of 15% in revenues is sufficient to make a
restaurant shutter permanently; there has been a large drop in restaurant
attendance in Sweden where the state did not enforce lockdowns, owing to
a high rate of voluntary self-isolation [17].

The United States (and many other countries worldwide) have spent
trillions of dollars on sophisticated weaponry in the past decades, to counter
uncertain threats. It would be a good idea to question these expenditures
first, before doubting the spending to stave off certain pandemics.

Likewise, it would be a good idea to question first the excessive burden
on Western economies, particularly the U.S., of measures taken to ensure
workplace and transportation safety which, we saw, are driven by the legal
system and the tort mechanisms.

Remark 8 (Domain Dependence) It is not rational to worry about pandemic
costs (extremely fat-tailed exposure), while not also questioning other sizable
insurance-style expenditures for transportation and workers safety.

It is therefore incorrect to claim that it is the authorities’ response to the
pandemic that caused unemployment in the transportation or hospitality
industries. As a matter of fact, the arguments proposed by two of the
authors [23], last January 2020, were aimed at lowering the economic effect
of the pandemic: prevention is orders of magnitude cheaper than the cure–
recall that sed prior est sanitas quam sit curatio morbi.

We note that many comments of the type "the pandemic has caused
only 640K fatalities" (as of July 25, 2020) simply ignore the fact that, in
practically every location subject to the pandemic, there has been local or
governmental action to mitigate it–we do not consider the counterfactual
of "what if" because it is not visible.

Remark 9 (Economic Fragility) The argument in [32] is that we live in an over-
optimized environment, in which a slight drop in sales or a change in consumer
preferences may cause wild interlocking industry collapses. This nonlinearity is
similar to "large a movie theater with a very small door at the times of fire."

It is more cogent to blame the over-optimized economic structure than the
general reaction to the disease.
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Early Mitigation and Economic History

We note here that while the Great Plague took place in the fourteenth
century, quarantines were enforced five centuries later as economies un-
derstood they could not afford recurrences. Between the Habsburg and the
Ottoman Empire, there were lazarettos along the border, and every active
Mediterranean port enforced quarantines for travelers along the expanded
silk road, while pilgrim routes were subjected to similar measures. For
instance, in the 1830s, in the Count of Monte Christo, a traveler from Paris to
Ioanina (where Prof. Ioannidis was previously located), had to spend four
days in quarantine to get there, while there was no particular threat of dis-
ease. In fact, the novelist was underestimating, for historian records show
mandatory nine days for ordinary travelers and fifteen days for merchants
according to [27, 28]. Economies adapted to early mitigation throughout
the centuries preceding our era. Furthermore, the Ottoman Empire has
ready lazaretos for additional quarantining along specified stations at the
first signs of a pandemic.

Mitigation has another effect: to delay and temporize, while we can
understand the properties of the disease. While initial treatments are under
high opacity, later treatments allow for gains of collective experience9 .

Selection Bias and Class of Events

In [16], the authors erroneously maintain that choosing tail events as done
by [6] is "selection bias". Actually, the standard technique there used is
the exact opposite of selection bias: in EVT, one purposely focuses on
extremes to derive properties that influence the outcomes, especially from
a risk management point of view. One could more reasonably argue that
the data in [6] do not contain all the extremes, but, by jackknifing and
bootstrapping the data, the authors actually show the robustness of their
results to variations and holes in historical observations: the tail index α is
consistently lower than 1. In Figure 4 a simple illustration is given, showing
that one can be quite radical in dealing with the uncertainty in pandemic
fatalities, and still find out that the findings of [6] hold true.

When the authors in [16] state that "Tens of millions of outbreaks with
a couple deaths must have happened throughout time," to support their
selection bias claim against [6], they seem to overlook the fact that the
analysis deals with pandemics and not with a single sternutation. The class
of events under considerations in [6] is precisely defined as "pandemics
with fatalities in excess of 1K," and their dataset likely contains most (if not
all) of them. Worrying about many missing observations in the left tail of
the distribution of pandemic deaths is thus misplaced.

9Aside from considerations of geronticide, when the costs of the Swedish experiment are
finally told, one of the factors will be the early loss of life when later (current) medical practice
would have saved them even before a vaccine.
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Conditional information

One may be entitled to ask: as we get to know the disease, do the tails get
thinner? Early in the game one must rely on conditional information, but
as our knowledge of the disease progresses, shouldn’t we be allowed to
ignore tails?

Alas, no. The scale of the pandemic might change, but the tail properties
will remain invariant. Furthermore, there is an additional paradox. If one
does not take the pandemic seriously, it will likely run wild (particularly
under the connectivity of the modern world, several orders of magnitude
higher than in the past [2]). And diseases mutate, increasing or decreasing in
both lethality and contagiousness. The argument would therefore resemble
the following: "we have not observed many plane crashes lately, let’s relax
our safety measures".

Finally, we conclude this section with an encouraging point: fat tails do
not make the world more complicated and do not cause frivolous worries, to
the contrary. Understanding them actually reduces costs of reaction because
they tell us what to target–and when to do so. Because network models
tend to follow certain patterns to generate large tail events [2, 11], in front
of contagious diseases wisdom in action is to kill the exponential growth
in the egg via three central measures 1) reducing super-spreader events; 2)
monitoring and reducing mobility for those coming from far-away places
(via quarantines); 3) looking for cheap measures with large payoffs in terms
of the reduction of the multiplicative effects (e.g. face masks10). Anything
that "demultiplies the multiplicative" helps [35].

Drastic shotgun measures such as lockdowns are the price of avoiding
early traveler quarantines and border monitoring; they can be –temporarily
and cum grano salis –of help, especially in the very early stages of the new
contagious disease, when uncertainty is maximal, to help isolating and
tracing the infections, and also buying some time for understanding the
disease and the way it spreads. Indeed such drastic and painful measures
can carry long-lasting damages to the system, not counting an excessive
price in terms of personal freedoms.

But they are the price of not having a good coordinated tail risk manage-
ment in place –to repeat, border monitoring and control of super-spreader
events being the very first such measures. And lockdowns are the costs of
ignoring arguments such as increased connectivity in our environment and
conflating additive and multiplicative risks.

10Most of the trillions spent could have been saved if authorities understood the double
nonlinearities in face masks: 1) the compounding effect of both parties having protection, 2)
the nonlinearity of the dose response with disproportional drop in the probability of infection
from a reduction in viral load [35].
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***

To conclude, as the trader lore transmitted by generations of operators goes,
"if you must panic, it pays to panic early."

The Ottoman Empire integrated Byzantine knowledge accumulated
since at least the Plague of Justinian; it is sad to see ancient cultures more
risk-conscious, better learners from history, and economically more effective
than modern governments. They avoided modern "evidence based" reduc-
tions that, as we saw, are insulting to both science and wisdom. And, had it
not been for such a collective ancestral risk-awareness and understanding
of asymmetry, we doubt that many of us would be here today.

Now, what did we learn from the pandemic? That an intelligent appli-
cation of the precautionary principle [23] consists in formulating decisions
that are wise in both foresight and hindsight. Here again, this is ancient: it
maps to Aristotle’s phronesis as presented in his Nichomachean Ethics.
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Applying a modification of Extreme value Theory (thanks to a dual
distribution technique by the authors in [4]) on data over the past 2,500
years, we show that pandemics are extremely fat-tailed in terms of fa-
talities, with a marked potentially existential risk for humanity. Such a
macro property should invite the use of Extreme Value Theory (EVT)
rather than naive interpolations and expected averages for risk man-
agement purposes. An implication is that potential tail risk overrides
conclusions on decisions derived from compartmental epidemiological
models and similar approaches.

1 Introduction and Policy Implications

We examine the distribution of fatalities from major pandemics in history
(spanning about 2,500 years), and build a statistical picture of their tail
properties. Using tools from Extreme Value Theory (EVT), we show for
that the distribution of the victims of infectious diseases is extremely fat-
tailed, more than what one could be led to believe from the outset1.

A non-negative continuous random variable X is fat-tailed, in the regular
variation class, if its survival function S(x) = P(X ≥ x) decays as a power
law x−

1
ξ , the more we move into the tail2, that is for x growing towards

the right endpoint of X. The parameter ξ is known as the tail parameter,
and it governs the fatness of the tail (the larger ξ the fatter the tail) and the
existence of moments (E[Xp] < ∞ if and only if ξ < 1/p). In some literature,

1In this comment we do not discuss the possible generating mechanisms behind these fat
tails, a topic of separate research. Networks analysis, e.g. [1], proposes mechanisms for the
spreading of contagion and the existence of super spreaders, a plausible joint cause of fat
tails. Likewise simple automata processes can lead to high uncertainty of outcomes owing to
“computational irreducibility" [28].

2More technically, a non-negative continuous random variable X has a fat-tailed distribution
(in the maximum domain of attraction of the Fréchet distribution), if its survival function is

regularly varying, i.e. S(x) = L(x)x−
1
ξ , where L(x) is a slowly varying function, such that

limx→∞
L(cx)
L(x) = 1 for c > 0 [7, 9].
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Figure 1: Maximum to Sum plot (MS plot) of the average death numbers in pandemic
events in history, as per Table 1.

e.g. [6], the tail index is re-parametrized as α = 1/ξ, and its interpretation is
naturally reversed.

While it is known that fat tails represent a common–yet often ignored [19]
in modeling–regularity in many fields of science and knowledge [6], for the
best of our knowledge, only war casualties and operational risk losses show
a behavior [4, 5, 15] as erratic and wild as the one we observe for pandemic
fatalities.

The core of the problem is shown in Figure 1, with the Maximum-to-
Sum plot [9] of the number of pandemic fatalities in history (data in Table 1).
Such a plot relies on a simple consequence of the law of large numbers: for a
sequence X1,X2, ...,Xn of nonnegative i.i.d. random variables, if E[Xp] < ∞
for p = 1, 2, 3..., then Rp

n = Mp
n/S

p
n →

a.s. 0 as n→∞, where Sp
n =

∑n
i=1 Xp

i is the
partial sum of order p, and Mp

n = max(Xp
1, ...,X

p
n) the corresponding partial

maximum. Figure 1 clearly shows that no finite moment is likely to exist for
the number of victims in pandemics, as the Rn ratio does not converge to 0
for p = 1, 2, 3, 4, no matter how many data points we use. Such a behavior
hints that the victims distribution has such a fat right tail that not even
the first theoretical moment is finite. We are looking at a phenomenon for
which observed quantities such as the naive sample average and standard
deviation are therefore meaningless for inference.

However, Figure 1 (or a naive use of EVT) does not imply that pandemic
risk is actually infinite and there is nothing we can do or model. Using the
methodology we developed to study war casualties [4,20], we are in fact able
to extract useful information from the data, quantifying the large yet finite
risk of pandemic diseases. The method provides in fact rough estimates for
quantities not immediately observable in the data.
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The tail wags the dog effect

Centrally, the more fat-tailed the distribution, the more “the tail wags the
dog", that is, the more statistical information resides in the extremes and the
less in the “bulk" (that is the events of high frequency), where it becomes
almost noise. This makes EVT the most effective approach, and our sample
of extremes very highly sufficient and informative for risk management
purposes3.

The fat-tailedness of the distribution of pandemic fatalities has the fol-
lowing policy implications, useful in the wake of the Covid-19 pandemic.

First, it should be evident that one cannot compare fatalities from mul-
tiplicative infectious diseases (fat-tailed, like a Pareto) to those from car
accidents, heart attacks or falls from ladders (thin-tailed, like a Gaussian).
Yet this is a common (and costly) error in policy making, and in both the
decision science and the journalistic literature4. Some research papers even
criticise people’s “paranoïa" with respect to pandemics, not understanding
that such a paranoïa is merely responsible (and realistic) risk management in
front of potentially destructive events [19]. The main problem is that those
articles–often relied upon for policy making –consistently use the wrong
thin-tailed distributions, underestimating tail risk, so that every conserva-
tive or preventative reaction is bound to be considered an overreaction.

Second, epidemiological models like the SIR [13] differential equations,
sometimes supplemented with simulation experiments like [11], while use-
ful for scientific discussions for the bulk of the distributions of infections
and deaths, or to understand the dynamics of events after they happened,
should never be used for precautionary risk management, which should
focus on maxima and tail exposures instead. It is highly unrigorous to
use naive (and reassuring) statistics, like the expected average outcome of
compartmental models, or one or more point estimates, as a motivation for
policies. Owing to the compounding effect of parameters’ uncertainty, the
“tail wagging the dog" effect easily invalidates both point estimates and
scenario analyses5.

EVT is the natural candidate to handle pandemics. It was born to cope
with maxima [10], and it evolved to deal with tail risk in a robust way, even
with a limited number of observations and the uncertainty associated with
it [9]. In the Netherlands, for example, EVT was used to get a handle on the
distribution of the maxima–not the average!–of sea levels in order to build
dams and dykes high and strong enough for the safety of citizens [7].

3Since the law of large numbers works slowly under fat tails, the bulk becomes increas-
ingly dominated by noise, and averages and higher moments–even when they exist–become
uninformative and unreliable, while extremes are rich in information [19].

4Sadly, this mistake is sometimes made by professional statisticians as well. Thin tailed
(discrete) variables are subjected to Chernov bounds, unlike fat-tailed ones [19].

5The current Covid-19 pandemic is generating a lot of research, and finally some scholars are
looking at the impact of parameters’ uncertainty on the scenarios generated by epidemiological
models, e.g. [8].
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Finally, EVT-based risk management is compatible with the (non-naïve)
precautionary principle of [16], which should be the leading driver for
policy decisions under jointly systemic and extreme risks.

2 Data and descriptive statistics

We investigate the distribution of deaths from the major epidemic and
pandemic diseases of history, from 429 BC until now. The data are available
in Table 1, together with their sources, and only refer to events with more
than 1K estimated victims, for a total of 72 observations. As a consequence,
potentially high-risk diseases, like the Middle East Respiratory Syndrome
(MERS), do not appear in our collection6. All diseases whose end year
is 2020 are to be taken as still occurring worldwide, as for the running
COVID-19 pandemic.

Three estimates of the reported cumulative death toll have been used:
minimum, average and maximum. When the three numbers coincide in
Table 1, our sources simply do not provide intervals for the estimates. Since
we are well aware of the volatility and possible unreliability of historical
data [18, 20], in Section 4 we deal with such an issue by perturbing and
omitting observations.

In order to compare fatalities with respect to the coeval population (that
is, the relative impact of pandemics), column Rescaled of Table 1 provides
the rescaled version of column Avg Est, using the information in column
Population7 [12, 14, 21]. For example, the Antonine plague of 165-180 killed
an average of 7.5M people, that is to say 3.7% of the coeval world popu-
lation of 202M people. Using today’s population, such a number would
correspond to about 283M deaths, a terrible hecatomb, killing more people
than WW2.

For space considerations, we restrict our attention to the actual average
estimates in Table 1, but all our findings and conclusions hold true for the
lower, the upper and the rescaled estimates as well8.

Figure 2 shows the histogram of the actual average numbers of deaths
in the 72 large contagious events. The distributions appears highly skewed
and possibly fat-tailed. The numbers are as follows: the sample average is
4.9M, while the median is 76K, compatibly with the skewness observable
in Figure 2. The 90% quantile is 6.5M and the 99% quantile is 137.5M. The
sample standard deviation is 19M.

6Up to the present, MERS has killed 858 people as reported in https:
//www.who.int/emergencies/mers-cov/en. For SARS the death toll is between
774 and 916 victims until now https://www.nytimes.com/2003/10/05/world/
taiwan-revises-data-on-sars-total-toll-drops.html.

7Population estimates are by definitions estimates, and different sources can give differ-
ent results (most of the times differences are minor), especially for the past. However our
methodology is robust to this type of variability, as we stress later in the paper.

8The differences in the estimates do not change the main message: we are dealing with an
extremely erratic phenomenon, characterised by very fat tails.
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Figure 2: Histogram of the average number of deaths in the 72 contagious diseases
of Table 1.

Using common graphical tools for fat tails [9], in Figure 3 we show the
log log plot (also known as Zipf plot) of the empirical survival functions
for the average victims over the diverse contagious events. In such a plot
possible fat tails can be identified in the presence of a linearly decreasing
behavior of the plotted curve. To improve interpretability a naive linear fit
is also proposed. Figure 3 suggests the presence of fat tails.

The Zipf plot shows a necessary but not sufficient condition for fat-
tails [3]. Therefore, in Figure 4 we complement the analysis with a mean
excess function plot, or meplot. If a random variable X is possibly fat-tailed,
its mean excess function eX(u) = E[X − u|X ≥ u] should grow linearly in the
threshold u, at least above a certain value identifying the actual power law
tail [9]. In a meplot, where the empirical eX(u) is plotted against the different
values of u, one thus looks for some (more or less) linearly increasing trend,
as the one we observe in Figure 4.

A useful tool for the analysis of tails–when one suspects them to be
fat–is the nonparametric Hill estimator [9]. For a collection X1, ...,Xn, let
Xn,n ≤ ... ≤ X1,n be the corresponding order statistics. Then we can estimate
the tail parameter ξ as

ξ̂ =
1
k

k∑
i=1

log(Xi,n) − log(Xk,n), 2 ≤ k ≤ n.

In Figure 5, ξ̂ is plotted against different values of k, creating the so-called
Hill plot [9]. The plot suggests ξ > 1, in line with Figure 1, further support-
ing the evidence of infinite moments.

Other graphical tools could be used and they would all confirm the
point: we are in the presence of fat tails in the distribution of the victims
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Figure 3: Log log plot of the empirical survival function (Zipf plot) of the actual
average death numbers in Table 1. The red line represents a naive linear fit of the
decaying tail.

Figure 4: Mean excess function plot (meplot) of the average death numbers in
Table 1. The plot excludes 3 points on the top right corner, consistently with the
suggestions in [9] about the exclusion of the more volatile observations.
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Figure 5: Hill plot of the average death numbers in Table 1, with 95% confidence
intervals. Clearly ξ > 1, suggesting the non-existence of moments.

of pandemic diseases. Even more, a distribution with possibly no finite
moment.

The dual distribution

As we observed for war casualties [4], the non-existence of moments for
the distribution of pandemic victims is questionable. Since the distribution
of victims is naturally bounded by the coeval world population, no disease
can kill more people than those living on the planet at a given time time.
We are indeed looking at an apparently infinite-mean phenomenon, like in
the case of war casualties [4, 20] and operational risk [5].

Let [L,H] be the support of the distribution of pandemic victims today,
with L >> 0 to ignore small events not officially definable as pandemic [24].
For what concerns H, its value cannot be larger than the world population,
i.e. 7.7 billion people in 20209. Evidently H is so large that the probability
of observing values in its vicinity is in practice zero, and one always finds
observations below a given M << H < ∞ (something like 150M deaths using
actual data). Thus one could be fooled by data into ignoring H and taking it
as infinite, up to the point of believing in an infinite mean phenomenon, as
Figure 1 suggests. However notice that a finite upper bound H–no matter
how large it is–is not compatible with infinite moments, hence Figure 1 risks
to be dangerously misleading.

9Today’s world population [21] can be safely taken as the upper bound also for the past.
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Figure 6: Graphical representation (log-log plot) of what may happen if one ignores
the existence of the finite upper bound H, since only M is observed.

In Figure 6, the real tail of the random variable Y with remote upper
bound H is represented by the dashed line. If one only observes values up to
M << H, and more or less consciously ignores the existence of H, one could
be fooled by the data into believing that the tail is actually the continuous
one, the so-called apparent tail [5]. The tails are indeed indistinguishable
for most cases, virtually in all finite samples, as the divergence is only clear
in the vicinity of H. A bounded tail with very large upper limit is therefore
mistakenly taken for an unbounded one, and no model will be able to see
the difference, even if epistemologically we are in two extremely different
situations. This is the typical case in which critical reasoning, and the a
priori analysis of the characteristics of the phenomenon under scrutiny,
should precede any instinctive and uncritical fitting of the data.

A solution is the approach of [4,5], which introduces the concept of dual
data via a special log-transformation 10. The basic idea is to find a way of
matching naive extrapolations (apparently infinite moments) with correct
modelling.

Let L and H be respectively the finite lower and upper bounds of a
random variable Y, and define the function

ϕ(Y) = L −H log
(H − Y

H − L

)
. (1)

We can easily check that

1. ϕ ∈ C∞,

2. ϕ−1(∞) = H,
10Other log-transformations have been proposed in the literature, but they are all meant to

thin the tails, without actually taking care of the upper bound problem: the number of victims
can still be infinite. The rationale behind those transformations is given by the observation
that if X is a random variable whose distribution function is in the domain of attraction of a
Fréchet, the family of fat-tailed distributions, then log(X) is in the domain of attraction of a
Gumbel, the more reassuring family of normals and exponentials [9].
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3. ϕ−1(L) = ϕ(L) = L.

Then Z = ϕ(Y) defines a new random variable with lower bound L and an
infinite upper bound. Notice that the transformation induced by ϕ(·) does
not depend on any of the parameters of the distribution of Y, and thatϕ(·) is
monotone. From now on, we call the distributions of Y and Z, respectively
the real and the dual distribution. It is easy to verify that for values smaller
than M << H, Y and Z are in practice indistinguishable (and do are their
quantiles [5]).

As per [4, 5], we take the observations in the column "Avg Est" of Table
1, our Y’s, and transform them into their dual Z’s. We then study the
actually unbounded duals using EVT (see Section 3), to find out that the
naive observation of infinite moments can makes sense in such a framework
(but not for the bounded world population!). Finally, by reverting to the
real distribution, we compute the so-called shadow means [5] of pandemics,
equal to

E[Y] = (H − L)e
1
ξ σ

H

(
σ

Hξ

) 1
ξ

Γ
(
1 −

1
ξ
,
σ

Hξ

)
+ L, (2)

where Γ(·, ·) is the gamma function.
Notice that the random quantity Y is defined above L, therefore its

expectation corresponds to a tail expectation with respect to the random
variable Z, an expected shortfall in the financial jargon, being only valid
in the tail above µ [4]. All moments of the random variable Y are called
shadow moments in [5], as they are not immediately visible from the data,
but from plug-in estimation.

3 The dual tail via EVT and the shadow mean

Take the dual random variable Z whose distribution function G is unknown,
and let zG = sup{z ∈ R : G(z) < 1} be its right-end point, which can be
finite or infinite. Given a threshold u < zG, we can define the exceedance
distribution of Z as

Gu(z) = P(Z ≤ z|Z > u) =
G(z) − G(u)

1 − G(u)
, (3)

for z ≥ u.
For a large class of distributions G, and high thresholds u→ zG, Gu can

be approximated by a Generalized Pareto distribution (GPD) [7], i.e.

Gu(z) ≈ GPD(z; ξ, β,u) =

1 − (1 + ξ z−u
β )−1/ξ ξ , 0

1 − e−
z−u
β ξ = 0

, (4)

where z ≥ u for ξ ≥ 0, u ≤ z ≤ u − β/ξ for ξ < 0, u ∈ R, ξ ∈ R and β > 0.



52 Tail Properties of Contagious Diseases

Let us just consider ξ > 0, being ξ = 0 not relevant for fat tails. From
equation (3), we see that G(z) = (1 − G(u))Gu(z) + G(u), hence we obtain

G(z) ≈ (1 − G(u))GPD(z; ξ, β,u) + G(u)

= 1 − Ḡ(u)
(
1 + ξ

z − u
β

)−1/ξ

,

with Ḡ(x) = 1 − G(x). The tail of Z is therefore

Ḡ(z) = Ḡ(u)
(
1 + ξ

z − u
β

)−1/ξ

. (5)

Equation (5) is called the tail estimator of G(z) for z ≥ u. Given that
G is in principle unknown, one usually substitutes G(u) with its empirical
estimator nu/n, where n is the total number of observations in the sample,
and nu is the number of exceedances above u.

Equation (5) then changes into

Ḡ(z) =
nu

n

(
1 + ξ

z − u
β

)−1/ξ

≈ 1 − GPD(z∗; ξ, σ, µ), (6)

where σ = β
(

nu
n

)ξ
, µ = u − β

ξ

(
1 −

(
nu
n

)ξ)
, and z∗ ≥ µ is an auxiliary random

variable. Both σ and µ can be estimated semi-parametrically, starting from
the estimates of ξ and β in equation (4). If ξ > −1/2, the preferred estimation
method is maximum likelihood [7], while for ξ ≤ −1/2 other approaches
are better used [9]. For both the exceedances distribution and the recovered
tail, the parameter ξ is the same, and it also coincides with the tail parameter
we have used to define fat tails11.

One can thus study the tail of Z without caring too much about the rest
of the distribution, i.e. the part below u. All in all, the most destructive risks
come from the right tail, and not from the first quantiles or even the bulk of
the distribution. The identification of the correct u is a relevant question in
extreme value statistics [7, 9]. One can rely on heuristic graphical tools [3],
like the Zipf plot and the meplot we have seen before, or on statistical tests
for extreme value conditions [10] and GPD goodness-of-fit [2].

What is important to stress–once again–is that the GPD fit needs to be
performed on the dual quantities, to be statistically and epistemologically
correct. One could in fact work with the raw observation directly, without
the log-transformation of Equation (1), surely ending up with ξ > 1, in line
with Figures 1 and 5. But a similar approach would be wrong and naive,
because only the dual observations are actually unbounded.

11Moreover, when maximum likelihood is used, the estimate of ξ would correspond to 1/α,
where α is estimated according to [6].
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Figure 7: Values of the shape parameter ξ over 10,000 distorted copies of the the dual
versions of the average deaths in Table 1, allowing for a random variation of ±20%
for each single observation. The ξ parameter consistently indicates an apparently
infinite-mean phenomenon.

Working with the dual observations, we find out that the best GPD
fit threshold is around 200K victims, with 34.7% of the observations lying
above. For what concerns the GPD parameters, we estimate ξ = 1.62
(standard error 0.52), and β = 1′174.7K (standard error 536.5K). As expected
ξ > 1 once again supporting the idea of an infinite first moment12. Visual
inspections and statistical tests [2, 10] support the goodness-of-fit for the
exceedance distribution and the tail.

Given ξ and β, we can use Equations (2) and (6) to compute the shadow
mean of the numbers of victims in pandemics. For actual data we get a
shadow mean of 20.1M, which is definitely larger (almost 1.5 times) than
the corresponding sample tail mean of 13.9M (this is the mean of all the
actual numbers above the 200K threshold.). Combining the shadow mean
with the sample mean below the 200K threshold, we get an overall mean
of 7M instead of the naive 4.9M we have computed initially. It is therefore
important to stress that a naive use of the sample mean would induce an
underestimation of risk, and would also be statistically incorrect.

4 Data reliability issues

As observed in [4,18,20] for war casualties, but the same reasoning applies
to pandemics of the past, the estimates of the number of victims are not at

12Looking at the standard error of ξ, one could argue that, with more data from the upper
tail, the first moment could possibly become finite, yet there would be no discussion about
the non existence of the second moment, and thus the unreliability of the sample mean [19].
Pandemic fatalities would still be an extremely erratic phenomenon, with substantial tail risk
in the number of fatalities. In any case, Figures 1 and 5 make us prefer to consider the first
moment as infinite, and not to trust sample averages.
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Figure 8: Values of the shape parameter ξ over 10,000 jackknifed versions of the
dual versions of the actual average numbers in Table 1, when allowing at least 1%
and up to about 10% of the observations to be missing. The ξ parameter consistently
indicates an apparently infinite-mean phenomenon.

all unique and precise. Figures are very often anecdotal, based on citations
and vague reports, and usually dependent on the source of the estimate. In
Table 1, it is evident that some events vary considerably in estimates.

Natural questions thus arise: are the tail risk estimates of Section 3
robust? What happens if some of the casualties estimates change? What is
the impact of ignoring some events in our collection? The use of extreme
value statistics in studying tail risk already guarantees the robustness of
our estimates to changes in the underlying data, when these lie below the
threshold u. However, to verify robustness more rigorously and thoroughly,
we have decided to stress the data, to study how the tails potentially vary.

First of all, we have generated 10K distorted copies of our dual data.
Each copy contains exactly the same number of observations as per Table
1, but every data point has been allowed to vary between 80% and 120%
of its recorded value before imposing the log-transformation of Equation
(1). In other words, each of the 10K new samples contains 72 observations,
and each observation is a (dual) perturbation (±20%) of the corresponding
observation in Table 1.

Figure 7 contains the histogram of theξparameter over the 10K distorted
copies of the dual numbers. The values are always above 1, indicating an
apparently infinite mean, and the average value is 1.62 (standard deviation
0.10), in line with our previous findings. Our tail estimates are thus robust
to imprecise observations. Consistent results hold for the β parameter.

But it also true that our data set is likely to be incomplete, not containing
all epidemics and pandemics with more than 1K victims, or that some of
the events we have collected are too biased to be reliable and should be
discarded anyway. To account for this, we have once again generated 10K



Tail Properties of Contagious Diseases 55

Table 1: The data set used for the analysis. All estimates in thousands, apart from
coeval population, which is expressed in millions. For Covid-19 [24], the upper
estimate includes the supposed number of Chinese victims (42K) for some Western
media.
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copies of our sample via jackknife. Each new dual sample is obtained by
removing from 1 to 7 observations at random, so that one sample could
not contain the Spanish flu, while another could ignore the Yellow Fever
and AIDS. In Figure 8 we show the impact of such a procedure on the ξ
parameter. Once again, the main message of this work remains unchanged:
we are looking at a very fat-tailed phenomenon, with an extremely large
tail risk and potentially destructive consequences, which should not be
downplayed in any serious policy discussion.
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At the end of 2020, policy responses to the SARS-CoV-2 outbreak have
been shaken by the emergence of virus variants, impacting public
health and policy measures worldwide. The emergence of these strains
suspected to be more contagious, more severe, or even resistant to an-
tibodies and vaccines, seem to have taken by surprise health services
and policymakers, struggling to adapt to the new variants constraints.
Anticipating the emergence of these mutations to plan ahead adequate
policies, and understanding how human behaviors may affect the evo-
lution of viruses by coevolution, are key challenges. In this article,
we propose coevolution with genetic algorithms (GAs) as a credible
approach to model this relationship, highlighting its implications, po-
tential and challenges. Because of their qualities of exploration of large
spaces of possible solutions, capacity to generate novelty, and natural
genetic focus, GAs are relevant for this issue. We present a dual GA
model in which both viruses aiming for survival and policy measures
aiming at minimising infection rates in the population, competitively
evolve. This artificial coevolution system may offer us a laboratory
to "debug" our current policy measures, identify the weaknesses of
our current strategies, and anticipate the evolution of the virus to plan
ahead relevant policies. It also constitutes a decisive opportunity to de-
velop new genetic algorithms capable of simulating much more com-
plex objects. We highlight some structural innovations for GAs for
that virus evolution context that may carry promising developments in
evolutionary computation, artificial life and AI.

1 Introduction

As early as June 2020, the initial SARS-CoV-2 strain identified in China
was replaced as the dominant variant by the D614G mutation (Figure 1).
Appeared in January 2020, this strain differed because of a substitution
in the gene encoding the spike protein. The D614G substitution has been
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Figure 1: Shift over time from orange (the original D type of the virus) to blue (the
now-widespread G form, D614G); (Los Alamos National Laboratory, 2020)

found to have increased infectivity and transmission (WHO, 2020a; Korber
et al., 2020).

On November 5 2020, a new strain of SARS-CoV-2 was reported in
Denmark (WHO, 2020b), linked with the mink industry. The "unique"
mutations identified in one cluster, "Cluster 5", seemingly as contagious or
severe as others, has been found to moderately decrease the sensitivity of
the disease to neutralising antibodies. Culling of farmed minks, increase of
genome sequencing activities and numerous closing of borders to Denmark
residents, followed.

On 14 December 2020, the United Kingdom reported a new variant
VOC 202012/01, with a remarkable number of 23 mutations, with unclear
origin (Kupferschmidt, 2020). Early analyses have found that the variant
has increased transmissibility, though no change in disease severity was
identified (WHO, 2020a). One of these 23 mutations, the deletion at position
69/70del, was found to affect the performance of some PCR tests, currently
at the center of national testing strategies. Quickly becoming dominant,
this variant was held responsible for a significant increase in mortality, ICU
occupation and infections across the country (Iacobucci, 2021; Wallace and
Ackland, 2021).

On 18 December, the variant 501Y.V2 was detected in South Africa,
after rapidly displacing other virus lineages in the region. Preliminary
studies showed that this variant was associated with a higher viral load,
which may cause increased transmissibility (WHO, 2020a). Recent findings
have shown that this variant significantly reduced the efficacy of vaccines
(Mahase, 2021).

RNA viruses have high mutation rates (Duffy, 2018). Although many
mutations are not beneficial for the organisms, and some are inconsequen-
tial, some small fraction of them are beneficial. We refer the reader to (Duffy,
2018) and Domingo et al. (1996) for a discussion on RNA viruses mutation
rates. The consequences of these high mutation rates notably are higher
evolvability, i.e. higher capacity to adapt to changing environments. This
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allows them to emerge in new hosts, escape vaccine-induced immunity, or
circumvent disease resistance. However, RNA viruses seem to be just below
the threshold for critical error: if the majority of mutations are deleterious,
higher mutation rates may cause ecological collapse in the virus population.
As a RNA virus (Lima, 2020), SARS-CoV-2 shares these characteristics, and
mutates very frequently (Phan, 2020; Benvenuto et al. (2020), Matyásek,
and Kovarík, 2020). Especially relevant for this class of virus, the priorities
of many researchers including the WHO Virus Evolution Working Group,
have been to strengthen ways to identify relevant mutations, study their
characteristics and impacts, as well as outlining mitigation strategies to
respond to these mutations (WHO, 2020a).

Anticipating the emergence of these mutations to plan ahead adequate
policies, and understanding how human behaviors may affect the evolution
of viruses by coevolution, are key challenges. Human adaptation of poli-
cies and behaviors can impact the reproduction of SARS-CoV-2, and target
specific characteristics such as airborne transmission. The impact of human
policies and behaviors on outbreak trajectory, the evaluation of non phar-
maceutical measures, have been the object of numerous analyses. However,
most of these analyses do not include the possibility for viruses to mutate,
with novel effects and increased transmission rates. The space of possible
virus strains is huge and to some extent quasi open-ended, challenging
modelling attempts of this arms’ race.

In this article, we propose coevolution with genetic algorithms (GAs) as
a credible approach to model this relationship, highlighting its implications,
potential and challenges. We provide a proof of concept-implementation
of this coevolution dual-GA. Because of their qualities of exploration of
large spaces of possible solutions, capacity to generate novelty, and natural
genetic focus, GAs are relevant for this issue. We present a dual GA model
in which both viruses aiming for survival and policy measures aiming at
minimising infection rates in the population, competitively evolve. Under
coevolution, virus adaptation towards more infectious variants appear con-
siderably faster than when the virus evolves against a static policy. More
contagious strains become dominant in the virus population under coevo-
lution. The coevolution regime can generate multiple outbreaks waves as
the more infectious variants becoming more dominant in the virus pop-
ulation. Seeing more infectious virus variants becoming dominants may
signify that our policy measures are effective.

This artificial coevolution system may offer us a laboratory to "debug"
our current policy measures, identify the weaknesses of our current strate-
gies, and anticipate the evolution of the virus to plan ahead relevant policies.
It highlights how human behaviors can shape the evolution of the virus,
and how reciprocally the evolution of the virus shapes the adaptation of
public policy measures. To overcome the simplifications of the implementa-
tion in this article, several key innovations for evolutionary algorithms may
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be required, in particular bringing more advanced biological and genetic
concepts in current evolutionary algorithms.

We first present in Section 2 the concept of coevolution, both generally in
complex systems, and specifically in our study of the evolution viruses and
policies. We propose genetic algorithms as a modelling tool for this context.
Genetic algorithms are briefly introduced in Section 3. We present our
perspective of using genetic algorithms to generate an artificial coevolution
of SARS-CoV-2, and present its main concepts and design in Section 4.
Then, we propose an example of implementation of a dual genetic algorithm
to model this coevolution process in Section 5, describing the model, the
operators, the parameters, and some key results. We develop further the
implications and perspectives of this work in Section 6. Section 7 presents
data and code availability, and Section 8 concludes.

2 Coevolution of virus traits and policy actions

Coevolution in complex systems

Co-evolution opens a promising and new way to model such ecosystems.
Investors in the stock market evolve financial strategies to obtain higher
profit, and this evolution can be captured by a GA model. But they are
evolving in an environment, that notably includes financial regulations set
by policy makers. Not only these regulations are evolving as policy mak-
ers strive to identify the best policy to stabilise the market and avoid large
crashes: the evolution of regulation and financial strategies is a co-evolution
of two species. Policy makers attempt to discourage new loopholes ex-
ploited by investors that set a threat on the real economy; investors adapt
to the new regulations seeking for other ways to extract profit, finding new
niches that trigger new adaptations of regulations. By capturing this inter-
play, a GA approach could act as a debugging tool for financial regulations,
a stress-test program that invents novel ways to challenge our organisations.

Most sports competitions see such interplay between rules and strate-
gies. The 2008 Olympic Games saw controversy over new swimming suits
with novel materials that allowed unprecedented speed and records, lead-
ing to their ban causing a change in the innovation strategies of manufactur-
ers. This new direction may spark some day a similar story, calling for new
regulation, sparking a different evolution trajectory. Formula 1 construc-
tors actively seek grey-area zones in the regulation hoping for marginal
performance gains. One team creatively bypassed the action of a regula-
tory sensor to increase its engine power, pushing the regulations to add a
second sensor and regulate the use of engine modes, impacting all teams’
performance. Another racing team exploited unclear rules on purchases
and copying of other cars’ parts to, leading to a change in the regulations
that impacts the evolution of other teams development programs, and that
may as well create further unclear rules to be abused in the future. Another
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Figure 2: Illustration of the mutation leading to the variant D614G; (Los Alamos
National Laboratory, 2020)

instance of coevolution in complex systems, of public high interest, is the
co-evolution of viruses and population behaviors or policy measures.

The coevolution of SARS-CoV-2 and policy measures

The emergence of viruses’ mutations is a complex topic, both in the mech-
anisms involved at the virus genome level, but also on what causes some
particular mutations to appear, or to be rewarded. That is, the fitness
(dis)advantage of the new trait encoded by a mutation, in its environ-
ment. We can see the struggle between SARS-CoV-2 mutations illustrated
in Figure 2, and human behaviors and policy measures, as an arms race, a
coevolution. Humans adopt new restrictions, wear face coverings, adopt
social distancing measures, develop testing methods, to reduce the fatalities
and infections due to the virus. Facing this pressure, the virus’ mutations
unconsciously strive to change its genome in order to improve its chances
of survival. As some mutations allow the virus to get new, beneficial traits,
possibly higher transmissibility (Priya and Shanker, 2021), resistance to an-
tibodies (Callaway, 2020) or causing anomalies in PCR tests (WHO, 2020a),
human behaviors may adapt, continuing the arms race. This evolutionary
change in traits of individuals in one population, in response to a change
of trait in a second population, followed by a reciprocal response, is a phe-
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nomenon known as coevolution (Janzen, 1980). Viruses are walking on the
fitness landscape (Wright, 1931), a physical representation of the relation-
ship between traits and fitness, and humans change by their behavior this
fitness landscape. If by example all humans were hypothetically wearing
perfectly hermetic face coverings, airborne transmission methods would
fail, causing the virus either to go extinct, or to find other means of trans-
mission.

The continuous interplay between individual genomes or characteris-
tics, and their environment, is an endless source of novelty and niches for
adaptation. Individuals are influenced by their environment, and the en-
vironment itself is influenced by individual. This dynamic is difficult to
model, especially in our context of virus and policies coevolution. The
space of possible actions or policy measures is at least very large. Humans
can adopt a large diversity of measures, with many levels of stringency or
public support. Likewise, the large size of the space of possible genomes for
viruses, and the diversity of phenotypes, i.e. observable characteristics, that
they can exhibit, challenge our modelling attempts. Coevolution can give
birth to novel traits that did not exist before, in a quasi open-ended process.
Random or enumerative search methods struggle to evaluate such a large
number of possible combinations. We propose here an alternative frame-
work to simulate this coevolution phenomenon in spite of the complexity
of the task. Modelling coevolutionary dynamics has seen a large variety
of approaches: stochastic processes mathematical modelling (Dieckmann
and Law, 1996, Hui et al., 2018), network science (Guimaraes et al., 2017),
dynamical systems (Caldarelli et al., 1998), and more biological or genetic
methods (Gilman et al., 2012). Evolutionary algorithms (EAs, used for co-
evolution with Rosin and Belew, 1997), in particular Genetic algorithms
(GAs), offer one promising approach at this end. Let us first introduce them
briefly, before outlining the properties that makes them relevant for this
task.

3 Evolutionary and Genetic Algorithms

A genetic algorithm (GA) is a member of the family of evolutionary algo-
rithms (EAs), that are computational search methods inspired from natural
selection (Holland, 1992). They simulate Darwinian evolution on individ-
ual entities, gathered in a population. Genetic algorithms represent these
entities with a genome, i.e. a collection of genes, often represented as a
bit string, that determines the entity phenotype, i.e. observable characteris-
tics. The entities undergo selection based of fitness, reproduction of fittest
entities, mutations of the genome, that affect their traits (Mirjalili, 2019).
Iterating this simplified evolution process, the characteristics of the entities
may change, improving the fitness of the population.

As a population-based search method, GAs are efficient in the explo-
ration of search spaces, i.e. space of possible solutions, that can be very large
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Figure 3: The coevolution model with two genetic algorithms.

(Axelrod, 1987), or rugged (Wiransky, 2020). That is, that admit several
extrema, or very irregular structure. They quickly identify regions of the
search space that are associated with higher fitness, showing satisfying op-
timisation capacities (Bhandari et al., 1996). They can also be used to model
evolutionary systems, from economies and financial strategies to biological
ecologies. Vie (2020a) reviews in more detail its qualities and perspectives
as a search method and a modelling tool.

4 An artificial coevolution of SARS-CoV-2

Provided we can formulate an adequate representation of i) the virus
genome and ii) policy measures, and under the assumption that the map-
pings a) between the virus genome and the virus phenotype and b) between
the policy actions and the virus phenotype fitness, can be modelled in a sat-
isfying way, we can represent their coevolution as a dual genetic algorithm
with two populations: a population of viruses, and a population of policy
measures. Both interact indirectly on a third population: the general human
population. Viruses survive by infecting new humans in that population,
and policy measures modify -to some extent- the behavior of the human
population, as Figure 3 illustrates.

Why GAs? Genetic algorithms are relevant tools to model this coevolu-
tion relationships for several reasons. First, evolutionary algorithms appear
relevant to model natural selection contexts, as this is precisely their main
focus (Holland 1992), though a significant fraction of the literature has used
this method for optimisation. Second, among evolutionary algorithms, the
inner genetic-centered approach of GAs give them an adequate baseline to
encode more complex genomes and phenotypes. The computational archi-
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tecture of GAs centered on a genetic representation, subject to evolution
operators, appears to be the closest to the biological objects we are here in-
terested in modelling. Third, genetic algorithms are particularly powerful
in exploring new regions of large search spaces (Whitley, 1994), that may
have non trivial structure (Wiransky, 2020). In our coevolution context,
we are interested to see what new features may emerge from both viruses
and policy responses. GAs, that can generate this novelty, thus constitute
a relevant option. Fourth, coevolution has already been modelled using
GAs for optimisation (Potter and De Jong, 1994, Vie, 2020b), giving solid
foundations for further work in the area, and existing tools to understand
the complex dynamics of the artificial SARS-CoV-2 coevolution.

How could this artificial coevolution be implemented? Starting from
initial conditions constituted by i) a population distribution of SARS-CoV-2
variants with identified genome sequences and traits and ii) a distribution
of the current policy measures, we can simulate the evolution of viruses
and policy actions, in response one to another.

To define fitness in this world, one could assume that viruses simply aim
at surviving, and do not have an objective function defining some metric
to maximise; the performance of policy measures could be evaluated by
minimising the number of deaths or infections.

The source of novelty in this coevolution system would essentially be
mutations for viruses, and both mutations and recombination for policy
measures. While viruses infect new hosts, and don’t reproduce between
themselves, it is reasonable to consider that national policy makers are
exchanging, taking note of what happened in other countries, and changing
their own actions in response to positive effects.

From this starting condition, and under these evolution criteria and
mechanisms, a large number of runs of the system could be simulated. By
observing the behavior of the artificial viruses and policies, and the out-
break dynamics in the artificial human population, some insights could
emerge. We could discover some regularities, such as seeing whether and
when viruses evolve towards greater transmsissibility, but also observe the
changes in the genome, providing useful indications on where to experi-
mentally look at during physical genome sequencing.

This artificial coevolution system may offer us a laboratory to "debug"
our current policy measures, identify the weaknesses of our current strate-
gies, and anticipate the evolution of the virus. If a significant portion of the
simulations produced viruses that find a way to not be detected by PCR
tests, or to evolve a resistance to our current vaccines, policy makers could
be advised in advance of this possibility, and work ahead to prevent this
issue from happening.

At times where policy makers faced significant uncertainty on the impact
of their measures, a difficulty exacerbated by the rather long incubation
time of SARS-CoV-2 (Lei et al., 2020), this artificial coevolution system can
provide them with a complementary way to assess the impact of prospective



Modelling SARS-CoV-2 Coevolution with Genetic Algorithms 67

policy measures, with an emphasis given on the evolution of the virus. In
other words, such simulation possibilities may give the policy maker not
only an estimate of the impact of the measures over infection rates and
death rates, but also the possibility to consider the consequences of such
measures over the future possible traits of the virus.

5 An example of implementation

In this section, we present an implementation example of a coevolution
model with dual genetic algorithms. We highlight the building blocks of
the model, the parameter configuration, and the key results.

Model

Genetic representation Individual viruses’ genomes in the model are rep-
resented as a binary string whose length is the virus size. Viruses are ini-
tialised with a genome composed exclusively of zeros: this assumes that
at the start, viruses are an original form of the disease with no mutations.
Each element of this genome represents activation (if equal to 1) or non-
activation (if equal to 0) of specific mutated genes. Each mutated gene has
an effect on the virus reproduction rate. These effects are drawn uniformly
in the interval [-1,1]. This means that some mutations will be detrimental
to the virus reproduction, others will have very small or null effects, and
some will favor reproduction. We simplify as such the process and effects of
mutations, collapsing all these dimensions onto the virus reproduction rate.
The virus population contains a given number at the start, programmed by
the parameter initial virus size.

Individual policies are represented as a binary string as well, initialised
with only zeros. This illustrates a starting point in which government
policies start with no measure at all. Each element of the policy genome
is a policy that can be activated (for a value of the corresponding genome
location to 1). Again, we restrict our attention on the virus reproduction
rate, and ignore all other dimensions. Each measure will have an effect over
the virus reproduction rate, illustrating the efficiency of different measures
to prevent the spread of the disease. The effects of these measures are
calibrated from the values obtained by Haug et al. (2020) in their influential
analysis of the impact of non pharmaceutical interventions. Our model
captures the uncertainty on the effects of these policies by setting the effect
to be drawn uniformly from the 95% confidence intervals identified by
Haug et al. (2020), illustrated in Figure 4. This draw is done once at the
beginning of the run. The number of policies considered is parametrised
with the policy population size parameter, and will remain constant during the
run. Policies can include up to 46 measures, corresponding to the measures
studied by the above reference.
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Infection process We adopt in this illustration a very simplified model of
infection. Each individual virus in the population is characterised by a re-
production rate that incorporates two elements. First, a "base" reproduction
rate, corresponding to the reproduction rate of the original SARS-CoV-2.
Second, this base rate is added to the sum of the effects of mutations ac-
tivated by this particular individual virus’ genome. In the infection step,
each virus will infect as many hosts as its effective reproduction rate. This
effective reproduction rate is equal to the virus reproduction rate, minus
the average reduction in reproduction rate in the policy population.

For each new infection, random mutations will happen with a given
probability: the virus mutation rate. Each element of the virus genome can
mutate independently. Higher mutation rates will lead the virus to mutate
more frequently during infections. The mutation operator will transform
the given element of the genome to a 1 if it is characterised by the value 0,
and inversely. As a result, and as the pandemic grows or diminishes, the
size of the population of viruses handled by the genetic algorithm will vary,
and some diversity may appear within this population.

Fitness In this model, we reduce the decision makers’ problem to a min-
imisation of the reproduction rate of the virus, which essentially encompass
objectives of reduction of deaths. Each individual policy is characterised
by a total reduction in the reproduction rate, equal to the weighted sum of
the effects of the activated specific measures. The fitness, or value of each
individual policy, will evaluate the weighted effective reproduction rate of
three viruses chosen at random in the virus population, in a tournament
selection process. The policy reduction in the reproduction rate will be ap-
plied, and the net, effective reproduction rate recorded. Policies that obtain
lower effective reproduction rates will be more likely to be selected in the
creation of the next generation of policies.

Viruses do not mutate with an objective. Hence, we have not included
a fitness function for the evolution of viruses. Mutations remain unguided
by any objectives. The changes of the population of viruses will be driven
by the differential reproduction rates of various strains, as described below.

Policy learning After the fitness of the policies has been determined, poli-
cies will be selected to form the basis of next generation policies using
"roulette wheel" cumulative fitness selection. Each policy’s selection proba-
bility will be equal to the ratio of its adjusted fitness (equal to 1

1+r where r is
the effective reproduction rate of the policy) to the sum of adjusted fitness
scores. This crossover step models a process of communication between
successful policies: decision makers observe their peers in other countries,
observe the measures they implement and the associated results. Mea-
sures that appear efficient abroad tend to be implemented nationally by the
means of this imitation step. This crossover step occurs with probability
equal to the policy crossover rate. After selecting two policies, a random
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Parameter Value
Virus initial population size 10

Virus size 10
Policy population size 100
Base reproduction rate 2.63

Tmax 20
Policy crossover rate 0.5
Policy mutation rate 0.05
Virus mutation rate 0.0001

Table 1: Parameter configuration for the dual genetic algorithm

uniform crossover point will be determined, and the two policies’ genomes
will be interchanged after this crossover point. The result of this procedure
will be two children policies for the next generation. Otherwise, when the
crossover operator is not activated with probability 1 - policy crossover rate,
the children strategies will be exact copies of their parents.

Learning to improve policies will also include a mutation step, mod-
elling small perturbations or explorations. This illustrates for instance a
country implementing or removing quarantine restrictions for various rea-
sons. With a policy mutation probability, any element can mutate from value
0 to value 1. We outline here one important limitation: we do not allow
policies in our model to revert back after some measures have been im-
plemented: we essentially forbid detrimental mutations. Extending our
space of possible measures to measures that do not work could be an in-
teresting direction as well. We also do not consider other factors such as
economic output or political situation that could act as a pressure towards
relaxation of measures. Again, these constraints would be an interesting
addition for this model, but we have chosen to present a simple illustration
of coevolution.

Evolution run and parameters The simulation runs for Tmax periods. We
run our simulations for a base reproduction rate of 2.63 (Mahase, 2020).
Note however that simply changing the value of the base reproduction
rate, or including uncertainty on its determination, is easily achievable in
the source code (see below for availability). Higher base rates will likely
make the infection spike faster and higher, while lower base rates may lead
to the virus extinction in some cases, or reductions of the outbreak peaks. In
the model, we consider the time periods to be indexed as weeks, assuming
that each virus is transmitted every seven days.

A situation of coevolution defines a run in which both the viruses and
the policy can evolve: that is, their mutation rates and the policy crossover
rate are strictly positive. When the virus mutation rate is null, but the policy
mutation rate and policy crossover rates are positive, we model a situation
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in which only the policy is evolving, against a static virus. When the
virus mutation rate is positive, and the policy mutation rate and crossover
rates are null, we are illustrating a situation in which the virus evolves,
and policies remain indifferent and void. All other parameters remain
unchanged.

Before turning to the simulation results, we make a note on the impact
of the parameters over the results, and the outbreak dynamics that are gen-
erated. A major challenge in this example implementation was to avoid too
large epidemics: as each virus is simulated individually, handling hundred
of millions of viruses can incur a significant computational cost. The devel-
opment of the simulation allowed us to be able to simulate in reasonable
time (seconds) up to ten billion individual viruses. Higher virus mutation
rates, or higher initial virus sizes, or less effective policies, can lead to ex-
ponential growth of the virus population size. Alternatively, if policies are
very efficient (high mutation rates and crossover rates), and if the virus does
not mutate frequently enough, the model may manage to make the virus
go extinct. We must acknowledge that simulation results can be sensitive
to small variations of the parameters. The configuration showed in Table
1 allows to keep computation doable for the 20 time periods considered.
Outside extreme situations (complete virus takeover or virus extinction),
the main insights presented below hold.

Results

We now run the evolution of viruses and policies in these three situations
above, to identify specific features of the coevolution regime. The Figure
panel 5 presents the main results. Their observation allows us to formulate
a few "stylized facts" of the coevolution of viruses and policies.

1. Under coevolution, virus adaptation towards more infectious vari-
ants is considerably faster than when the virus evolves against a
static policy. In Figure 5a, we can observe that the average repro-
duction create in the virus population rises to 3.1 after 20 time periods
under coevolution (red curve). When the virus does not evolve (blue),
the average reproduction rate naturally stays at the initial value of 2.63.
Interestingly, when the virus can evolve, but when the policy does not
(green curve), the average reproduction rate tends to increase slightly,
but much less than under the coevolution regime. Having the virus
face a more severe struggle for its survival makes its evolution more
efficient.

2. More contagious strains become dominant in the virus population
under coevolution. Figure 5d shows the frequency of viruses in the
virus population containing the mutation gene granting the high-
est increase in reproduction rate. This fraction rises to 0.35 in the
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Figure 4: Effects of Covid 19 government interventions (From Haug et al.,
2020). With permission from Nature Human Behavior - Reproduction License
4994130245697 (Jan. 22 2021)
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(a) Average reproduction rate of the pop-
ulation of viruses over time.

(b) Average impact in reproduction rate of
policies over time.

(c) Number of different virus strains over
time.

(d) Frequency of extreme variant genes
over time.

Figure 5: Key results from the coevolution dual genetic algorithm.

coevolution case, while this share is considerably lower under virus-
only evolution. This point supports the idea that coevolution makes
virus’ adaptation much more efficient. Indeed, the number of differ-
ent variants in the population exposed by Figure 5c shows interesting
insights. In the virus-only evolution, up to 800 variants appear dur-
ing the 20 time periods. This is due to the outbreak dynamic: in the
virus-only evolution, policies do not do anything and do not change,
hence the virus is free to spread everywhere. As its population size
grows, more mutations happen, and more variants emerge. Under
coevolution, only up to 200 variants emerge, but the frequency of the
strongest mutations shows that virus evolution is made much more
efficient by the challenge proposed by learning policies.

3. The coevolution regime can generate multiple outbreaks waves as
the more infectious variants becoming more dominant in the virus
population. While currently in European countries, a so-called third
wave seem to have occurred coincidentally to the VOC 202012/01 (the
"UK variant") becoming dominant, this pattern occurred as well dur-
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Figure 6: Average effective reproduction rate over time.

ing our evolution run. Figure 5b shows that policies evolve to be more
efficient over time, leading the average effective reproduction rate of
the virus to go below 1, in a path to extinction. Under the coevolution
regime, the more efficient adaptation of the virus allows instead the
effective reproduction rate to increase again. Several multiple waves
seem empirically to stem from relaxing measures, a behavior that
our model does not include. However, the same pattern and insight
would hold. In this simulation of coevolution, multiples waves of
infection can occur because of increasing viruses’ reproduction rates,
or relation of policy measures.

4. Seeing more infectious virus variants becoming dominants may
signify that our policy measures are effective. These sets of fig-
ures show that when policies are not evolving and not effective, more
infectious variants take a much longer time to become dominant in
the population. Only when policies evolve and actively undermine
the virus reproduction, weaker forms progressively disappear, to be
replaced by stronger virus variants. Several countries today see nu-
merous variants quickly increase in the share of new infections. While
this dynamic constitutes a key challenge and difficulty, it can be seen
as the sign that the current measures are putting stress on the virus:
they are efficient in pushing weaker forms to reduction and eventu-
ally extinction. Only by continuously adapting, and adapting faster
than the virus strains, can policies and human behaviors push all vari-
ants to final extinction. Our future work with this model will strive
to include vaccines as a policy measures, allow viruses to obtain a
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vaccine-resistant trait by mutations, and observe how the evolution
of policies shapes the emergence of vaccine-resistant strains of SARS-
CoV-2.

6 Implications and perspectives

This perspective for the artificial coevolution first faces the challenges in-
herent to the use of GAs, that were recently reviewed by Vie (2020a). Their
computational cost increases significantly with the size of the populations
they consider. If we wanted to simulate very large population of viruses,
knowing that the evolution of SARS-CoV-2 is a hugely parallel process oc-
curring over millions of hosts simultaneously, the computational cost of
the simulation would be significant. In addition, small differences in pa-
rameter configuration of GAs, including population size, mutation rates,
selection intensity, is difficult in GAs, as different sets of parameters may
yield different results, and impact the algorithm performance, or conver-
gence properties (Grefenstette, 1986). Last but not least, the genetic repre-
sentation needs careful design to cover the diversity of possible solutions
in a realistic manner, without creating unintended loopholes that could be
exploited by the algorithm (Juzonis et al., 2012) and bias the results. Several
recent works shed new light on these challenges, and provide new means
to mitigate their effects. The computational cost of GAs fades before their
great scaling with parallelism (Mitchell, 1988), and the computing power of
GPUs (Cheng and Gen, 2019) or Cloud computing hardware. New methods
have been introduced in parameter configuration (Hansen, 2016; Huang et
al., 2019; Case and Lehre, 2020). A large diversity of genetic representations
exist in GAs, and some further inspiration from key biological concepts can
open the way to representations allowing these algorithms to evolve more
complex artificial organisms (Miikkulainen and Forrest, 2021).

Specifically in the perspective of the artificial coevolution laboratories
discussed here, a key challenge remains in establishing a proper algorithmic
representation of the SARS-CoV-2 genome, and the mapping between this
genome and the virus traits. By proper, we mean that this representation
might not need to be comprehensive or perfectly exact, but should not
oversimplify the object being studied, or neglect important determinants
of traits. The work perspective described here faces important limitations,
and as these algorithms could be used for essential matters of public health,
the biases they may contain require careful consideration. These programs
cannot simulate at perfection natural selection or comprehensive genetics,
simply because we do not fully understand them yet.

Attempting to model the coevolution of viruses with more realistic sim-
ulations than the example provided here is certainly a challenging endeavor.
It however entails significant benefits and opportunities. The recent muta-
tions of SARS-CoV-2 have raised public awareness about this critical issue
for public health, and make attempts to address this issue with a matter of
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public interest, with immense benefits when we consider the cost faced by
the general public due to variants-caused restrictions. This challenge consti-
tutes as well an opportunity for evolutionary algorithms to grow. If we can
make these computer programs that simulate natural selection capable of
representing and simulating the evolution of viruses, which are organisms
considerably more complex that what EAs are currently handling, these
improved EAs in the future could lead to breakthroughs in bioinformatics,
optimisation, artificial life and AI.

How could such algorithms evolve organisms with that level of com-
plexity? Modifications of GAs that move from the simple bit string rep-
resentation to more complex genomes, can start this transformation. Key
phenomena in genetics and biology such as pleiotropy -where one gene im-
pacts several traits-,polygeny -one trait is impacted by several genes-, the
evolution of evolvability, realistic mutations, are yet to be included in these
algorithms, and their addition carries significant benefits and new opportu-
nities. These "structural" genetic algorithms that place such emphasis on the
genome structure, may make us able to evolve much more complex, adap-
tive artificial entities to study viruses evolution as illustrated here, but also
to create advanced forms of artificial life, or foster progress in generative
artificial intelligence. The challenge of modelling SARS-CoV-2 coevolution
with genetic methods can inspire such decisive innovations.

7 Data and code availability

The main simulation code of the GA proof of concept is freely available at
https://github.com/aymericvie/Covid19_coevolution. Model param-
eters such as the efficiency of different non pharmaceutical interventions,
or the basic reproduction rate of SARS-CoV-2, as well as mutation rates, or
learning rates for policies, can be easily changed in the code. The code is
designed to work on Google Colab, and the script is self sufficient to run.

8 Conclusion

In this article, we propose coevolution with genetic algorithms (GAs) as a
credible approach to model this relationship, highlighting its implications,
potential and challenges. We provide a proof of concept-implementation
of this coevolution dual-GA. Because of their qualities of exploration of
large spaces of possible solutions, capacity to generate novelty, and natural
genetic focus, GAs are relevant for this issue. We present a dual GA model
in which both viruses aiming for survival and policy measures aiming at
minimising infection rates in the population, competitively evolve. Under
coevolution, virus adaptation towards more infectious variants appear con-
siderably faster than when the virus evolves against a static policy. More
contagious strains become dominant in the virus population under coevo-
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lution. The coevolution regime can generate multiple outbreaks waves as
the more infectious variants becoming more dominant in the virus pop-
ulation. Seeing more infectious virus variants becoming dominants may
signify that our policy measures are effective. This artificial coevolution
system may offer us a laboratory to "debug" our current policy measures,
identify the weaknesses of our current strategies, and anticipate the evolu-
tion of the virus to plan ahead relevant policies. It also constitutes a decisive
opportunity to develop new genetic algorithms capable of simulating much
more complex objects. We highlight some structural innovations for GAs
for that virus evolution context that may carry promising developments in
evolutionary computation, artificial life and AI.
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A logistic function for population growth can be used for modelling
epidemics controlled only by effective measures such as quarantine.
The model counts numbers of cases or deaths as the measure of viral
growth. Effective quarantine measures separate the healthy popula-
tion from the exposed population, limiting spread of the virus. To be
effective, the quarantine must be accomplished more quickly than the
virus can spread through the population. While the logistic model ap-
peared to fit the early COVID-19 data from a few countries, it failed
as the virus spread to other countries. The most useful application
of the model may be to test the effectiveness of quarantine methods.
Keywords: Logistic function, COVID-19, population growth, nonlinear
fitting.

1 Introduction

The logistic equation is very simple description of a population growth
proposed by Pierre François Verhulst 180 years ago [1]. It can also describe
an epidemic outbreak, expressed as cumulative number of cases or deaths,
when the primary method of control is quarantine as in the case of a novel
viral infection. Cumulative cases or deaths can be treated as crude measures
of the virus population growth, and the quarantine method is to stop the
spread of the virus by removing its substrate which is the human population
at risk, which is initially assumed to be the entire uninfected population
[2–8].

There are many sophisticated epidemiological models which separate
a population at risk into compartments of susceptible, exposed, infectious,
recovered, deceased and so forth (see Ref. [9] and references therein). Each
compartment is modeled by a differential equation with its own rate pa-
rameters and potential initial conditions. Early in an epidemic with a novel
infectious agent, most of these parameters are not known, making predic-
tions about the epidemic difficult. The logistic model can be represented
by a single differential equation with two parameters and one initial condi-
tion. Ideally this simplicity should allow early predictions about the rate of
spread and limits to the epidemic by effective quarantine methods.
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In this paper, we reviewed the underlying mathematical details of the lo-
gistic function. We then compared its predictions with the actual COVID19
data across different countries. We finally discussed the applicability of this
model, and how it can be used to evaluate the effectiveness of quarantine
methods.

2 Methods

The logistic growth model is defined by a differential equation as follows:

d f (t)
dt

= k f (t)
(
1 −

f (t)
L

)
, (1)

where k is a continuous growth rate and L is the limit to growth such that f (t)
cannot exceed L. The parameter k is also called as the Malthusian parameter
(i.e., the rate of maximum population growth) and L as the so-called car-
rying capacity (i.e., the maximum sustainable population). The parameter
k determines the rate of infection spread and how long the epidemic will
last. The parameter, L, is the limit of the number of infected people or the
subset of people who become infected or die. For more info, see Ref. [1, 2]
and references therein.

At early stages of an outbreak when f (t) is small relative to L, the term,
1 − f (t)/L, is near 1. Then the initial growth is nearly proportional to f (t)
with exponential growth rate, k. When f (t) reaches L, the growth rate is zero
and growth stops. For positive L and k in Eq.1, the growth rate is always
positive. Therefore, Eq.1 has an explicit solution:

f (t) =
L

1 + e−k(t−t0)
. (2)

where the t0 parameter is the time of the peak of the epidemic on an arbitrary
time scale1.

Additionally, one can replace the logistic differential equation by a gen-
eral iterative form which is usually called as the logistic map:

continuous form : x′ = rx(1 − x), with x = f (t)/L,
discrete form : xn+1 = rxn(1 − xn),

(3)

This quadratic map, as a quadratic recurrence equation, can show a very
complicated behavior. Note the parameter r is sometimes called the biotic
potential [12]. As we will discuss later, the value of parameter r for COVID-
19 data is less than 1, which is in the regime where Eq.(3) does not show
chaotic features.

The logistic function also resembles the growth rate of autocatalytic
chemical reactions, where the maximum amount of f (t) cannot go beyond

1Note t0 is not initial time. It depends on the initial value of f , i.e. t0 = ln(L/ f (0) − 1)/k.
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Figure 1: The logistic function (black) and its first derivative (orange) for k = 0.3,
L = 1000, and t0 = 60.

the initial concentrations [10, 11]. In its simplest form, the corresponding
reaction and the rate law is given by:

A + B −→ 2B,
d[A]

dt
= k[A][B], (4)

with k the rate constant and [X] the concentration of chemical X. Given the
stoichiometry of reaction, we have [A]0 + [B]0 = [A]t + [B]t, with [X]t the
concentration of chemical X at time t. Assuming [A]0 + [B]0 = L, one finds:

[B]t =
L

1 + e−r(t−t0)
, (5)

with t0 = ln([A]0/[B]0)/r and r = kL. The above equation resembles the
solution of the logistic differential equation as in Eq.(2).

As one can see in Fig. 1, the logistic function predicts one symmetric
wave (i.e., one surge in the number of infected cases). What we have
experienced so far across the world has been not only second or more
waves, but almost always asymmetric and heavy-tail waves (see Fig. 2).
One may argue that the logistic growth model has failed badly. However,
the great convenience of the model is that with only three parameters, the
function can be described. Once quarantine measures in the course of
the epidemic are fully implemented and the case rates have stabilized, the
parameters should be relatively constant as the epidemic progresses to its
conclusion.

At the start of an epidemic, there is a large cohort of susceptible popu-
lation with nothing to limit growth. It is reasonable to assume that growth
of the number of cases would be exponential, i.e. the instantaneous rate of
growth will be proportional to the current number infected:

f ′(t) = k f (t), (6)
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Figure 2: Daily COVID19-confirmed cases for G20-member countries vs time. The
date tick labels are in two-letter month/two-letter year format. For the COVID19
data, we used the curated data freely available in Ref. [13].
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which shows an exponential growth, with f (t) being the cumulative case
function of time. If we compare it with Eq.(4), the early stages of an epidemic
resembles a pseudo first-order reaction: it is not strictly a first-order process
(i.e., exponential growth), but it appears to be so because the population of
susceptible2 is by far much larger than the infected (i.e. [A]� [B] in Eq.(4)).

The logistic model makes no assumptions about immunity, develop-
ing resistance, deaths, vaccination, or recovery, or anything reducing the
susceptible population. The model can only be expected to work for an epi-
demic that is quickly controlled by quarantine. To modify the exponential
growth to account for quarantine, we multiply the exponential growth by
a probability of transmission of the virus as a function of time, S(t), which
will range between 0 and 1 and is essentially a survival function for the
virus at time, t:

f ′(t) = k f (t)S(t). (7)

If quarantine methods are effective, persons known to be infected or
exposed to the infection are isolated from the general population and from
each other to prevent further spread both in the quarantine group and the
general population. For the quarantine method to succeed the number of
quarantined persons must grow faster than the actual infected population
so that eventually the infection is limited to the quarantined individuals
and can spread no further. An approximate function for the probability of
transmission at time, t, can then be modeled with the function:

S(t) = 1 −
f (t)
L
. (8)

Note the number L will not be known until the dynamics of the early epi-
demic are known. Therefore, early in the epidemic, the probability of trans-
mission will be near 1, but it will rapidly approach zero as f (t) approaches
L, because f (t) is growing exponentially. Multiplying the equations, we get
the logistic differential equation as in Eq.(1).

3 Results and Discussions

In this section, we focused on only one surge of COVID19 (i.e., one wave)
across some countries to explore the predicative power of the logistic model.
For each case, we considered the daily confirmed-cases, and implemented
fitting using NonlinearModelFit function in Mathematica.

South Korea: a good fit

Fig. 4(a) shows the accumulated case data for South Korea. The very early
data show a very small outbreak confined to 31 cases. The major outbreak

2Note we mean the actual susceptible population, L, which is not necessarily the overall
population.
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Figure 3: The probability of transmission of the virus as a function of time in the
Logistic model, S(t).

Figure 4: South Korea COVID19 data: (a) the cumulative cases, (b) the daily ones,
(c) the logistic function fitting with the first wave, and (d) the corresponding fitted
parameters. The inset in (c) is the same plot in log-scale. Note the 1st wave is
highlighted in (a,b) The South Korea data is obtained from Ref. [13].

had an epicenter with a small group that had visited Wuhan Province. The
data from this group showed up after 19 Feb 2020. Since the origin of these
cases was confined to a small known group, quarantine measures were
relatively easy to enforce and the data followed the logistic model until mid
March.

We select the data between 20 Feb and 20 March for analysis. For fitting
purposes day 0 of the arbitrary time scale is taken to be 21 January 2020, as
the data source begins on the following day. The parameters of the fit for
this subset of data are shown in Fig. 4(d). The last two data points were
breaking away from the model, showing a linear growth of cases which
continued in the subsequent points, indicating the quarantine efforts were
no longer fully effective. The logarithmic plot (in the inset of Fig. 4(c))
usually gives an idea if the data are appropriate for the model. Initially
the data should be nearly linear on the early points, although it is not
uncommon for there to be counting and reporting problems with the very
early data points. The curve begins to bend before the inflection point of
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Figure 5: The first and second derivatives of the logistic function (left), and the
corresponding fitting with the logistic DE in Eq.(1) (right). The green dots represent
points calculated from the data points, using the differential equation in Eq.(1), and
the values for k and L determined by the fit. The red dot (left graph) is the location
on the first derivative curve at the last day of the data.

the sigmoid curve and the curve quickly thereafter becomes horizontal as
L is asymptotically approached.

Fig. 5 shows the first and second derivatives of the logistic function for
the same data as in Fig. 4(b). The peak of the epidemic occurs when the
second derivative curve crosses zero. The data can also be fit to the model
using the logistic differential equation. To do this a method is needed to
calculate the first derivative from the data. In the graph the first derivative
is calculated using an interpolation function, but first differences are usually
satisfactory even if they are offset by a half day. The red dots are the first
derivative points calculated at the data point. The fit parameters are similar
to the fit to the cumulative data.

Italy case: testing the predictive power of the model

As discussed before, the COVID19 waves across the world are usually
highly-asymmetric, therefore the logistic model fails to describe this feature,
although the trajectory before the peaking of waves are relatively well-
described by the logistic function. This issue is shown in Fig. 6, which
illustrates the first surge of COVID19 cases in Italy through Mar-Jul 2020
(123 days). For fitting and estimating parameters, we have only considered
the weekly moving-average data for the first 20 days (black points). As one
can see, after peaking, the number of cases drops much slower than what
the logistic model predicts; in other word, the wave is fat-tailed, which
implies the survival function for the virus in the logistic model drops much
faster than the actual data. We have explored this issue quantitatively in
the following section.
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Figure 6: Italy COVID19 data cases. The red dots in lower graph are actual data
and the solid ones are the fitted logistic function (orange line is the 90% confidence
band). On the right, one can see the table of fitted parameters. The COVID19 data
is obtained from Ref. [13].

Stability of parameters in the logistic model

Here, we briefly explored the parameters stability of logistic model for
Italy’s COVID19 data. The basic idea of the quarantine model is that there
is an effective quarantine. If that were true, parameters should start to
converge quickly. The average incubation period is only about a week. If
all the contacts of every person were isolated quickly enough, the epidemic
should end in a few weeks. If quarantine is partial, the epidemic does not
ever end until the whole population is infected or immunized. Starting from
Feb 2020, as the day number increases, an additional day is added to the
sample we used for fitting. Clearly there is not clear parameter stabilization
(see Figs. 7 and 8).

As the k parameter decreases, the logistic model becomes more pro-
tracted. If k keeps declining a peak will never be reached. In other word, a
slight increase in the value of k is much better observation (more effective
quarantine) than a decline (look at Fig. 7 after 250 days).

After the inflection point of the first wave, which is about 50 days (see
Fig. 7), the parameters L and t0 reaches some stability, which is completely
lost after 250 days with the beginning of the 2nd surge (2nd wave in Fig. 6).
As one can see in Fig. 8, the parameter L shows larger volatility compared
to t0, implying very likely a big change in the underlying dynamic of virus
spread (e.g., new communities being infected).

Additionally, as the surge in cases starts its exponential increase, one
observes a steady decline in k while L increases slowly. As we approach
the peaking of the wave, L increases dramatically and then decreases while
k remains more or less constant. After wave peaking, there won’t be that
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Figure 7: The best fitted value of k vs different number of days used for fitting. The
x-axis denotes the number of days after Feb 1st, 2020 that were used for fitting.

Figure 8: The best fitted values of L and t0 given different days used for fitting. The
x-axis denotes the number of days after Feb 1st, 2020 being used for fitting. Note
due to a jump in values, we have plotted the first 220 days separately (left).
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Figure 9: The trajectory of fitted parameters k,L for the first wave of Japan (02/2020-
06/2020). The red dot is the fitted values for the first 10 days, and the green one
for 120 days, starting from 02/2020. The black solid line in the moving median, for
better visualization of the trajectory.

much change in L and one observes a steady increase in the fitted value of k.
Fig. 9 shows such a behaviour for the 1st wave of COVID19 cases in Japan.

Tailedness of COVID19 waves across the world

As we showed in Fig. 2, since the beginning of the pandemic, many coun-
tries have already experienced the 2nd or more surges in the number of
confirmed cases. For some countries such as US, the successive waves
are greatly overlapped, while for other countries such as Japan, they are
well-separated. To quantify the tailedness of separated waves, we have
calculated the skewness and kurtosis of separated wave for a sample of
countries as shown in Fig. 10. As one can see, almost always, the wave
starts with a sharp exponential increase, then decrease slowly after peak-
ing. So as expected, it is very different from not only predictions of logistic
function, but also almost all other epidemiological modelings. Our main
goal here is not to forecast using the logistic function, but to understand the
underlying dynamics of a pandemic, e.g., the effectiveness of preventive
measures such as quarantine, and we believe the logistic function, although
extremely simple, can help us in this direction.

One approach to improve the logistic model could be phenomenological
modifications (e.g., see Ref. [15] and references therein). For example, one
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Figure 10: Kurtosis and Skewness of COVID1-9 surge waves (i.e. daily COVID-19
confirmed cases) for some countries with well-separated waves. To calculate these
measures, we have used the weekly moving-averaged values.

can generalize the corresponding differential equation as follows:

d f
dt

= k(t) f p
(
1 −

f
L(t)

)
, (9)

with p a growth scaling parameter. To remain faithful to the analogy be-
tween the logistic function and autocatalytic reactions, we think setting
p = 1 and exploring the time behaviour of k and L is more interesting. The
predictions of above equation seem to be more sensitive toward changes
in L rather than k, however, the actual behaviour highly depends on the
interplay of these two. For example, slight increase in L after the peaking
of wave, together with slight decrease in k results in a highly-asymmetric
wave, whose fatness depends on the actual values of k and L and how they
change in time.

Concluding remarks

The logistic model is extremely simple, using only quarantine to limit the
epidemic and making no assumptions about either the virus or its human
substrate. It always takes authorities several incubation periods to deter-
mine that an epidemic outbreak has occurred, so quarantine methods lag
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the spread of a virus. During this lag period, the probability of transmission
of the virus is almost constant, S(t) = 1, and the solution to the logistic dif-
ferential equation shows exponential growth with the same growth factor, k.
The growth factor magnitude is a function of the rate of transmission of the
virus and human behavior and susceptibility. The parameter k should not
change as the epidemic progresses and quarantine is implemented. With
the logistic model, S(t) begins to decline with time only after quarantine is
effective. Since S(t) = 1 − f (t)

L , it will decline more quickly if k is large, as
f (t) will more rapidly approach L. The consequence for the logistic model
is that, if k is large, the epidemic will end quickly if and only if the quaran-
tine is effective. A large magnitude for k creates a problem for authorities
implementing the quarantine, as they have to trace contacts faster than the
virus is spreading. COVID-19 has the insidious property that many people
have symptoms no worse than the common cold, so they may spread new
outbreaks which will not be discovered until more vulnerable individuals
develop serious symptoms. When the serial fitting of the data to the model
shows k declining, it is an indication that the quarantine is incomplete, and
the model does not match the data.
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COVID-19 evidenced that the world has transformed deeply over the
last decades. We live in a more complex, volatile and uncertain world,
where societies are tied to one another and interdependent. Pandemics
threaten to become more severe and more frequent as the world be-
comes interconnected. Understanding the space of possibilities that
arise from social dynamics is crucial for creating strategies and policies.
We combine Agent Based Models (ABMs) with Reinforcement Learn-
ing (RL) and create simulations where agents decide on strategies to
follow under varied conditions using Artificial Intelligence (AI). We
apply our approach to the Susceptible-Infected (SI) epidemic model.
Across multiple simulations, agents are able to control the epidemic
by spontaneously clustering themselves by health, and keeping dis-
tance from the infected ones. Moreover, healthy agents implement
self-isolation as the transmission probability increases, perhaps due to
the risk of exposure in comparison with clustered populations. These
results show that incorporating RL to ABM unveils possible strategies
that are otherwise difficult to find by random exploration.

Introduction

We live in a complex, volatile and uncertain world [1]. Pandemics threaten
to become more frequent as societies are tied to one another and highly
interdependent. Institutions and organizations cannot manage such com-
plexity [2]. Their methods are not conditional on the natural behavior of
social systems and therefore become incapable of dealing with them effec-
tively, imposing fragile strategies upon the population at large [3]. While
there has been a large body of research around the mechanistic behavior
of epidemics across social networks and environments, there is not a clear
consensus on how to respond to epidemics at the scale of population. In
this regard, it is imperative to explore and analyze the behavior of models
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from multiple perspectives, including irreducible behaviors that emerge
from fundamental interaction mechanisms and utilitarian structures. The
combination of Agent Based Modeling (ABM) and Reinforcement Learning
(RL) provides the opportunity to explore the space of possible responses for
social phenomena such as segregation, polarization, or spreading of infor-
mation [4]. RL provides agents with artificial intelligence, such that their
actions are decided following certain policies and objectives under multi-
ple environmental conditions. While ABM shows the complexity of social
processes and emergent patterns, RL provides possibilities and strategies
to operate under such conditions.

Agent Based Modeling (ABM) is a simulation framework to study the be-
havior of biological and social systems [5] based on the interactions among
individuals or agents [6]. The models show that macroscopic behaviors and
regularities emerge from the aggregation of multiple distributed interac-
tions and decisions [7] with capabilities to map the space of possibilities [8].
ABM tests theories against simulations [9] with emphasis on heterogeneous,
autonomous actors operating with incomplete information [10]. They have
been applied to study economic systems [11, 12], as well as individual [13]
and organizational [14, 15] decision making processes, including the de-
sign of distributed and autonomous systems such as traffic control [16] and
energy management [17]. Applications to social systems include wealth
distributions [9], politics [18], global systems [19], and cultures [20], among
others [5]. In biological systems, ABM has shown a remarkable power to
explain epidemics [21, 22], human body systems [23], ecosystems [24], and
links between biology and social behaviors [25]. Despite the wide-range
of applications of ABM simulations, agents often take actions blindly and
have very limited capacity, if any, to evaluate the effects of their actions.
With the introduction of RL, agents anticipate the effects of their actions
in the future based on Markov Decision Processes, and generate strategies
towards reaching goals, in a richer modeling framework.

Reinforcement Learning (RL) provides agents with the capability to
learn from their experience during simulations and become aware of their
environment. Agents adapt their behavior according to an interplay be-
tween a previously defined structure of rewards and the state of the environ-
ment. Multi-Agent Reinforcement Learning (MARL) is the method when
multiple agents are employed. The combination of RL with Deep Neural
Networks have recently achieved unprecedented human performance in
complex tasks such as gaming [26], rapid motion [27], and communication
with incomplete information [28]. More recently, RL has been applied to
study social dynamics [29] such as segregation [4], cooperation [30,31], and
game theory [32, 33].

In the last year, researchers have developed RL solutions for epidemic
control using available data. COVID-19 prevention policies, such as closing
schools, have been analyzed and optimized using Great Britain’s connec-
tivity data [34]. Moreover, extensions of epidemic models include new
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Figure 1: Example displays of two of the states of our environment (colored for
clarity). In Reinforcement Learning setups, the environment is defined as the sim-
ulation of a task and state is defined as the status of the environment at time t. Our
environment consists of a grid in which the agents try to stay healthy as much as
possible. Here, the red color represents infected agents and the green color repre-
sents healthy agents. Darker green (left) and darker purple (right) colors indicate
the agents that about to take an action and they perceive their environment as seen
in the respective figures.

properties such as asymptomatic transmission [35] and the intervention of
governments [36]. We introduce RL to the Susceptible-Infected (SI) model
and observe how agents adapt and attempt to control the spread of the epi-
demic. Our results show the emergence of spontaneous separation in space
or segregation between healthy and infected agents. Our methods can be
extended to study other types of social phenomena and inform decision
makers on possible actions.

Model

Modeling Epidemics

Modeling the spread of diseases, behaviors and information across social
systems has drastically advanced our understanding of events such as pan-
demics, news diffusion, and malware spreading [37]. A large number of
these models rely on the Susceptible - Infected - Recovered (SIR) model-
ing framework [38]. SIR is an ABM where agents can either be in three
states: susceptible to get infected, infected or recovered from the infection.
Susceptible agents can get infected from other infected individuals with a
probability of transmission β. Infected agents can recover from the disease
with a probability of recovery γ. The model yields various outcomes based
on the parameters such as infection and recovery probabilities as well as
the population density of agents. A particular example called SI occurs
when the recovery probability is zero (γ = 0) and infected agents cannot get
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recovered. In the SI model, all agents may eventually get infected over time
if agents are randomly contacting each other. Another variation includes
becoming susceptible again, called the SIS models, and agents can relapse
on the infection.

The behavior of the SIR-type models has been studied on multiple net-
work topologies [39]. When applied to networks, agents can only get
infected from their neighbors, which means that risks from infection vary
according to one’s social network rather than being homogeneous across
the whole population. Therefore making an infected agent with many
connections (edges) to other agents more risky to the population than an
infected agent with few connections. Previous studies show that the crit-
ical mass required to trigger an epidemic decreases to zero in the limit as
the network becomes complex and hubs that connect large portions of the
network emerge and centralize connections [22].

In our experiments we apply the SI model on spatial networks based
on simulations using RL. We adapt the rules of interactions from the tra-
ditional agent-based model to the framework of AI and RL. This allow us
to introduce new rewards and observe emergent behaviors. In this model,
agents (nodes) can move across free locations on a grid space and interact
with those individuals within their space of observation. Edges are formed
among agents that are at most two grids apart from each other. Therefore,
agents create a dynamic social network from spatial interactions that is
subject to change as agents move at each iteration.

We initialize the model by creating N agents on the grid space: S sus-
ceptible and I infected (N = S + I). At each iteration, a social network is
formed based on spatial closeness. Then infected agents spread the dis-
ease to susceptible neighbors with a transmission probability β. Note that
the spreading phenomena is based on connectivity of infected agents. On
one hand, the disease will spread quickly if infected agents have too many
connections to healthy ones. On the other hand, the infection is contained
in a fixed population if infected agents have no healthy neighbors. The
dynamics of the emergent social network is based on agents’ actions. The
collective goal is to minimize the chances of getting infected. Global pat-
terns of behavior may emerge due to the self-organization of agents’ actions.
An example of these behaviors include segregation and isolation.

Multi-Agent Reinforcement Learning

The modeled learning environment consists of a grid space containing N
autonomous agents. At t = 0, S of them are healthy and I = N − S of them
are infected. The goal of the environment is to contain the spread of the
disease by maximizing the cumulative reward we explain in this section.
The system rewards agents if they keep the population healthy, while the SI
dynamics run in the background. Defining the reward function and agent
state space is fundamental for designing stochastic tasks with clear goals.
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Figure 2: Average heat-map of healthy-infected agent locations (top), social network
of agents per hundred iterations (middle) and dynamics of various statistics (bottom)
for SI model with probability of transmission β = 0.01. Green indicates healthy
agents and purple indicates the infected, legend is placed on upper right. Time
series compare the performance of DQN with random action policy as a control
group. On edge distribution figures, healthy-healthy edges are denoted in green
(S-S), healthy-infected (risky) edges are denoted in pink (S-I), and infected-infected
edges are denoted in purple (I-I). Transparent regions indicate the standard deviation
of metrics estimated on ten replications of each experiment.

We created a learner model that can handle multi-agent simulations using
Deep Q-Learning [40] as our primary learner due to its effectiveness on
complex environments. The learner is capable of inputting a discrete state
and action space and learning both how to model the spread of the infection
and how to prevent it. Direct models such as classic Q-Learning or Value
Iteration are not suitable for this case given the difficulties to map the state
space and action space a priori.

Environment Definition

The RL model receives the whole grid space as an input. The model con-
trols each agent’s action in a one-by-one manner. The implemented state
definition is as follows. For the selected agent, s = 2 if it is healthy and
s = −2 otherwise. For other agents, s = 1 if they are healthy and s = −1
otherwise.
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Our environment consists of 5 actions, namely: Left, Up, Right, Down
and Stay. The first four imply moving to a new location. The last action is
implemented since it could happen that agents must stay healthy at all cost
and moving might not be beneficial. The state and action space defined
for our designed environment let agents move separately, but also defines
a collective mind since the observation comes from the complete grid. We
define states for each location based on their type of occupation. If the
location is occupied by an infected agent then s = −1. If the location is
occupied by a healthy agent then s = 1. Otherwise, s = 0 if the location is
empty.

An example of the simulation environment can be found on Figure 1
where we show the location of multiple healthy (green) and infected (red)
individuals. We emphasise the selection of a healthy individual (darker
green) in the left panel and an infected one (darker red) in the right panel.

Reward Function

The cumulative goal of the environment is to maximize the number of
healthy individuals. Agents receive r = 1 reward if they are healthy at
iteration t, and r = −1 if they are infected. Unlike the usual RL scenario, a
separate terminal punishment or reward is not implemented. The reward
function is evaluated at the selected agent and it enables the neural network
to apply self-importance on each agent separately.

Network Architecture

The Neural Network (NN) of our DQN (Deep Q-Network) model is a
simple Convolutional Neural Network (CNN), containing 3 CNN layers
and a single fully connected layer. The network inputs the whole grid and
returns a 5 dimensional vector of actions for each agent. Each value shows
the remaining cumulative reward estimate, Q(s, a), for each action in the
current state. Adam optimizer [41] is used with a learning rate of 10−4

for applying batch gradient descent. The neural network is trained from a
batch of random samples with a batch size of 32. In order to stabilize the
learning process, the target Q-values are taken from a target network. After
each 800 steps, the target network is updated with the current parameters
of the main network [40].

Experiment Details

We use a grid world of 24x24 locations in our experiments. The reason for
this selection is due to the computational complexity of our CNN model.
There are N = 30 agents inside the grid. At t = 0, 10% percent of the
population is initially infected. The disease can transmit within a radius of
2 locations from each agent. A sick person can only make another person
sick if the distance between them is 2 locations or less. The experimental
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Figure 3: Average heat-map of healthy-infected agent locations (top), social network
of agents per hundred iterations (middle) and dynamics of various statistics (bottom)
for SI model with probability of transmission β = 0.10. Green indicates healthy
agents and purple indicates the infected, legend is placed on upper right. Timeseries
compare the performance of DQN with random action policy as a control group.
On edge distribution figures, healthy-healthy edges are denoted in green (S-S),
healthy-infected (risky) edges are denoted in pink (S-I), and infected-infected edges
are denoted in purple (I-I). Transparent regions indicate the standard deviation of
metrics estimated on ten replications of each experiment.

setup is repeated for different transmission probabilities β in order to study
their effects on the population behavior.

Simulation steps are individually defined as N state-action pairs, where
N indicates the number of agents in the system. This is different from tradi-
tional implementations where N = 1. We choose N > 1 because the neural
network processes all agents inside the system separately and outputs a
different action for each agent. At the start of each step, the list of agents is
shuffled and the current states for each agent is passed to the system one-
by-one. A regular episode takes 500 steps during training, but episodes
terminate early if all agents become either healthy or infected. For each
infection probability, β, training consists of 200 episodes. Later, the current
model and a random agent is tested for 10 more episodes and their results
are compared to one another. The environment and simulations have been
implemented using Python Libraries and are available for download.1

1Link to code: https://github.com/emirarditi/EpidemicModelingWithABMandRL
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Results

We inspect the dynamics of our model under three different transmission
probabilities: β = 0.01, β = 0.10 and β = 0.90. For each transmission
probability, we train the DQN environment until we see convergence and
tested its capacity to reduce or contain the transmission of the disease in
10 different realizations. We measure the significance of the results by
comparing the performance of DQN environments with simulations from
control groups where agents are limited to random actions. The random
realizations consist of agents moving randomly in the grid space, without
using any of the RL capabilities and being unaware of their environment.
The initialization of the environment in these simulations are consistent
with the previous 10 realizations.

The results obtained with transmission probability β = 0.01 are shown in
Figure 2. The top row shows heat-maps with the average of spatial locations
of healthy and infected agents over the last 100 iterations. Dominantly
healthy areas are represented in green and infected ones in purple. The
maps indicate that agents learn to isolate and cluster sick individuals and
separate the space into healthy and infected regions. The middle row
shows the spatial networks of agents at time t. Nodes represent agents
and connections indicate close proximity in space. The color of the edges
is consistent with the health of the individual represented as a node. The
connections are segregated across the network according to the health of
the individual.

The bottom row shows the performance of various metrics as the simu-
lations evolve. The results show that DQN environments learn to create safe
spaces by segregating the interactions between healthy and sick individuals.
The bottom left panel shows the performance of DQN with respect to ran-
dom control group in terms of fraction of population that remains healthy
over time. The healthy population in DQN environments (blue) remains
consistently higher than the random case (yellow) which decreases over
time. The bottom middle panel shows the dynamics of fraction of edges
between various edge types when DQN policy is employed. Edge types are
as following: healthy-healthy agents (S-S, green), healthy-infected agents
(S-I, pink), and infected-infected agents (I-I, purple). Finally, the bottom
right panel shows the dynamics of fraction of edges when random policy
is employed with the same color code. The segregation of interactions by
health is consistently higher in DQN environments. Solid lines indicate
average behavior after 10 realizations. Transparent region indicates one
standard deviation span in performance.

Consistent results are presented in Figures 3 and 4 for other values of
transmission probabilities β = 0.10 and β = 0.90 respectively. These figures
show the behavior of the system when the infection severity and transmis-
sion probabilities increase. In Figure 3, if a healthy agent is a neighbor of
an infected agent, it gets infected with 10% probability. Moreover, in Figure
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Figure 4: Average heat-map of healthy-infected agent locations (top), social network
of agents per hundred iterations (middle) and dynamics of various statistics (bottom)
for SI model with probability of transmission β = 0.90. Green indicates healthy
agents and purple indicates the infected, legend is placed on upper right. Timeseries
compare the performance of DQN with random action policy as a control group.
On edge distribution figures, healthy-healthy edges are denoted in green (S-S),
healthy-infected (risky) edges are denoted in pink (S-I), and infected-infected edges
are denoted in purple (I-I). Transparent regions indicate the standard deviation of
metrics estimated on ten replications of each experiment.

4, the agent gets infected with 90% probability, which is an almost certain
event. In both settings, the DQN environment outperforms the random
policy and manages to keep a portion of the population healthy. Moreover,
we see the emergence of social distancing as a new type of behavior. As
the severity of the disease increases, the number of edges between healthy-
healthy agents decreases which means that they are not staying in close
proximity to each other despite being both apparently healthy. Moreover,
in the extreme case of β = 0.90, agents choose self-isolation, despite not
being explicitly encouraged. We believe that this behavior is due to con-
nectedness of healthy agents increasing the risk of collective infection as the
severity of the disease increases.

The results shown in the bottom panels of Figures 2 and 4 indicate
that DQN environments effectively learn to contain the disease, despite
not having a probability of recovery. This observation contributes to the
traditional SI modeling framework which shows that single-component
networks will get infected over time. The addition of AI and RL shows that
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agents can alter the structure of their social network so that isolation from
the infection is granted and diseases controlled. Finally, the distribution of
edges in DQN environments hints at the mindset of DQN agents. We see
that during the early iterations, the network tries to minimize healthy-risky
connections so that the disease is contained. A behavior that is fairly absent
when random policies are employed to model the spread of diseases.

Conclusion

We combine Agent-Based Modeling (ABM) with Reinforcement Learning
(RL) in application to epidemics and observe if agents can control the spread
of the disease by changing or adapting their behavior. Agents are able to
slow down the epidemic by segregating themselves in space by health. They
self-organize and form separate and distant clusters of healthy and infected
individuals respectively. As the transmission probability increases, agents
choose to self-isolate and reduce even further their social interactions. These
methods can be generalized and help policy makers explore possibilities by
observing emergent behaviors and reactions to specific policies.
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We offer a computational model for evaluating tradeoffs between life
and progress. Our framework evaluates people as cells in a one-
dimensional outer-totalistic cellular automaton with two living states
and an absorbing output state of death. Pandemics are modelled as in-
stant death for a portion of the population and government regulations
are modelled as lockdown restrictions on the number of consecutive
neighboring cells in a certain state. With this model, we are able to com-
pare the implicit trade-off between an unchecked yet instant pandemic
and a continual governmental lockdown. We find that lockdowns lead
to reduced complexity and increased death compared to a pandemic.
If people are allowed to vote, they tend to vote for lockdowns early but
regret their choice later. The findings suggest generally that societies
can be robust to external attacks but can wither from internal attempts
to control the mechanisms of progress.

1 Introduction

There are two fundamentally different ways of modeling phenomenon:
from the top down and from the bottom up.

Top-down approaches start with stylized facts and calibrate models with
continuous parameters to match those stylized facts as closely as possible.
Bottom-up approaches first aim to simplify the problem as much as possible
and then explore the resulting computational universe. Examples of such
bottom-up approaches in finance and economics include [1], [2], [3], and [4].

Top-down approaches are the contemporary dominant standard in the
scientific literature, even to the extent of how papers are structured, with
claims outlined first, then a method, results, and discussion. However,
per Wolfram’s Principle of Computational Irreducibility [5], a bottom-up
approach can never in principle be expressed in such a way, because it
would be impossible to know ahead of time the results of an arbitrary
computation. Therefore, this paper is organized in a way that may appear
less conventional but is more appropriate to the computational exploration
approach.
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Figure 1: Example state of a society with two happy people, one sad, and one dead.

Section 2 argues for, models, and finds the unique minimal computa-
tional model of society. Section 3 applies that model to a world where a
pandemic can instantly kill some of the participants, or a lockdown can
prohibit certain kinds of social interactions. Section 4 concludes with sug-
gestions for future research.

2 The Minimal Model of Society

We model the state of society as a cyclical list of people. Each person can
be happy, sad, or dead. Death is an absorbing state. These can also be
interpreted as healthy/susceptible, infected, and dead in the standard SIR
model (e.g. [6]).

We color the three states as happy→ black, sad→ white, and dead→
red. Fig. 1 shows an example state of two happy people, one sad, and one
dead.

Each person transitions to a new state depending on their own current
state and the states of their nearest living neighbors. Dead neighbors are
ignored.

Ignoring dead neighbors effectively shrinks a society, but we keep the
strands of red to visualize death over time. People care about how their
living neighbors are doing, whether they are happy or sad, but they only
care about the total. It doesn’t matter if it’s your left-neighbor who is sad
and your right-neighbor who is happy or vice versa. This is commonly
referred to as an "outer-totalistic" rule.

However, it is not a standard outer totalistic rule because there are two
input colors but three output colors: a dead person does not evolve, but a
living person can be either sad or happy and can become either sad, happy,
or dead.

How many distinct initial states are there for each person, assuming a
neighborhood region or radius of r? Temporarily renumber the states as
zero for sad and one for happy in order to count the number of possible
totals. Then the person evolving can be in one of two states, and the total of
his 2r neighbors can be anywhere from zero to 2r, which is 2r+1 possibilities.
That’s 2 · (2r + 1) possible initial states for each person.

How many different rules are there? Each of those possible initial states
can be mapped onto one of three outputs, so there are 32·(2r+1) possible rules.
Table 1 computes these maximums for radii from one to five.

Thus, there are 729 one-neighbor outer-totalistic rules from two-color
inputs to three-color outputs. With a standard mapping from integer rule
numbers to transition rules, Fig. 2 shows, for example, that according to rule
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Figure 2: The rule plot for rule 92, showing the possible neighbors in the first row
with the current cell in the middle, and the result in the middle of the second row.

Figure 3: The evolution of rule 92 for two time steps starting from the initial happy,
happy, sad, dead condition.

92, a sad person surrounded by one happy neighbor and one sad neighbor
will evolve to be happy in the next step, regardless of which neighbor is
which.

In fact, rule 92 always results in a happy black cell if all three cells are
happy or if exactly one of the three is happy and the others sad. If nobody
is happy, or two people are happy and one is left out, then the cell becomes
sad.

We can repeatedly apply this rule on every group of neighboring cells
to generate the state of the society at the next time step , and then repeat to
generate an evolution of society over time.

Fig. 3 shows the evolution of the happy, happy, sad, dead state according
to rule 92 for two time steps. Everyone who was happy becomes sad, the
sad person stays sad, and dead people remain dead.

Notice that for the given initial condition, rule 92 cycled after two steps.
From step 2 to step 3, the evolution does nothing, so all future steps would
look the same: three sad people and one dead one.

Our initial conditions for the present analysis will always be a fixed
number of people, rather than a constantly growing population. Therefore,
every rule will eventually cycle, some faster than others.

r MaxRules[r]
1 729
2 59049
3 4782969
4 387420489
5 31381059609

Table 1: Number of possible rules for a given neighborhood region or radius r,
where MaxRules[r_] := 3^(2 (2 r + 1)).
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We typically wish to filter out cyclical evolutions and explore the space
of possible evolutions, ignoring simple equivalencies such as rules that are
identical except the identification of sad and happy.

Starting with a standard initial condition of one happy person in the
middle of one hundred sad people, we can explore all of the possible 729
rules for emergent complexity.

While we define complexity more specifically below, for now without
loss of generality we select only those evolutions that have the maximal
length before they cycle.

Fig. 4 shows all these maximally complex radius-1 rules. Only fifteen
inequivalent rules evolved for 500 time steps without cycling.

There is some interesting structure but the evolution is mainly symmet-
ric. Rules 103, 148, and 263 are somewhat ironic as the first happy person
dies immediately, and that is the only death that ever occurs.

What if we start with the asymmetric initial condition shown in Fig. 5?
Fig. 6 shows all the maximally complex rules starting from the asym-

metric condition. Again only fifteen nonequivalent rules evolved without
cycling.

These evolutions appear far more interesting and complex.
Compare these to the evolution starting from a random initial state with

the same number of people shown in Fig. 7.
Most of the complex rules are common across both initial conditions,

suggesting both that our asymmetric initial condition might be sufficient
for evaluating the rules, and that the rules themselves exhibit a consistency
in terms of complexity.

Twelve rules are common to the fifteen asymmetric complex rules and
the seventeen random complex rules.

Measures of Complexity

Complexity can be measured in one of two ways. The complexity pictured
in the figures above was a time-series complexity: given a rule, evolve the
society, and evaluate the complexity of the resulting evolution.

An alternative measure of complexity is cross-sectional complexity: for
each possible rule, evolve all possible initial conditions by one step, and
count how many distinct output states they have, and rank the rules by that
number. This measures how complex a rule is relative to other rules.

In our case, there are too many possible initial conditions to do an ex-
haustive search, so to estimate the consistency of each rule’s cross-sectional
complexity across different lengths of initial conditions, we can sample ran-
domly from all of the 2n possible initial conditions for a population size n,
evolve each one for one time step, and see how many distinct output states
are generated. The more distinct output states there are, the more complex
that rule is for that population level. For example, a rule that always kills
everyone would be minimally complex.
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Figure 4: All maximally complex radius-1 rules for the standard initial condition of
one happy person in the middle of 100 sad people, evolved up to 500 time steps.

Figure 5: An asymmetric initial condition: one sad, two happy, three sad, and so on.
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Figure 6: All maximally complex rules for the asymmetric initial condition.
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Figure 7: All maximally complex rules for a random initial condition.
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Figure 8: The only two maximally and consistently complex rules for 1000 time
steps.

Figure 9: The rule plots for rules 92 and 274.

We can then filter for rules that are consistently complex by recursively
filtering for rules with the maximal cross-sectional complexity for increas-
ingly large population sizes. That would indicate that the rules we find are
not only complex for a given population level, but tend to be complex for
various population levels; thus, they are intrinsically complex.

Specifically, we start with a population of 5, evolve every rule one time
step from each of 1000 different random starting conditions, and keep the
rules with maximal distinct outputs. Recursively filter further while dou-
bling the population size to 10, 20, 40, and 80.

Of the 729 possible rules, 144 are consistently cross-sectionally complex.

Let’s evolve them on our asymmetric starting condition and see what
they look like, transposed because of their thinness for better visibility.
Fig. 8 shows the result. Only two maximally complex rules remain: 92 and
274.

Note that this is a subset of all the maximally complex rules for 1000
time steps only, because we pre-filtered only for those rules that maintain
their characteristic complexity across a variety of population amounts.

We examined the rule plot for rule 92 above in Fig. 2. We can compare
rules 92 and 274 side-by-side to see if they have any common patterns.

Fig. 9 shows that rule 92 is the exact opposite of rule 274: whenever rule
92 would evolve to a black cell, rule 274 evolves to a white cell, and vice
versa.

Therefore we can without loss of generality call rule 92 the unique min-
imal model of society.
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Figure 10: Evolution of the original and pandemic societies for 2000 time steps.

Figure 11: An illustration of the government prohibition on ten or more consecutive
happy people.

3 Pandemic vs. Lockdown

One way to implement the effect of an unchecked pandemic is to presume
that some portion of the population will die immediately. This effectively
assumes that some portion of the population would remain alive after a
pandemic, even without lockdowns, quarantines, social distancing, or any
other changes. Equivalently, some portion of the population is deemed
immune.

Suppose for concreteness the first few columns all die instantly from an
unchecked pandemic; an unchecked pandemic is one that is not in any way
mitigated by social distancing, masks, vaccines, lockdowns, quarantines, or
any other changes in human behavior. What would the remaining evolution
of rule 92, the minimal model of society, look like?

Fix a random initial condition and suppose one quarter of the population
would be instantly killed. We evolve 2,000 time steps. Fig. 10 shows the
result. In this case, an instant 25 percent death rate does not thwart the
remaining complexity and it does not cause any further deaths.

As an alternative, consider a government intervention criminalizing
happy associations above a certain threshold. For example, suppose gov-
ernment edicts make any sequence of ten or more happy black cells illegal.
Since any government law can ultimately be enforced only by violence,
for a minimal model interpretation we can implement such a policy as in-
stantly killing any sequence of three or more black cells, i.e., by converting
their state to red. Fig. 11 illustrates this policy on the asymmetric initial
condition.

With a lockdown in place, we can essentially evolve the society by in-
terspersing ordinary societal evolution with the governmental restrictions.
Fig. 12 extends the earlier figure to include a comparison with the lockdown
society.
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Figure 12: Evolutions of the original, pandemic, and lockdown societies.

Figure 13: One time step forecast under pandemic and lockdown scenarios, and the
resulting votes. Individuals vote for the better outcome if they differ, or otherwise
abstain.

In a lockdown, for both rules, fewer people die initially, but ultimately
result in a total annihilation of the entire population, making the pandemic’s
instant but one-time population reduction of 25 percent seem utopian by
comparison.

What if we allow voting? Suppose each column in the evolution is
a single person who can vote either for or against government-enforced
lockdowns. However, each person is cognitively or computationally limited
and can only forecast their own state one row into the future. In other
words, at the time of the vote, each person looks at his or her neighbors and
forecasts their own cell color in the next time step. They then vote for the
program that makes them happy, or at least sad but alive. In the event of a
tie, they abstain.

Consider such a vote at the initial time above. The first 25 people
who would be instantly killed by an unchecked pandemic would surely all
vote for the lockdown, because sad or happy is better than dead. Of the
remaining 75 people, one person (ironically, the 26th, the first one not to
die from the instant pandemic, who would be sadder under a lockdown)
would vote for the unchecked pandemic, and one person would vote for
the lockdown (the last one not to die from the instant pandemic, who would
be happier under a lockdown). Thus the vote would be 1-26 in favor of the
lockdown, with 73 abstentions. This vote is visually summarized in Fig. 13.

Fig. 14 displays how such a comparison-based vote would look across
time. Initially, and for the first few time steps, votes are overwhelmingly
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Figure 14: Vote tallies for lockdown (black) and pandemic (red) across time.

in favor of lockdown. Then the vote is contentious until about the 50th

time step, after which the majority of living voters would have consistently
preferred the pandemic.

4 Conclusion

Our model has effectively no parameters. It has not been calibrated to
actual parameters of the Covid-19 virus. Lockdowns and other govern-
ment measures aimed at reducing the spread of the pandemic are far more
complicated than merely murdering adjacent happy neighbors. Most dev-
astatingly of all, our society surely is not a one-dimensional outer-totalistic
cellular automaton operating on a fixed population.

Instead, the aim of this model was to generate with the simplest pos-
sible mechanism the possible effects of government intervention vs. non-
intervention. With a simplest-model approach, the goal is not to provide
immediately actionable policy implications but rather to explore, illustrate,
and compare counterfactual scenarios in a deterministic but computation-
ally irreducible model.

A computationally interactive version of this paper is available.
Future extensions can explore higher radii, incorporating randomness

or time delays in pandemic deaths or government regulations, allowing
for changes in the evolutionary rules, and extending the voting forecast
window.

As a general explanation, these illustrations and explorations suggest
that a society can be automatically robust to an external attack such as a
pandemic but that attempts to tweak the evolution in the name of safety
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may in fact make the society more fragile overall. Such government inter-
ventions will at first have widespread support but eventually people will
have regretted allowing the government interventions in the first place.
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Non-pharmaceutical interventions (NPIs) such as testing, contact trac-
ing, public use of face masks and other personal protective equipment
(PPE), curtailing of super-spreader events can be effective tools to keep
the spread of COVID-19 at bay. A repetitive rapid testing protocol is
explored as a public health strategy. An agent based model is used
to analyze its viability and its response to changes in parameters and
conditions.
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1 Introduction

During an outbreak of contagious disease that shows the potential for sys-
temic harm,1 there may not be known pharmaceutical agents (i.e. ther-
apeutics and vaccines) that are sufficient for mitigating the spread of the
disease or its physiological impact, and therefore the damage it causes to
individuals and society.

Moreover, there is no way to know a priori the time horizon on which
such pharmaceuticals may be discovered or developed. Consequently, non-
pharmaceutical interventions (NPIs) are key tools in limiting the spread
and inducing the decay of contagious pathogens, and ideally should be
sufficient for managing and extinguishing an outbreak in the absence of
effective pharmaceuticals.

NPIs ultimately aim to constrain interactions between individuals such
that those who are contagious become unlikely to amplify or spread a
pathogen in aggregate. This has manifested in various forms historically
both within and across outbreaks. For instance during the ongoing COVID-
19 pandemic alone we have observed, non-exhaustively: general travel
restrictions and travel-associated quarantines, reduction in normal societal
activities (e.g. business closures and event cancellations), PPE usage such
as masks, sanitary cordons, forced isolation of individuals, and so-called

1We operationally define systemic harm as harm that would be damaging at the societal
scale by inducing insufficiency of essential resources e.g. hospital overruns or food supply
shortages or harm that is otherwise deemed to represent an intolerable increase in likely
personal harm to a large set of individuals.
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"lockdowns" which aim to limit the mobility and behavior of all individuals
across some region to a greater or lesser degree [1, 2].

Without the ability to test individuals for infection, NPIs must either
be applied uniformly, impacting both the infected and uninfected alike, or
otherwise depend on detection of symptoms which are unreliable as a sign
of infection and contagiousness. Hence, testing directly for infection ought
to be viewed as a means of modifying and enabling NPI tactics, and not
only as a way of tracking the progression of an outbreak or verifying the
existence of individual symptomatic cases.

The development of cheap, rapid tests opens the door to a new non-
pharmaceutical intervention consisting of massive, frequent testing through-
out the population. These kits costing no more than US$5 do not require
the assistance of a health worker. The user can obtain the result in fifteen
minutes. Used in combination with a mobile application, the individual
can obtain a temporary digital health pass that can be validated by third
parties (workplaces, churches, schools, etc).

This paper will explore the validity of a massive high frequency testing
strategy (which we’ll refer as the ’strategy’) in a population via agent-based
modeling. We’ll investigate the viability of this strategy to changes in
the parameters of the disease, the testing protocol and the sensitivity and
specificity of the tests.

Section 2 describes the types of tests that are available to detect if an
individual is infected by the COVID-19 virus. Section 3 provides the details
of the agent-based model used to simulate the results of implementing the
strategy on a population. Section 4 will cover in detail the algorithm used to
implement the model. Section 5 will analyze the results obtained through
the execution of the model with a focus on understanding how the different
parameters affect the success of the strategy and will share our conclusions
regarding the viability of this strategy as a public health option.

2 Types of diagnostic tests available

There are two different categories of tests for the COVID-19: antibody tests
and diagnostic tests.

Antibody tests look for antibodies generated by the immune system
upon exposure to the COVID-19 virus. As these antibodies are a response
to the infection of the pathogen, this type of tests measures the presence of
the virus indirectly. It can take several days, up to weeks, for the antibodies
to reach levels above the threshold of detection. Therefore these tests are
not used to diagnose COVID-19, but to assess the individual’s immunity to
the virus.

Diagnostic tests are used to determined if the individual is undergo-
ing an active viral infection. As of January 2021, there are two types of
diagnostic tests approved in the market: molecular tests and antigen tests.
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Molecular tests

The molecular tests identify a part of the viral genome in the respiratory
tract specimens. The current gold standard for COVID-19 diagnosis is the
reverse transcriptase-polymerase change reaction (RT-PCR). The test de-
tects amplified COVID-19 genome residing in the specimen. This test can
take between 4 and 10 hours from sample to result, but due to the logistics
of testing execution, which requires specialized equipment found in major
laboratories or well-equipped hospitals, it takes approximately 3-5 days to
be reported back to the patients. The current cost of this test is between
US$60 and $300. RT-PCR works by amplifying specific COVID-19 genomic
sequence(s). Viral RNA is extracted from the patient’s specimen and is
purified. This RNA is then converted into a cDNA (complementary DNA)
by reverse transcriptase. It is the cDNA that is subsequently amplified
by the PCR. TaqMan probes are used to quantify the RNA copies by pro-
ducing a fluorescence signal during the amplification cycles [3]. There are
two additional molecular test technologies under development: isothermal
amplification (LAMP) and CRISPR-based tests. Both are in late stages of
development will be in the market soon.

Searching for information on the type I error (false positive), the median
error reported between 2.3% and 5%. Regarding type II error (false nega-
tive), the literature reports a 67% median 4 days after the infection, drops
to 38% at the beginning of the symptoms with the low 20% reached 3 days
after the onset (approximately 8 days after the onset of symptoms) [4].

Antigen tests

Antigen tests also work by taking nasal or nasopharyngeal specimens in
order to detect specific proteins from the virus. These rapid antigen tests
(RATs) do not require specific and expensive machinery and can provide
results in less than 30 minutes. These tests tend to be less sensitive than the
molecular tests discussed above, but can be massively produced at a lower
cost than the RT-PCR.

On August 26th 2020, the US FDA issued an Emergency Use Autho-
rization for a $5, 15 minute, Covid-19 antigen test, that requires no instru-
mentation and can be self-administered by the patient.This type of test can
be paired with a complementary phone app, allowing the user to display
their test results with other people or organizations such as conventions,
churches, workplaces and schools. The rapid test exhibits a demonstrated
sensitivity2 of 97.1% and specificity3 of 98.5% in clinical study. In the liter-
ature, sensitivity is also referred as positive agreement while specificity is
known as negative agreement. This will allow us to calculate the false neg-
ative error in the rapid test. False positive for the RT-PCR test is estimated

2Sensitivity measures the proportion of positives correctly identified.
3Specificity measures the proportion of negatives correctly identified.
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Figure 1: False negative ratio drops to a floor of 20% after 8 days from contagion.
The false negative in the rapid test is estimated to be 22.1% [4].

to be 7.3%. Given that the specificity is 98.5%, we can estimate the rapid
test false positive rate to be approximately 8.7% [5].

3 Exploring the different scenarios with agent based mod-
eling

Model description

The availability of a rapid test that can be performed by any individual
without the intervention of a health worker opens the possibility to allow
for events or locations where people gather. By performing the test, and
certifying through a mobile application that the user has no detectable anti-
gens, the person might then be allow to engage with others in a close space
event.

The scenario described above would require the following protocol:

• An individual would submit to a rapid test to determine the presence
of antigens on a periodic basis.

• In the case that the test returns a positive result, the individual would
move to isolation and will perform a detailed RT-PCR slow test to
determine if the individual remains infectious or not (the rapid tests
shows only if the person was exposed to the virus).

• People fully recovered will not need to be submitted for further test-
ing. The CDC does no longer recommend a test-based strategy for
discontinuing the isolation of most patients [6].
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• It is expected that a certain ratio of individuals will break the protocol
outlined above: a fraction of individuals that will avoid being tested,
a different rate of will not comply with the quarantine mandate.

Compartments

Epidemiological modeling splits the host population into different classes
based on their exposure to the pathogen and actions taken by the agents
[9].The hosts are grouped into different compartments:

• Susceptibles (S): the host is not infected but could become infected
when in contact with an infected host.

• Susceptibles Quarantined (SQ): host is not infected and is isolated from
the rest of the population.

• Exposed (E): also known as latent infection. The host has contracted
the pathogen but cannot transmit it yet. The host does not exhibit any
disease symptoms.

• Exposed Quarantined (EQ): exposed host that is isolated from the pop-
ulation.

• Infectious Asymptomatic (IA): the host has a high pathogen load and
can transmit the pathogen to other agents. Host does not exhibit any
symptoms of the disease. Members of this compartment interact with
susceptible agents as under a normal pattern of behavior. Members of
this compartment can potentially transmit the disease to susceptible
hosts in the newtwork.

• Infectious Symptomatic (IS): the host has a high pathogen load and can
transmit the pathogen to other agents. Host exhibits symptoms of the
disease. Agents are not under quarantine being a potential vector of
contagion to susceptible agents.

• Infectious Asymptomatic Quarantined (IAQ): infectious asymptomatic
agents isolated from the rest of the population. These agents are
under quarantine restrictions. Their isolation reduces the probability
of infecting susceptible agents.

• Infectious Symptomatic Quarantined (ISQ): infectious symptomatic agents
isolated from the rest of the population via quarantine protocol. By
isolating, these agents contribute to the reduction of the force of in-
fection against susceptible agents.

• Recovered (R): the host is no longer able to infect other individuals and
is no longer susceptible to be infected by the pathogen.
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Parameter Description

β Contact Rate: transmission probability per contact established.
r Quarantine attenuation factor: ratio affecting the contact rate

when the host is under quarantine. We’ll use of factor of 0.2.
lp Latency Period: time between contagion and infectiousness.
ip Infectious Period: time span infectious onset and recovery.
ar Asymptomatic Ratio: fraction of the infected population

that show no symptoms of the disease.
trq Rapid Testing Execution Ratio: fraction of the population

taking the rapid test.
trsS Slow Testing Ratio Symptomatic: fraction of the infected symptomatic

hosts taking the PCR test.
trsA Slow Testing Ratio Asymptomatic: fraction of the infected asymptomatic

hosts taking the PCR test.
qr Quarantine Compliance Ratio: fraction of the hosts that will comply

with the quarantine mandate.
f ps False Positive Ratio RT-PCR test: ratio of tests turning a false positive

result when the test should have been negative
f ns False Negative Ratio of the RT-PCR test:ratio of tests turning a false

negative result when the agent is indeed carrying the virus.
sensitivity Sensitivity of the rapid test compared to the RT-PCR Test.
speficifity Specificity of the rapid test compared to the RT-PCR Test.
tMax Maximum time frame: maximum number of time steps to run the model.
g Contact Network: graph representing the contacts between agents.

Each vertex represents an agent, or host.
Each edge is represents the contacts between agents.

timeSlowTestWait RT-PCR Wait Time: average turnaround time to receive the lab test
results for RT-PCR tests.

time2SlowTest Delta Time between fast and low tests: time elapsed between the execution
of the rapid test and the execution of RT-PCR test.

f ti Fast Test Interval: Number of days between fast tests.

Table 1: List of parameters describing the ABM model used for rapid testing.

Parameters

Our model can be analysed and its viability appraised by the use of param-
eters, variables that determine the rates of movement of agents between the
different compartments in the model (Table 1).

4 Algorithm

The compartmental model described above can be translated into a set of
rules and procedures in a computer language. In our case, we decided to im-
plement the algorithm in the Wolfram Language (https://www.wolfram.
com/language/). Please see the supplemental material for the actual code
utilized.
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Algorithm 1: ABM Algorithm
Result: Matrix of N = 1000 columns, each node symbolizing an

agent and tMax = 360 rows portraying the state of each
agent at time t.

Generate a Watts-Strogratz random graph of 1000 nodes, rewiring
probability 0.04 and 18 degrees;

Determine the neighbors of each node;
Set up the initial status of each node to susceptible;
Set up three random nodes as infected (asymptomatic);
Determine the latency period (lp) of each node based on a
log-normal distribution of 3 days and σ = 1.35;

Determine the infectious period (i) of each node based on a
log-normal distribution of 10 days and σ = 1.35;

while t <= tMax do
/* Identify agents to be infected by the pathogen */
Identify agents in each compartment;
Determine which non-quarantined susceptible agents are
infected by non-quarantined infectious agents;

Determine which quarantined susceptible agents are infected by
non-quarantined infectious agents;

Determine which non-quarantined susceptible agents are
infected by quarantined infectious agents;

Determine which quarantined susceptible agents are infected by
quarantined infectious agents;
/* Perform tests, recovered agents do not need to
test */

/* Perform Fast Tests */
Determine the agents in each compartment that comply with
testing protocol;

Identify test results for each agent;
Assign false negative results randomly as per rates;
Assign false positive results as per rates;
/* Perform RT-PCR (Slow Tests) */
Determine agents requiring slow tests;
Assign false negative results randomly as per rates;
Assign false positive results as per rates;
Determine timestamp for results of test;
/* Transfer agents across compartments */
Move exposed agents into corresponding infectious
compartments;

Move infectious agents into recovered compartments;
Determine agents that need to be moved in and out of
quarantine;

Update metric records;
t+ = 1;

end
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Code initialization

In this section of the code we proceed to create a matrix in which each
column will represent the status of each agent, while each row, will represent
the status of each agent of the network at a given timestamp. Each state
(compartment that the agent belongs to) is represented by an integer. We
generate a random small world graph to represent the contact network of
1000 agents. In order to optimize the code execution time we proceed to
calculate up front several objects that can then be retrieve from memory
during the main code block:

• We determine the list of agents that are in contact with each specific
agent (neighbors).

• Agents are set as susceptible outside quarantine (compartment S).

• Three agents at random are moved to the infected asymptomatic com-
partment (IA). This will provide the seed for contagion across the
network.

• We calculate the latency period (time that each node will stay in the
Exposed compartments). Value is pulled from a log-normal Distri-
bution with µ = 3 days and σ = 1.35. Selected values are based on
estimations found in the literature [7].

• Similar calculation is performed for the infectious period using a log-
normal distribution with µ = 10 days and σ = 1.35 [7].

Main Block

The main block of the program consists of a loop that will be executed from
t = 0 to t = tMax − 1. Figure 2 details the calculation used to move agents
across compartments.

• Identify agents to be infected by the pathogen.

– Determine which non-quarantined susceptible agents get in-
fected by the pathogen. Non susceptible agents can be compro-
mised by quarantined and non-quarantined agents. The proba-
bility of getting infected by each contact with a non-quarantined
infected agent is represented by a Bernoulli distribution where
the probability p determined by:

p = β

– The probability of a non-quarantined susceptible agent to get
infected by quarantined infected agent is affected by quarantine
infection factor r, this is the same probability of a quarantined
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susceptible agent to be infected by a non-quarantined infected
agent.

p = βr

– In the case that both the susceptible and the infected agent are
quarantined, then the probability of contagion:

p = βr2

• Move agents based on results of rapid testing. Agents that are not
in quarantine status will be taking a rapid test based every f ti days.
Not all agents will comply with the rapid testing protocol. A specific
agent will perform the rapid testing with probability trq.

– Susceptible and Exposed agents (S / E) would be moved to quar-
antine if the test provides a false positive result with probability
f pq.

– Infected Agents that are not in quarantine (IA / IS) will be those
where the test performs as expected, probability p = 1− f nq+ f pq.

• Agents that are quarantined due to the rapid test positive result will
perform a slow test (RT-PCR) to confirm if they are indeed infected.
The algorithm keeps track when the quarantined agents are due to
get a slow test based on parameter timeSlowTestWait = 4.

– Susceptible and Exposed agents in quarantine (SQ / EQ) will only
remained quarantined if the RT-PCR test result is positive due to
a false positive with a probability f ps.

– Infected agents in quarantine (IAQ / ISQ) will be removed from
quarantine if a false negative result comes from the RT-PCR test
with probability f ns.

• Transfer agents across compartments.

– Move exposed agents into the corresponding infected compart-
ments. Agents will be moved if the latency period lp assigned
during initialization has been reached. The probability of being
asymptomatic is represented by parameter ar.

– Move infected agents into the recovered compartment based on
the corresponding infectious period ip assigned during initial-
ization has been reached.

• Metrics corresponding to time t are calculated and stored in a data
frame.
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Parameter Min Max Rationale
Contact Rate (β) 0.02 0.1 Current estimate of the Reproductive Rate <0 of COVID-19 is

around 2.2. Given our estimation of an infectious period of 10
days and the regular degree of the network is 18, the min-max
values put the observed<0 within the interval of interest.

Rapid Test Compli-
ance (trq)

0.6 0.8 We expect that not everyone will comply with the testing proto-
col. This range is our best estimate.

Quarantine Compli-
ance (qr)

0.6 0.9 There are some surveys asking individual if they would comply
with quarantine mandates. The figure is around 0.8 for the UK.

Sensitivity of Rapid
Test

0.771 0.971 Product specifications [8].

Specificity of Rapid
Test

0.805 0.955 Product specifications [8].

Testing Interval
(days)

1 7 We want to explore the frequency range between daily and
weekly.

Table 2: Parameters used on the simulations.

Execution

Each batch of simulations is composed of 16 runs, the parameters used on
the simulation and the compartmental temporal data is saved for analysis.
Each batch was created by exploring the range of parameters listed in Table
2.

We can review the output of a simulation batch run to gain a better un-
derstanding on data obtained. Figure 3 presents a snapshot of the state of
each agent during the each time tick of the simulation. Tallies can be made
of each compartment along the temporal dimension. For our analysis, we
are interested in the fraction of the population that remains susceptible at
time tMax. We also keep track of the fraction of the susceptible population
that remains in quarantine. The fraction of susceptibles at the end of the
simulation run is a measure of the effectiveness of the strategy, given the
parameters under which the simulation has been performed. The propor-
tion of the susceptible population forced into isolation by quarantine will
measure the negative impact that the false positive ratio of testing will inject
into the strategy.

5 Discussion and conclusions

For each batch of parameter configurations, we collected the mean and
standard deviation of the final fraction of susceptible at the end of the
run. A high fraction of susceptible and quarantined susceptible at the end
of the simulation run indicates that the strategy has been successful to
contain the spread of the virus through the contact network. The fraction
of the quarantined susceptible will provide a measure of negative impact
to the reduced activity on the network due to isolation of these agents. We
proceeded to analyze how this final metric is affected by the changes on key
parameters.
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(a) This matrix plot tracks each agent’s status (column) across the simulation
run. The colors represent the compartment where the agent is located. Suscepti-
bles (S), susceptibles quarantined (SQ), exposed (E), exposed quarantined (EQ),
infected asymptomatic (IA), infected asymptomatic quarantined (IAQ), infected
symptomatic (IS), infected symptomatic quarantined (ISQ), recovered (R).

(b) Agents on each compartment can be tallied at each time snapshot and ag-
gregated into time series. In the chart above, we can see the fraction of the
population under each compartment group.

Figure 3: Example of results for a simulation run.
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Figure 4: Impact on the remaining fraction of susceptibles on changes in the values
of the frequency of testing, quarantine compliance and contact rates. 1 represents
daily testing, 7 weekly, 0 represents only RT-PCR tests. Analysis performed for
rapid test execution ratio = 0.8 and rapid test sensitivity = 0.971 and specificity =
0.955.

Frequency of rapid testing and quarantine compliance. Figure 4 shows the
how the fraction of susceptible at the end of the simulation run is affected
by not only the frequency of testing, but also by the quarantine compliance
ratio and the contact rate β. Daily testing is key to the success of this strategy,
but as the contact rate of the pathogen increases, this strategy quickly ceases
to be of use. Recall that the reproductive rate of a disease is proportional
to the contact rate and inversely proportional to the infectious period [9].
We can observe that the quarantine compliance ratio helps extend efficacy
of the rapid testing. Beyond a certain value of the contact rate, a complete
different strategy would be needed.

Rapid testing Compliance. Figure 5 shows the sensitivity of the strategy to
changes of the fraction of the population willing to perform daily testing.
This factor increases its importance as the contact rate of the pathogen
increases in value, but beyond a certain threshold of the infectiousness of
the disease, higher levels of compliance will no longer have an effect in
making the strategy more successful.

Specificity. The rapid test specificity measures the ability of the test to
generate a negative result for those individuals that are not infected. In
other words, a 90% specificity will return 10% of false positives for those
agents that are not infected by the disease and should have received a neg-
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Figure 5: Sensitivity analysis on the remaining fraction of susceptibles based due to
changes on rapid testing execution ratio, quarantine compliance and contact rates.
Analysis performed for daily testing frequency, rapid test sensitivity = 0.971 and
specificity = 0.955.

ative test back. Figure 6 indirectly shows the value of reducing the force
of infection in the population. A higher level of false positives puts more
agents in quarantine, affecting the contact rate as a minimum by the quaran-
tine attenuation factor. This indicates that for more contagious pathogens,
other types of strategies would need to be explored. For example, complete
lockdown of a hot spot region with a cessation of activities for two infec-
tious cycles and complete testing of the population would be able to cull
the epidemic. This type of drastic strategy might not be acceptable to the
population, but could be the only available tool that a society can use in the
case of a highly contagious disease.

Sensitivity. The rapid test sensitivity affects the fraction of false negatives
that the test generates. A test with 90% sensitivity will result on 10% of the
tests providing a false negative result. This means that 10% of the agents
that should have received a positive result back will get a negative test
result. It is an interesting observation that the results observed do not have
a high impact on the success of the strategy. The daily frequency of testing
could explain the reduced effect of in the success of the strategy for a test
with a lower level of sensitivity, due to the assumption of independence of
a false negative test on an individual from prior tests performed, then the
probability of n consecutive false negative tests would be (1 − sensitivity)n.
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Figure 6: Impact on the remaining fraction of susceptible on changes in the values
of the rapid testing specificity, quarantine compliance and contact rates. Analysis
performed for daily testing frequency, rapid test execution ratio = 0.8 and specificity
= 0.955.

Figure 7: Impact on the remaining fraction of susceptible on changes in the values
of the rapid testing sensitivity, quarantine compliance and contact rates. Analysis
performed for daily testing frequency, rapid test execution ratio = 0.8 and specificity
= 0.955.
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Figure 8: Relationship between the quarantined susceptible population vs. total
quarantined population. Analysis performed for daily testing, rapid test execution
ratio = 0.8, quarantine compliance = 0.9, specificity = 0.955, sensitivity = 0.971.

Overall impact on the mobility of the population. Figure 8 shows that ap-
proximately 41% of the susceptible population would be in quarantine if
this strategy is implemented. The daily frequency of testing and the in-
evitability false positive results inherent to the diagnostic test causes such a
high fraction of the susceptible population to have to be mistakenly placed
in isolation.

We can conclude that a strategy of massive repetitive testing using rapid
diagnostics has several hurdles to overcome. We have observed that a
highly infectious disease would overwhelm the system, the high frequency
of testing would not be sufficient to control the spread of the pathogen
through the population. A false positive rate of 8.7% that we can expect from
this type of tests can drive 2/5 of the susceptible population into unnecessary
isolation. Quick, cheap tests still have an important role to play beyond the
strategy discussed on this paper. The faster the test results are obtained, the
sooner an infected person can be placed under the appropriate treatment
guidelines.

6 Supplementary Materials

The Wolfram Language code can be found inhttps://github.com/dzviovich/
COVID-RapidTest.
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We apply a recent alignment-free method of genomic comparison to
sequences of SARS-CoV-2 as well as other sequences from the Coro-
naviridae family. We show that this method, while approximate, can
enable fast and accurate classification. We illustrate how it might be
applied in the search for the possible intermediary host or hosts. We
also use this methodology at a finer level, to create a phylogenetic tree
from SARS-CoV-2 sequences taken over a period of time and from ge-
ographically distinct locations. This can help to determine routes by
which the disease has traveled and also help to chart the course of
mutations both in time and geography, thus providing useful infor-
mation in the realms of epidemiology and public health policy. As
an important application we analyze geographical locations in which
certain more infectious variants have appeared. By comparing fraction
of variant appearances against date of collection we can estimate the
rate at which such variants are spreading.

Keywords: Alignment-free methods, genome comparison, SARS-CoV-
2, chaos game representation, phylogenetic tree, dimension reduction,
multidimensional scaling.

1 Introduction

Since it was first diagnosed in early December of 2019, and sequenced
in late December of that same year, the SARS-CoV-2 virus and its atten-
dant COVID-19 pandemic has spread across the planet. Over this time
period there have been innumerable studies of its various features. These
include (but are by no means limited to) the physics of transmission, the
biochemistry of its inner workings, epidemiology of the spread and various
mitigation policies, vaccine research and protocols, therapy studies, and
genomic classifications. This last is the topic of this paper. Within this sub-
field alone one finds again a wide variety of methods employed, including
alignment-based comparison to existing coronavirus genomes, alignment-
free comparisons, searches for possible reservoir hosts or common genetic
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ancestors, and so forth. We will utilize a particular alignment-free compar-
ison method developed by the author in [15]. This in turn has roots in prior
work such as [1, 4, 9–11, 14, 19, 21–23].

A key idea behind the method is to capture some aspects of the se-
quences, perhaps as images or numeric vectors, and apply image and/or
signal processing methods in a way that is fast and allows for distance-
based comparisons. One family of methods, seen in the above references,
uses the Frequency Chaos Game Representation (FCGR) [1, 4] (based on
earlier work by Jeffrey [9]). This creates images with certain fractal proper-
ties that capture frequencies of k-mers for modest values of k. A number of
different processing methods have then been deployed in order to classify
these images; references [1, 4, 10, 11, 21–23] how several of these and also
give some indication of their variety.

As described in [15], our method starts with these FCGR images. We
reduce dimension by applying a Fourier Discrete Cosine Transform (DCT)
to each image matrix, retaining only low frequency components. We then
flatten the resulting matrices into vectors and use the Singular Value De-
composition (SVD) to further reduce dimension. The vectors that result
from this are used in clustering, both by Multidimensional Scaling (MDS)
and by creating phylogenetic trees. This can be applied to inferring taxon-
omy information for new sequences, given a reference database for known
genomes [21, 22].

The importance of the present work is that it involves fast computations,
capable of working with hundreds or thousands of genomes at a time. It
avoids the much slower construction of genome pair alignment distances
and thus provides a set of tools that can rapidly home in on interesting
clustering or other features. This in turn allows one to observe trends over
time or across geographic locations that might be much more troublesome to
compute at scale with alignment-based methods. Moreover these methods
can provide rapid information that might be used to direct efforts that would
require more time- or resource-consuming methods.

The outline of this paper is as follows. We first review the methods
from [15] in order to make this work self-contained. After that we apply it
to get a broad classification of SARS-CoV-2 specimens in the Coronaviridai
family, showing, among other things, nearest neighbors found to date in
databases. We then show how one might find progressions of variants
across both time and geography. We use this approach to show proximity
to recently discovered variants that have been shown to be particularly
infectious. We further investigate the spread of one such variant in certain
locations.

A powerful set of related methods appears in [19], with strong result
shown for several tests both in species recognition and phylogeny tree
construction (which the authors have made available for benchmark pur-
poses). The tandem of FCGR and SVD is used in [22] on a set of 400 of
Human Papillomavirus (HPV) genomes from 12 strains, where it attains
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perfect classification at the strain level (this data set was also classified with
no errors in [15]).

Recent work on this topic has appeared that uses related methods. In
[2, 8, 12, 16, 18, 25, 26] there are analyses and genomic comparisons to infer
how SARS-CoV-2 is related to other coronaviruses and also to show nearest
known genomic relatives. In [7] alignment-free methods are used to group
variants of SARS-CoV-2 by geography. References [6, 13, 17] analyze the
spread of recent variants P.1, B.1.1.7 and B.1.351/501Y-V2 from Brazil, the
United Kingdom and South Africa, respectively.

All computations herein were performed using version 12 of Mathemat-
ica [24]. These were run on a desktop machine with a 3 GHz processor, 16
Gb RAM, running under the Linux operating system. Wolfram Language
code for all experiments is available at https://notebookarchive.org/id/2021-
02-5kj28s7. Sequences utilized were obtained from GenBank [3] and GI-
SAID [5, 20]. Sequence accession identifiers and related metadata are pro-
vided in the supplemental section. We thank the creators and maintainers
of those sites, as well as the many laboratories around the world that have
collected, sequenced and contributed the genomic data.

2 Methods and materials

The method we use converts genome sequences into numerical vectors of
length 40. The details, including a complexity analysis, are provided in [15].
In brief, we convert each sequence into an image matrix using the FCGR,
and reduce matrix dimension by applying the Fourier DCT to each such
image with the mean subtracted. Once all genomes have been processed in
this way, we flatten the reduced matrices into vectors and apply the SVD
to further reduce dimension. We now have vectors of length 40. We use
these in two ways. One is to reduce to two or three dimensions by MDS,
as this allows us to visualize a good estimate of relative proximities. The
other creates phylogenetic trees as dendrograms based on vector distances.
We elaborate on these steps below.

Frequency Chaos Game Representation

Given a genetic sequence, a method to convert to an image was presented
by Joel Jeffrey in the late 80’s [9]. Label the corners of a square with the
four nucleotide bases. One starts in the middle of the square. Reading
the sequence, we mark a dot midway from current position to the corner
labeled with the next base. A modest refinement, used herein, in effect
discretizes the CGR and is called the Frequency Chaos Game Representation
(FCGR) [1, 4]. Here one “pixelates” with a square of side-length equal to
a power of two. We illustrate in Figure 1 using a SARS-CoV-2 genome
sequence and three other coronavirus sequences, using sides of length 27

(that is, a pixelation level of 7). This has the effect of creating a fractal-like
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Figure 1: FCGR images clockwise from upper left: SARS-CoV-2 reference sequence
(Wuhan), RatG13, Pangolin isolate MP789, SARS-CoV BJ182b

pattern since each dot represents a nucleotide sequence of length 7, and
subsquares capture suffix subsequences from their parent square.

CGR images have been studied in a number of ways and have some in-
teresting properties. FCGR images have been found to be particularly useful
in genomics. This derives from the empirical fact that similar genomes tend
to show similar fractal-like patterns (up to the degree of resolution from the
pixelation).

Discrete Cosine Transform

Dimension reduction using the Fourier DCT will give rise to coarser images.
In effect, higher frequency detail is removed from the images, leaving the
coarser main frequencies. We illustrate in Figure 2 (for purposes of visual
comparison with the original images we transform back using the inverse
DCT).

Singular Values Decomposition

After reducing dimension by Fourier DCT, we further reduce using the
SVD. This step requires the full set of sequences on which we work, so we
use here the 72 sequences from experiment 1 (to be described below). The
result will be vectors of 40 elements, and from that we can reconstruct the
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Figure 2: Images from Fig. 1 with dimensions reduced by Fourier DCT

reduced dimension images. We show this in Figure 3, again using the same
four sequences.

What we have after these steps is a lossy, but nonetheless useful, repre-
sentation of a set of genomic sequences. They act as a set of “signatures”,
with the nice property that genomic relatives can be discerned as numeric
vector relatives using any suitable distance function; for our purposes, the
usual Euclidean distance does quite well [15]. Because they are relatively
short they can be used for purposes of look-up via kD trees (see [15] for
further details). Our use below will be to gauge relative proximities of
genome pairs and clusters.

Multidimensional Scaling

We use these signature vectors below in two important ways. One is to
derive three dimensional visualizations of genome “proximities”. For this
purpose we apply a further dimension reduction using MDS. It too is based
on SVD. In effect it projects from higher dimensions in a way that optimally
preserves pairwise distances. The resulting picture is useful for noticing
trends, particularly if the dimension-reduced points are colored in a way
that represents temporal or geographical relationships. In our uses the
colors will be based on time, specifically, the dates in which the genome
samples were obtained.
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Figure 3: Images from Fig. 2 with dimensions further reduced by SVD

Phylogenetic Trees

Our other use of these signature vector sets is for constructing phylogenetic
trees. This is accomplished by looking for closest neighbors in terms of dis-
tance (again, we use Euclidean, but others such as cosine work well). Each
pair is made into a branch, with edge length scaled to be commensurate
with the distance. The pair is replaced by its center, and the process con-
tinues. In the tree that results, all branches that are not terminal split into
a pair of subtrees. The resulting trees group close sequences as neighbors,
and relative genomic distance for a given pair can be inferred by lengths of
branching from the nearest common split. Our layout of these trees will be
from left to right, that is, tree root on the left, increased branching as we go
left-to-right, and sequences on the right.

Code

All code used in the experiments below is available in a Mathematica
notebook from https://notebookarchive.org/id/2021-02-5kj28s7. The code
is fairly straightforward. Technical functions used are FourierDCT and Sin-
gularValuesDecomposition. It also makes use of several functions found
in the Wolfram Function Repository. They are ImportFASTA, Phyloge-
neticTreePlot, FCGRImage and MultidimensionalScaling. It also uses data
downloaded from the GISAID web site. The experiments and supplemental
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information indicate when the downloads were done and what sequences
(by accession ID) were used.

Data

Our data is taken from the NCBI resource GenBank [3] and from the GISAID
web site [5, 20]. We downloaded many sequences from each, and further
manipulated to color code by date, geography, or for other distinguishing
features. Data from GenBank is publicly accessible via the Wolfram Data
Repository, and code for this purpose may be found in the notebook. All
accession IDs are provided in the supplemental section.

3 Experiments

Near Relatives of SARS-CoV-2

Once the SARS-CoV-2 genome was first sequenced (before it even had this
name), a natural topic to investigate was whether it was either already a
known disease or, if not, where it fit into the spectrum of relatives. Several
studies have appeared on this topic, including [2, 12, 16, 18, 25, 26] and the
very recent preprint [8]. We use many of the sequences that appear in
these studies as well as several others, in order to deduce approximate
relatives. While some of these go further in terms of localized comparisons
and analysis of genome differences, they involve more costly methods.
Once the sequences have been obtained from GenBank and GISAID, our
code takes but a few seconds to produce the phylogenetic tree of Figure 4.
The colors are as follows. Early SARS-CoV-2 genomes are black. Genomes
that have been claimed as close relatives are red. MERS and related are
green. SARS genomes are blue. Bat SARS and related are purple.

The phylogenetic tree in Figure 4 is quite similar to others that have been
published, and in particular has similar placing as in [8] of the closest known
relatives, represented by RaTG13, the recently sequenced RshSTT200, and
prior known relatives from bat and pangolin specimens. We see moreover
that closer relatives are grouped together and, in particular, the SARS-CoV-2
genomes are far closer to one another than to any others.

Charting the Spread of Variants

Once the virus has had many generations to replicate and spread in geog-
raphy, it is expected that mutations will accrue, and that they will appear
at similar times, both in geographically proximate locations, with travel
patterns and dates indicating directions of spread. We show an example
where geographic isolation has been enforced, in Australia. We have 350
sequences downloaded from GenBank, dated between 2020-02-21 and 2020-
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Figure 4: Phylogenetic tree of SARS-CoV-2 and some coronaviridae relatives

10-06. We apply Multidimensional Scaling to reduce to three dimensions
and plot the locations colored by date of collection in Figure 5.

In order to understand the directions of change over time, the earlier
dates are colored reddish-brown, and they proceed to yellowish-brown,
then green, then cyan, and finally blue. From this color scheme we can see
that the first collected genomes were related, as they mostly appear near one
another near the upper left. Moreover the virus has mutated over time and
split into what appear to be distinct branches. Australia has stopped most
international entry since March of 2020 so it is likely that these mutations
largely arose within the country rather than from an influx due to travel
from other countries.

The B.1.1.7 invasion

In late November of 2020 reports emerged from the United Kingdom to the
effect that a new variant seemed to be more contagious than prior ones.
Further sequencing in December indicated that it was rapidly becoming
the dominant form of the virus in parts of England. Originally called
VOI202012/01 (for “variant of interest”), it is now known as the B.1.1.7
lineage, and has now spread to several dozen countries around the world
[17]. We obtained from the GISAID site 129 sample sequences of this lineage,
all collected in various parts of England during January 2021. Below we
show two case studies comparing sequenced SARS-CoV-2 genomes from
Ireland and Florida to these reference B.1.1.7 sequences.
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Figure 5: Spread of variants in Australia (brown-red-yellow are older than green-
cyan-blue)

The B.1.1.7 Variant in Ireland

We downloaded all sequences from Ireland listed both as complete and high
coverage and placed on the GISAID site as of 2021-02-01, with collection
dates on or after 2020-12-01. There were in total 369 such. We color by date,
with brown-yellow-red for older collection dates and green for more recent.
We color the B.1.1.7 sequences as gray dots. The 3-dimensional MDS plot
in Figure 6 indicates that several recently collected genome specimens from
Ireland are very likely in the B.1.1.7 lineage.

The spread of gray dots indicate that the B.1.1.7 lineage is itself quite
variable. This spread is also seen in the phylogenetic tree plot of Figure 7;
here we decimate the collection by a factor of eight to make it easier to read.
Again, we see that a number of sequences from Ireland fall well within
the B.1.1.7 sequences. If we restrict attention to sequences collected after
2021-01-01, then more than half appear to fall among the B.1.1.7 lineage.
Moreover, no sequence from prior to 2020-12-22 appears in this part of the
tree. So it is clear that the percentage of genomes falling into the B.1.1.7
lineage is increasing. As the most recent collection date is 2021-01-22 and
the date of download is 2021-02-01, it is almost certainly the case that the
percentage of cases in Ireland from this lineage has since increased further.
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Figure 6: MDS view of genomes from Ireland vs B.1.1.7 genomes from England
(gray)

It should be noted that, while the method we have used involves lossy
compression, it can be validated. One can, for example, use string edit
distances to show that the sequences in the tree that appear to be of the
B.1.1.17 lineage actually are. Several neighboring pairs were checked, and
in all cases the string edit distances were in the zero-to-five range. This is,
needless to say, a far slower computation than those we have illustrated
above.

The B.1.1.7 variant in Florida

We downloaded all sequences listed both as complete and high coverage,
collected in the state of Florida on or after 2020-12-01 and placed on the GI-
SAID site as of 2021-02-01. There were in total 258 such. The 3-dimensional
MDS plot in Figure 8 indicates that several recently collected genome spec-
imens from Florida are perhaps in the B.1.1.7 lineage.

A projection to three dimensions can sometimes be misleading. So again
we also construct a phylogenetic tree in Figure 9; again we decimate by a
factor of eight for readability. This tree also makes plausible that a number
of Florida genomes come from the B.1.1.7 lineage.

Using an edit distance on the Florida sequences that appear within
the B.1.1.7 lineage shows an interesting phenomenon. They tend to be
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Figure 7: Phylogenetic tree of recent genome sequences from Ireland along with
B.1.1.7 sequences (gray)
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Figure 8: MDS view of genomes from Florida vs B.1.1.7 genomes (gray)

separated by a distance in the 30-50 range. This is not terribly close, but
certainly closer than they are to most other Florida sequences (and also
typical of the edit distances between pairs from the B.1.1.7 lineage). So it
would seem likely that at least a few of these recent Florida sequences are
in fact the B.1.1.7 variant. We remark also that the genome sequence data
from Florida is relatively scant, with no new sequences appearing either in
GISAID or GenBank between 2020-02-01 and 2020-02-08.

California and variants

California is reported to have a number of cases from two strains believed
to be more virulent than the rest. They are the British B.1.1.7 and also
the B.1.429 lineage that appears to have arisen in southern California. We
downloaded from GISAID all complete B.1.429 sequences collected in Cali-
fornia since 2021-01-01 and submitted no later than 2020-02-01. There were
215 such sequences. In order to get a non-overlapping set of other recent
sequences from that state we downloaded all complete sequences collected
in California since 2020-12-01 and placed in the GenBank (rather than GI-
SAID) repository as of 2021-02-12; there were 932 such. The color scheme
for the MDS plot in Figure 10 uses blue for the GISAID B.1.429 variant,
gray for the GISAID B.1.1.7 variant, and a color range based on dates for
the GenBank sequences. The red-brown to brown-yellow to yellow-green
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Figure 9: Phylogenetic tree recent genome sequences from Florida along with B.1.1.7
sequences (gray)
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Figure 10: MDS view of December and January genomes from California vs. B.1.1.7
genomes (gray) and B.1.429 genomes (blue)

dots represent sequences collected in December 2020, with a progression to
green and cyan as we move into late January 2021.

Here we see an interesting and perhaps unexpected phenomenon. Some
earlier clusters from California lie among the B.1.429 variants. There appear
to be quite a few later sequences also in the B.1.429 cluster, while only a small
number are within the B.1.1.7 lineage. his also is seen in a phylogenetic tree
(Figure 11) constructed from these sequences (decimating by a factor of 15
for readability). This raises the question of whether the B.1.1.7 variant might
be spreading at a slower rate than was seen in parts of Europe. Another
possibility is that the raw numbers are still too low to accurately gauge
from genomes that have been sequenced, as these comprise a very low
percentage of total diagnosed cases. Perhaps in another week or two new
data will clarify the picture.

4 Discussion

We have applied an alignment-free method for the study and comparison of
genomes to many aspects of the genomics of SARS-CoV-2. We first showed
how a fast phylogenetic tree construction can separate members of the coro-
naviridae family, even beyond the subgenus sarbecovirus level. We used
similar methods to visualize the mutation spread of SARS-CoV-2 in Aus-
tralia. We then focused on three locations, Ireland, Florida, and California,
that have shown signs of a particular strain (B.1.1.7) becoming dominant
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Figure 11: Phylogenetic tree recent genome sequences from California along with
B.1.1.7 sequences (gray) and B.1.429 sequences (blue)
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(with competition from the B.1.419 strain in California). In locales such
as Ireland, where substantial genome collection and sequencing are done,
we are able to obtain quite useful information about the relative spread
rates (corresponding to levels of contagiousness) of the new vs. previously
present variants of SARS-CoV-2. This can be valuable information e.g. for
informing public policy in terms of medical preparation, immunization,
and the like. Even where raw data is more scarce we are still able to see
rough trends, as appear in the studies of Florida and California.

While not in general as accurate as alignment-based methods, we still
obtain useful information fast and with relatively low computational re-
sources. This capability can be quite important for informing and directing
further study using more expensive resources. It can moreover be applied
in situations where genome sequences might be quite long, e.g. for classify-
ing newly discovered bacterial sequences. The applications we presented
include an initial classification of the SARS-CoV-2 novel coronavirus within
the Coronaviridae family, visualizing mutation distances, and allowing to
estimate the rate at which more contagious variants become dominant in
given geographical locales. All of these are important in terms of under-
standing the viral genome and its spread. The last of the applications can
even be used to estimate relative levels of contagiousness.

It should be mentioned that these methods do come with weaknesses.
As with any lossy compression, information is lost that, in some cases,
might be important. There is also an issue of genome sequence quality.
Experiments in [15] indicate that partial segments, and “full” genomes
with unknown nucleotides (denoted by N rather than the usual A,C,G,T/U)
can be quite useful for determining genus and species. But when we get
to the level of variants of a sarbecovirus, imperfect sequences can skew
results using our methodology (in particular MDS might show pairs as
being closer than actual genetic distance would warrant). Nonetheless this
approach provides useful tools for fast analyses that may in turn suggest
areas to pursue with slower alignment-based methods.
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Multiscale quarantine social bubbles became popular mitigation meth-
ods during the COVID-19 pandemic. At the micro level, people were
asked to form their own small social bubbles to minimize infections
rates locally. At the macro level, states and countries formed travel
zones to minimize the transmission between remote locations. The for-
mation of these bubbles was often based only on infection rates, disre-
garding common mobility patterns. In this chapter we demonstrate that
the infection dynamics at different locations follow divergent growth
patterns, largely due to highly-varying mobility patterns. We examine
heterogeneity of movement and disease diffusion and propose a multi-
level quarantine strategy which accounts for human mobility patterns
and the severity of COVID-19 contagion in different areas. Specifically,
we analyze the dynamics of mobility patterns during the COVID-19
outbreak by applying the Louvain method with modularity optimiza-
tion to the weekly mobility networks obtained from SafeGraph data.
The analysis of mobility patterns helped us identify natural boundaries
of human interactions during the pandemic and observe what effect
quarantine policies and lockdowns have on mobility patterns and dis-
ease diffusion. Using the locations of confirmed cases, we also identify
natural boundaries of high risk and zero-COVID bubbles. Identifica-
tion of bubbles at multiple scales and high and low risk areas provides
policy makers with valuable information on how to optimize travel
restrictions and quarantine policies that are minimally disruptive for
social and economic activities.

Keywords: Social bubbles, COVID-19 contagion.

1 Introduction

The global spread of the 2019 novel coronavirus (COVID-19) posed many
challenges for public health professionals and policy makers in the design
of adequate intervention methods that would limit the spread of the virus.
Many of the intervention methods were targeted to restrict human mobil-
ity, especially social distancing, shelter-in-place recommendations, travel
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restrictions, lockdowns, border control, contact tracing, surveillance, and
so on. While some of these methods have proven to be effective, they are as-
sociated with high economic and social costs and cannot be imposed indef-
initely. While lockdowns are the most effective interventions, after months
of lockdowns in the spring of 2020, many countries, states, and provinces
turned to quarantine bubbles which were formed at multiple levels of soci-
eties: ranging from pandemic pods or quaranteams at the level of personal
interrelationships to bubbles within countries and between countries [33].
When done carefully, the research shows that quarantine bubbles can ef-
fectively limit the risk of contracting SARS-CoV-2 while allowing people to
have social interactions [6,32,41]. Bubbles were not limited to tourism; their
goal was also to facilitate business recoveries across multiple sectors [45].
Initially, bubbles helped their citizens to balance travel risks of the pan-
demic with the emotional, mental, and social needs of life. But later, when
the second wave of the pandemic began, COVID-19 cases started spreading
across various bubbles again, exceeding the rates that were observed earlier
in the spring.

The United States did not adopt a systematic strategy to boundaries for
travel to reduce transmission. There were temporary restrictions places
for travel that worked well in some cases such as Vermont and poorly in
others such as restrictions on travelers between New York and other nearby
states. In most cases, this was an ad-hoc process. While some states coor-
dinated their efforts and acted together, others lifted restrictions indepen-
dently [3,17] without analyzing positive tests, locations of current patients,
and not taking advantage of the mobility patterns. Moreover, data collected,
analyzed or reported about the pandemic often does not provide relevant
data for determining how to establish boundaries between highly infected
areas and areas with low infection rates. Quarantine policies and data re-
lated to the COVID-19 outbreak are based on state or county boundary lines
as evidenced by visualizations in numerous dash- boards (Johns Hopkins
University’s COVID-19 dashboard 1, New York Times Coronavirus World
Map: Tracking the Global Outbreak dashboard 2).

Travel restrictions may be adopted across state, county or municipal
boundaries, as has been done in Australia, Ireland and Portugal, or even
within cities as has been done inside Melbourne, Australia. Often these
boundary restrictions allow for essential commuters including those who
need to go to work and have been successful nevertheless. Still, we can
consider how to optimize such boundaries by considering the mobility pat-
terns in the formation of social bubbles. In this project, we consider optimal
social bubbles to be equivalent to natural segmentation patterns in mobility
data, which are also known as functional communities in economics. Social
bubbles are not new: we all used to live in the bubbles long before the pan-
demic. These bubbles were affected by new restrictive policies on mobility

1https://coronavirus.jhu.edu/us-map
2https://www.nytimes.com/interactive/2020/world/coronavirus-maps.html
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and travel. When people formed social bubbles, they generally formed
them from already existing relationships, relationships that make up the
segmentation patterns. Previous research on social fragmentation and hu-
man mobility has already revealed geo-located communities [4, 35, 46] that
exist at multiple scales [13, 20]. People in these segments (or bubbles) have
similar movement patterns and, in a self-organized manner, mostly do not
cross the borders of their communities. During the pandemic, the patterns
became modified because relationships in bubbles became more selective
than before the pandemic. Studying the changes of mobility patterns allows
us to understand the effectiveness of public health interventions and define
the risk in different areas based on the mobility of individuals.

In the following sections, we first provide background information about
previous research on functional communities and social segmentation, de-
scribe our methodology, and present the results and discussion.

2 Background Information

Mobility patterns have been of interest to economists, sociologists, and
geographers for over half a century already. At first, such patterns were
known as functional communities, which were introduced in the works
by [10, 24, 25, 28] who noticed that as mobility and connectivity of soci-
eties increase, boundaries of intensities of economic activities no longer
correspond to boundaries of cities and regions. Advancements in trans-
portation, communication and production technologies further decouple
functional spaces from physical boundaries and result in discrete patches
of economic activities that have their own distinct demographic and eco-
nomic characteristics.

Historically, functional communities have been defined on the basis
of high commuting densities (aka mobility densities). The first attempts to
better delineate functional communities were Commuting Zones and Labor
Market Areas, first developed in the 1980s [43]. Commuting Zones were
defined based on hierarchical cluster analysis and mobility data derived
from the Census Bureau’s journey to work data. Alternatively, economists
have used other delineations, such as Bureau of Economic Analysis Delin-
eations, Federal Communications Commission Delineations, Census Core
Based Statistical Areas, and Tong and Plane Delineation, that were based
on census data, newspaper circulation movements, and other data [38].

In previous research, communities were defined with the assumption
that functional communities are fixed, not dynamic, and do not change
often. With the wide availability of open data on transportation and com-
munication networks, understanding of mobility patterns has evolved and
allowed researchers to investigate dynamics of mobile communities. Trans-
portation and communication networks nowadays often serve as proxies
for capturing the extents of mobile communities. Unlike hierarchically
clustered functional communities, mobility patterns are based on human
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interactions and are derived by means of community detection algorithms
such as Louvain. Such communities change in their relative sizes and re-
organize during the switches in rhythms in the dynamical systems.

Functional communities have been used in a number of earlier studies
which concluded that such communities are valid entities for analysis of
various aspects of societies. They can be used for population projection and
discussion of economic and social outcomes [23, 27]. [30] investigated the
effect of education on local employment growth in functional communi-
ties. [16] made use of functional communities in multilevel models to show
that both compositional and contextual factors contributed to variations
in poverty rates. [2] measured the spatial heterogeneity of teen employ-
ment estimates in commuting zones. [21] assessed labor market changes
in commuting zones. [34, 36, 37] examined a wide range of demographic
characteristics in commuting zones. The role of mobile communities in the
context of public health and epidemiology has yet to be understood. Our
project attempts to fill this void.

The recent availability of large-scale datasets derived from bank trans-
action records, landline, mobile and social media has resurged interest in
functional communities and social fragmentation [14, 26, 31]. Apps and so-
cial media platforms that trace human movement in geographic space gen-
erate mobility data. Each person who moves in space and uses social media
for communication, leaves footprints in a form of geospatial coordinates.
Geo-located data sources enable direct observation of social interactions
and collective behaviors with unprecedented detail. Studies [20] show that
online communities do not exist only online: they represent communities
in the geographic space.

Mobility maps are beginning to have a broad spectrum of application
in policy making and business analytics. They help measure the impact of
advertising investments, supply chain optimization, inventory planning,
effects of restrictions (e.g., lockdowns), and much more. A number of data
startups (e.g., Cuebiq 3, UberMedia 4, SafeGraph 5, Teralytics 6) are already
succeeding at extracting useful nuggets from mobility data and offering
powerful solutions to help policy makers and business analysts make better,
data-informed decisions about business strategies, public health, logistics,
mobile strategies, and community development strategies. Our goal is to
investigate how mobility maps can be used for optimizing formation of
bubbles.

Unlike in previous studies in economics and sociology, in complex sys-
tems, we are looking at functional communities at multiple scales, assuming
that each scale captures specific patterns of interactions.

3https://www.cuebiq.com
4https://ubermedia.com
5https://www.safegraph.com
6https://www.teralytics.net
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3 Methods and Materials

Mobility Data

During the COVID-19 pandemic in 2020, mobility data became popular.
Mobility datasets capture movements of people from one location to an-
other; such data are the building blocks of functional communities. How-
ever, in early stages of the pandemic, mobility data were used only for the
analysis of aggregate trends. Aggregate trends of mobility data provided
by Google, Facebook, Apple, and Teralytics helped public health officials
keep track of the situation with mobility and COVID-19 spread in different
parts of the world. Google and Apple provided dynamics plots for changes
in mobility in different countries and states [5, 19]. Teralytics, Cuebiq, and
Facebook published changes in mobility maps [18, 22, 40], aggregated by
counties.

Functional mobile communities were not analyzed. Some companies,
however, like SafeGraph, Inc., provided pre-processed anonymized mobil-
ity data extracted from smartphone app interactions and invited university
researchers to make sense of the mobility patterns. SafeGraph’s dataset
gave us an opportunity to explore the evolution of functional communities
in the US during COVID-19. Coverage of SafeGraphs’ datasets is limited to
the US and Canada, but data aggregation for Canada is not as complete as
in the US.

To anonymize mobility data in its social distancing dataset, SafeGraph
aggregated locations of users by census block groups. Census block groups
are statistical divisions of counties and states. Block groups contain be-
tween 600 and 3,000 people, and are used to present data and control block
numbering [42]. Aggregation by block groups prevents data users from
reconstructing fine details of footpaths left by individual people. Moreover,
it does not give the full path of each individual, rather it gives links only be-
tween one main location (or home location) and other locations connected
to home, where each location is a census block group. Biases and data clean-
ing were completed by SafeGraph before the company offered datasets for
analysis. So our assumption is that the dataset is free of geospatial and
temporal biases.

By its volume, SafeGraph’s Social Distancing dataset can be consid-
ered Big Data. The dataset includes data for each day from 2019 to 2021;
each day’s data volume has more than 1GB of data. The dataset has nei-
ther geospatial polygons nor centroid coordinates; the dataset has to be
enhanced with the Census geospatial datasets. The dataset has nested re-
lationships between block groups, weights (how many people went from
home to other locations), and dates.
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Figure 1: Multiscale changes in communities in two separate weeks: a.) week of
March 8-14, b.) week of April 19-25. Colors indicate main communities; black
lines distinguish sub-communities; and similar color hues identify communities
that belong to the same mega community. Yellow circles show locations of isolated
communities.

COVID-19 Cases Data

The Novel Coronavirus (COVID-19) daily data are confirmed cases for af-
fected states reported between 21st January 2020 and 31st December 2020.
The data were collected from the reports released by John Hopkins Center
for Systems Science and Engineering. The data include confirmed cumula-
tive COVID-19 cases in the US, aggregated by counties.

Data Pre-processing

The original SafeGraph’s Social Distancing data comes in the CSV format,
grouped by days. The file sizes range from 1 to 2.5 GB. Each file describes
individual census blocks and lists links with weights (number of links) to
other census blocks that occurred on a specific day. To prepare data for the
mobility maps, we first separate all these relationships and describe them
as individual objects. Each relationship has a source, a target, the date,
and weight of interaction. Daily dataframes are combined into weekly
dataframes, grouped, and their relationships are summed. Each census
block in each relationship is augmented with central points derived from
groups of census blocks that make up a census block group. The datasets
are grouped by weeks. This aggregation reveals better patterns in data.

Mobility Network

The relational data from SafeGraph’s Social Distancing dataset is used for
the mobility network. In the mobility network, nodes represent census
block groups. Edges denote the movement of an individual from one
location (node) to another one. Here, edges’ weights correspond to the
number of people who travel between the two census block groups.
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Community Detection Algorithm

Mining communities from data is commonly associated with the discovery
of tightly connected user subgroups linked by a specific context. We analyze
the presence of communities by applying the Louvain method [12] with
modularity optimization [15] to the mobility network. Communities refer
to the regions in which nodes are more connected to each other than the
rest of the network. In the Louvain method, in an iterative process, nodes
move to neighboring communities and join them to maximize modularity
(M). Modularity is a scalar value 1 < M < 1 that quantifies how distant the
number of edges inside a community is from those of a random distribution.
Values closer to 1 represent better detected communities.

We run community detection algorithms 3 times for each time frame.
During the first run, we detect large communities, then we select relation-
ships within each large community and detect sub-communities. Finally, to
detect mega communities, we select relationships among sub-communities,
filtering out relationships inside the communities. Mega communities are
used for defining color hues on the maps. Typically, the number of mega
communities is not large, ranging from 5 to 6. For each group, we are trying
to assign similar color hues over time, so that sub-communities in Florida
and Alabama have blue shades, in the Mid-West grey, in the North-East
purple, in the South pink, and in the West from yellow to brown.

Doing community detection analysis at multiple resolutions is crucial
for understanding behavior at multiple scales. While at the country level,
dynamics of positive COVID-19 tests might appear to be increasing, at the
sub-communities level, spatial heterogeneity in dynamics can be observed:
some communities might have faster growing cases than others. The higher
the resolution, the more accurately we can assess the local risk of infection.

Dot and Polygon Maps

Census block groups, geospatial units of analysis used by SafeGraph, can
be represented as polygons or as central points. We used both types of maps
in our analysis. Dot maps are quick and easy to explore; polygon maps are
more convenient for analysis. To produce polygon maps, we assigned codes
of large communities to each polygon and then dissolved polygons based
on their names and assigned colors. Then we overlaid sub-communities
over main communities, highlighting only their borders.

4 Results and Discussion

To date, we have 16 mobility maps that show how communities changed
over time from January to the end of May and some weeks in the fall of
2020. The earlier maps are in the dot format; later maps display polygons.
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Figure 2: Communities do not fit into the state boundaries at different time periods:
a.) February 23-29; b.) April 5-11. Colors indicate main communities; yellow
boundaries show state borders.

Maps show the evolution of communities over time. In this section, we
summarize some of the insights we gained from these maps.

Maps over time demonstrate that we all lived in social bubbles before
and during the pandemic. Bubbles went through numerous transforma-
tions during the pandemic due to lockdown, shelter-in-place and other
mitigation policies. Some bubbles, however, were more affected by these
policies than others. Compare the following two maps in Figure 1.

Colors on these maps indicate main communities (bubbles); black lines
separate sub-communities; and similar color hues identify communities
that belong to the same mega community. The map on the left (Figure
1.a) shows communities from March 8 to 14, and to the right (Figure 1b.)
from April 19 to 25. The first map shows mobility patterns just before
the lockdown, and the second at the end of the 5th week of the national
lockdown. Mega community membership is very different in these time
periods. Before the lockdown, Michigan and Ohio were grouped together
with New York, while during the lockdown they merged with the group of
mid-western states. This change suggests that there was greater than usual
movement between New York City/New England, and Michigan/Ohio. Be-
fore people settled in for shelter-in-place, they moved in space. Another
difference between these two maps is that, on the first map (Figure 1a.),
Florida is in a community with New York, which suggests that there was
a significant movement between these communities too. Indeed, it was
the time of spring break and vacations; according to news reports at that
time, many students traveled to Florida. Another three communities that
changed memberships were Wyoming, Colorado, and New Mexico, per-
haps also due to increased traffic flows. Small communities in these maps
are important too; they explain spatial heterogeneity in movements, even
if none is present at the higher levels of detail.

In addition, it is important to note that the map in Figure 1a. appears
to have more isolated communities (these communities are marked with
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Figure 3: Temporal changes in sub-communities in Silicon Valley: a.) sub-
communities in the pre-lockdown week (February 23-29); b.) sub-communities
during the lockdown week (April 5-11); c.) heatmap of high-tech companies 7 that
partially explains groupings in the previous two maps. Colors indicate main com-
munities; black boundaries show borders of subcommunities. Letters and numbers
in a. and b. refer to distinct subcommunities or locations.

yellow circles). Isolated communities are separated from the original com-
munities by distance. Some of these isolates are related to trips to national
parks, others to locations of marine corps training sites, air bases, or Indian
reservations.

Both maps have large numbers of main communities (62 and 64 respec-
tively), compared with 48-54 during the pre-COVID weeks. This suggests
that the lockdown measures helped to reduce unnecessary movements and
the spread of the disease.

Mobile communities do not conform with administrative regions. Con-
sider zooming in on Western states (Figure 2): California, Nevada and
Arizona. Maps in Figure 2 show that these communities do not fit into the
state boundaries (state borders are shown as yellow lines) neither before
the lockdown in February 23-29 (Figure 2a.), nor during the lockdown in
April 5-11 (Figure 2b.), even though the number of communities during the
lockdown has significantly increased. California has 6 or 7 communities,
Nevada 3 and Arizona 4, respectively. The majority of these communities
go across the state borders. While some communities vary in size a little
bit, others often merge with other communities (e.g. Northern California
and Nevada in Figure 2a. or a large community in Southern California and
Arizona). Some of these mergers can be explained by the location of nature
zones or national parks at the fringes of these communities. With greater
visits to parks, the divide between communities dissolves.

The maps allow us to observe the breakup of the communities and sub-
communities into smaller ones over the course of the pandemic. For exam-
ple, in Figure 3 we show how the Silicon Valley community looks before the
lockdown (Figure 3.a), during the lockdown (Figure 3.b) and how the loca-
tions of high tech companies can explain these changes (Figure 3.c). Before
the lockdown, we can clearly see 5 large sub-communities. After the lock-
down was imposed, during April 5-11, the number of sub-communities has
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Figure 4: Socio-demographic maps of Silicon Valley area: a.) ethnic map; b.) income
map. Colors in 4a. indicate prevalent ethnicities at each census block group. Colors
in 4b. indicate income ranges at each census block group.

increased (we highlighted 6). Before the lockdown, the San Francisco area
was grouped together with San Mateo and Redwood City (see 1 in Figure
3a.); there were no natural boundaries between them. Palo Alto, Mountain
View, and Stanford University formed a large sub-community with San Jose
(see 3 in Figure 3.a), also without any boundaries. During the lockdown,
San Francisco separated from San Mateo and Redwood City. Stanford Uni-
versity detached from San Jose and merged with Redwood City (see b. in
Figure 3b.). The Stanford University hospital and Kaiser Permanente Santa
Clara Medical Center formed their own detached sub-communities (see a.
and c. in Figure 3b.). The pre-lockdown Oakland/Fremont community (see
4 in Figure 3a.) split into two communities in April (see 5 and 6 in Figure
3b.).

All of the above changes in bubbles are associated with the mobility
patterns, ethnic composition and income inequalities. Maps in Figure 4
show ethnic and income associations in the Silicon Valley. Compare these
maps with maps in Figure 3. It is evident from Figure 4 that San Jose (earlier
marked as 4 in Figure 3b.) is strikingly different ethnically and income-
wise from the community 3 in Figure 3b. which includes Mountain View,
Sunnyvale, and Palo Alto. Similarly, other mobile sub-communities have
not only natural breaks in mobility patterns, but also ethnic and income
contrasts.

5 Grey areas

Maps have a few urban areas that do not share any mobility data. A pair of
census block groups in Hidden Hills City, CA, (see Figure 5) is one such grey
area. Hidden Hills is a city of celebrities. It is a city where Kim Kardashian,
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Figure 5: Grey census block groups. Orange color around the grey polygon indicates
main community.

Kanye West, Drake, Justin Bieber, and Khloe Kardashian live or used to live.
SafeGraph does not have any mobility data from these block groups.

Finally, in the next set of images (Figure 6), we show cumulative COVID-
19 cases over the two week period prior to April 11, 2020. Cases are aggre-
gated by main communities (Figure 6.a) and sub-communities (Figure 6.b).
Raspberry color identifies bubbles with high contagion rates, green low, and
light-pink bubbles in between. The legends of the maps are slightly dif-
ferent because main communities are much larger than sub-communities.
While large communities are considered green when they have fewer than
20 active cases, subcommunities may have only 10 cases to be considered
green. The map in Figure 6.a shows that the majority of large communities
are highly infected and are not safe. Infection rates in their corresponding
sub-communities in Figure 6.b, however, are not spatially heterogeneous
and may include low risk areas too. The Washington state bubble, for ex-
ample, is not all high risk as shown in Figure 6.a: it includes green, red, and
white bubbles in Figure 6.b. For travel inquiries, the map of subcommuni-
ties gives information about safe bubbles where people can go for hikes or
short-distance travel amid the pandemic. For business recovery, the levels
of contagion in sub-communities should be directly translated into miti-
gation policies. Changes in shapes of communities and sub-communities
overtime give information about increases or decreases of movements to
and from communities. While some bubbles are stable over time, others go
through different transformations at the edges, or break down into smaller
sub-communities, suggesting that dynamics in those communities or sub-
communities is changing and may lead to higher infection rates within a
short period of time.

Maps in Figure 6 also inform policy makers about optimal alliances for
travel and business. Mega communities give recommendations on how
to form bubbles between states (see yellow borders on both maps). Mega
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Figure 6: COVID-19 cases over two weeks prior to April 11, 2020 aggregated by: a.)
main communities; b.) sub-communities. Colors in 6a. indicate contagion levels in
main communities; yellow lines show boundaries of megacommunities. Colors in
6b. indicate contagion levels in sub-communities; thick black lines show borders of
main communities, yellow boundaries of megacommunities.

communities include sub-communities with different levels of contagion,
letting people have places for travel and safe business within the same large
bubble.

For contact tracing, understanding these multiscale social bubbles is also
very important. It gives information about possible contagion risks. For
example, contrary to common knowledge that New York state was highly
contagious in April of 2020, coming from New York state was not always
high risk. Upstate New York, for example, was not in the community with
New York City, where contagion level was extremely high. One could have
even come from a green area in upstate New York, depending on which
bubble he or she was coming from.

6 Conclusion And Future Work

In this chapter, we demonstrated how social bubbles evolved in the United
States during the first national lockdown due to the COVID-19 pandemic in
the spring of 2020. The bubbles are characterized by spatial heterogeneities
in terms of their shapes and contagion levels: they vary by scales and do
not correspond to administrative boundaries. Besides mobility patterns, we
also identified high and low risk areas for contagion. These patterns provide
information to policy makers on how to impose travel restrictions and
quarantine policies that are minimally disruptive for social and economic
activities, and on how to analyze the effectiveness of contact tracing.

Along with data and analytical analysis, we are also considering pre-
dictive simulation models for epidemics to understand the evolution of
COVID-19 and to plan efficient management strategies. Since the 1920s,
compartment models in the form of differential equations have been pro-
posed to study infectious disease dynamics and human-to-human trans-
mission of diseases [29]. These models help to understand the effectiveness
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of interventions considered in the body of the models. These models divide
a population of N individuals into different stages such as the susceptible,
infected and recovery stages in the SIR model [9]. In the simplest form,
models consider no structure for the societies and populations are assumed
completely mixed. However, recent studies [1,7,8,44] show that geograph-
ical heterogeneity in the populations and individuals’ movement patterns
have serious impacts on the dynamic of diseases. In spatial metapopulation
models, simulations of disease spread run on a network of sub-populations
that are connected through the movements of individuals between areas.
We are taking our maps in this direction next.
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When the corona virus started to spread around the World most coun-
tries opted for strict rules and regulations. Including things like lock-
down, mandatory masks, and fines. Sweden, on the other hand, opted
for recommendations rather than rules. Partly because of tradition,
partly due to limitations given by Swedish law. As this approach was
different from most it was soon named the Swedish experiment. Living
in Sweden, I thought it would be interesting to see how the strategy
was performing. This article is an attempt to do a data driven analysis
of the Swedish measures to get the corona pandemic under control.

Method

The Wolfram Language [1] and public available data has been used to study
the impact of measures taken by the Swedish authorities in order to control
the corona pandemic, using basic data visualization.

The study was done in four different parts, in May 15, June 15, September
14, 2020, and January 28, respectively. As time progressed, I learned more
about pandemics in general and the corona pandemic specifically. That
said, except for minor bug fixes, I have opted not to update any analysis
done or conclusions made during the different stages, to give a better sense
for how my knowledge, hopefully, evolved over time. This also means that
conclusions made at one point in time might not be completely in line with
conclusions made at others. The original analysis and corresponding code
for the three initial parts can be found in the Wolfram Community post
COVID-19 - the Swedish experiment - is it working [2].

1 Analysis from May 15, 2020

The first known case of COVID-19 in Sweden, a traveller returning from
China, was reported on January 31 [3]. Five days later, on February 5, the
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Figure 1: Accumulated number of known cases of COVID-19 in Sweden, during
January 31 to March 9, 2020.

Swedish authorities announced that people returning from China should
contact healthcare [4] in case they showed any symptoms.

It took until February 25 before authorities upgraded the risk in Sweden
to high [5]. One day later, on February 26, the second case was reported [6].
This time it was a person returning to Gothenburg from Italy. The day after,
five new cases were reported [7]. One of them had been infected in Italy,
one in Germany, and one in Iran. Finally, two of them had been found
through tracing and had been infected by the one of the other known cases.
The person coming from Iran was the first known case in Stockholm. Fig. 2
shows how the initial period looked like.

On March 2, the Public Health Authority of Sweden requested that Iran
Air’s flights from Iran should be cancelled [8] to prevent spread from Iran.
The same day, they announced that the risk of encountering new cases in
Sweden was increased to very high [9]. The following day, they recommend
testing [10] all returning persons from northern Italy if they showed any
symptoms within 14 days. On March 6, the Foreign Ministry of Sweden
issued a recommendation to avoid travels to northern Italy [11]. At the
same time the number of reported cases had started to increase.

At this time, a total of 800 had been tested positive. The first death in
COVID-19 in Sweden was reported on March 11. After this the number of
deaths started to slowly grow as seen in Fig. 2.

On March 9, a total of 250 people had been tested positive, and the
day after the Public Health Authority stated that they could now see a
societal spread in Sweden [12]. They made it clear that anyone, that showed
any symptoms should limit their social interactions. Following, on March
11, a recommendation to limit public gatherings [13] to a maximum of
500 persons was issued. The same day the WHO declared Corona as a
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Figure 2: Accumulated number of deaths with COVID-19 in Sweden, during the
beginning of the pandemic.

pandemic [14] and on March 13, the Public Health Authority declared a
Sweden had entered a new stage in the fight against the pandemic [15]. At
this stage, the focus was on delaying the spread and protecting the elderly.
Sweden’s chief epidemiologist, Anders Tegnell, stated: "The important thing
is that everyone takes their responsibility and stay at home when they are not healthy
and for safety two day after one getting healthy and not shown any symptoms at
all".

One and a half month after the first case in Sweden, on March 16,
persons over 70 years were recommended to restrict their social contacts as
much as possible and a recommendation to work from home if possible was
issued [16]. On March 17, High Schools and Colleges were recommended to
switch to remote teaching [17]. The following days new recommendations
were added, including travel recommendations [18] (March 19), limitations
for restaurants [19] (March 24), and further restrictions on public gatherings,
limiting them to a maximum of 50 people [20] (March 27). As you probably
noted by now, the measures taken, except the limitations on gatherings,
were mainly recommendations.

At this time, media around the World had started to write about the
Swedish experiment, as in these articles: Sweden bucks global trend with experi-
mental virus strategy (Financial Times, March 25) [21], In the Coronavirus Fight
in Scandinavia, Sweden Stands Apart (New York Times, March 28) [22], Swe-
den goes against the current: full means of transport and open offices (Repubblica,
March 26) [23], and the Swedish exception (El País, April 4) [24].

During April, there were only minor adjustments to the recommenda-
tions [25]. Fig. 3 shows how the Swedish experiment had worked that far.

The periodic trend seen is explained by under reporting during week-
ends and holidays. There were more than 3,000 fatalities reported at this
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Figure 3: Accumulated number of known cases of and deaths with COVID-19 in
Sweden, during the first months of the pandemic.

point. This was among the highest reported number of deaths per capita in
the World. Compared to the known cases the rate was also very high. With
a case fatality rate of more than 10%, it looked like Sweden was not doing
that well. But was that the whole truth?

The NY Times has a continuously updated article in which they compare
the excess deaths and official COVID-19 numbers for several countries [26],
including Sweden (new countries are added over time). If there is a big
difference between these, then it is likely some problem in the COVID-19
reporting. For instance, Ecuador (where I grew up) had reported 1,561
COVID-19 fatalities during March to April. However, they had 10,100
fatalities more than normal during the same period. In contrast Sweden
reported 2,996 COVID-19 deaths during March 16 to May 3, compared to
3,300 excess deaths. In other words, the reliability of reported numbers
seemed to vary a lot from one country to another. Fig. 4 shows the full table
from NY Times as of May 2020.

So, let us look a bit more at the data from Sweden again. On May
11, Statistics Sweden reported that the excess deaths in Sweden were go-
ing down [27] (but with variations though out the country). This data
is provided and continuously updated by Statistics Sweden as an Excel
spreadsheet [28], which I downloaded on May 14. In Fig. 5 the death rate
is compared with previous years.

The sudden drop for some years at the end of February is because it is
the leap day, i.e., February 29. The drop near day 130 for 2020 was likely
due to a lag in reporting. For the first 80 days, i.e., until March 20, the death
toll was around average, or actually slightly less than average. Thus, when
the media started to write about the Swedish experiment death tolls were still



COVID-19 - The Swedish Experiment 177

Figure 4: Table from NY Times comparing the number of recorded deaths in COVID-
19 with the excess deaths in several different countries.
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Figure 5: Daily number deaths in Sweden from 2015 to April 2020.

quite normal. However, after that it is obvious that Sweden had a death
rate that was clearly above average. As seen, at the end of this period, death
tolls were getting closer to normal again. Note that there is always a couple
of days delay in the reporting, so the last couple of points are less reliable.

An interesting thing to look at is how we compare the total for each
year. Fig. 6 shows the total per 100,000 population for the period January 1
to May 4 each year. Note that the leap years, i.e. 2016 and 2020, have one
extra day compared to the others.

2020 is slightly lower than the worst year (2015), but as seen the differ-
ence is not striking. However, if you go back to the graph for daily number
of deaths in Sweden, Fig. 5, it is clear that Sweden has had a higher death
rate than normal in April this year.

Verdict

So, if the total number of deaths is fairly similar to previous years, does
that mean that the Swedish Experiment is working? Not necessarily, as it
all depends on how far the pandemic has come. Do we have a lot of
undiscovered cases and were we getting close to herd immunity? At this
point, it is probably still a long way to go, and until we have reliable numbers
on the total number of infected, it is not possible to make a verdict.
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Figure 6: Total number of deaths per year and 100,000 population in Sweden from
2015 to 2020.

2 Analysis from June 15, 2020

A month after I published the original post above, I made a second analysis,
which is presented in this section.

On May 12, the first results from ongoing antibody tests were presented
by the Public Health Authority [29]. The analysis was based on tests from
the last week of April, and 3.7% - 7.3% of the tests showed antibodies (as it
takes some time to get antibodies this shows the minimum level of people
that had been infected to date). Tests also showed that while 6.7% in the
age group 20 - 64 years had antibodies, only 2.7% of the elderly and 4.7% of
the young had it. Indicating that protection of elderly had worked to some
extent and that, as expected, letting kids attend school had not resulted in
a lot of kids becoming infected. Later, on May 29, it was decided to allow
sports competitions from June 14 [30], but without spectators. The potential
effect of this was yet to be seen of course. Fig. 7 shows an updated version
of the daily number of deaths in Sweden, using data from June 15.

The trend of decreasing number of deaths had continued, but Sweden
was still on high levels. Normalizing the annual number of deaths with
respect to the population should make things more comparable. Fig. 8
shows the number of deaths per 100,000 population.

As could be expected, by this time 2020 had surpassed 2015 as the worst
of the last 6 years. Fig. 9 shows that 2015 had a higher death rate during the
first quarter (due to a hard influenza in 2015 and a mild in 2020), however,
2020 caught up during the second quarter. The impact of the pandemic was
comparable to the difference between a hard and a mild influenza in other
words. At least to this stage and without considering other factors such as
economy, health, and employment.
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Figure 7: Total daily number of deaths in Sweden 2015 to May 8 2020.

Figure 8: Total number of deaths per 100,000 population in Sweden during the first
150 days of each year.
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Figure 9: Comparing total number of daily deaths in Sweden in 2020 (up to June 10)
with 2015.

Verdict

Remember that a delay in reporting affects especially the last week, but
to some extent previous weeks too. Still, at this point, it looked like the
infection was heading in the right direction. However there should be a
couple of interesting weeks to see if Sweden was back to something close
to normal or if it started to increase again.

To this point, Sweden had been hit harder than most other countries.
Whether this was due to a different strategy or other factors is hard to
say. On the other hand, the number of excess deaths was comparable to
the difference between a hard and a mild influenza season. Put in that
perspective, and not accounting for the impact on e.g. education, economy,
and jobs, my conclusion was that the effects were reasonable. However, yet
again, we were probably early in the pandemic, so it all depended on what
happened next.

3 Analysis from September 14, 2020

When I wrote the previous section in June 15, I was planning updates every
month. But not too much happened in Sweden for a while, so having
monthly updates felt as a bit too much.

Most Swedes have vacation around July and August, so on September
14 most had been back to work or school for a while. This is typically a time
of the year when many Swedes catch a cold as they start to meet in new
groups after the vacations, therefore it is interesting to see if there were any
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Figure 10: Comparing total number of daily deaths in Sweden in 2020 (up to Septem-
ber 10) with 2015 and the last five years average.

signs of COVID-19 increasing again. Fig. 10 shows an updated version of
the total number of deaths in Sweden to this point.

In Fig. 8, I plotted deaths per 100,000 population. However, at this point,
I decided not to normalize when comparing back in time, as I learnt that
most of the 5% increase in population from 2015 to 2020 was in younger
age groups (including many refugees). Thus, it could be expected that the
number of deaths should be kept fairly constant. Nevertheless, the graph
in Fig. 10 shows that Sweden was back on pretty much normal levels in
September 14.

As shown in Fig. 11, the death rate was continuously decreasing over
the summer. The attentive reader might notice a small dip in accumulated
deaths at the end of August, which is confusing of course. However, some
Swedish regions had reported cases in a slightly different way than the
official, which was then corrected at the end of August.

Protecting elderly

One of the main criticisms regarding Sweden’s handling of COVID-19 has
been a failure of protecting the elderly. Therefore, on June 12, the Public
Health Authority published examples of successful geriatric care as an in-
spiration to other care centers [32]. Furthermore, on June 17, new guidelines
for PCR testing and infection tracing in elderly care were published [33].
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Figure 11: Accumulated number of deaths with COVID-19 in Sweden from June 15
to September 10 2020.

In order to get an indication whether these changes were having any
effect, I downloaded the latest data again on September 7 [28]. Fig. 12
shows the change in number of deaths per age group and gender for the
first 243 days of 2019 and 2020, respectively. At this point, there was a
clear increase for all age groups and genders, even though the increase for
females, 64 years or less, was small.

Now, to the question, did the changes in June 12 have any effect? As
it typically takes a few weeks from infection to possible death I chose to
compare 60 days from July 3 - August 31, with the prior 60 days, see
Fig. 13. For males there seems to be no difference in the decrease between
the different age groups. On the other hand, for females, there is a clear
difference between age groups. There are of course many other factors that
might influence, but I would say that, for males, it is not obvious that elderly
was protected better than before. At least not on this short term. However,
for females the comparison indicates that the changes might have had a
positive effect for the elderly.

Comparing regions

While most other countries were changing recommendations and regula-
tions related to COVID-19 on a regular basis, Sweden continued with few
changes. A new law for restaurants and cafés [34] was introduced on July 1,
giving them increased responsibility for taking infection control measures
(which were outlined the day after by the Public Health Authority [35]), on
July 30 they repeated that people should continue to work from home if
possible [36], new recommendations for choirs [37] were given on August
13, finally on August 31, children and youngsters with symptoms were
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Figure 12: Increase in death rate in 2020 compared to 2019 (using the first 243 days).

Figure 13: Change in death rates per gender and age group after July 3 2020.
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Figure 14: Weekly number deaths with COVID-19 per 100,000 persons in different
Swedish regions, highlighting Sörmland, Stockholm, and Västmanland.

recommended PCR testing [38] in order to get back to school faster. Other
than that, there were no substantial changes. Thus, the strategy continued
to be the same, but some minor implementation details were adjusted.

Except some minor differences (for instance in short term travel recom-
mendations) all Swedish regions had followed the same recommendations
and had been handled the same way, therefore it is interesting to compare
outcome between them, see Fig. 14.

Together with neighbouring Sörmland and Västmanland, Stockholm
had a fairly similar curve during this part of the pandemic, and they were
clearly ahead of the other regions. It is easy to see that the development
had varied a lot between regions, i.e., despite having the same strategy
variations was big. The principal explaining factor seemed to be that re-
gions were the pandemic arrived earlier, and therefore grew much before
restrictions were put in place got a fast growth that took quite a bit of time
to get under control.

In the beginning rather few tests were made, which can clearly be seen
if we look at number of cases per county, see Fig. 15 and compare this with
the number of deaths shown in Fig. 14. This illustrates how hard it is to say
anything based on only number of known cases.

Verdict

As the situation in Sweden as well as in other countries around the world
had changed, international media’s view on the Swedish experiment had also
shifted somewhat. Most media articles, like the (very interesting) article
Anders Tegnell and the Swedish Covid experiment [39] on September 11 in
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Figure 15: Weekly number of known cases of COVID-19 per 100,000 population in
different Swedish regions, highlighting Sörmland, Stockholm, Västmanland, and
Västra Götaland.

Financial Times were neutral. Others though, such as the Daily Mail article
How comeback kid Sweden got the last laugh on coronavirus [40] from the same
day was more positive. The Daily Mail argued that, Sweden’s infection rate
was now lower than in UK, Spain, France, Italy or Denmark, that the curve
was flattened without a lockdown, and that Swedish economy had seen a
milder downturn than in much of Europe.

So, at this point the infection level had gone down, and compared to
other European countries it seemed to head in the right direction. But of
course, there was still a long path to go before the pandemic and its long-
term impact on economy, education, and health, could be summarized.

4 Analysis from January 28, 2021

Just when I ended my last analysis, on September 15, the Public Health
Authority recommended to lift the curfew in elderly care [41]. According
to the Director General Johan Carlson, the recommendation was motivated
by the risk for negative consequences for the physical and mental health
of the elderly, the increased knowledge about preventive measures and the
fact that the spread of infection had decreased sharply.

At this point coronavirus cases were rising in pretty much all other Eu-
ropean countries; however, it was looking pretty good in Sweden. Anders
Tegnell commented that Sweden was expected to have "a low level of spread
with occasional local outbreaks", as covered in the article Anders Tegnell and the
Swedish Covid experiment in the Financial Times on September 11 [42].



COVID-19 - The Swedish Experiment 187

Figure 16: Accumulated number of known cases with COVID-19 in Sweden from
June 31 to September 22 2020.

Only eleven days later, on September 22 [43], the Public Health Author-
ity stated that they were seeing an increase of COVID-19 cases in several
regions, in all age groups except the elderly. They also mention that a lot
of the cases were related to sports, and especially football (soccer) and ice
hockey. As Fig. 16 shows, this increasing trend was not easy to spot by
merely looking at the number of known cases. The sudden decrease on
August 27 is explained by a correction that was made after finding out that
tests used in nine different regions had been giving false positives [46]. On
September 29, a decision to lift the curfew in elderly care from October 1
was taken [44].

Comparing regions

To this point, the same recommendations had been applied to the entire
country. However, on October 13 a decision is taken to allow for local rec-
ommendations from October 19 [45]. These local recommendations should
always be time limited to three weeks, but with the possibility to be ex-
tended. The day after, October 20 (Tuesday of week 43), the region of
Uppsala added two local recommendations [47]:

• Avoid travelling by public transport or other public transport.

• If possible, avoid having physical contact with people other than those
you live with.

Fig. 17 shows the number of confirmed daily cases per 100,000 in each
Swedish region, according to data downloaded from the Public Health
Authorities on January 28, 2021. At this time, the cases in Uppsala were on
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Figure 17: Weekly number of known cases per 100,000 population in the different
Swedish regions, highlighting Östergötland, Skåne, Stockholm, Uppsala, and Västra
Götaland. The circles indicate the point at which temporary local recommendations
were added in those five regions.

the rise, with more cases per 100,000 than any other Swedish region in week
42. The blue dot indicates when the local recommendation was introduced.

The region of Skåne decided to introduce local recommendations on
October 27 [48], then Stockholm, Västra Götaland, and Östergötland all did
the same on October 29 [49].

During the following weeks Jönköping, Halland, Örebro [50], Kro-
noberg and Södermanland [51], Kalmar, Västerbotten, and Norrbotten [52],
Dalarna, Gotland, Värmland, and Västmanland [53], Gävleborg and Väster-
norrland [54], Jämtland [55], and Blekinge [56] all followed suit. Some of
these were extended after their initial three weeks period, but from Decem-
ber 14 no region was applying local recommendations.

At the same time, during November and December, several adjust-
ments were made in national recommendations. These included reducing
the maximum group size in restaurants and bars to 8 [57], and a recommen-
dation for high schools to go back to distance teaching [58]. On December
18 several new recommendations were added [59]. These included, fur-
ther reducing maximum size of groups at restaurant to 4 persons, advising
businesses to cancel sales during the holidays, and announcing that a rec-
ommendation to wear masks when using public transport at peak hours
traffic would be added from January 7 (when most Swedes would be back
to work from the holidays).

November 26, the Public Health Authority stated that the spread of
COVID-19 could reach its peak in mid-December [60], which when looking
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Figure 18: Weekly number of known cases per 100,000 persons in the different
Swedish regions, highlighting Östergötland, Skåne, Stockholm, Uppsala, and Västra
Götaland.

at the number of cases per region, see Fig. 18 turned out to be fairly accu-
rate. However, while this prediction was accurate, the prediction from the
beginning of September ("a low level of spread with occasional local outbreaks"),
was proven wrong.

Let us compare the number of accumulated deaths with COVID-19 in
different Swedish regions over the last year, Fig. 19. As mentioned, the
strategy has been the same throughout the country for almost the whole
time, except some minor differences especially between mid-October to
mid-December. Despite this, some regions have feared relatively well
throughout the whole period, others did well in the first wave but not
the second, while some were hit harder in both waves as shown in Fig. 21.
Thus, despite the same strategy, the result varies substantially.

Comparing with other countries

Now, let us look how Sweden compares with other countries. Fig. 20, shows
accumulated number of deaths per 100,000 in Sweden, together with the
other countries in the European Union, the G7 countries, and Sweden’s
closest neighbours. Accumulated deaths are more reliable than number
of cases, however registration will differ between countries as previously
mentioned. That said, for the European Union, G7, and Sweden’s neigh-
bours, it seems to be relatively accurate and comparable. Still, the exact
numbers should be taken with a bit of care.
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Figure 19: Accumulated number of deaths with COVID-19 per 100,000 population
in the different Swedish regions, highlighting Gävleborg, Östergötland, Stockholm,
and Västerbotten.

Figure 20: Total number of confirmed deaths with COVID-19 in Sweden compared
with the different countries in the European Union, G7, and Sweden’s three closest
neighbours (Denmark, Finland, and Norway).
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Figure 21: Daily number deaths in Sweden from 2015 to 2020.

It is clear that most countries got a second (one can argue tat for a
few it was their first). When comparing with other EU and G7 countries,
Sweden has a similar trajectory, despite a different strategy. The result
was worse then most others during the first wave, but possibly slightly
better in the second. However, comparing with the closest neighbours
(with a strategy somewhere in between Sweden and the most of the other
countries in the comparison) it is clear that they have managed to keep
death tolls substantially lower. Yet again the opinion in media shifts a bit,
as illustrated i the article Sweden’s second wave offers hard reality check (Japan
Times, December 19) [61].

Finally, let’s see a comparison with previous years again. Looking at
Fig. 21 it is easy to spot both wave one and two.

Additional notes

Some final notes are in place. Sweden started vaccination on December
27, focusing on people at elderly care [62]. On January 8, 2021, a new
legislation, temporarily giving the government the power to decide in an
ordinance on more binding infection control measures than was previously
possible. The possibility was used immediately when some of the previous
recommendations for businesses was changed to binding regulations [63].
The changes made were very limited and probably did not affect too much.
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5 Conclusion

Using basic data analysis in the Wolfram Language the spread of COVID-
19 in Sweden has been analysed at four different stages of the pandemic.
The decisions taken by the Public Health Authority of Sweden has been set
in relationship to the progress of the pandemic. Despite that all Swedish
regions have had very similar restrictions the difference between Swedish
regions is relatively large. In fact, it is comparable to the difference between
different European and G7 countries, which all have had very different
strategies to Sweden. However, with strategies that have been somewhere
in between Sweden’s and the rest of the European Union, Sweden’s neigh-
bours have had substantially lower death rates than Sweden, as well as the
rest of Europe. Thus, at this point there is no clear indication of the Swedish
Experiment being either better or worse than other strategies when it comes
to stopping the infection. In fact, the spread between different Swedish
regions is fascinatingly similar to the spread between EU and G7 countries.

While many try to describe things in black and white, my conclusion
from looking at data is that, at this moment, the picture is very much
painted in grey. Yet again, the pandemic is far from over, and to make any
real verdict on the success of any strategy secondary effects, such as the
effect on economy, employment, and physical and mental health, has to be
accounted for.
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Pandemics put health care systems under extreme stress due to high
demand surges for health care services. As demand for patient care ser-
vices spike, so to does the demand for personal protective equipment
(PPE). Personal protective equipment is one major means by which a
health system insures its staff and patients against disease and thus
slow pandemic spread. Health care institutions have been caught un-
prepared for the volume of PPE necessary to properly protect the health
care workforce during the COVID 19 pandemic. Health care systems
must adopt PPE procurement and readiness strategies that respect the
unpredictable and rapidly evolving dynamics of pandemics. In this
paper we discuss principles of PPE procurement that should be con-
sidered when preparing any health system for future pandemic. We
discuss the need for health systems to consider a shift toward locally
produced and/or reusable PPE to prevent shortages in future pandemic
situations.

1 Introduction

As the COVID19 pandemic unfolded, drastic shortages of critical supplies
of personal protective equipment (PPE) arose nearly ubiquitously across
the globe, exposing a lethal vulnerability in our current health care frame-
work [1]. Stories of health care workers in New York City substituting
garbage bags for standard issue PPE blanketed the news early in the crisis,
illustrating the dire shortages with which health systems in even devel-
oped nations struggled [2, 3]. Under current procurement arrangements,
the evidence illustrates that pandemics produce severe resource shortages.
Current PPE supply models appear to be heavily reliant on fluidly moving
global supply chains that have failed to function properly during crisis.

These shortages have led leadership bodies such as the CDC to sanction
PPE rationing strategies to conserve equipment. For example the CDC lifted
strict use criteria of N95 respirator masks and advocated for sterilization and
reuse beyond the typical 4-hour rating window [4]. Others recommended
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that governments monitor national face mask supplies and regulate their
usage recommendations accordingly [5]. Maintaining adequate stocks of
PPE is vital. Failure to protect the health care work force during a pan-
demic can create a negative feedback loop where the health care capacity
as a function of provider availability diminishes while demand for services
surge [1, 3, 6].

Some have attempted to model epidemiological phenomena as a means
to better forecast the extent of infectious disease outbreaks and influence
resource allocation to meet PPE demand [1, 7, 8]. For the most part how-
ever, these attempts have resulted inadequate. Gooding [10] points out that
while “there exist wide bodies of literature in epidemiology and in emer-
gency response logistics, there is remarkably little research on the connec-
tion between the two,” contending that demand forecasting assumptions
are often too simplistic and assume that supply chains will be perfectly re-
active during crisis [10]. The author surveyed many front-line procurement
agents of the Ebola pandemic and found that even though some were able
to use epidemiological models to help predict PPE demand usage, many
noted that the models were often overly complex and failed for non epi-
demiological reasons as well [10]. For instance procurement agents were
often locked into certain distributor contracts and health care workers often
made “conservative” decisions choosing to “over” protect due to lack of
trust of some PPE options throwing off prediction models [10].

Others have examined “pre-positioning” as a means of preparing stocks
of PPE for disaster situations. “Pre positioning” is a term used to describe
allocating caches of resources to “optimal” locations near potential disaster
zones prior to emergency events to account for transportation and demand
uncertainty [9,11]. Pre-positioning strategies have been criticized for being
overly expensive if disaster fails to hit in the “optimal” location. But what
if one cannot predict the “optimal” location? Pandemic is a unique type of
disaster that occurs everywhere at once. Pre-positioning may fail simply
because there is no “optimal” location if a disaster is “everywhere.” A
broader strategy that respects this dynamic will be necessary to prevent
future PPE procurement issues.

The failure of these previous strategies likely stems from a failure to
implement sound risk management practices that account for the inherent
unpredictability of the next pandemic. Indeed, the previous strategies
rely on over-optimized predictions for the timing and scope of the next
global emergency. Therefore, the success of any PPE procurement strategy
becomes extremely fragile to the success of these predictions. However,
as Taleb and Cirillo [12] have shown, it is fundamentally impossible to
accurately predict the size and duration of the next pandemic. Indeed,
these variables belong to the class of the most difficult variables to predict:
fat-tailed variables [13].

Briefly a “fat tailed” probability distribution is one where all its statistical
properties are dominated by a few observations [13]. Mathematically, a
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variable is fat-tailed if its survival function is regularly varying: S(x) =

L(x)x1/ξ, where L(x) is a slowly varying function such that limx→∞
L(cx)
L(x) = 1

for c > 0 [14]. Where ξ is the tail parameter that controls how slowly
the survival function decreases. Therefore, for small values of ξ, even as
the events under study get closer and closer to the extreme, they are still
plausible and they define any of the statistical moments of the distribution.

Given the profound importance of the extreme events, the study of
the mathematical properties and real life implications of such variables is
the study of their extremes: their maxima and minima. Extreme Value
Theory (EVT) is a field of statistics that deals with these types of rare but
impactful events. Therefore, we argue that EVT may offer a better guidepost
for developing PPE procurement and distribution strategies for healthcare
systems than current methods.

In this paper we will address how health care systems should alter their
PPE procurement strategies to account for the risk of future pandemic. We
will explore PPE procurement as a function of a balance between disposable
vs reusable stock and how systems over optimized toward disposable PPE
may become fragile to supply shortages during pandemics. We will explain
why health care systems should reanalyze their PPE strategy and consider
a shift toward more reusable and locally sourced stocks of PPE in order
to insure their health care work force against future catastrophic pandemic
events.

2 Current Health care System: Disposable PPE

Disposable PPE has become standard in the US health system in recent
times. Disposable PPE confers many advantages to the user, the patient
and the healthcare system. It is both convenient and safe for the end users.
It allows rapid use and changeover between patients with minimal need for
user attention to equipment function and cleanliness prior to usage. Once it
is used it can be disposed of decreasing risk of cross contamination. Dispos-
ability reduces complexity of storage and shipping. All of these benefits are
desirable. However they all come at a cost, a potentially dangerous cost if
the system over-optimizes too heavily toward this method alone. The cost
to the system is that the strategy may become too fragile to unpredictable
massive demand shocks. We examine the scenario of a system that is reliant
on disposable PPE.

Once committed almost solely to a system of disposable PPE, health care
facilities depend on a constant influx of new stock to replenish supply. For a
health system in a steady equilibrium state, replenishing disposable PPE is
a matter of routine: estimate monthly usage and leave a reasonable cushion
for normal fluctuations around the mean. Pandemics however, upend
mean-based estimates leading to shortages and system failure. Pandemics
inflict a double insult to the system: 1) a rapid spike in demand for PPE and
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2) frozen resource supply chains. When this happens stocks of disposable
PPE become unavailable and healthcare facilities often adopt alternative
strategies such as rationing which may put healthcare workers at risk.
Where “just-in-time” supply policies may suffice in conventional times,
they assuredly fall flat in the midst of pandemic.

3 Pandemics are Unpredictable

Evidence from Cirillo and Taleb, 2020

Taleb and Cirillo [12] have shown that pandemics are patently fat-tailed
phenomena through a rigorous study of historical records for the last 72
major pandemic diseases. Mathematically they define the distribution of
casualties as G(z). Thanks to Pickands–Balkema–de Haan theorem [14],
they can approximate the distribution of tail events with a Generalized
Pareto Distribution (GPD) thus:

Gu(z) = P(Z ≤ z | Z > u) =
G(z) − G(u)

1 − G(u)
≈ GPD(z; ξ, β,u)

Using maximum likelihood, Taleb and Cirillo [12] estimate a tail parameter
around ξ = 1.62 (se = 0.52). Therefore, the authors conclude that pandemic
fatalities are "an extremely erratic phenomenon, with substantial tail risk".
Indeed, the result clearly rejects the possibility of a second finite moment,
thus rendering the use of any prediction method that relies on the sample
mean "too volatile to be safely used" [12].

From a lack of scale to unpredictability

With this context, we can now better understand the enormous challenge
that we face when we try to predict the next pandemic. The casualties, the
duration, the number of infected people at any point in time, are functions of
a phenomena where the uncertainty is maximal. This unpredictability arises
from the lack of a characteristic scale for fat-tailed variables. Mathematically
(Embrechts, 1997), we can express this lack of characteristc scale thus:

lim
K→∞

1
K

E(X|X > K) = λ, λ > 1

Intuitively, as Taleb [13] states in Statistical Consequences of Fat Tails:
“There is no typical collapse or disaster, owing to the absence of a char-
acteristic scale”. That is, there is no “typical” sized flood, hurricane, or
pandemic.

Therefore, pandemic processes can deliver an enormous range of dev-
astating effects with no predictable ceiling, as the uncertainty around the
extremes is so large. Additionally the size and scope of past pandemics may
bear no familiar resemblance to the size and scope of future pandemics: they
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may be much more mild or devastatingly more severe. It follows then that
PPE demand may in turn be unpredictable. Both the amount and longevity
of usage of PPE in future pandemics will vary as a function of the next
pandemic’s longevity scale and scope, two variables that we cannot predict
with any amount of precision. Not even taking COVID yearly levels of PPE
as our baseline.

Not even the past can guide us

Indeed, suppose that you take our current (mid pandemic) yearly PPE
needs as the stockpile that will be held for the future. This is not wise risk
management. It incurs in the “Lucretius fallacy”: mistaking the largest flood
ever seen for the largest flood that could be seen. Just as previous historical
records for PPE stockpiles resulted ineffective for the current pandemic,
they surely will result ineffective for the next pandemic that will surpass
the current one.

Imagine a future pandemic whose R0 is twice as great because it has mul-
tiple mechanisms of infectivity. Predicted PPE usage even akin to COVID
usage standards still may not account for the demand spike in such a case.

Mathematically, we can explain this phenomenon thus. If X is fat-tailed,
it is also long-tailed. Therefore, the probabilities of an extreme and another,
even larger extreme are connected thus:

lim
x→∞

Pr[X > x + t | X > x] = 1

If the probability of our current extreme, COVID, is not negligible, then
neither it is the probability of an even worse pandemic. Therefore, there’s
no amount of disposable PPE that can protect us for the next potential
pandemic.

No risk minimization, but risk management

We can model mathematically this fragility to our predictions by posing
a payoff as a function of our estimated needs for PPE ŷ and the realized
needs, y:

g(y, ŷ) = min(0, ŷ − y)

We can deal with the uncertainty around this payoff in two ways.
First, we can claim that we shouldn’t over-react: after all, the chance of

any pandemic hitting us in a particular year is very small. Mathematically,
we can focus on minimizing the following function: the payoff at K (a "large"
stockpile of PPE) multiplied by the probability of our needs exceeding K:

I2 = g(K)
∫
∞

K
f (y)dy = g(K)pK
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However, due to the lack of a characteristic scale in the pandemic casualties
and infected people, we can convince ourselves that there’s no large enough
K for the above observation to be meaningful. Secondly, then, we can realize
that probability of needing more than K is never negligible, and neither is
the very real negative payoff that we would face if we don’t have enough
PPE to protect ourselves.

Indeed, Taleb [13] shows that, under fat-tails, the real integral to calculate
the random payoff of just stockpiling K is the following:

I1 =

∫
∞

K
g(x) f (x)dx

There’s no bound to how much worse we can do. Not even taking dispos-
able PPE we can stockpile, we can still under-predict the size of the next
pandemic and still suffer from a critical shortage of PPE and have a very,
very negative payoff. The equivalent of the COVID pandemic that we are
still experiencing. The failure to understand this critical point between I1, I2
is called the "ludic fallacy" and has been exposed by Taleb extensively in his
book The Black Swan [15].

At this point, we can draw many similaries from the world of finance.
Only stockpiling K amount of disposable PPE would be equivalent to trying
to hedge a continuous exposure with a binary bet. In Taleb’s words, with
yet another parallel to health insurance: “equivalent to a health insurance
payout of a lump sum if one is “very ill”– regardless of the nature and
gravity of the illness” [13]

Therefore, a new standard for PPE sourcing is needed. Following finance
and health insurance, we know that we cannot rely on risk minimization
but risk management. Indeed, sound risk management is "about changing
the payoff function g(.) rather than making “good forecasts” [13]. In our
case, this means that we cannot rely on accurately predicting how much
disposable PPE we will need. We need to find a way to fulfill our PPE needs
regardless of the size of the next global pandemic.

4 A New Standard

There is one variable that is relatively predictable at any point in time for a
given healthcare system: the number of healthcare workers. We should thus
direct our efforts at changing the payoff function as opposed to attempting
to predict the size of the next pandemic. Treat PPE like insurance for your
workforce. At any one time the number of healthcare workers in a system
is relatively constant (the United States has roughly 17 million healthcare
workers). Since this number is relatively constant one could shift one’s
perspective and plan for a specific dollar amount that it would take to
maximally protect all 17 million members of a health system’s work force at
a given time. We believe that a shift toward greater use of highly protective,
reusable PPE offers at least a partial solution to this problem.
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5 The Outlier

Health care workers are at risk for COVID. As of January 29, 2021 the CDC
had reported over 385,000 confirmed COVID cases among U.S. health care
workers (a number that likely widely underestimates the problem as only
about 19 million people were sampled for the data [4]. Others have shown
that COVID infection rates of the health care workforce mirrors that of
the general population with some specialties being particularly susceptible
due to high workforce exposure [16]. There has been at least one notable
exception.

In April 2020 during the height of the pandemic Cotugno Hospital
(Naples, Italy), a hospital that was filled to capacity with COVID cases,
had reported an astonishing ZERO COVID cases among its workforce [17].
Of note Cotugno hospital is a specialty infectious disease hospital and em-
ploys much more stringent PPE guidelines than the typical health system.
Cotugno assumes that all of their patients are carriers of highly infectious
diseases. Their PPE protocols are geared toward full body protection of
their workforce most often with reusable suits [17]. This outlier may pro-
vide clues for how other health systems could protect their workforce in
future pandemics.

6 The Current System in Most Health care Facilities

In its current form, the majority of other health care facilities around the
globe rely on PPE strategies that rely on “just in time” supply chains that
stock predominantly disposable PPE. Unfortunately as we have seen during
this pandemic supply chains often choke and shortages of PPE and other
materials result. This calls into question both the limits of a “just in time”
philosophy for procuring PPE but the limits of a global supply chain.

7 Reusable Personal Protective Equipment

In contrast to disposable PPE, reusable PPE has a different set of trade-
offs. Reusable PPE requires the user to ensure cleanliness before usage.
It is typically more expensive upfront. It also requires space for storage
and staff must ensure consistent cleaning and maintenance protocols. But
reusable PPE also has a unique advantage: supply of most reusable PPE
does not dwindle significantly in times of supply-chain disruption. Stated
succinctly: as long it is well maintained, reusable PPE offers the advantage
of durability and availability in times of high system stress and demand.
Some have shown that reusable PPE options such as isolation gowns can
be cost effective when compared with disposable alternatives [18] [19].

Health care systems by their nature must function fluidly in both steady
state dynamics in which PPE usage runs on a more predictable schedule
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PPE Type Advantages Disadvantages

Disposable

-Safe: low risk of cross contamination

-Allows for rapid change of equipment for personnel

-Minimal need for maintenance

-Comes sterile packaged

-Requires hospitals to continually replenish stock

-Stocks are susceptible to resource squeezes
and supply chain disruption

Reusable
-More robust to supply chain disruptions in
crisis situation (assuming systems stay well stocked)

-Requires health facilities to have storage,
maintenance and sterilization protocols

-Often higher upfront cost

as well as surge states when the system sees a drastic increase in resource
utilization as occurs in pandemic scenarios. Pandemics have the potential to
cripple the health care delivery system through contagion of the health care
workforce. If enough workers go out sick as demand for services increases,
the system buckles and fails in its mission to care for the population.

In light of the above mission and the stated advantages and disadvan-
tages of both disposable and reusable PPE we contend that health care
systems should consider moving toward a PPE strategy weighted more
toward maximum per worker protection with reusable alternatives.

8 Strategy for PPE Procurement to Account for Pandemic

We assert that a viable strategy must include some element of reusable
PPE for each health care worker. Assume that there is a reusable piece of
PPE (PAPR suit, Hazmat suit) that can fully protect against any infectious
disease. Calculate the cost of procuring one of these suits for every health
care worker in a given system. Each health care worker would then be
insured against the worst-case scenario. No matter the size nor the timing
of the next pandemic, the PPE problem for the health care workforce would
be addressed.

Standard issue of PAPR systems for all healthcare system personnel is
analogous to standard practice of police, military and firefighter equipment
issue strategies. When police officers graduate from the police academy
they receive a standard issue firearm. When soldiers graduate from boot-
camp they receive standard body armor. Likewise firefighters receive a hel-
met, ax and boots. By law OSHA requires employers to supply proper PPE
to employees free of charge [1]. However costs cannot be passed through
directly to consumers as these charges are typically not billed under current
reimbursement arrangements. Regulatory bodies and health systems may
have to reconsider how these costs are budgeted and apportioned if they
want to mitigate shortage issue with PPE in the future.

In order for a hospital system to be prepared for a highly complex
event such as a pandemic it must create a simplified approach to ensuring
that every employee has access to PPE. This concept massively reduces
the complexity of predicting the number of pieces of equipment that a
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health system must procure. This can be done at the time of hire. In this
scenario the hospital system is essentially paying more upfront for reusable
respirators so that in the case of a disaster scenario, they will not have to
pay the premium that comes when supply chains are disrupted and prices
rise dramatically. Nor will they be as likely to have to reduce capacity due
to workers going on sick leave. Additionally they will also insure against
total loss in the sense that disposables may not be available at all.

9 Conclusion

Pandemics fall under a unique category of risk. Their effects are multiplica-
tive and statistically fall into the fat-tailed domain. They therefore require
a unique set of statistical tools to analyze and deal with them.

It is not possible to predict the size of the next pandemic. Strategies to
prepare the population in general and health care workforce more specifi-
cally must take this unique property into account and adjust preparations
strategies accordingly.

We advocate a shift in mindset away from attempting to predict the
size of the next pandemic and thus size of the stockpiles of disposable
PPE necessary to cover the health care workforce. We instead recommend
reorienting toward a model, which focuses on the system’s overall exposure
to risk and plan accordingly with more maximum protective, reusable PPE.

This means that when possible, teams that source PPE should bias their
strategy toward disposables in equilibrium states and toward reusable
PPE(purchased during equilibrium states) during times of crisis. To do
this effectively health systems must plan ahead since it is not a matter of if
the next pandemic will arrive, but when it will do so.
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COVID-19’s nonlinear aftermath will be impossible to predict or to re-
verse. Despite this, we must act to minimize the damage, and potential
for damage, to our citizens and society. When deciding on the best
actions to take, we must distinguish between situations of risk versus
fundamental uncertainty – for risk-based decisions we have knowledge
about how different variables interact and can accurately and robustly
measure the impact of our interventions whereas in situations of fun-
damental uncertainty, the outcomes of our actions are unpredictable
and statistical analyses cannot produce reliable probability estimates.

Many decisions post-COVID-19 will be in situations of fundamental
uncertainty; in these types of situations it will be best to follow simple
rules known as heuristics and our focus should be on simple actions
on key areas that could cause our citizens and societies to suffer if left
unaddressed – namely, social determinants of health, which account
for 80 percent of health outcomes.

1 Introduction

COVID-19 has negatively affected the livelihoods of millions of people
across the world. We are seeing unprecedented impacts on key areas of our
society such as health, employment and education despite the best efforts
of actors across all sectors to mitigate the damage caused by the pandemic
(Box 1).

Box 1. Acute negative impacts of the COVID-19 pandemic

Economy & Employment

• There was a 5.2% contraction in global GDP in 2020, which is the
largest global recession in decades and the fastest and most severe
downgrade in growth projections since 1990 [1]
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• Economies in the Global North are expected to shrink 7-8% [1].

• Millions of jobs have been lost around the world and the global un-
employment rate could increase from 4·936%-5·644% [2, 3].

• Per capita income has also contracted globally and in the largest
proportion of countries since 1870 [1].

• Up to 300 million people internationally could have fallen below the
poverty line and 70-100 million people could have fallen into extreme
poverty in 2020, which would undo progress made since 2017. This
would represent an increase of 2.3% in the poverty rate compared to
a no-COVID-19 scenario [4, 5].

• Global debt has increased by $24 trillion over the last year, with no
signs of near-term stabilisation. This level of debt is much higher than
what was seen during the 2008 global financial crisis [6, 7].

Food & Nutrition

• Global food prices rose by ∼20% (January 2020-January 2021), which
combined with reduced incomes means that households will have to
decrease the quantity and quality of food they are consuming [8].

• Country surveys across dozens of countries indicated a significant
number of households (up to 40%) are running out of food or reducing
their consumption with someone skipping at least one meal in an
average of half of households in the poorest countries [4, 8].

• The total number of acutely food insecure people across 79 countries
was expected to increase to 272 million by the end of 2020 [8].

• effects of these disruptions on maternal and under-5 child deaths in
118 low-income and middle-income countries; reductions in coverage
and use of maternal and child health services could lead to an excess
1157000 child deaths and 56700 maternal deaths over 6 months [2].

Education

• The pandemic represents the largest disruption to education systems
in history and has affected over 1.6 billion learners in over 190 coun-
tries across all continents, representing 94% of the world’s student
population and up to 99% in low and middle income countries [9–12].

• Lack of access to internet and digital technologies means that many
children, especially those of poorer households, will fall further be-
hind and the proportion of children below minimum education pro-
ficiency will likely increase by 25% [10, 13].

• School closures also affects the provision of other essential services
and benefits to families (e.g. access to nutritious food, ability of
parents to work, increased violence against women and girls) [11,12].
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Mental health & Substance abuse

• Individuals with existing mental illness have experienced a detrimen-
tal impact on their mental health and in some countries we are seeing
a two fold increase in the number of adults experiencing some form
of depression [14, 15].

• Increases unemployment could be associated with an increase in sui-
cides of about 9570 per year [3].

• The combination of unemployment, increased financial difficulties,
social isolation, uncertainty about the future, and disruption to clinical
services could contribute to increased alcohol intake [16–18].

• The pandemic has also negatively affected mental health services in
93% of 130 countries surveyed [19].

Evidence from previous pandemics and crises suggest that COVID-19’s after-
math will be devastating and will take us years to recover from with every aspect
of our societal and global systems being affected (Box 2). Because of the nonlinear
nature of these changes, we know that we will not be able to predict the trajectory
of the aftermath or reverse our systems to their pre-COVID states [20, 21].

Box 2. Expected medium-long term negative impacts of the
COVID-19 pandemic

Economy & Employment

• The deep recessions triggered by the pandemic are expected to have
medium-long term effects because of lower investment, fragmented
global trade and decreases in human capital because of lost work and
education [1].

• The uncertainty regarding the trajectory of COVID-19 will affect the
global economic outlook, which means that high unemployment rates
will likely recover slowly. This was also seen with the 2008 global
financial crisis where unemployment rates took seven years to return
to pre-2008 levels [22].

• Job losses generally have long-lasting effects on the employment,
earnings, and income prospects of laid-off workers and can negatively
impact communities as well [23].

• Youth unemployment is particularly problematic and high levels are
expected post-COVID, which was a trend also seen during the 2008
global financial crisis. Several years passed before youth unemploy-
ment rates matched or went below pre-crisis levels [24].

• Youth unemployment has irreversible consequences linked to the
‘scarring effect’, including permanently lower earnings by ∼1.2% per
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year for each additional month of unemployment and an increased
probability of being unemployed later in life [24, 25].

Food & Nutrition

• Simulations suggest ∼0.6 years of schooling globally will be lost due
to school closures, with a large proportion occurring for children of
lower socio-economic status [4].

• ∼24 million additional children and youth may drop out or not have
access to school in 2021 because of the pandemic’s economic im-
pact [11–13].

• Many children are at risk of never returning to school, which would
undo years of progress [10].

• Learning from past disaster that disrupted schooling, we know that
effects on education can extend beyond this generation and produce
differences observable years later [4, 11–13].

• Models suggest that students currently in school may lose $10 tril-
lion in earnings over their work life if schools are closed for five
months [13].

Education

• Learning from previous crises, we know that the Indirect effects of
COVID-19 will have long-term health consequences for individuals
and society [2].

• Unemployment and job insecurity is linked with several negative
health outcomes including all-cause mortality, death from cardiovas-
cular disease and suicide, and higher rates of mental distress, sub-
stance abuse, depression, and anxiety [9, 24–26].

• Nutritional deprivation of children and mothers can have long-term
negative consequences including detrimental impacts for cognitive
development of young children [4, 8].

Health

• Learning from previous crises, we know that the Indirect effects of
COVID-19 will have long-term health consequences for individuals
and society [2].

• Unemployment and job insecurity is linked with several negative
health outcomes including all-cause mortality, death from cardiovas-
cular disease and suicide, and higher rates of mental distress, sub-
stance abuse, depression, and anxiety [9, 24–26].

• Nutritional deprivation of children and mothers can have long-term
negative consequences including detrimental impacts for cognitive
development of young children [4, 8].
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Inequalities

• Evidence from previous pandemics suggest that we will see greater
increases in inequality and reduced social mobility with larger welfare
impacts and slower recovery for the poorest households [4].

• Income inequality increased over five years following previous pan-
demics from 2003-16 with the effects being higher when there were
also negative effects to the economy, as we are seeing with COVID-
19 [4].

• Negative physical and mental health impacts of unemployment will
likely be felt more for those of lower socio-economic status and those
with lower skill-sets, as seen with the 2008 global financial crisis [25].

• The full impacts of inequality go beyond five-year post-pandemic
because inter-generational effects [4].

In light of these daunting projections and uncertainty about the future, what
should policy makers and society do?

2 The world as a complex system

The world can be seen through the lens of systems, with a ‘system’ defined as:

. . . a set of things – people, cells, molecules, or whatever – intercon-
nected in such a way that they produce their own pattern of behaviour
over time. The system may be buffeted, constricted, triggered, or driven
by outside forces. But the system’s response to these forces is character-
istic of itself, and that response is seldom simple in the real world [27].

This definition reveals one of the key requirements of viewing the world as a
system – namely, accounting for its complexity and as something:

. . . made up of many elements which, as a consequence of mutual
cooperation, exhibit a phenomenology that is difficult to predict. The
elements and rules by which they interact may be considered well
known, however, it is far from easy to explain the emergent properties
at a higher level of observation as a consequence of the properties of
the elements at a lower one [20].

Simplified, this can be understood as the classic saying of “the sum is greater
than the parts”, which means we cannot expect simple, linear relationships between
the different elements of a complex system. Instead, the elements behave in a
non-linear fashion with complex system non-linearity characterised as being:

. . . subject to irreversibility, such that given some change in the inputs to
the system, undoing the change does not necessarily return the system
to its start, whereas all linear systems are reversible. Furthermore
nonlinear systems can be subject to discontinuous or catastrophic state
changes[. . . ] Managing such systems, particularly in response to some
sort of failure is very difficult [21].



214 Policy responses to COVID-19’s aftermath

Figure 1: Hysteresis. Hysteresis curve demonstrating how the transitioning stability
from pre-post COVID-19 will lead to a new stable state. The curve is a fixed point
of a nonlinear equation with the solid indicating a stable state and the dashed line
corresponding to an unstable state.

A classic example of non-linearity within complex systems is traffic jams. Car
speed on a highway is only slightly affected over a large range of car density but the
density will have a tipping point beyond which even a small increase in car density
will lead to a disproportionate decrease in traffic flow, leading to a traffic jam [27].

COVID-19 in the context of a complex system

Acknowledging that complex systems may not predictable or reversible, it is impor-
tant to understand the implications of this in the context of systemic crises like the
COVID-19 pandemic and its aftermath [27]. The reversibility of a complex system
is linked to the concept of hysteresis, which is dependence of a state on its his-
tory [28]. If we imagine a path of a state in parameter space, a stable pre-COVID-19
state (Lyapunov exponent <= 0) gradually approaches the unstable COVID-19 state
(Lyapunov exponent > 0) and at some point in the future, the state will be stabilized
to the post-COVID-19 state. Once the state has reached the post-COVID-19 state,
it will not be possible to go back to the pre-pandemic state easily by changing the
parameters – all societies will need to face a new ‘normal’ (Fig 1). It is also important
to note that a stable state does not mean that it is fair, equitable or equally beneficial
for all elements of the system – a stable state only indicates that it is not subject
to the unpredictable fluctuations one sees in response to a systemic shock like the
slight increase in car density that leads to a traffic jam or a global systemic shock
like the COVID-19 pandemic.
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3 Decision making in situations of risk vs. fundamental
uncertainty

The unpredictability of our post-COVID-19 future is unsettling but it also provides
us with a sense of hope because we can strive to build a more fair, equitable, re-
silient and prosperous world post-COVID-19. Building our post-COVID-19 future
requires that critical decisions be made about various aspects of our society and for
each decision, we must determine whether the decisions will be made in situations
of risk or fundamental uncertainty. Decision-making in situations of risk or fun-
damental uncertainty require different approaches and are context-dependent. In
situations of risk, we have knowledge about how different variables interact and
also have the ability to accurately and robustly measure the impact of our inter-
ventions. In situations of fundamental uncertainty, the outcomes of our actions are
unpredictable and too unique to allow for statistical analyses that can yield reliable
probability estimates. Two important things to note about fundamental uncertainty
are that it is context-dependent and it is not static. The context is important because
though knowledge about how different variables interact and methods to collect
data on these interactions exists, there will be heterogeneity in the distribution of
this knowledge as well as the capacity to collect data. Furthermore, fundamental
uncertainty is not static because it can be reduced to risk with research, knowledge
and novel methods of collecting data, which gives decision-makers the opportunity
to make risk-based decisions [29].

Situations of risk or fundamental uncertainty require different decision-making
methods. A tendency in these days of big data, machine learning and artificial
intelligence is to harbour an expectation that the more data we have the better.
The use of greater amounts of data are called for in situations of risk where we
know the consequences of the options available to us but in situations of fundamen-
tal uncertainty where the outcomes of our actions are unpredictable, calculations
with large amounts of data and complex algorithms gives decision-makers a false
sense of security and normally have limited benefit in helping decision makers
make better decisions because of the phenomenon of overfitting, which was aptly
demonstrated by Google Flu Trends [29, 30]. In situations where decision-makers
are faced with fundamental uncertainty, simple approaches, known as heuristics,
are the appropriate option. Heuristics are strategies for decision-making adapted
to the decision-maker’s local context, which can reduce effort and lead to more ac-
curate judgements by ignoring complexity and avoiding overfitting. Some classic
examples of heuristics are satisficing the 1/N rule [29].

4 Heuristics for COVID-19’s aftermath

At a system’s level, COVID-19’s aftermath will be nonlinear and, therefore, funda-
mentally uncertain. Despite this, we will need to act to reduce the negative impacts
on our citizens and, ideally, build a more sustainable and resilient post-COVID-19
world. As a starting point, a heuristic approach we can adopt can focus on the key
sources of suffering for our citizens in COVID-19’s aftermath as well interventions
that can be implemented to reduce the suffering of our citizens in the future while
also building up the resilience of our society to be less negatively affected by future
shocks we will face.
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Figure 2: Shifting risk profiles to promote population health. Rose’s model of
improving population health by shifting risk profiles to the left (e.g. from the
yellow to blue dashed bell curve). Overlaid into the different risk strata are the
level of interventions needed to keep the strata healthy (red arrow above). Figure
adapted from references [31, 32].

The heuristic governments are currently taking is to pump money into their
economies to help businesses and citizens, which is the correct approach but it is
important to note that the trillions being injected into global systems are necessary
but not sufficient now or in the future to fully address the suffering our citizens will
face [6, 7].

We have known for many decades that social determinants health (e.g. housing,
education, transportation, access to jobs, nutritious food, clean air, clean water,
support to prevent/recover from substance abuse, etc.) determine 70-80% of health
outcomes [31–33]. Supporting mechanisms to address these factors individually
and collectively will go a long way to prevent or reduce suffering of our citizens
as well as to reduce the level of resource needed to address their needs now and
in the future. To promote population health, our systems need to move away from
focusing on high risk individuals to shifting the entire risk profile of our populations
to the left by addressing the factors that have the greatest influence on the incidence
of morbidity and mortality – e.g. social determinants of health (Fig 2) [31, 32].

Shifting the population risk profile to the left is even more important in light
of COVID-19’s aftermath because many of our citizens will transition to states
of poor health [2, 4, 8, 23–26]. It will be almost impossible to predict the ‘phase
transitions’ our individuals citizens make from health to disease when they move
low to medium/high risk or medium to high risk [28, 34]. Furthermore, once in the
relatively higher risk phase, the level of intervention needed for those individuals
will be much higher than if we intervened at a population level to control the
incidence of their particular morbidity.
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5 A heuristically-informed quincunx for COVID-19’s after-
math

With so much money being allocated into our systems and the acknowledgement
of the need for change, now is the time when we can introduce simple heuristic
approaches to rearrange, augment and bolster structural elements of our societies
to promote the health of our populations and also increase our resilience. As
Taylor-Robinson and Kee point out, we can view the elements creating our societal
structures through the lens of a quincunx, which is a device where marbles funnelled
into the top of the device hit an array of pins and demonstrate how a normal distri-
bution can be generated from a random process [35]. With this perspective in mind,
we can actively push to invest in simple heuristic-led strategies to address social
determinants of health by, for example, ensuring our citizens have access to nu-
tritious food (e.g. subsidising healthy foods and supporting community gardens),
clean water (e.g. through state-led interventions to create or augment water pu-
rification plants/distribution networks and investing in or subsidising interventions
to improve water efficiency in agriculture), jobs training (e.g. through subsidies
for vocational and technical skills training), employment (e.g. the state taking the
role, in the short-medium term, of an employer of last resort [36] and supporting
infrastructure, preferably green infrastructure, projects).

Box 3 highlights some specific policy suggestions for three specific areas (Econ-
omy and Employment, Education and Health), for which we have evidence of pos-
itive outcomes that could be generated for citizens and society based on evidence
from previous crises.

Box 3. Toolbox of policy responses to create a better and more
equitable post-COVID steady state

We know from previous crises that there is a great risk for increased in-
equalities post-crisis. Policies should be designed to support sustainable
and inclusive recovery that addresses current needs and reduces vulnera-
bility to future crises [4]. Previous crises have taught us that maintaining and
increasing public spending and social safety nets can have dramatic effects
on recovery trajectories, health and dimensions of inequality [4, 25, 26].

Economy & Employment

Countries should focus on supporting economic activity and the drivers of
economic growth while also providing support for households, businesses
and essential services [1].
• The negative long-term social and health-related effects of unem-

ployment could be mitigated through initiatives like universal basic
income, temporary income support for displaced workers (e.g. un-
employment insurance, redundancy payments, social assistance pro-
grams), implementing national job guarantee programs (e.g. with
governments functioning as an Employer of Last Resort and support-
ing public works programs such as green infrastructure projects) and
targeted active labour market programs (e.g. employment services
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such as labour exchanges, education and training, business support
or subsidized employment programs as well as access to affordable
childcare and improved parental leave policies) [4, 23, 26, 36].

• Improved access to low-cost financial products and improving digital
infrastructure could also help micro and small enterprises survive and
become more competitive [4].

Education

Countries should generally focus on three areas for educational recovery
- coping, managing continuity and improving/accelerating improvements
to the educational system to improve outcomes, addressing inequality, and
reducing learning poverty [13].

• Coping and Managing Continuity: in the short-medium term, school
capacity should be strengthened to reduce risks of disease transmis-
sion and promote healthy behavior and re-enrolment campaigns and
cash transfers should be instituted to ensure schools do not lose chil-
dren permanently to drop-out, particularly vulnerable group and
students below learning proficiency standards [4, 13].

• Improving/accelerating improvements: Investments should be made
to support teacher training as well as in bolstering school infrastruc-
ture through technology-enhanced learning [13].

Health

Countries should ensure there are sufficient safety nets and social welfare
programs to ensure individual and community health needs can be met.

• Core infrastructure components including social registries and mobile
payment systems to identify vulnerable individuals to ensure they do
not slip through the cracks as well as tracking emerging risks should
be implemented [4].

• Programs to reduce food insecurity (e.g. school meals, food subsidies,
etc.) will be essential to ensure we avoid short, medium and long term
negative consequences of malnutrition

• Increased mental illness can be expected post-pandemic and steps
should be put in place early to prepare for this by raising awareness
and bolstering services such as hotlines and psychiatric services [3].

These three areas are highlighted as a starting point because addressing them has
the added benefit of tackling other social determinants – for example, strengthening
employment opportunities for individuals so that they are able to earn a livelihood
means that they are more likely to be able to afford nutritious food, adequate housing
and transport and the employment status of the individual will protect them from
adverse mental health outcomes.
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COVID-19’s aftermath will be unpredictable but a bleak future post-COVID is
not a foregone conclusion. It will take time, new ways of thinking and new ways of
working but it is fully in our power to design and build a better future if we make
the right types of decisions and focus on the elements, like social determinants of
health, that can build a stronger present and future for our citizens.
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Pandemics are a complex problem that involve all societal mechanisms
and is related to heterogeneous human behaviors and also collective
patterns. Remarkably, even when local systems may greatly differ from
each other, pandemics propagate because of the pathways that connect
the different systems and several invariant behaviors and patterns that
have emerged globally. These structures and properties make the cur-
rent world fragile against pandemics. A necessary and proper reconfig-
uration of prevention and response systems for pandemics should be
addressed based on complexity, ethic and multi-scale systems so that
the world becomes more robust, resilient and anti-fragile without los-
ing the advantages of being interconnected. A virus is a rather simple
biological unit that, given the probabilistic combinations of biochemical
mechanisms and human behaviors, is capable to propagate using hu-
mans as a substrate. Viruses exploit complexity and emergence to turn
into epidemics. A top-down approach led by Governmental organs for
managing such a phenomenon is not sufficient and may be only effec-
tive if policies are very restrictive and their efficacy depends not only in
the measures implemented but also on the dynamics of the policies and
the population perception and compliance. This top-down approach
is even weaker if there is not a national and international coordination
capable of fighting back the scalability and massive and fast propaga-
tion of pandemics. Combining coordinated top-down measures with
the right timing must be complemented with bottom-up approaches
to generate a collective response. A collective response includes be-
havioral changes regarding hygiene and physical distancing, but also
the transmission of trustful information and the generation collective
local efforts and constructive perception and sentiment. Such a collec-
tive response would reinforce policies to be more impactful and have
faster and more effective dynamics. In an age of passive synchroniza-
tion driven by digitalization, active collective action and response is
needed for building up robustness, resilience, anti-fragility and ethi-
cal response and recovery. Collectiveness can hardly emerge without
signaling, sensing and leadership mechanisms. Here, we make a com-
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mentary about potential of multi-scale collective response to pandemics
and present a framework to understand social organization in informa-
tion transmission based on social networks analysis during COVID-19
for discussion and recommendations.

1 Introduction

Pandemics are not just a biological phenomenon, but also a socio-economic and
cultural one, both in terms of their nature and their impact. Consequently, digital
epidemiology has appeared as a discipline itself that powered by new data sources
such as mobile phone data and social network is capable to deciphering and quan-
tifying the dynamics of the propagation of epidemics [1]. Network science has been
applied for characterizing and modelling disease spreading considering different
types of network topology and dynamics [2–7]. Furthermore, the availability of
geo-localized data has enabled assessing the contribution of mobility to epidemic
spreading and socio-economic impact with fine detail [8, 9].

The simplicity of viruses, that through combinatorial mutations may find a way
to reproduce massively, use not only the human body to survive and reproduce,
but the entire society as a substrate for transmission. The tangled network cre-
ated through digital connectivity, world-wide economic and financial exchanges
and multi-scale travelling patterns results in a very transmissible substrate for new
viruses to turn into pandemics. Each epidemic has its own characteristics in terms
of immunology and virology. For instance, malaria affect mainly children that
higher risk of death under malnutrition conditions [9]. Influenza is another disease
where children play a key role in transmission [10–12]. On the contrary, children
have shown better immunology response to COVID-19 although the transmission
patterns and infectious power vs viral load profiles are yet to be properly char-
acterized [13–15]. The characterization of transmission patterns is complex and
requires a local and systematic analysis based on clinical studies, surveys and Big
Data to create contact matrices that help building predictive models and monitoring
systems [16–24].

However, regardless the specificities of the viruses and the local transmission
chain, pandemics share some commonalities that turn them into high-speed and
scalable propagation diseases and they seem to have found their way through
our world-wide structure. Additionally, there exists hypothesis that the global
industrial system is exerting an unbearable load of stress to the planet leading to less
self-regulation and richness of biodiversity and, therefore, increasing our exposure
to viruses of different kind and the risk of more frequent pandemics. The social
dimension and the biological dimension of the planet are deeply interconnected
and epidemics are resulting phenomena that may be more frequent and impactful
in the years to come.

This situation poses the reasonable question whether the globalized world is
itself, by definition, weak and fragile and if pandemics will change the world and
threat humankind and civilization. It is important to highlight that while epi-
demics do not intrinsically account for socio-economic profiles of individuals for
transmission, there are population groups that may have higher exposure due to
problems to adapt to lockdowns, mobility restriction and other distancing and non-
pharmaceutical measures [18, 22]. The hygiene, water and sanitation conditions
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(WASH) have a very relevant role in epidemics, both on their onset and their tail so
we can expect poor WASH regions to become reservoirs of diseases such as COVID-
19 in the same way they are for another viruses. Demographics and urban-rural
development will also play a key role on long-term transmission chains. Further-
more, most part of the enduring socio-economic impact of pandemics will affect the
most vulnerable population because of the deterioration of the local and global econ-
omy and regional livelihoods and the changes in the commerce and consumption
patterns.

Thus, pandemics are a multi-scale processes that affect all layers of the social
tissue at local and global levels and have a modulated impact depending on the vul-
nerability of the people. This ubiquity and mixed homogeneity and heterogeneity
of pandemics result in a problem that is very hard to model and predict. Pandemics
are socio-biological anomalies that can be considered fat-tailed [25, 26] and cannot
be controlled with existing governance mechanisms. COVID-19 has led to an inten-
sive digitalization for communication, work and also epidemics management with
a surge of uncountable models, tools and systems [27]. This digitalization may have
mixed consequences as there is not an underlying scientific framework to use these
tools, neither ethical and governance ones. Existing predictive mechanisms have
also limited rigor because of the lack of all the necessary data in real-time (apart
from embodied assumptions into the models that would need scientific contrast)
and therefore should be used under very well-thought conditions as the negative
outcomes of wrong data-drive decision making for pandemics can have devastating
impact [28].

We can foresee the negative impact of digital platforms and wrong evidence-
based system from the information spreading patterns in the networks. Misinfor-
mation and fake news are a recurrent problem of our digital era [29–31]. The volume
of misinformation and its impact grows during large events, crises and hazards [32].
When misinformation turns into a systemic pattern it becomes an infodemic [33,34].
Infodemics can amplify the real negative consequences of the pandemic in different
dimensions: social, economic and even sanitary. For instance, infodemics can lead
to hatred between population groups [35] that fragment the society influencing its
response or result in negative habits that help the pandemic propagate.

Harnessing digital systems for pandemics prediction and response need a frame-
work of complexity integrating governance, multi-scale drivers and collective in-
telligence. Here we discuss several aspects that should be considered for such a
framework and provide several recommendations based on learning from social
science and also developmental biology and biophysics that inspire the design of
resilient systems. In this light, we propose the integration of technology and data
and AI-driven systems. We also present a social network analysis to provide a
discussion of real network structures that can affect the response to COVID-19 and
the pace of the recovery and adaptation to potential endemic pandemics.

2 Collective Intelligence and Action

People play an unaware role in pandemics, being the source of incubation, repro-
duction and transmission of viruses. Non-pharmaceutical measures point in several
case to individual-level actions being using mask, staying home or washing hands.
Small preventive hygiene actions have a direct impact in the epidemiological evo-
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lution as they have a scalable inhibiting effect against the virus propagation. High
infectious diseases such as COVID-19 still propagate even when hygiene measures
are taken and enforced by most part of the population. When the epidemiolog-
ical curves passes certain thresholds, more restrictive measures may be enforced
by Governments limiting people’s freedom and having a severe socio-economic
impact.

These measures are taken towards cutting the individual level pathways for the
transmission reducing the average reproductive number R to avoid scalable conta-
gion network dynamics [2,36]. However, the distribution of R (characterized by the
parameter k) may be very wide leading to the appearance of superspreading events
and superspreaders that hamper holding the epidemiological curve flat, allowing a
progressive decay of the curve and the eventual eradication in a hypothetical iso-
lated context. Additionally, imported cases also hamper local eradication or keeping
epidemiological curves flat low.

Full lockdowns may be the only sure way to inhibit transmission pathways
among individuals provided a sufficient time window to disconnect households.
However, lockdowns have not be as effective along time everywhere and Govern-
ments have not been capable of sustain them long enough globally. In a context of
persisting pandemic which may turn endemic as recently claimed my WHO , pop-
ulation will need to keep playing as individual inhibitors by hygiene and physical
distancing measures. However, this may not be sufficient to prevent from sec-
ondary waves which will cause more deaths and socio-economic crises when travel
restrictions disappear or people relax in physical distancing.

Population must gain awareness and have tools to act so that they can prevent
themselves and their environment to suffer from the pandemic. There are little tools
for people to do so and they have not been properly designed in most cases. So far,
digital tracing apps have acted mainly as a control mechanism, but not as an em-
powering mechanism. Trust has not been at the core of digital tracing apps and they
have failed in many places. Digital tools have to improve “sensing and communica-
tion” more than increase surveillance. For instance, timely and accurate information
of the epidemiological curve in our residential and work environments would al-
low people to increase their awareness and precautions which cannot be kept at the
same level all the time throughout a long lasting pandemic. In that sense, bidirec-
tional communication with health authorities would greatly increase trust instead
of generating the reasonable perception of being observed and controlled that dig-
ital contact tracing apps have generated. Besides, there are key technology design
elements that have to be aligned with a (collective) human-centered design such as
privacy-safety or decentralized analysis [37]. Through sensing and communication,
collective response and precaution patterns can emerge without a unidirectional
control system. Pandemics are a great opportunity to test how social systems can
self-organize (provided the right mechanisms and monitoring) as biological tissues
or animal herds do.

Furthermore, most part of tracing apps do not account for all the population
[38, 39] which has ethical and epidemiological negative consequences. Reaching
vulnerable population so they are properly assisted minimizing their exposure and
risk would have great benefits in the epidemiological curve and the mortality. As
mentioned, vulnerable population like elderly or low-income workers may have
problems to be compliant with physical distancing and take precautions leading to
an unfair risk of contributing to the propagation. It is necessary to design technology
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and guarantees that account for the asymmetries in the population in terms of
information, precaution capacities and individual resilience. Having population
groups that are fragile and not resilient make the whole system fragile and not
resilient. By generating more trustful links among the population along the different
social and demographic layers and with the decision makers and health system, we
could expect to have a more robust and resilient social tissue that is able to sustain
compliance through time and react faster to surges in the epidemiological curve.
Loneliness is not the proper mental and epidemiological state to fight a pandemic.

Collective Intelligence and Artificial Intelligence can be even more relevant
tackling the socio-economic crises derived from the pandemic. It is important to
understand how the economy should be stimulated in order to combine three main
drivers: accelerators, synergic actions and inclusive mechanisms. This requires
a whole different approach to AI and evidence-based systems and the structure of
decision making mechanisms and roles. Artificial Intelligence and Collective Intelli-
gence should be oriented to design better Augmented Collective Intelligence [40–42]
that harness the collaborative processes for sense making and deeper understanding
of the complexity involved in the processes derived from the pandemic and how to
find the right solutions.

Besides the cognitive and epistemological challenges that the COVID-19 derived
crisis will pose into our societies and planet, there will be an important number of
crossed interests from different sectors and ideological confrontation. It is rather
difficult to imagine that the world can recover with the necessary pace without a
collective effort and a scientific framework that allows identifying accelerators and
synergies and ensuring that the new reality does not increase the socio-economic
gaps and segregation in different parts of the world [43, 44]. Although there exist
frameworks of citizen science and collective intelligence, it is necessary to go a
step forward regarding the scientific grounds and the use of Artificial Intelligence
and Data to generate ideas collectively and with a broad perspective, synthesize
knowledge and ideas, make simulations for action, perform evaluations of impact
and generate the warnings triggering actions. The appearance of technologies such
as Blockchain are an opportunity to progress towards these frameworks of collective
consensus, sense making and action.

Collectiveness is not contradictory with organization, however, new multi-scale
organization systems are required to manage the complexity and state of emergency
of the world we live in. Leadership and networks are fundamental to build a more
responsive and anti-fragile socio-economic tissue. Leadership is required to drive
change, but we need to consider two fundamental aspects in leadership: the content
and purpose of ideas, projects, initiatives and narratives and also the topology of
the network linked with the leading nodes. We briefly discuss these aspects in a case
study of information spreading in Twitter data [45]. It is necessary to investigate
further in how leadership should be configured and distributed to promote proactive
and fast reactive actions and transformations.

This type of framework is not only required for pandemic management but is
also necessary for innovation and drive constructive efforts in the private sector.
A new type of socio-economic tissue based on collaboration that aligns collective
efforts in specific challenges and missions with a proper scientific and quantitative
frameworks [46] can help leading to a faster recover and develop the structure for
building up resilience and anti-fragility. As mentioned, from biological systems
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we can learn that a certain level of specialization combined with interactions and
sensing mechanisms are the foundation for emergent properties.

3 Governance

Transformative processes require drivers and catalyzers to generate phase transi-
tions and enable structural changes. Besides the lack of catalyzers, transformations
can be hindered by inhibitors that can take different shapes such as heavy bureau-
cracy, political interests, resistive narratives, hatred argumentation, social polariza-
tion, etc. Furthermore, most current organizations and governance structures are
stiff and designed from the lens of steadiness, although public policies lack the vi-
sion of long-term objectives and missions. Current world challenged by biological,
economic and environmental threats has to be progressively redesigned from the
lens of dynamics and complexity. COVID-19 pandemic has also highlighted that in
a hyper connected world, there is a severe lack of international coordination sys-
tems even within the European Union. Out of sync response among countries has
proved useless and damaging facilitating the virus spreading and reaching parts
of the world with a precarious health system causing deaths and likely leading to
more poverty.

For these reasons, dynamic processes have to be led also by governments, multi-
lateral actors and international institutions that represent democracy. Only through
more dynamic governance it will be possible to build up resilience as a necessary
requirement for sustainability by implementing policies, mobilizing investment,
proper regulations, international agreements, etc. Resilience and anti-fragility re-
quire parts of the system to activate ahead and react to external conditions facil-
itating effective response and driving necessary and constructive transformations
and change. We may think of such mechanisms as genes that activate and are spe-
cialized to response to specific stimuli. However, current power structures, even
when legitimate, do not offer guarantees of such kind of response due to structural
stiffness, overload of hierarchies and bureaucracy, uncertainty for decision making,
wicked power relationships and responsibility ownership.

Digital technologies and AI must be used to improve response through better in-
sights as discussed. Holistic frameworks powered by complex science used within
multi-stakeholders ecosystems are the way forwards to create evidence-based poli-
cies and innovation governance towards the management of pandemics and the
stimulation for recovery. Artificial Intelligence has been often used to get deep
insights on bounded data and a transition to wide insights that open perspective
should be the goal of improvements in Machine Learning, data science and visual
analytics. Depth and wideness are two elements to promote in decision making
processes through learning and training of decision makers and leaders. The inte-
gration of scientists on governance platforms organically, not only as expert panels,
is a requirement to harness a secure future of data-driven governance. Scientists
also need training on governance and the proper non-academic incentives.

Evidence-based policy making and AI-driven systems require also ethical frame-
works to be acceptable and useful. For instance, COVID-19 pandemic has risen the
paradigm of relying on digital contact tracing apps for individual control, contagion
monitoring and also generating accurate contact matrices [47, 48]. The use of these
apps brings social and ethical problems that depend on the technological design,
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their deployment, their governance and their application [37–39]. As discussed,
human-centered design is required, but also a broader perspective of an acceptable
digitalization both in terms of technology and technology governance. Typical tech-
nical values such as transparency, efficiency and trustworthiness are necessary but
not sufficient to be the ground for evidence-based policy making in the digital era .
Frameworks will depend, of course, on cultural particularities, but it is important to
create debate and consensus of these frameworks prior an invasive digitalization.

Beyond evidence-based decision making, digital technology can help building
more decentralized, responsive, flexible and accountable systems for governance.
Although current debate points towards the bias of AI, probably, the most promising
use of digital technology is to help building better public and private organizations
to overcome human limitations [49]. Algorithmic governance can mediate in power
relationships and open spaces for collective intelligence if properly designed and
deployed, rather than making more obscure and less interpretable decision making
systems [50]. Impact assessment of data-drive policies would be a necessary mech-
anism to ensure that technology does not worsen existing problems or create new
ones.

Interdisciplinary, international and independent (and even decentralized) teams
should help make decisions, interpret results and analyze outcomes. In that regard,
COVID-19 has been a promising milestone of academic collaboration [51] that is nec-
essary to leverage the necessary knowledge, technology and resources in a timely
and effective manner. Collaboration will be necessarily layered integrating different
actors as a network that needs management where digital technology should help
as well. AI and data could help activate the network through signaling processes
and governance automation as it has started happening in the humanitarian sec-
tor [52]. A certain level of automation in partnerships and collaboration including
data sharing would relieve from responsibility burdens of decision makers to ac-
celerate processes. This is rather controversial with some AI regulation experts,
but responsibility should never lead to inaction and digitalization is an opportu-
nity to make not only more transparent but also more actionable and committed
governance, always under the supervision of ethics and accountable impact.

4 Case Study: Information Spreading Leaders

During a crisis such as the current COVID-19 pandemic, information is key as it
greatly shapes people’s opinion, behavior and even their psychological state [53–55].
However, the greater the impact the greater the risk [56]. It has been acknowledged
from the General-Secretary of United Nations that the infodemic of misinformation
is an important secondary crisis associated to the pandemic that can amplify the
crisis. During a crisis, time is critical, so people need to be informed at the right
time [57,58]. Furthermore, information during a crisis leads to action, so population
needs to be properly informed to act right [59]. On the contrary, reliable and trustful
information along with messages of hope and solidarity can be used to monitor and
control the pandemic, create real-time response mechanisms, build safety nets and
help promote resilience and antifragility.

To fight misinformation and hate speech, content-based filtering is the most
common approach taken [33,60–62]. The availability of Deep Learning tools makes
this task easier and scalable [63–65]. Also, positioning in search engines is key
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to ensure that misinformation does not dominate the most relevant results of the
searches. However, in social media, besides content, people’s individual behavior
and social network properties, dynamics and topology are other relevant factors
that determine the spread of information in the different clusters and layers of the
society organization skeleton [66–68]. Infodemics are frequent specially in social
networks that are distributed systems of information generation and spreading.
For this to happen, the content is not the only variable but the structure of the social
network and the behavior of relevant people greatly contribute [33].

One of the characteristics of the current digital era is a certain level of central-
ization of information spreading and technological services. We are also witnessing
certain level of influencers-type of movement regarding ethics of technology and
data-driven policy making and governance. The transition from the COVID-19 to
a potential different world more resilient and anti-fragile demands thinking about
the role and nature of leadership and influencers.

Here, we present a preliminary study to characterize leaders in Twitter based on
the analysis of the social graph derived from the activity in this social network [69].
Centrality metrics are used to identify relevant nodes that are further characterized
in terms of users’ parameters managed by Twitter [70–74]. Although this tool may
be used for surveillance of individuals, we propose it as the basis for a constructive
application to detect and empower users with a positive influence in the collective
behavior of the network and the propagation of information [72, 75]. This is an
example of how technology could be used to understand better social organization
and take actions accordingly to build resilient networks.

Data

Tweets were retrieved using the real-time streaming API of Twitter using a fil-
ter of keywords. The keywords were basic terms to retrieve posts related to the
pandemic ’coronavirus’, ’Coronavirus’, ’CoronavirusES’, ’coronavirusESP’, ’coron-
avirus’, ’Coronavirus’, ’covid19’, ’covid19’, ’Covid19’, ’Covid19’, ’covid-19’, ’covid-
19’, ’COVID-19’, ’COVID-19’. In total, 500.000 posts were retrieved in the time
interval between April 18th and May 4th.

Method

Each tweet was analyzed to extract mentioned users, retweeted users, quoted users
or replied users. For each post the corresponding nodes were added to an undirected
graph as well as a corresponding edge initializing the edge property “flow”. If the
edge was already created, the “flow” was incremented. The network was completed
by adding the property “inverse flow” (1/flow) to each edge. The resulting network
featured 107544 nodes and 116855 edges.

To compute centrality metrics the network described above was filtered. First,
users with a node degree (number of edges connected to the node) less than a
given threshold (experimentally set to 3) were removed from the network as well
as the edges connected to those nodes. The reason of this filtering was to reduce
computation cost as algorithms for centrality metrics have a high computation cost
and also removed poorly connected nodes as the network built comes from sparse
data (retweets, mentions and quotes). However, it is desirable to minimize the
amount of filtering performed to study large scale properties within the network.
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Degree

Radial and volume-based centrality computed from 1-
length walks (normalized degree) based on the flow prop-
erty. This metric measures the number of direct connec-
tions that an individual node has to other nodes within a
network.

Eigenvalue

Radial and volume-based centrality computed from infi-
nite length walks. This metric measures the number of
edges per node, and the number of edges of each con-
nected node and so on.

Closeness
Radial and length-based centrality that considers the
length of the shortest paths of all nodes to the target node
based on the flow property.

Betweenness

Medial and volume-based centrality that considers the
number of shortest paths passing by a target node based
on the flow property. This centrality was computed for
both directions of the directed graph.

Current flow Closeness
(cfcloseness)

Radial and length-based centrality based on current flow
model using the inverse flow property. This centrality
was computed for the largest connected undirected sub-
graph. This metric is a variant of closeness that evaluates
not only the shortest paths, all possible paths

Current flow Between-
ness (cfbewteennes)

Medial and volume-based centrality based on current
flow model using the inverse flow property. This central-
ity was computed for the largest connected undirected
subgraph. This metric is a variant that evaluates the in-
termediary position in all the paths between the rest of
nodes.

Load
The load centrality of a node is the fraction of all shortest
paths that pass through that node. Load centrality is
slightly different than betweenness.

Table 1: Centrality descriptors table

The resulting network featured 15845 nodes and 26837 edges. Additionally, the
network was filtered to be connected which is a requirement for the computation of
several of the centrality metrics described below. For this purpose, the subnetworks
connected were identified, selecting the largest connected network as the target
network for analysis. The resulting network featured 12006 nodes and 25316 edges.

Several centrality metrics were computed: current-flow betweenness, between-
ness, closeness, current-flow closeness, eigenvalue, degree and load. Each of this
centrality metric highlights a specific relevance property of a node with regards to
the whole flow through the network. Descriptors explanations are summarized in
Table 1. Besides the network-based metrics, Twitter user’ parameters were collected:
followers, following and favorites so the relationships with relevance metrics could
be assessed.

We applied several statistical tools to characterize users in terms of the relevance
metrics. We also implemented visualizations of different variables and the network
for a better understanding of leading nodes characterization and topology.1

1The interactive dashboard with the data used for visualizations can be downloaded from
https://zenodo.org/record/3996654#.X0LLG9Mza3I. The original Twitter data can be pro-
vided upon request.
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Results

We compared the relevance in the network derived from the centrality metrics with
the user’ profile variables of Twitter: number of followers, number of following and
retweet count. Figure 1 shows a scatter plots matrix among all variables. Principal
diagonal of the figure shows the distribution of each variable which are normally
characterized by a high concentration in low values and a very long tail of the
distribution. These distributions imply that few nodes concentrate most part of the
relevance within the network. More surprisingly, same distributions are observed
for Twitter user’ parameters such as number of followers or friends (following).

The scatter plots shows that there is no significant correlation between variables
except for the pair betweenness and load centralities as it is expected because they
have similar definitions. This fact is remarkable as different centrality metrics
provide a different perspective of leading nodes within the network and it does
not necessarily correlate with the amount of related users, but also in the content
dynamics.

Users were ranked using on variable as the reference. Figure 3 summarizes the
values for each descriptor of each leader after being ranked according to the eigen-
value centrality. Figure shows that even within the top ranked leaders there is a very
large variability characterized by an exponential distribution for the eigenvalue pa-
rameter and very heterogeneous values for other relevance metrics or Twitter popu-
larity metrics (followers, following, favorites and status count). The heterogeneous
and unequal distribution suggested that a small number of nodes are powerful nodes
within the network accumulating most part of the relevance and node connectivity
as characterized by the eigenvalue metric. This fact requires further analysis to
be interpreted as relevant nodes can be indeed social leaders in society or singular
events of the network dynamics within the time window analyzed. Figure 1, 2 and
3 show that relevance may not be directly correlated with popularity or very high
in Twitter. Figure 1 shows all possible histograms and scatters between variables
describing the network of tweets (descriptors Table 1 and Table 2). The diagonal
shows distributions that are normally very fast-decreasing distributions near zero
except the closeness centrality that shows a quasi-symmetric curve. The scatter plots
show that there is no significant correlation between variables which means that all
descriptors convey relevant information to describe the network and the users. This
emergent relevance of specific nodes is key to understand the propagation of infor-
mation. Figure 2 shows scatter plots for ranked users based on eigenvalue centrality
(the first 500 users are selected). This is a subset of Figure 1 and still shows that
there are not correlation of variables in highly-ranked groups.

Figure 3 shows that there is a concentration of very few leading nodes in some
variables because they are fat-tailed [26] . Only closeness shows a distribution that
features high values more homogeneous for the ranked variables and therefore this
variable is not fat-tailed.
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Followers Number of followers of the account
Following Number of users that are followed by the account

Favorites Number of favorites status (tweets) by other
users

Status count Number of tweets published by the account

Table 2: Descriptors of Twitter accounts

Figure 4 shows the ranking resulting from using the eigenvalue centrality as
the reference. The values were saturated to the percentile 95 of the distribution
to improve visualization and avoid the effect of single values with very out of
range values. This visualization confirms the lack of correlation between variables
and the highly asymmetric distribution of the descriptors. Figure 5 shows the
ranking resulting from using current flow betweenness centrality as the reference.
In this case, the distribution of this reference variable is smoother and shows a more
gradual behavior of leaders. Of note, different centrality metrics lead to different
a classification and characterization of nodes (Figure 4 vs Figure 5). Experimental
work is required to understand how a specific centrality translates into a different
information propagation pattern. For this purpose, we built a dashboard to browse
the ranked nodes, their properties and relevance and also the network and its
topology.

The occurrence of nodes with centrality values very far away from the distribu-
tion average is an important phenomenon when study social leaders. These nodes
can play a role of information super-spreaders meaning that a few nodes transmit
a lot of information or misinformation to other nodes. This can be appreciated spe-
cially in the eigenvalue centrality, whereas the current-flow betweenness centrality
seems a more stable metric. This asymmetric distribution implies that there are
powerful communities highly intra-connected whereas there are fewer nodes that
serve as a bridge between communities.

A clear conclusion is that few nodes with high eigenvalue centrality have a lot
of power in shaping the opinion and information within a community, that may or
may not be closely distributed geographically, so they are clear influencers at least
for a close group of people. However, nodes with high current-flow betweenness
centrality are specially relevant to introduce relevant information into communities
that, for instance, may have a negative narrative more indirectly. An open ques-
tion is that these nodes have the necessary influence within the target community
to propagate information and consolidate sentiment. A strategy could be to rein-
force nodes with high current-flow betweenness and positive activity to be more
influential and gain the necessary eigenvalue centrality within communities.

To assess how the nodes with high relevance are distributed we projected the
network into graphs by selecting the subgraph of nodes with a certain level of
relevance (threshold on the network). The resulting network graphs may not be
therefore connected.

The eigenvalue-ranked graph shows high connectivity and very big nodes (see
Fig. 6). This is consistent with the definition of eigenvalue centrality that highlights
how a node is connected to nodes that are also highly connected. This structure
has implications in the reinforcement of specific messages and information within
high connected clusters which can act as promoters of solutions, sources of infor-
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Figure 1: Matrix of histograms and scatter plots among all variables in log scale. Left
to right and from the top to the bottom: current-flow betweenness, betweenness,
closeness, current-flow closeness, eigenvalue, degree, load, followers, following,
favorites and status. count
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Figure 2: Matrix of histograms and scatter plots among all variables with logarithmic
axis. It represents the correlations between the vars for the top 500 ranked users by
eigenvalue. Left to right and from the top to the bottom: current-flow betweenness,
current-flow closeness, eigenvalue, followers, following, favorites and status count.

Figure 3: Distribution of the ranked users for each descriptor.



236 Collective Intelligence and Governance for Pandemics

Figure 4: Mosaic of bar plots for ranked users according to eigenvalue centrality.
Descriptors shown: current-flow betweenness, current-flow closeness, eigenvalue,
followers, following, favorites and status count (the number of status in Twitter).
Each bar for each user.
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Figure 5: Mosaic of bar plots for ranked users according to current flow betweenness.
Descriptors shown: current-flow betweenness, current-flow closeness, eigenvalue,
followers, following, favorites and status count (the number of status in Twitter).
Each bar for each user.
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Figure 6: Graph of high-eigenvalue users.

Figure 7: Graph of high-current flow betweenness users.

mation/misinformation or sentiment or may become lobbies. It is still remarkable
that these nodes may not be those with more popularity according to Twitter met-
rics. It means that for given conversations and topics the dynamic network is not
influenced by the popularity of the network. Further analysis is here required to
understand the authority that emerges for specific topics based on the content of
messages, dynamics of the network and the popularity.

The current flow betweenness shows an unconnected graph which is very inter-
esting as decentralized nodes play a key role in transporting information through
the network (see Fig. 7). This means that the connectors between communities and
groups of opinion are distributed in the network and potentially geographically
too. As mentioned, these nodes may not have high popularity or high connectivity
(as measured by eigenvalue), but the messages they convey are transmitted across
different communities. Further research is required to see the impact of these nodes
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Figure 8: Graph of high-current flow closeness users.

Figure 9: Graph of high-eigenvalue users (size 584 nodes).

into the narratives and the propagation of specific sentiments and topics into the
communities these nodes interconnect as these nodes have great potential to build
larger safety, well-informed and positive nets.

The current flow closeness shows also an unconnected graph which means
that the social network is rather homogeneously distributed overall with parallel
communities of information that do not necessarily interact with each other (see Fig.
8). These nodes, as the nodes characterized by current flow betweenness have great
potential to interconnect communities as they are closer in the network to several
communities at the same time. A research question is if the closeness would be
sufficient to propagate and consolidate information and sentiment into the target
communities.

By increasing the size of the graph (lowering the thresholds) more clusters can
be observed, specially in the eigenvalue-ranked network which is consistent with
the previous observations (Fig. 9-11). A super node may point out to a relevant
institution or an anomaly in the network caused by a viral process or topic. The large
connectivity of high eigenvalue centrality nodes may be also related to the size of the
communities where few communities may be specially large and intra-connected
concentrating the flows of information on a specific topic.

Some clusters also appear for the current flow betweenness and current flow
closeness (see Fig.10, 11). These clusters may have a key role as highly relevant
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Figure 10: Graph of high-current flow betweenness users (size 876).

Figure 11: Graph of high-current flow closeness users (size 876).

hubs in establishing bridges between different communities of practice, knowledge
or region-determined groups.

Discussion

Distributions of the centrality metrics indicate that there are some nodes with mas-
sive relevance. As the edges of the network are characterized in terms of flows
between users, the relevance should be understood in terms of volume of infor-
mation between communities or groups that are dynamically connected within a
specific topic, in this case information related to COVID-19.

The relevant nodes are topological events within the flow of communication
through the network [68] that require further contextualization to be interpreted.
These nodes can propagate misinformation or make news or messages viral in
different ways and with different network length scopes depending on the type of
centrality that characterizes them. High eigenvalue nodes will do dense propagation
within communities whereas current flow closeness and betweenness will do sparser
and widely spread propagation of information. Experimental work is required to
optimize the necessary balance between these types of centrality to properly and
effectively propagate good information and positive sentiment through the network
as an opposition to infodemics. Further research is required to understand the cause
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of this massive relevance events, for instance, if it is related to a relevant concept or
message or whether it is an emerging event of the network dynamics and topology.
Another way to assess these nodes is if they are consistently behaving this way along
time or they are a temporal event. Also, it may be necessary to contextualize with
the type of content they normally spread to understand their exceptional relevance.

Besides the existence of massive relevance nodes, the quantification and under-
standing of the distribution of high relevant nodes has a lot of potential applications
to spread messages to reach a wide number of users within the network. This is
important for inclusiveness of information and to target all types of communities
including those that are more vulnerable and can be more affected by infodemics
and real impact of the pandemic, both in epidemiological and socio-economic terms.
Current flow betweenness particularly seems a good indicator to identify nodes to
create a safety net in terms of information and positive messages. The distribution
of the nodes could be approached for the general network or for different layers
or subnetworks, isolated depending on several factors: type of interaction, type of
content or some other behavioral pattern.

We have also developed a first version of an interactive graph visualization
to browse the relevance of the network and dynamically investigate how relevant
nodes are connected and how specific parts of the graph are ranked to really under-
stand the distribution of the relevance variables.

5 Conclusions

Governance is an emergent opportunity to develop more sustainable, resilient, anti-
fragile and ethical societies. However, a simplified version of data-driven and
evidence-based mechanisms can lead to very negative outcomes and also generate
distrust in the population against technology and computation-driven decisions.

When considering complex and systemic problems such as pandemics, holistic
approaches integrating Science and Collective Intelligence should prevail over linear
decision making. The design of computation-powered mechanisms should promote
both depth and wideness of perspectives to improve judgement and wisdom of
population, teams and boards rather than instrumental tools to justify the same
decision making processes that cannot cope with problems such as the COVID-19
pandemic. Current AI approaches may provide certain depth in data analysis, but
they lack the wideness, which may lead into decisions with uncontrolled impact.
This pandemic is an opportunity to define what is a good computation and data-
driven decision making to build a more resilient and sustainable future.

The human side of governance and policy making cannot be overlooked. The
pandemic is challenging current organizations of all kind around the globe, from
governments to private corporations to academia. A collaborative effort in academia
and the scientific community has led to a rapid response in understanding COVID-19
better [51]. However, these efforts have to be integrated into governance platforms
with capacities and capabilities to propose deep transformations and new mecha-
nisms that are required for response to systemic threats. Technology should be the
basis for activation, data sharing, collaboration, exchanges and also mediate in part-
nerships to catalyze responsible action. Intra-organization and inter-organization
relationships management is a unique opportunity for a world that is interconnected
and has computational frameworks to help decision.
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Another key issue is the lack of leadership, both in terms of action and also
generating narratives that help the society to face the pandemic. The unbearable
responsibility for many decision makers and politicians of causing harm (socio-
economic, cultural, spiritual and health) through strict policies and disruptive mea-
sures is likely causing inaction in many local and national governments. We must
open the chance for computational governance to complement existing mechanisms
and allow disruption at scale.

Computational platforms have also an intrinsic risk to scale up negative out-
comes, biases and misinformation. The future of digitalization and evidence-based
likely requires designing systems that regulate the ethical use of technologies, not
only in a personal way (i.e. regarding privacy), but also the systemic and behavioral
dimension of technology [76].

Collaboration and coordination should be the ground for governance. However,
these platforms need to introduce disruptive elements based on organizational and
technological innovation. Societies and governments will need accelerators and
catalyzers to tackle the upcoming systemic challenges in the next decade to recover
from COVID-19 and meet the 2030 Agenda, the United Nations commitment and
roadmap for sustainable development . Collective efforts and truth-driven narra-
tives must be promoted to fight polarization and align efforts in certain challenges
that will affect us all. Necessarily, this process must be undertaken laterally and
vertically considering the local problems of people but incrementing the awareness
of the systemic problems we face and the need to overcome selfishness and hatred.
Minorities can lead to unfair decisions if there is a lack of proper integrative gover-
nance and ethical frameworks. It is now only acceptable to achieve these goals in
an inclusive way, so acceleration and inclusiveness must be coupled into the actions
for new policies and governance platforms. This is not only an ethical principle, but
a design, implementation and deployment principle for an interconnected world
that is resilient and sustainable. Ethical principles that promote protection, action
and future projection should be the basis of evidence-based systems to not become
empty computational boxes. This is required to avoid self-complexity of the en-
vironment to be more dominant that the actual society and their decisions. This
problem has been discussed within Ashby’s Law.

Linear decision making involves several types of models such as SIR models or
agent-based epidemiological models. These models are normally used as predictive
systems but the model does not change the decision making process itself. It is
necessary to rethink decision making process as Collective Intelligence problems
that demand new algorithms and network-like topologies to make decisions that
are supported by leaders in different aspects. Multi-level leadership is important
for multi-scale analysis and governance. The analysis presented is an step forwards
in unveiling influence networks that promote robustness and resilience rather than
power control. Through the propagation of sentiment and information is possible
not only to characterize the topology of the network, but also the meaning and the
topography of the network. By calibrating weights of the nodes of the network
it would be possible to reconfigure them for a positive and constructive global
dialogue for building narratives.

Most likely, designing such a societal system will be a process that requires
experimentation and space for failure demanding also robustness of the system
to mitigate negative outcomes and impacts. This is a good approach for compu-
tational frameworks rather than feeding linear decision making processes which
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may turn into biased and oversimplified computational intelligence that may spoil
the potential of computational and data to empower a more resilient and thriving
society.
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The global labor market has been radically changing over the last
decades. The ongoing globalization process has implied that most
of the manufacturing sectors in western countries have been relocated.
For some years, we have been going through a Technological Revolu-
tion with significant consequences on the economies of many countries.
According to the International Labor Organization, around 37.5 per cent
of the total world workforce are subject to vulnerable employment and
this number is expected to increase in the upcoming decade. In addi-
tion, the emergence of the COVID-19 pandemic is strongly affecting the
job market, ranging from remote working to the need to set up reliable
and virus-free supply chains in companies and businesses. Although
the landscape after the pandemic is still very volatile, many companies
are already shifting towards forced automation in their production. In
this paper, we consider these factors and their implications to draw
potential scenarios of the future labor market on a global scale. Key-
words: 4th Industrial Revolution; Artificial Intelligence; automation;
COVID-19 pandemic; decent work; Machine Learning; future labor
market; future scenarios; employment prospects; robotics; technologi-
cal revolution

1 Introduction

Recent technological developments have undoubtedly had an impact on many as-
pects of current societies. One of the most important is how these will influence our
working life. In recent years, a large number of experts, institutions, governments
and policymakers have shown possible scenarios about the future of work. They
did so within the context of relevant technological shifts brought about by the so-
called 4th Industrial Revolution. However, the sudden emergence of the COVID-19
pandemic has appeared as a shock in our lives creating great uncertainty. Among
other aspects, we must rethink what new scenarios can be envisaged on the future
of work. Today, more than ever, it makes sense to analyze changes that may occur
at the intersection between the 4th Industrial Revolution and the COVID-19 pan-
demic by pointing out what implications are expected to occur in the global labor
market. To do this, we will analyze the trends recently observed for understanding
the magnitude of changes and the directions in which these point. We will review
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some potential scenarios provided by experts within a very volatile political and
socioeconomic context on a global scale.

The sudden emergence of the COVID-19 pandemic has been negatively influenc-
ing individuals and societies as a whole. To this day, one of the major uncertainties
is related to the economic impact of this pandemic. Many academics and experts
are trying to understand this impact by proposing a large number of potential sce-
narios of economic regeneration (Ortega 2020). However, as the health crisis has not
finished, it is still hazardous to predict the future. It will depend on multiple factors
such as the new geopolitical relations between the western countries and China,
the political understanding between Europe and the United States, and the policies
for reconstruction and economic revitalization. What does already look clear is that
the global labor market will undergo profound changes due to the existing inertia
experienced in previous years and also due to the impact of the pandemic.

2 Analysis and Discussion

Before the COVID-19 emergency, the global labor market was already going through
radical changes over the preceding decades due to two main factors: (a) the process
of industrial relocation in western countries, and (b) the so-called Technological
Revolution. The United States is the great paradigm behind these dynamics. In the
mid-20th century, those states located in the center of the country (aka flying states)
based their economies on manufacturing tangible assets. In 1950, around 35 percent
of Americans were working in the manufacturing sector, while in some of these
flying states this rate was over 50 per cent (Kozmetsky and Yue 2005). In the last 30
years, most American manufacturing industry has been outsourced to third world
(developing) countries where companies sourced reduced production costs, much
lower requirements for labor protection, and minimal environmental regulations,
among other advantages. In consequence, the service sector has come to dominate
the US economy, accounting for 80 per cent of the employment and 77 percent of
national GDP in 2019 (World Bank 2020). From a geographical perspective, it has led
to the agglomeration of people in cities and the reinforcement of urban economies.
Most job opportunities are to be found in cities and people migrate there. In addition,
of course, this helps with understanding the increasing spatial polarization between
urban and rural areas in the US, but also elsewhere (Hedayatifar et al. 2019). In
fact, these same dynamics have been replicated in the rest of the western countries.
This is the starting point for better understanding most of the social and political
dynamics that these countries have been experiencing in the last few years.

There is a second major turning point: the subprime crisis in 2008. After that
year, most western countries have faced a qualitative degradation in employment
under the pretext of the global economic crisis (Balsa-Barreiro, 2013). However,
this employment degradation could also show an anticipation for a clear drop in
the number of employees due to the average robot prices having fallen more than
labor costs, which encouraged companies to shift towards fast automation in many
countries (Tilley 2017). Optimization is associated with fragility (Taleb 2012), and
fragility means lack of adaptation and less chances of survival (which is critical
for operating in uncertainty). Supply chains can be automated, but if they are not
restructured, they continue to be fragile to massive disruption (Balsa, Vie, Morales,
Cebrian 2020).
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Before the emergence of COVID-19, the International Labor Organization (ILO)
estimated that 1,400 million workers in the world (around 37.5 per cent of the total)
were working in vulnerable employment conditions (ILO 2018). This rate is likely
to be increased during the pandemic. Future prospects are unpromising due to the
advances and challenges generated by technologies related to Artificial Intelligence
(AI), Machine Learning (ML), Robotics, and Industrial Automation. Such is the
magnitude of the upcoming changes that some experts refer to this age as the 4th
Industrial Revolution (Schwab 2016).

At this point, the role of technology has become self-contradictory. Even if
technology has been created by and for supporting humankind, humans are afraid
of its impact on the labor market. Previous industrial revolutions have shown how
this concern has always existed behind luddism, a reactionary movement against
the drastic changes resulting from any kind of technological revolution (Klein 2019;
Conniff 2011). However, this collective hysteria concerning technological shifts may
be due to people’s distrust in who is the driver of the changes. This is happening
right now, where the first question is if we are really facing a disruptive scenario
(Morgan 2020).

Several factors intervene in our collective fear of technology. According to IFR,
the operational stock of industrial robots was approximately 2,700 million robots
on a global scale, a number which has grown exponentially in recent years. This
number will continue its exponential growth in the coming years because it is quite
likely that COVID-19 will accelerate the industrial processes of automation and
digital transformation (Dell Technologies 2020). In fact, this seems to be a natural
post-crisis trend of any sort, where companies try to increase production efficiency
while reducing related labor costs. This inevitably leads to accelerated automation,
starting with those jobs which are easier to replace such as those undertaken by
blue-collar workers. Jaimovich and Siu (2012) demonstrated that jobs which are
focused mainly on routine and repetitive tasks were the first to have been automated
after the 2008 financial crisis. Companies like Philips Electronics or Foxconn, the
largest private employer in Taiwan, conducted a new wave of automation in both
manufacturing and distribution right after the crisis (Markoff 2012). However,
unexpected things can happen when large scale technologies are introduced in the
population in a top down manner, such as second order consequences and hidden
risks (Taleb 2012).

In addition, most of these jobs never returned. Furthermore, because of the
impact of COVID-19 and the threat of future pandemics, many companies have been
forced to organize supply chains that are safe and free from viruses, whereas other
businesses have replaced humans with machinery to avoid workplace infections
and to keep operating costs low (Ding and Saenz 2020; Semuels 2020). This is
mandatorily requiring more automation and less human contact. Just as an example,
some companies are already investing in deployments of swarm robots, which
present important functional benefits (Luca et al. 2019).

With part of the world with lockdowns and mobility restrictions, the pandemic is
also increasing social inequalities due to a disparate impact of the virus on different
social classes and types of businesses. Thus, while restaurants and airports suffer a
very severe drop in their activities, other productive sectors keep working remotely.
Frey and Osborne (2013) argue that high-income earners are five times more likely
to work remotely. Before the pandemic, the most vulnerable jobs with a higher risk
of being automated were precisely those which were carried out by low-educated
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Figure 1: Automation potential by type of worker for the three waves of automa-
tion that might unfold over the period 2020-2035. The X-axis represents time
range/waves and the Y-axis represents the share of jobs. (Data source: PwC es-
timates based on analysis of OECD PIAAC data 2017).

workers (Figure 1). The virus, being more a threat to certain types of jobs (Lu 2020,
Shendruk 2020), reinforces the same previous trend, especially threatening the most
vulnerable groups (Figure 2).

Nevertheless, the ongoing technological revolution and the impact of the pan-
demic might radically change the work prospects for white-collar employees too.
With this new wave of forced remote working, some of the tech companies in Silicon
Valley (such as Twitter, Square, Coinbase, Box, Shopify or Facebook) have already
decided to shift to permanent homeoffice working even after the pandemic. Mean-
while, other companies are considering this shift depending on whether it maintains
high levels of productivity. Remote working allows companies to reduce office costs,
cut down on travel expenses (and time), and also avoids the geographical restriction
of hiring employees with lower salary expectations. Just a few months ago, Face-
book announced that half of its 48,000 employees will permanently work remotely
by 2030 (Price 2020). Of course, these changes will have a vast impact in the urban
economies of the regions where these companies are located by affecting aspects
such as real estate, transportation, leisure, and social diversity, among others.

The 4th Industrial Revolution goes beyond just simple task automation and a
shift to remote working. Some recent examples illustrate this statement. In 2017, two
doctoral students at MIT presented a very cost-efficient system of school buses in
Boston, United States. Their proposal was based on an algorithm that eliminated 75
bus routes and enabled them to save up to USD 5 million per year (McGinty 2017). In
2019, the 178-year-old British tour company with 22,000 employees, Thomas Cook,
collapsed. In essence, this collapse is a consequence of the radical transformation
which the travel industry and online booking services have experienced over the last
number of years (Holton and Faulconbridge 2019). Also, the emergence of electric
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Figure 2: Risk probability (measured from 0 to 1) of temporary lay off/reduced hours
and losing job by income group in the European Union in Q2 2020. (Data source:
Eurostat 2020).

self-driving trucks could potentially disrupt the sector of truck drivers, which is
currently employing around 3.5 million workers in the US alone(ATA 2017).

At first glance, these examples suggest that technology is leading to a clear
reduction in the number of jobs (Watson 2017). Nevertheless, this approach must
be nuanced. The 4th Industrial Revolution will eliminate a great number of jobs,
especially in certain sectors, but it will also open new labor opportunities. It can be
clearly observed in the Big Tech companies. The company Amazon, with around
700,000 employees worldwide, has recently announced 30,000 new jobs in the US,
ranging from engineers to freight specialists (Weise 2019). This growth is magni-
fied during the COVID-19 pandemic due to most shopping activities having been
forwarded to digital platforms. Nevertheless, although the common perception
of working in tech and innovative companies is bright, it is not always the case.
Companies like Uber or Lyft, which are already threatening the jobs of millions of
taxi drivers, are under investigation in Europe because of the vulnerable working
conditions of their employees.

Since before the COVID-19 pandemic, there has been a discussion regarding
how the current Tech Revolution will affect employment. Just a few years ago,
consulting firms such as PwC (2018) and Gartner (2017) concluded that by 2020
the AI sector would create as many jobs as it eradicated, even showing a slightly
positive trend. The current technological revolution shows relevant differences in
comparison to previous industrial revolutions. Traditionally, changes derived from
them affected only employees in charge of routine tasks, i.e. the so-called blue-collar
workers. However, the recent impact of AI is also threatening those employees that
carry out highly skilled tasks, i.e. the so-called white-collar workers. Just as an
example, 600 traders of Goldman Sachs in New York headquarters were replaced
by trading machinery that are supported by 200 computer engineers (Byrnes 2017).
Nedelkoska and Quintini (2018) found nearly half of jobs are vulnerable to automa-
tion. According to Gartner (2017) and PwC (2018), the healthcare and educational
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sector will show an increase in the demand for jobs while the manufacturing and
transport sectors will concentrate the largest losses of jobs.

The Pew Research Center analyzed the impact and implications that AI and
robotics would produce on the labor market by 2025 (Smith and Anderson 2014).
Obviously, they did it without considering the effects derived from the pandemic.
For this purpose, they asked 1,896 experts whose answers were clustered in two
groups: (a) those who expected a positive or neutral impact, and (b) those who
expected a mostly negative impact. The first group or tech-optimists (52%) mostly
argued that automation would create new needs, which would increase demand
for new jobs. This hypothesis would explain why the most advanced regions (and
urban areas) always demand more workers by concentrating the largest share of
regional wealth. We must remark that some experts included in this group kept a
skeptical perspective, suggesting that legal/social/political/ethical issues will surely
reduce the final impact of AI and robotics in real-life. On the other hand, the second
group or tech-pessimists (48%) defined an upcoming labor scenario, which would
be unsustainable for most people due to a very volatile and ever-changing labor
market. It would lead to the destruction and progressive decrease of life quality of
the middle classes. Some of these theorists anticipated a post-work scenario where
robots might mostly replace the human workforce. Among the consequences, the
end of the traditional labor structure and the need to redefine the proper concept of
work (Rifkin, 1995).

It is expected that the ongoing technological revolution, together with the entire
crisis caused by the COVID-19, might reduce regulated and decent employment. In
this scenario, the commitment between employer and employee would be reduced
to its minimal expression. According to supporters of these sorts of policies, this
would boost labor market efficiency, while the critics argue that employees would be
totally unprotected in their jobs. In addition, with the pace of technological shifts,
employees’ skills will probably change faster over time, resulting in a group of
workers whose skills become constantly outdated. Given these projections, Harari
(2018) predicts the emergence of a massive and new unworking class referring to
those people devoid of any economic, political or even artistic value that could
contribute neither to the job market nor to society.

Some governments are trying to implement strategies to face any sort of negative
scenarios which might emerge. Probably, the most controversial countermeasure
is the universal basic income (UBI). Although this measure was mostly supported
by leftist ideologies in the past, nowadays it seems different. Take for example, the
experiment called Y-Combinator which has shown how some tech companies are
open to the actual application of this political action (Winick 2018). Some experts
warn about the negative implications related to the UBI as the weakening of the
welfare state in some countries or the emergence of dual-class societies where the
big corporations would have a huge control and excessive power over working
classes. Therefore, although the UBI could reduce extreme poverty across the globe,
it could paradoxically increase inequalities between social classes. However, when
interacting with complex systems as human populations it is important to maintain
precaution because the simplification of reality required for decision making can
omit relevant information and create further harm. See the discussion about iatro-
genics in Taleb 2012. Naive interventionism to improve things that leads to major
disruption and creates new problems.
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Fortunately, some authors like Manson (2015) share an optimistic perspective
of the future of the labor market. Accordingly the author suggests, technology and
automation could lead to a fairer economic model with lower prices, greater social
awareness, in addition to a reduction in consumerism levels. His vision, although
it might seem utopian, is that it can be already observed in dwellers of western
cities where ideas related to sustainable development and economic de-growth
have significantly gained relevance in the last decades.

The actual impact of the technological revolution must be contextualized within
the prevailing climate of uncertainty in which the future will depend on the policies
implemented in the upcoming months. On a global scale, a much more controlled
globalization is expected with relevant centripetal forces, which were already vis-
ible before the pandemic (Balsa-Barreiro et al. 2020). Probably, southeastern Asia
will continue to concentrate a large part of global industrial activity, but in smaller
proportions than today. In the medium term, it is expected that western countries
will re-shore part of their industry abroad, which will foreseeably reduce the weight
of the transportation sector. On a larger scale, the survival of many companies is
now under threat. However, it remains unclear which companies will be better off.
It looks obvious that governments will save (and nationalize in some cases) all those
companies that they define as strategic. In any case, many large companies will face
great problems in surviving. Because of that, many small local businesses within
a hugely complex scenario may come across new opportunities in the market. The
role of state policies will determine labor costs and, therefore, the difference with
regard to investment costs in automation. Regions and countries with negative de-
mographic dynamics will only increase their productivity by optimizing industrial
processes, which means more automation, or alternatively implementing a more
flexible labor market with the reduction of workers’ rights and the incorporation
of vulnerable workers from third world countries. Therefore, factors such as the
predominant size of companies, the productive model, the intervention of govern-
ments and their policies, together with the model of society that emerges after the
COVID-19 pandemic will determine how disruptive the technological revolution
will be and how much it will affect the labor market in the end.

Beyond the real impact of AI, automation, and robotics in the labor market,
deep changes are expected to disrupt everyday life in society. Addressing the issue
from the other side: without employment providing a daily structure in people’s
lives and with technology replacing many basic human activities, our societies will
likely shift towards more individualistic entities with fewer and weaker personal
interactions. For this reason, human fulfillment would play a significant role in the
upcoming Industrial Revolution. After all, if technology was created to make our
lives easier and more efficient in terms of time, we should wonder where the time
saved goes to and even whether it is making us happier. Mayo 1947 describes that
the lack of communication among people affects the social skills required to build
trust and healthy communication which are fundamental for the creation of stronger
social systems. Since his warnings, technology has advanced incredibly but not the
capacity for people to truly communicate with each other. Moreover, challenges
like facing crises and pandemics require an incredible amount of collective action
which cannot be performed with a weak social system.
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3 Conclusions

Before the emergence of the COVID-19 pandemic, the global labor market was
already living in transition, moving towards an increasing automation because
of the Tech Revolution. The sudden emergence of the pandemic has shocked the
world. It will probably have several implications related to the job market, although
it does not seem clear which ones yet. Drawing future scenarios is very risky at
this stage. However, the current transition will have to be re-evaluated within a
context of global economic crisis, which is likely to have a profound impact on the
most vulnerable social classes. Today, more than ever, we must pursue sustained,
inclusive, and sustainable economic growth, where the changes in the labor market
are at the service of society as a whole.
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Several studies demonstrate the affect of COVID-19 virus on the devel-
opment of the human body, in which the presence of metabolic disease
has been linked with higher negative consequences in patients infected
with the virus. Most metabolic diseases, listed as Non-Communicable
Diseases (NCDs), have their roots in specific lifestyle habits of peo-
ple in certain communities. This situation is an additional burden for
governments across the globe who are already facing various threats
to the health of their citizens including poverty, overcrowded pub-
lic health systems due to previously existing diseases, underfunded
state hospitals, etc. This paper highlight the need of taking a complex
systems approach regarding a population’s lifestyle habits, especially
nutritional habits, to increase the resilience of a population when facing
present and future pandemics.

1 Introduction

Lifestyle habits are a vital part of those variables, and over the last two decades,
aspects related to health such as dieting, training and entertaining have been ho-
mogenized around the world (Cowen. 2002), in a so called “Western Diet,” leading
to a marked rise in Chronic Degenerative Diseases (CDD) (Kopp. 2019). Nutrition
has become a vital component regarding health prevention in health crisis in the 21st
century. Therefore, it’s time to reconsider A: how we, as a society, ended up with
such challenges in regards to our capacity to withstand future pandemics and B:
how important of a role decision makers play in strengthening the health of the gen-
eral population when facing novel stressors whether from random environmental
or man-made events (Baker. 2020).

We must look at multiple factors when analyzing how to promote a healthy
lifestyle around a population. Therefore, this research starts from the idea that nu-
trition and its subsequent challenges are complex problems from which complexity
science and its findings allow decision makers to reconsider future strategies re-
garding events like the COVID-19 virus.

This research seeks to incentives the idea that before entering more specific ways
of dealing with the “new normal” way of live, it’s important to take this lesson for
future generations. Namely, that the health of the population needs to be taken as an
insurance policy against external events, especially for countries in Latin America
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that don´t have the luxury of a vast set of resources when facing these kinds of
events.

2 NCDs as a systemic problem facing the COVID-19 pan-
demic.

Studies have shown that a high percentage of people hospitalized for COVID-19
thought to have a high mortality risk had one or more co-morbidities related to the
respiratory system including diabetes, obesity, hypertension, cardiovascular disease
among others. Said diseases are cataloged as Non-Communicable Diseases (NCDs)
and are responsible for almost 70% deaths worldwide (WHO. 2018). They appear
through time and through everyday habits of an individual, including nutritional
habits, exposure to stress, the quantity of exercise, among others.

Due to the measures taken by national governments to control the outspread of
the current COVID-19 pandemic, a high percentage of people around the world are
staying at home. Most of them, reinforcing sedentary habits, ingest highly caloric
processed food, seed oils and are being exposed to social media. The probability
of developing an NCD becomes more plausible. (Porterfield, C. April 28, 2020,
Creswell, J. April 07. 2020).

Because of the link between the increase of risk in patients infected with COVID-
19 and the presence of NCDs, these habits represent a systemic risk to the resources
of every hospital in every nation across the globe. Moreover, as more countries
seek to reduce the lapse of social isolation and to “restart the economy again”, even
after considering the second wave of infections around the world (Parrock. May 05.
2020) , health systems with severe lack of resources may be at risk of overflowing.

Since the spread of COVID-19 worldwide, prevention measures, like social dis-
tancing, constant hand wash, mandatory use of face masks and use of antibacterial
gel have been implemented, which have helped strengthen efforts for the social
health of communities. However, it’s important to reinforce the health of every
individual in the community. As has been studied, the environment can greatly
contribute to positive or negative health outcomes depending upon the structural
components built of the particular society.

Just as education campaigns seek to incentives the use of face masks, it is of
vital importance to reinforce healthy domestic habits during this pandemic in order
to minimize the risk factors for vulnerable groups in countries where the rate of
Non-Communicable Diseases is high.

We must question our current decisions regarding food consumption and pro-
duction and its consequences to our health. This will lead us to reconsider the role
of farm subsidies and its effects on overproduction of two specific crops, corn and
soy, which are essential ingredients in most processed foods all around the world.
The result has led to an homogenization of our food options, creating an illusion of
a vast variety of food options, that weaken our bodies over time due to a lifetime of
consumption. Also, as processed foods continued to be more affordable to the con-
sumer relative to whole foods, most of the population around the world, especially
in Latin America countries, will only be able to afford cheap foods rich in processed
calories (Pollan. 2006).
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3 Nutrition as a complex system.

This research parts from the idea of considering nutrition and their challenges when
facing NCDs as a complex domain, characterized by being a nondeterministic and
nonlinear process, where the role and their interactions between the parts in the
system are extremely important. In the last decade, Complexity Science has become
an important tool to better understand the challenges in the public health sector, due
to the complex nature of many of the issues facing humanity regarding well-being.

In order to pass the recurrent reductionist view of the body as mechanical com-
position of biological factors, authors such as, Yaneer Bar-Yam et el (2014) advocate
for a more systems-oriented solutions where the interactions and patterns between
multiple variables are taken into consideration when implementing a policy strategy
to NCDs.

Starting from the idea that nutrition cannot be analyzed through a single narrow
perspective, especially regarding health population, Langellier et al (2019) present a
review advocating for the use of a multilevel approach using Agent-Based Models or
System-Dynamics Model. These models take into consideration how social norms
shape a community, food accessibility in a specific environment, as well as the
impact of household income in a specific area and preferences of individuals, and
how each affect and influences nutritional needs. This provides analysts, decision
makers, politicians, and the academic community with a better understanding of
this topic.

The review also suggests that a complex systems approach on the topic of
nutrition and health of a population can create mechanisms to better understand
the network effect of patterns and feedback loops between the factors listed above.
Providing a better insight when planning and understanding how diet and nutrition
can be addressed and providing an information tool for local and national decision
makers.

Events like the COVID-19 pandemic shows the relevance of reinforcing the battle
against NCDs, due to the worsening of the infection on people with preexisting
conditions. Thus, the international community needs to strengthen their efforts to
achieve a better health of their populations as an insurance against external events
(Guruanareobic. 2020).

It’s important to understand how we as a global society, end up becoming
noticeably fragile. This article cites the work of the author Michael Pollan in his
book The Omnivore’s Dilemma (2006), in which he explains in full detail how the
idea of eating healthy is more complex as it seems. Economic, cultural, and political
factors influence the way the food industry in the United States of America and other
countries around the world have created a mass production of cheap ingredients to
be sold globally.

Mr. Pollan states that since the 1970s, the US government has implemented
a set of farm policies that incentives the overproduction of corn and soybeans
domestically, which results in cheaper prices. According to the author, if the idea is
to find cheap sources of energy to produce a higher quantity of food, this decision
makes economic sense. As he writes, “growing corn is the most efficient way to
get energy –calories- from an acre of Iowa farmland” (Ibidem. 108pp). This allows
people access to a low cost and high energy food source who lack a quality source
of nourishment. According to the author:
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“We subsidize high-fructose corn syrup in this country, but no carrots. While
the surgeon general is raising alarms over the epidemic of obesity, the president
is signing farm bills designed to keep rivers of cheap corn flowing, guaranteeing
that the cheapest calories in the supermarket will continue to be the unhealthiest”
(Ibidem).

This is relevant because even if national efforts are made to recommend better
eating habits, if the economic situation of families is not addressed, they won’t be
able to purchase food that will benefit the most in the long run, and will continue
to consume the cheapest and highest caloric food that provide the best short-term
benefit.

To prove the homogenization of food options in the market, Mr. Pollan took a
mass spectrometer to calculate the atomic signature of a standard fast-food meal, to
show how many of the carbon of the items came from corn and soy. The following
data was gathered: “soda (100% corn), milk shake (78%), salad dressing (65%),
chicken nugget (56%), and French fries (23%)” (Ibidem. 116pp).

This demonstrates that we live in a world that gives the illusion of an impressive
variety of choice to the individual, However, looking through the mass spectrometer,
it shows a homogenized kind of food spread all around the world.

4 Complex systems and how systems become fragile

The human body as a complex entity needs a variety of nourishment to thrive
and (Taleb. 2012) the idea of feeding it food that comes from the same source,
compromises it to an extent, making it less capable to resist internal or external
threats. This shows how the compulsory need to optimize a specific process produce
second order effect with severe consequences, that makes it difficult to identify the
causes of the actual problem (Ibidem), this is important when making political and
economic decisions.

The author Nassim Nicholas Taleb (2012) and the investigative journalist Gary
Taubes (2007-2017) have stated that the most common dietary recommendations
have been based on the first law of thermodynamics about energy conservation
(known as calories in, calories out). However, when talking about a complex system,
the feedback loop between the ingested food and the host plays an important role.
What you consume and how you consume it and what it’s made of makes a big
difference in your body.

In other words, the quality of the product, how many times is consume and for
how long, produce a non-linear response in the body, which weakens or strengthen
the system of the host, making it less or more suited to face extreme threats by the
environment or man-made events (Taleb. 2018). Just as it was shown early in the
research, most of the patients who are hospitalized by the virus have a concave
(negative) response when interacting with it, due to the inflammatory cascade effect
of the infection.

5 A critical moment for Latin America.

Since July 2020, Latin American countries have become one of the COVID-19
hotspots, one of the highest rates of confirmed cases around the world, present-
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ing a severe impact on the social and economic health of the region for the years to
come (Horwitz, L, et al September 23. 2020).

In addition, the fact that one in every four people in the region live with at
least one major NCDs (cardiovascular diseases like heart attacks and stroke, cancer,
chronic respiratory diseases such as chronic obstructive pulmonary disease, asthma,
and diabetes) affecting almost 220 million people (PAHO. June 04. 2020). This
presents an important challenge to every health-system around the region, due to
the danger of being overwhelmed by patients with the virus and other illnesses
(France 24. August. 02. 2020).

Experts have state that “This situation in the Americas is compounded by the
high prevalence of insufficient physical activity among adults, with 37.8% of women
and 26.7% of men reporting insufficient physical activity (WHO 2010a; WHO 2014a).
High obesity prevalence rates have been associated with higher intakes of both ultra-
processed foods rich in sugars, salts, and fats and of sugar-sweetened beverages.”
(Ibidem. 17pp).

Consequently, in a study done by Ashktorab (et al 2020)1 show that metabolic
syndrome components like hypertension (12.1%), diabetes (8.3%) and obesity (4.5%),
presented correlation with mortality across the spectrum.

Lastly, the United Nations Economic Commission for Latin America (CEPAL)
in 2018 showed that most of Latin American countries only invest 4% of their GDP
in healthcare (Ibidem), which presents a widespread health challenge due to the
overcrowding, limited capacity and medical equipment in most state-run hospitals.
Litewka and Heitman (2020) presented how this situation worsened during the
pandemic because of the fact that state-run hospitals are the only choices for most
families around Latin America living in poverty.

Therefore, the need to tackle the link and consequences between the COVID-19
epidemic and the NCDs to avoid a greater burden for Latin American countries is
paramount (PAHO. June. 04. 2020). Efforts have been made to better address this
problem including a partnership between the Pan American Health Organization
and the World Health Organization to post useful information in order to tackle
these challenges, focusing more into how to maintain essential services through this
epidemic.

Even though plenty resources have been publish regarding NCDs and COVID-
192, not much has been published in regards to the food industry and their impact on
the health of the population, the economic disparities and the current policies incen-
tives the overproduction of mono-cultures in order to produce cheaper ingredients
for many industries around the world.

1Data collected of demographics, comorbidities and clinical symptoms from 728,282 Covid-
19 positive patients in 8 Latin American countries from March 1 to July 30, 2020: Brazil, Peru,
México, Argentina, Colombia, Venezuela, Ecuador and Boliva.

2Resources such as the “Rapid Assessment of service delivery for NCDs during the COVID-
19 pandemic in the Americas” (PAHO, June. 04. 2020), “Information note on COVID-19 and
noncommunicable diseases” (WHO. 2020), “THE IMPACT OF THE COVID-19 PANDEMIC
ON NONCOMMUNICABLE DISEASE RESOURCES AND SERVICES: RESULTS OF A RAPID
ASSESSMENT” (WHO. 2020), “Access to Essential Medicines for Noncommunicable Diseases
during the COVID-19 Pandemic” (PAHO. July. 14. 2020), “Maintaining Essential Services
for People Living with Noncommunicable Diseases during COVID-19” (PAHO. July. 20.
2020) and “Considerations for the Reorganization of Cancer Services during the COVID-19
Pandemic” (PAHO. May. 26. 2020)
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6 Conclusion

This report highlighted the need to consider the idea of “health as an insurance
against the next external event” that may threaten societies as the recurrent COVID-
19 pandemic has done since early march of 2020, especially in countries in Latin
America where the consequences have been devastating in several areas. Taking
a complex systems approach would assist policy makers to better understand the
patterns and interactions between different areas when planning actions, such as
the effects of farm subsidies that allow the overproduction of crops like corn and soy
all around the world, which incentives the production of cheap ingredients added
to many processed foods that are widely available and accessible to the masses
regardless of socioeconomic status.

In turn, this pattern results in individuals consuming the most calories at the
lowest cost, creating an over-consumption of unhealthy and processed foods that
weaken the body and leave them exposed when facing future external threats pro-
duce by nature or man-made events.
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