1.06 Combining Like Terms; The Distributive Property
 Dr. Robert J. Rapalje, Retired
 Central Florida, USA
 More FREE help available from my website at www.mathinlivingcolor.com

Abstract

ANSWERS TO ALl EXERCISES ARE INCLUDED AT THE END OF THIS PAGE In the last section, the concept of variables was introduced. Variables usually represent either known or unknown numbers. If the values of the variables are given as they were in the last section, then you can substitute those values in place of the variables and obtain a numerical answer. When the values of the variables are not known, the expressions may sometimes be simplified by a process called combining like terms. Before beginning this, however, a few preliminary remarks and definitions may be helpful.

1. TERMS are those quantities which are added (or subtracted) together. FACTORS are quantities that are multiplied. In the expression " $\boldsymbol{x}+\mathbf{5}$," the \mathbf{x} and the $\mathbf{5}$ are terms, since they are added. In the expression " $5 \mathbf{x}$," the \mathbf{x} and the $\mathbf{5}$ are factors, since they are multiplied. In the expression " $5 x+3$, " the $5 x$ and the $\mathbf{3}$ are terms, but the $\mathbf{5}$ and the \mathbf{x} could be considered to be factors of the $\mathbf{5 x}$ term.
2. LIKE TERMS, or similar terms, are terms which have the same letters (variables) raised to the same power. Like terms and only like terms may be combined. For example, the expression $3 x+4 x$ contains x terms. In the same way that 3 apples plus 4 apples would be 7 apples, the x terms can be combined: $3 \mathbf{x}+4 \mathbf{x}=7 \mathbf{x}$. As another example, what about the expression $3 x^{2}+4 x^{2}$? When you add apples to apples, you get apples. When you add \mathbf{x} 's to \mathbf{x} 's, you get \mathbf{x} 's. So, it should be no surprise to learn that when you add $\mathbf{x}^{\mathbf{2}}$'s to $\mathbf{x}^{2}, \mathbf{s}$, you get \mathbf{x}^{2} 's. Therefore, $3 \mathrm{x}^{2}+4 \mathrm{x}^{2}=7 \mathrm{x}^{2}$.
3. UNLIKE TERMS are those terms which do not have the same letters and powers. Unlike terms cannot be combined. Examples: a) $3 x+4 y$; b) $3 x^{2}+4 x$; c) $3 x^{2}+4 y^{2}$ These examples cannot be simplified, since in each example there are no like terms.
4. A term may contain more than one variable: $7 x y+3 x y=$ \qquad (Answer: 10xy)
5. A term may have no variable. We call this a number term or a constant. Number terms can be combined only with other number terms. $4 x+3+7 y+6=$ \qquad (Answer: $4 \mathrm{x}+7 \mathrm{y}+9$)
6. It makes no difference in what order the terms are given. " $4 x+7 y+9$ " could also be written as " $9+4 x+7 y$ " or " $7 \mathrm{y}+9+4 \mathrm{x}$ " or any other order. Usually we put the terms in alphabetical order. When powers are used, such as $x^{2}+3 x+5$, again, order does not
matter, but usually the highest powers of the variable are placed first and the number term given last. This is called descending powers of the variable.
7. A variable alone, such as \boldsymbol{x}, really means $1 \boldsymbol{x}$ or $1 \boldsymbol{x}$. So, $3 \mathrm{y}+\mathrm{y}$ means the same as $3 \mathrm{y}+1 \mathrm{y}$, which is 4 y . Likewise, $4 \mathrm{y}-3 \mathrm{y}$ would be 1 y , but it is simpler to write $4 \mathrm{y}-3 \mathrm{y}=\mathrm{y}$.
8. Simplifying the expression $4 y-4 y$, the result is "no y" or "0 y." However, since zero times any number is zero, the answer is simply " 0 ."

Notice that: $\quad 4 x+3 y-4 x$ simplifies to $3 y \quad$ The $0 x$ is not necessary!

$$
8 \mathrm{x}-5 \mathrm{x}-3 \mathrm{x} \text { simplifies to } 0 \quad \text { The } 0 \mathrm{x} \text { (which is } 0 \text {) is necessary! }
$$

9. Exactly what is meant by $\mathbf{3 x}$? Answer: $\mathbf{3 x}$ means $\mathbf{3}$ times \boldsymbol{x}, or three x 's added together $(x+x+x)$. In this case, the number $\mathbf{3}$ is called the coefficient of \boldsymbol{x}.
10. What is meant by $\mathbf{3} \mathbf{x}^{\mathbf{2}}$, and is it the same as $(\mathbf{3 x})^{\mathbf{2}}$? Because there are no parentheses in the expression $\mathbf{3 \mathbf { x } ^ { 2 }}$, according to the order of operations agreement, the x is squared, then the result is multiplied by 3 . Therefore, $\mathbf{3} \mathbf{x}^{2}$ means 3 xx . However, because of the parentheses in ($\mathbf{3 x})^{\mathbf{2}}$, the quantity to be squared (that is, multiplied times itself!) is 3 x . Therefore, ($\mathbf{3 x})^{2}$ means (3 x) (3 x) or $3 \times 3 \mathrm{x}$. When multiplying (or adding!) numbers, it can be done in any order. It is convenient to multiply the 3's together, then the x 's.

So, ($\mathbf{3 x})^{\mathbf{2}}$ means (3x) •(3x)
$3 \mathrm{x} \cdot 3 \mathrm{x}$
$3 \cdot 3 \cdot x \cdot x$
$\mathbf{9 x}^{2}$
Additional example: $5 \mathbf{x}^{\mathbf{2}} \cdot \mathbf{6 x}$ equals $\mathbf{3 0} \mathbf{x}^{\mathbf{3}}$, whereas: $(5 x)^{2} \cdot 6 x$ means $(5 x)(5 x) \cdot 6 x$ or $5 \cdot 5 \cdot 6 \cdot x \cdot x \cdot x$ or $150 x^{3}$.

EXAMPLES: Simplify by combining all like terms. Remember, answers may be in any order.

1. $2 \underline{x}+\underline{4 x}+3 y=$ \qquad
2. $7 \underline{x}+4 y+\underline{3 x}=$ \qquad
3. $2 x+4+3 y+x+10 y=$ \qquad
4. $7 x^{2}+3 y^{2}+\underline{3 x}+2 x^{2}+y^{2}=$ \qquad
5. $12 x-8 y+3 y-8 x+x-7 y+7 y^{2}-8$
$=$ \qquad
6. $13 x-4 y^{2}-9 x+y^{2}+4 x+3 y^{2}-7 x$
$=$ \qquad
7. $12 x^{2}-8 y-9 x y+y^{2}+8 x-3 x y^{2}-8$
$=$ \qquad

ANS: $\quad 6 x+3 y$
ANS: $\quad 10 x+4 y$
ANS: $\quad 3 x+13 y+4$
ANS: $\quad 9 x^{2}+4 y^{2}+3 x$

ANS: $5 x+7 y^{2}-12 y-8$

ANS: x

ANS: Same as the problem!
Cannot be simplified!

EXERCISES: Simplify by combining all like terms.

1. $5 x-2 x=$
2. $8 x+x=$ \qquad 4. $3 \mathrm{~b}+3 \mathrm{~g}=$ \qquad
3. $h+h=$ \qquad 6. $9 x+x=$ \qquad
4. $9 \mathrm{c}-4 \mathrm{c}=$ \qquad 8. $9 x-8 x=$ \qquad
5. $x+3 y+4=$ \qquad 10. $5 w+6 w-3 w=$ \qquad
6. $4 \mathrm{x}-3 \mathrm{y}+12 \mathrm{x}-2 \mathrm{y}=$ \qquad
7. $8 k+7 v+3 k-2 v=$ \qquad
8. $2 a+3 c-8 a-4 c=$ \qquad
9. $12 x-6 y+4 z-3 z+11 y+x=$ \qquad
10. $x y z+3 x y+2 x y z+x y=$
11. $2 \mathrm{LH}+2 \mathrm{WH}+2 \mathrm{LW}-6 \mathrm{WH}+6 \mathrm{LH}=$ \qquad
12. $7 \mathrm{x}^{2}+3 \mathrm{x}^{2}=$ \qquad
13. $7 y^{2}+3 y^{2}=$ \qquad
14. $7 x^{2}+3 y^{2}=$ \qquad
15. $7 y^{2}+3 y=$ \qquad
16. $7 x^{2}-3 x^{2}=$ \qquad 22. $-7 y^{2}-3 y^{2}=$ \qquad
17. $3 x^{2}+5 x^{2} y^{2}+9 y^{2}=$ \qquad
18. $14 x^{2}+6 x-8 y^{2}-6 x y+3 y^{2}+12 x y=$ \qquad

The Distributive Property

Consider the following examples
EXAMPLE 8. Find the value of $5(4+6)$ and $5 \cdot 4+\mathbf{5 \cdot 6}$
Solution:
5 (10)
50
$20+30$
50

EXAMPLE 9. Find the value of $\mathbf{1 0 (8 + 7)}$ and $\mathbf{1 0 \cdot 8}+\mathbf{1 0 \cdot 7}$
Solution:
10 (15)
$80+70$
150
150

EXAMPLE 10. Find the value of $\mathbf{1 0 (8 - 7)}$ and $\mathbf{1 0 . 8 - 1 0 . 7}$
Solution:
10 (1)
10
80-70
10

These are examples of the distributive property, formally called the distributive property for multiplication over addition. The distributive property is much more than a "neat trick" that works with numbers. It is one of the most important and frequently used properties in all of math. You really need to know and be able to use this one, both now and for future reference. This property is formally stated as follows:

$$
\begin{aligned}
& \text { The Distributive Property } a(b+c)=a b+a c \\
& \text { also } a b+a c=a(b+c)
\end{aligned}
$$

EXAMPLE 11. $\mathbf{6}(\mathbf{x}+5)$ According to the order of operations agreement, you must perform the addition within the parentheses before you multiply. However, these are unlike terms, so they cannot be combined. Therefore, in order to eliminate the parentheses, you can use the distributive property as follows:

$$
\begin{aligned}
6(x+5) & =6 \cdot x+6 \cdot 5 \\
& =6 x+30
\end{aligned}
$$

The distributive property also works when subtracting and when using longer expressions.
EXAMPLE 12. $6(x-5)=6 x-30$

EXAMPLE 13. $6(x+3 y-7)=6 x+18 y-42$

In the next examples, remember that $\mathrm{x} \cdot \mathrm{x}=\mathrm{x}^{2}$
EXAMPLE 14. $x(x-y+4)=x^{2}-x y+4 x$

EXAMPLE 15. $7(3 x+5 y-6)=21 x+35 y-42$

EXAMPLE 16. $-7 x(3 x+5 y-6)=-21 x^{2}-35 x y+42 x$

EXERCISES: Use the distributive property to remove the parentheses.

25. $\quad 5(x+3)=$ \qquad
26. $6(x-4)=$ \qquad
27. $7(2 x+5)=$ \qquad 30. $5(4 \mathrm{x}+7)=$ \qquad
28. $6(9 x-8)=$ \qquad 32. $9(7 y-9)=$ \qquad
29. $-5(x-5)=$ \qquad 34. $-6(x+5)=$ \qquad
30. $-1(3 x+7)=$ \qquad 36. $-1(3 y-4)=$ \qquad
31. $-(-8 x-7)=$ \qquad 38. $-(-8 x+5)=$ \qquad
32. $5 \mathrm{x}(\mathrm{x}-3)=$ \qquad
33. $8 x(5 x+3 y)=$ \qquad
34. $5 x(2 y-3 x+7)=$ \qquad 44. $4 y(7 x-9 y-6)=$ \qquad
35. $-6 y(2 y+3 x+7)=$ \qquad 46. $-3 x(7 x-5 y+1)=$ \qquad
36. $-7 x(5 y-x+1)=$ \qquad 48. $-4 y(-7 x+9 y-1)=$ \qquad
The following exercises demonstrate the simplification of problems by using the distributive property followed by combining like terms. In the process of doing these exercises, you will be learning to show the steps in a neat, well-organized manner. This will be extremely important in the next section on equation solving.

Math Study Skill

A very important skill necessary for success in higher math is the ability to organize the problems neatly (and to be able to read your own handwriting!)

EXAMPLE 17: $\quad 4(x-3)+6(4 x+5)$

$$
\begin{array}{lr}
=4 x-12+24 x+30 & \\
=28 x+18 & \text { Distributive Property } \\
\text { Combine like terms }
\end{array}
$$

EXAMPLE 18: $\quad 6(x-3)-4(4 x+5)$

$$
\begin{array}{ll}
=6 x-18-16 x-20 & \text { Distributive Property } \\
=-10 x-38 & \text { Combine like terms }
\end{array}
$$

EXERCISES: Remove parentheses and combine like terms.

49. $3(2 x+5)+6(x+2)$
\qquad
$=$
Distributive Property
$=$ \qquad Combine like terms
50. $3(2 x+5)-6(x+2)$

$$
\begin{aligned}
& = \\
& = \\
&
\end{aligned}
$$

Distributive Property Combine like terms
51. $3(2 \mathrm{x}-5)+6(\mathrm{x}+2)$
$=$ \qquad
$=$ \qquad
52. $3(6 \mathrm{x}-7)+6(5 \mathrm{x}-8)$
$=$ \qquad
$=$ \qquad
53. $7(3 x+9)-6(2 x+5)$
\qquad
$=$ \qquad
54. $5(8 x-4)-8(5 x+3)$
$=$ \qquad
$=$ \qquad
55. $3 x(5 x-9)+8(3 x-2)$
\qquad
$=$
56. $2 x(6 x-5)+6(5-8 x)$
$=$ \qquad
\qquad

$$
=
$$

57. $4 x(x+3)-8 x(5 x-2)$
$=$ \qquad
58. $4 x(x+3)-8 x(5-2 x)$
$=$ \qquad
\qquad
59. $9(4 x-5 y)-6(2 y-3 x)-3(6 x-7 y)$
$=$ \qquad
$=$ \qquad
60. $6 x(4 x-5)-5 y(2 y+3)-4(3 x+8 y)$
$=$ \qquad
$=$ \qquad

ANSWERS 1.06

p. 33-38:

1. 3 x ; 2. 2d; 3. 9 x ; 4. $3 \mathrm{~b}+3 \mathrm{~g} ;$ 5. 2h; 6. 10 x ; 7. 5c; 8. x ; 9. $\mathrm{x}+3 \mathrm{y}+4$; 10. 8 w ;
2. $16 \mathrm{x}-5 \mathrm{y}$; 12. $11 \mathrm{k}+5 \mathrm{v}$; 13. $-6 \mathrm{a}-\mathrm{c} ; \quad$ 14. $13 \mathrm{x}+5 \mathrm{y}+\mathrm{z} ; \quad$ 15. $3 \mathrm{xyz}+4 \mathrm{xy}$;
3. $8 L H-4 W H+2 L W ; 17.10 x^{2} ;$ 18. $10 y^{2}$; 19. $7 x^{2}+3 y^{2}$; 20. $7 y^{2}+3 y ; 21.4 x^{2}$;
4. $-10 y^{2}$; 23. $3 x^{2}+5 x^{2} y^{2}+9 y^{2}$; 24. $14 x^{2}+6 x-5 y^{2}+6 x y$; 25. $5 x+15$; 26. $5 x+25$;
5. $6 \mathrm{x}-24$; 28. $8 \mathrm{y}-72$; 29. $14 \mathrm{x}+35$; 30. $20 \mathrm{x}+35$; 31. $54 \mathrm{x}-48$; 32. $63 \mathrm{y}-81$;
6. $-5 x+25$; 34. $-6 x-30$; 35. $-3 x-7$; 36. $-3 y+4$; 37. $8 x+7$; 38. $8 x-5$; 39. $5 x^{2}-15 x$;
7. $8 y^{2}+72 \mathrm{y}$; 41. $40 \mathrm{x}^{2}+24 \mathrm{xy}$; 42. $35 \mathrm{x}^{2}-25 \mathrm{xy}$; 43. $10 \mathrm{xy}-15 \mathrm{x}^{2}+35 \mathrm{x}$;
8. $28 x y-36 y^{2}-24 y$; 45. $-12 y^{2}-18 x y-42 y$; 46. $-21 x^{2}+15 x y-3 x ;$ 47. $-35 x y+7 x^{2}-7 x$;
9. $28 x y-36 y^{2}+4 y$; 49. $12 \mathrm{x}+27$; 50. 3 ; 51. 12x-3; 52. $48 \mathrm{x}-69$; 53. $9 \mathrm{x}+33$; 54. -44 ;
10. $15 x^{2}-3 x-16$; 56. $12 x^{2}-58 x+30$; 57. $-36 x^{2}+28 x$; 58. $20 x^{2}-28 x$; 59. $36 x-36 y$;
11. $24 x^{2}-42 x-10 y^{2}-47 y$.
