2.05 Factoring Difference of Squares Perfect Square Trinomials

Basic Algebra: One Step at a Time. Pages 157-163: 67, 72, 74, 75, 77

Extra Problems: 49, 63, 67, 69, 71, 81

Dr. Robert J. Rapalje, Retired Central Florida, USA

p. 162: 67. $x^4 - 16$ Notice that x^4 and 16 are both perfect squares. The First times First must be x^4 : x^2 times x^2

$$(x^2)(x^2)$$

The Last times Last must be 16: 4 times 4.

$$(x^2 4)(x^2 4)$$

Because the 16 is negative, use opposite signs.

$$(x^2 - 4)(x^2 + 4)$$

The factor $(x^2 - 4)$ is itself a difference of squares, and so it must be re-factored. However, the factor $(x^2 + 4)$ is the SUM of squares. It does not re-factor, and it must be left as it is in the final answer.

$$(x^2 - 4)(x^2 + 4)$$

 $(x-2)(x+2)(x^2 + 4)$ Final Answer!!

p. 162: 72. $16x^4 - 81$ Notice that $16x^4$ and 81 are both perfect squares. The First times First must be $16x^4$: $4x^2$ times $4x^2$ (4 x^2) (4 x^2)

The Last times Last must be 81: 9 times 9. (4 x^2 9)(4 x^2 9)

Because the 81 is negative, use opposite signs. $(4x^2 - 9)(4x^2 + 9)$

The factor $(4x^2 - 9)$ is itself a difference of squares, and so it must be re-factored. However, the factor $(4x^2 + 9)$ is the SUM of squares. It does not re-factor, and it must be left as it is in the final answer.

$$(4x^2 - 9)(4x^2 + 9)$$

 $(2x-3)(2x+3)(4x^2 + 9)$ Final Answer!!

74.

 $x^4 + 13x^2 + 36$ Notice that First times First must be x^4 : x^2 times x^2 (x^2)(x^2)

The Last times Last must be x^4 : x^2 times x^2 must add up to x^4 : x^2 times x^2 (Try 9 • 4, both positive) $(x^2 + 9)(x^2 + 4)$ O term is x^2 (Try 9 • 4, both positive)

The factors $(x^2 + 9)$ and $(x^2 + 4)$ are both sums of squares! They cannot be NOT re-factored so this is the final answer. p. 163: 75.

$$x^4 - 13x^2 + 36$$
 Notice that First times First must be x^4 : x^2 times x^2 (x^2)(x^2)

The Last times Last must be $\frac{36}{4}$ and the OI term must add up to $\frac{13x^2}{4}$ (Try 9 • 4, both negative)

$$(x^2-9)(x^2-4)$$

($x^2-9)(x^2-4)$ O term is -4x2, and the I term is -9x2, for a total of -13x2

The factors $(x^2 - 9)$ and $(x^2 - 4)$ are both difference of squares. Each must be re-factored so this is NOT the final answer.

$$(x^2 - 9)(x^2 - 4)$$

 $(x-3)(x+3)(x-2)(x+2)$ Final Answer!!

p. 163: 77.

$$x^4-29x^2+100$$
 The First times First must be x^4 : x^2 times x^2 . $(x^2)(x^2)$

The Last times Last must be 100 and the OI term must add up to $-29x^2$ (Try 25 • 4!!)

$$(x^2 25)(x^2 4)$$

 $(x^2 - 25)(x^2 - 4)$ O term is -4x², and the I term is -25x², for a total of -29x²
 $(x^2 - 25)(x^2 - 4)$

The factors $(x^2 - 25)$ and $(x^2 - 4)$ are each difference of squares. Each must be re-factored.

$$(x^2 - 25)(x^2 - 4)$$

 $(x-5)(x+5)(x-2)(x+2)$ Final Answer!!

Extra Problems: #49, 63, 67, 69, 71, 81

49. $-32s^2 + 80st - 50t^2$ In ANY factoring problem, the first step is to take out the common factor. Remember FCFF: Factor the Common Factor First!! There is a common factor of 2 to all three terms. It will help to take out the negative as well, so take out the -2. This changes all the signs within the parentheses

$$-32s^{2} + 80st - 50t^{2}$$

$$-2(\underline{} - \underline{} + \underline{})$$

$$-2(16s^{2} - 40st + 25t^{2})$$

Notice that this is a trinomial, but even more importantly, do you see the PERFECT SQUARES? The First and Last terms are both PERFECT SQUARES!!

And the problem factors accordingly!

$$-2(4s - \underline{\hspace{1cm}})(4s - \underline{\hspace{1cm}})$$

 $-2(4s - 5t)(4s - 5t)$

Can it really be this easy?? Check the OUTER times OUTER (-20st) and the INNER times INNER (-20st), and see that it adds up to -40st! Can you believe it??

The FINAL ANSWER can be written: $\frac{-2(4s - 5t)^2}{}$

63. $6a^2 - 54$ In ANY factoring problem, the first step is to take out the common factor. Remember FCFF: Factor the Common Factor First!! Be sure to get ALL the common factors. In this case, take out the 6.

$$6(a^2 - 9)$$

What remains is a DIFFERENCE OF TWO SQUARES!!

$$6(a - \underline{\hspace{1cm}})(a + \underline{\hspace{1cm}})$$

 $6(a - 3)(a + 3)$

Can it really be this easy??

67. $\frac{200-2t^2}{}$ In ANY factoring problem, the first step is to take out the common factor. Remember FCFF: Factor the Common Factor First!! Be sure to get ALL the common factors. In this case, take out the 2.

$$2(100 - t^2)$$

What remains is a DIFFERENCE OF TWO SQUARES!!

$$2(10 - \underline{\hspace{1cm}})(10 + \underline{\hspace{1cm}})$$
 $2(10 - t)(10 + t)$

69. $-80a^2 + 45$ In ANY factoring problem, the first step is to take out the common factor. Remember FCFF: Factor the Common Factor First!! Notice that there is a common factor to both terms, and that common factor is 5. What works even better than taking out the 5 is to take out the -5.

$$-80a^{2} + 45$$
 $-5(\underline{} - \underline{})$
 $-5(16a^{2} - 9)$

Notice that this is a difference of squares which factors:

$$-5(4a - \underline{\hspace{1cm}})(4a + \underline{\hspace{1cm}})$$

 $-5(4a - 3)(4a + 3)$

71. $5t^2 - 80$ In ANY factoring problem, the first step is to take out the common factor. Remember FCFF: Factor the Common Factor First!! Be sure to get ALL the common factors. In this case, take out the 5.

$$5(t^2 - 16)$$

What remains is a DIFFERENCE OF TWO SQUARES!! $5(t - \underline{\hspace{1cm}})(t + \underline{\hspace{1cm}})$

$$5(t-4)(t+4)$$

81. $-3x^3 + 24x^2 - 48x$ In ANY factoring problem, the first step is to take out the common factor. Remember FCFF: Factor the Common Factor First!! There is a common factor of 3x to all three terms. It will help to take out the negative as well, so take out the -3x. This changes all the signs within the parentheses. Note: Be sure to get ALL the common factors, both the -3 and the x factors!

$$-3x^{3} + 24x^{2} - 48x$$
 $-3x(\underline{ } - \underline{ } + \underline{ } \underline{ })$
 $-3x(x^{2} - 8x + 16)$

Notice that this is a trinomial which factors:

$$-3x(x - \underline{\hspace{1cm}})(x - \underline{\hspace{1cm}})$$
 $-3x(x - 4)(x - 4)$ or $-3x(x - 4)^2$