2.05 Factoring Difference of Squares Perfect Square Trinomials

Basic Algebra: One Step at a Time. Pages 157-163: 67, 72, 74, 75, 77
Extra Problems: 49, 63, 67, 69, 71, 81
Dr. Robert J. Rapalje, Retired
Central Florida, USA
p. 162: 67. $x^{4}-16 \quad$ Notice that x^{4} and 16 are both perfect squares.

The First times First must be $x^{4}: x^{2}$ times x^{2}
$\left(\begin{array}{ll}x^{2} &)\left(x^{2}\right.\end{array}\right)$
The Last times Last must be 16: 4 times 4.
$\left(\begin{array}{lll}x^{2} & 4\end{array}\right)\left(\begin{array}{ll}x^{2} & 4\end{array}\right)$

Because the 16 is negative, use opposite signs. $\left(x^{2}-4\right)\left(x^{2}+4\right)$

The factor $\left(x^{2}-4\right)$ is itself a difference of squares, and so it must be re-factored. However, the factor $\left(x^{2}+4\right)$ is the SUM of squares. It does not re-factor, and it must be left as it is in the final answer.

$$
\begin{gathered}
\left(x^{2}-4\right)\left(x^{2}+4\right) \\
(x-2)(x+2)\left(x^{2}+4\right) \quad \text { Final Answer!! }
\end{gathered}
$$

p. 162: 72. $16 x^{4}-81$ Notice that $16 x^{4}$ and 81 are both perfect squares. The First times First must be $16 x^{4}$: $4 x^{2}$ times $4 x^{2}$
$\left(4 x^{2} \quad\right)\left(4 x^{2}\right)$

The Last times Last must be 81: 9 times 9 .
$\left.\begin{array}{lll}\left(4 x^{2}\right. & 9\end{array}\right)\left(4 x^{2} \quad 9\right)$
Because the 81 is negative, use opposite signs. $\left(4 x^{2}-9\right)\left(4 x^{2}+9\right)$

The factor ($4 x^{2}-9$) is itself a difference of squares, and so it must be re-factored. However, the factor $\left(4 x^{2}+9\right)$ is the SUM of squares. It does not re-factor, and it must be left as it is in the final answer.

$$
\begin{gathered}
\left(4 x^{2}-9\right)\left(4 x^{2}+9\right) \\
(2 x-3)(2 x+3)\left(4 x^{2}+9\right) \text { Final Answer!! }
\end{gathered}
$$

74.

$$
\begin{aligned}
& \left.\begin{array}{l}
x^{4}+13 x^{2}+36 \\
\left(x^{2}\right.
\end{array}\right)\left(x^{2}\right)
\end{aligned} \text { Notice that First times First must be } x^{4}: x^{2} \text { times } x^{2}
$$

The factors $\left(x^{2}+9\right)$ and $\left(x^{2}+4\right)$ are both sums of squares! They cannot be NOT re-factored so this is the final answer.

p. 163: 75.

$x^{4}-13 x^{2}+36$ Notice that First times First must be $x^{4}: x^{2}$ times x^{2} $\left(x^{2}\right)\left(x^{2}\right)$

The Last times Last must be $\mathbf{3 6}^{\mathbf{3 6}}$ and the OI term must add up to $13 \mathrm{x}^{2}$ (Try 9 • 4, both negative)

$$
\left(\begin{array}{ll}
x^{2} & 9
\end{array}\right)\left(x^{2}\right.
$$

$\left(x^{2}-9\right)\left(x^{2}-4\right)$ O term is $-4 x^{2}$, and the I term is $-9 x^{2}$, for a total of $-13 x^{2}$
The factors $\left(x^{2}-9\right)$ and $\left(x^{2}-4\right)$ are both difference of squares. Each must be re-factored so this is NOT the final answer.

$$
\begin{gathered}
\quad\left(x^{2}-9\right)\left(x^{2}-4\right) \\
(x-3)(x+3)(x-2)(x+2) \quad \text { Final Answer!! }
\end{gathered}
$$

p. 163: 77.
$x^{4}-29 x^{2}+100$ The First times First must be $x^{4}: x^{2}$ times x^{2}. $\left(\begin{array}{ll}x^{2} &)\left(x^{2}\right.\end{array}\right)$

The Last times Last must be $\mathbf{1 0 0}$ and the OI term must add up to $-29 x^{2}$ (Try 25•4!!)
$\left(\begin{array}{ll}x^{2} & 25\end{array}\right)\left(x^{2} \quad 4\right)$
$\left(x^{2}-\mathbf{2 5}\right)\left(x^{2}-4\right)$ O term is $-4 x^{2}$, and the 1 term is $-25 x^{2}$, for a total of $-29 x^{2}$

$$
\left(x^{2}-25\right)\left(x^{2}-4\right)
$$

The factors $\left(x^{2}-25\right)$ and ($x^{2}-4$) are each difference of squares. Each must be re-factored.

$$
\begin{aligned}
& \left(x^{2}-25\right)\left(x^{2}-4\right) \\
& (x-5)(x+5)(x-2)(x+2) \quad \text { Final Answer!! }
\end{aligned}
$$

Extra Problems: \#49, 63, 67, 69, 71, 81

49. $-32 s^{2}+80 s t-50 t^{2} \quad$ In ANY factoring problem, the first step is to take out the common factor. Remember FCFF: Factor the Common Factor First!! There is a common factor of 2 to all three terms. It will help to take out the negative as well, so take out the - 2 . This changes all the signs within the parentheses
$-32 s^{2}+80 s t-50 t^{2}$
-2(\qquad -
\qquad $+\quad$ _) _)
$-2\left(16 s^{2}-40 s t+25 t^{2}\right)$

Notice that this is a trinomial, but even more importantly, do you see the PERFECT SQUARES? The first and Last terms are both PERFECT SQUARES!! And the problem factors accordingly!
\qquad

$$
-2(4 s-5 t)(4 s-5 t)
$$

Can it really be this easy?? Check the OUTER times OUTER (-20st) and the INNER times INNER (-20st), and see that it adds up to -40st ! Can you believe it ??

The FINAL ANSWER can be written: $-2(4 s-5 t)^{2}$
63. $6 a^{2}-54$ In ANY factoring problem, the first step is to take out the common factor. Remember FCFF: Factor the Common Factor First!! Be sure to get ALL the common factors. In this case, take out the 6.

$$
6\left(a^{2}-9\right)
$$

What remains is a DIFFERENCE OF TWO SQUARES!!
$6(a-\ldots)(a+\ldots)$
$6(a-3)(a+3)$

Can it really be this easy??
67. $200-2 t^{2} \quad$ In ANY factoring problem, the first step is to take out the common factor. Remember FCFF: Factor the Common Factor First!! Be sure to get ALL the common factors. In this case, take out the 2.

$$
2\left(100-t^{2}\right)
$$

What remains is a DIFFERENCE OF TWO SQUARES !!
2(10 - \qquad)(10 + \qquad _)
$2(10-t)(10+\mathbf{t})$
69. $-80 a^{2}+45$ In ANY factoring problem, the first step is to take out the common factor. Remember FCFF: Factor the Common Factor First!! Notice that there is a common factor to both terms, and that common factor is 5 . What works even better than taking out the 5 is to take out the -5 .

$$
-80 a^{2}+45
$$

\qquad
$-5\left(16 a^{2}-9\right)$

Notice that this is a difference of squares which factors:
$-5(4 a-\ldots)(4 a+\ldots)$
$-5(4 a-3)(4 a+3)$
71. $5 t^{2}-80 \quad$ In ANY factoring problem, the first step is to take out the common factor. Remember FCFF: Factor the Common Factor First!! Be sure to get ALL the common factors. In this case, take out the 5.
$5\left(t^{2}-16\right)$

What remains is a DIFFERENCE OF TWO SQUARES!! $\left.5(t)^{-}\right)(t+\ldots)$

$$
5(t-4)(t+4)
$$

81. $-3 x^{3}+24 x^{2}-48 x$ In ANY factoring problem, the first step is to take out the common factor. Remember FCFF: Factor the Common Factor First!! There is a common factor of $3 x$ to all three terms. It will help to take out the negative as well, so take out the $-3 x$. This changes all the signs within the parentheses. Note: Be sure to get ALL the common factors, both the $\mathbf{- 3}$ and the \boldsymbol{x} factors!
$-3 x^{3}+24 x^{2}-48 x$
\qquad
$-3 x\left(x^{2}-8 x+16\right)$

Notice that this is a trinomial which factors:

$$
\begin{aligned}
& -3 x\left(x-_\right)\left(x-_\right) \\
& -3 x(x-4)(x-4) \quad \text { or } \quad-3 x(x-4)^{2}
\end{aligned}
$$

