2.13 Zero and Negative Exponents

Basic Algebra: One Step at a Time. Pages 215 - 226: #109, 114, 115, 117, 118

Dr. Robert J. Rapalje, Retired Central Florida, USA

p. 225: 109. $(2x^{-1})^{-2}$

Solution: There are two ways to simplify this problem.

First method: Notice that both the ² and the x^{-1} are raised to the ⁻² power. ($2x^{-1}$)⁻²

 $(2^{-2})(x^{-1})^{-2}$

When you raise a power to a power, you multiply exponents:

Second Method: Work inside the parentheses first! Observe that in the expression $2x^{-1}$, the -1 exponent does NOT apply to the 2.

Therefore, Now, $2x^{-1} = 2 \cdot \frac{1}{x} = \frac{2}{x}$ $(2x^{-1})^{-2}$ $\left(\frac{2}{x}\right)^{-2}$

Finally, remember that when you raise a fraction to a negative 2 power, you must invert and square the fraction.

So, invert: And square: $\frac{x^2}{4}$ Final Answer: $\frac{x^2}{4}$

Solution: Again, there are two methods. You can begin by working within the parentheses. When you divide with the same base number, you subtract exponents:

$(x^{4-(-2)})$)
$\left(x^{6}\right)^{7}$	

Now, when you raise a power to a power, you multiply the exponents:

 x^{42}

As a second method, you might want to raise the powers to powers (by multiplying exponents!) first.

$$\left(\frac{x^4}{x^{-2}}\right)^7$$
$$\frac{x^{28}}{x^{-14}}$$

Now, when you divide, you subtract exponents:

Final Answer: x^{42}

115. $\frac{x^4 \bullet x^{10}}{x^{-6}}$

Solution: When you multiply with the same base number, you add exponents:

 $\frac{x^{14}}{x^{-6}}$ When you divide, you subtract exponents:

> $x^{14-(-6)}$ x^{14+6}

Final Answer: x^{20}

117. $\frac{x^4 \bullet x^{-10}}{x^{-6}}$

Solution: When you multiply with the same base number, you add exponents:

A quantity divided by itself is 1, so this is the final answer!

OR-- You can say when you divide with the same base number, you subtract exponents:

 $x^{-6-(-6)}$ x^{-6+6} x^{0}

Final Answer: 1 (Since any nonzero number raised to the zero power is 1).

118.

 $\frac{x^{-4} \bullet x^{-10}}{r^{-6}}$

Solution: When you multiply with the same base number, you add exponents: $\frac{x^{-14}}{x^{-6}}$

When you divide with the same base number, you subtract exponents:

 $x^{-14-(-6)}$ x^{-14+6} x^{-8}

Eliminate the negative exponent:

Final Answer: