# 2.08 Review of Factoring 

Basic Algebra: One Step at a Time. Pages 181-184: \# 37, 38, 39
Dr. Robert J. Rapalje, Retired
Central Florida, USA
p. 182: 37. $3 x^{2}+12 x+12 \quad$ Notice that there is a common factor to all three terms. The first step in ANY factoring problem is to take out the common factor. Remember FCFF: Factor the Common Factor First!! In this case, the common factor is 3 .
$3 x^{2}+12 x+12$
$3($ $\qquad$ $+\quad+$ $\qquad$
$3\left(x^{2}+4 x+4\right)$
Notice that this is a trinomial which factors:
$3(x+$ $\qquad$ )( $x+$ $\qquad$ _)

$$
3(x+2)(x+2)
$$

This can be written as

$$
3(x+2)^{2}
$$

p. 182: 38. $x^{2} y-25 y \quad$ Notice that there is a common factor both terms, and that common factor is $y$. As in the previous problem, and in fact in ANY problem, the first step is to take out the common factor. Remember FCFF: Factor the Common Factor First!!

$$
\begin{aligned}
& x^{2} y-25 y \\
& y(---) \\
& y\left(x^{2}-25\right)
\end{aligned}
$$

Notice that this is a difference of squares which factors:

$$
\begin{aligned}
& y(x-\ldots)(x+\ldots) \\
& y(x-\mathbf{5})(x+\mathbf{5})
\end{aligned}
$$

p. 182: 39. $x^{4}-1 \quad$ Notice that this is a difference of squares. The First times First must be $x^{4}: x^{2}$ times $x^{2}$

$$
\left(\begin{array}{lll}
x^{2} & )\left(x^{2}\right.
\end{array}\right)
$$

The Last times Last must be 1: 1 times 1.

$$
\left(\begin{array}{lll}
x^{2} & 1
\end{array}\right)\left(\begin{array}{ll}
x^{2} & 1
\end{array}\right)
$$

Because the 1 is negative, use opposite signs.

$$
\left(x^{2}-1\right)\left(x^{2}+1\right)
$$

The factor $\left(x^{2}-1\right)$ is itself a difference of squares, and so it must be re-factored. However, the factor $\left(x^{2}+1\right)$ is the SUM of squares. It does not re-factor, and it must be left as it is in the final answer.

$$
\begin{gathered}
\left(x^{2}-1\right)\left(x^{2}+1\right) \\
(x-1)(x+1)\left(x^{2}+1\right) \text { Final Answer!! }
\end{gathered}
$$

