3.07 Literal Equations

Basic Algebra: One Step at a Time, Page 293-296: \#9, 10, plus 2 extra problems,12, 22, 25, 27, 28, 31, 32, 33.

Extra Problems: 17, 21, 31, 37, 53.
Dr. Robert J. Rapalje, Retired
Central Florida, USA

See Section 3.07, with explanations, examples, exercises, and answers, coming soon!
9. Solve for X: $\quad a(x+b)=c(x+d)$.

Solution: First, remove parentheses by the distributive property.

$$
a x+a b=c x+c d
$$

Next, get all the x terms on the left side by subtracting $c x$ from each side. At the same time, subtract $a b$ to each side to get all the non- ${ }^{x}$ terms on the right side of the equation

$$
\begin{gathered}
a x+a b=c x+c d \\
-c x-a b-c x-a b \\
\hline a x-c x=c d-a b
\end{gathered}
$$

Now, factor the common factor of x :

$$
x(a-c)=c d-a b
$$

Finally, since the x has been multiplied by $(a-c)$, you must divide both sides of the equation by $(a-c)$.

$$
\begin{gathered}
\frac{x \cdot(a-c)}{(a-c)}=\frac{c d-a b}{(a-c)} \\
x=\frac{c d-a b}{a-c}
\end{gathered}
$$

NOTE: Don't be tempted to divide out the a or the c! These are "terms"! Never divide out TERMS--only FACTORS!!

$$
\text { 10. Solve for } \mathrm{x}: \quad a(x-b)=c(d-x) \text {. }
$$

Solution: First, remove parentheses by the distributive property.

$$
a x-a b=c d-c x
$$

Next, get all the ${ }^{x}$ terms on the left side by adding $c x$ from each side. At the same time, add $a b$ to each side to get all the non- x terms on the right side of the equation

$$
\begin{array}{r}
a x-a b=c d-c x \\
+c x+a b+a b+c x \\
\hline a x+c x=c d+a b
\end{array}
$$

Now, factor the common factor of x :

$$
x(a+c)=c d+a b
$$

Finally, since the x has been multiplied by $(a+c)$, you must divide both sides of the equation by $(a+c)$.

$$
\begin{gathered}
\frac{x \bullet(a+c)}{(a+c)}=\frac{a b+c d}{(a+c)} \\
x=\frac{a b+c d}{a+c}
\end{gathered}
$$

NOTE: Don't be tempted to divide out the a or the c! These are "terms"! Never divide out TERMS--only FACTORS!!

Extra Problem (from Chris).

Solve for X: $\quad a(x-b)=c x+a b$.
Solution: First, remove parentheses by the distributive property.

$$
a x-a b=c x+a b
$$

Next, get all the x terms on the left side by subtracting $c x$ from each side. At the same time, add $+a b$ to each side to get all the non- x terms on the right side of the equation

$$
\begin{array}{r}
a x-a b=c x+a b \\
-c x+a b-c x+a b \\
\hline a x-c x=\frac{2 a b}{}
\end{array}
$$

Now, factor the common factor of x :

$$
x(a-c)=2 a b
$$

Finally, since the x has been multiplied by $(a-c)$, you must divide both sides of the equation by $(a-c)$.

$$
\begin{aligned}
& \frac{x \bullet(a-c)}{(a-c)}=\frac{2 a b}{(a-c)} \\
& x=\frac{2 a b}{a-c}
\end{aligned}
$$

Extra Problem \#2

Solve for x :

$$
1-3 x y=7(5 x z+y) .
$$

Solution: First, remove parentheses by the distributive property.

$$
1-3 x y=35 x z+7 y
$$

Next, get all the x terms on the right side by adding ${ }^{3 x y}$ from each side. At the same time, subtract ${ }^{7 y}$ from each side to get all the non-x terms on the left side of the equation

$$
\begin{array}{r}
1-3 x y=35 x z+7 y \\
-7 y+3 x y+3 x y-7 y \\
\hline 1-7 y=35 x z+3 x y
\end{array}
$$

Now, factor the common factor of x :

$$
\begin{aligned}
& 1-7 y=35 x z+3 x y \\
& 1-7 y=x(35 z+3 y)
\end{aligned}
$$

Finally, since the x has been multiplied by ${ }^{(35 z+3 y)}$, you must divide both sides of the equation by ${ }^{(35 z+3 y)}$.

$$
\begin{gathered}
\frac{1-7 y}{(35 z+3 y)} \quad=\frac{x(35 z+3 y)}{\frac{(35 z+3 y)}{2}} \\
x=\frac{1-7 y}{35 z+3 y}
\end{gathered}
$$

12. Solve for $\mathrm{x}: \quad Y-a=m(x-b)$.

Solution: First, remove parentheses by the distributive property.

$$
Y-a=m x-m b
$$

Next, notice that there is only one ${ }^{x}$ term, which is on the right side of the equation. Therefore, you must get the non- x terms all on the left side by adding $m b$ from each side.

$$
\begin{array}{r}
Y-a=m x-m b \\
+m b \quad+m b \\
\hline Y-a+m b=m x
\end{array}
$$

Finally, in order to solve for x,

$$
Y-a+m b=m x
$$

you must divide both sides of the equation by m.

$$
\begin{gathered}
\frac{Y-a+m b}{m}=\frac{\lfloor h x}{\mu h} \\
x=\frac{Y-a+m b}{m}
\end{gathered}
$$

NOTE: Don't be tempted to divide out the m ! The m in the numerator is a "term"! Never divide out TERMS--only FACTORS!!
22. $C=2 \pi r$, solve for r.

Solution: Since you are solving for r, and the r has been multiplied by 2π, you must "undo" the multiplication, by dividing both sides by 2π :

$$
\begin{aligned}
\frac{C}{2 \pi} & =\frac{2 \pi r}{2 \pi} \\
\frac{C}{2 \pi} & =\frac{2 \pi r}{2 \pi} \\
r & =\frac{C}{2 \pi}
\end{aligned}
$$

25. $A=\frac{1}{2} b h$, solve for h.

Solution: Since there is a denominator of 2 , multiply both sides by 2 to clear the fraction!

$$
\begin{aligned}
& 2 \cdot A=\not 2 \cdot \frac{1}{\not 2} b \boldsymbol{h} \\
& 2 A=b \boldsymbol{h}
\end{aligned}
$$

Next, remember that you are solving for h, and the h has been multiplied by b. In order to "undo" the multiplication, you must divide both sides by b :

$$
\begin{aligned}
& \frac{2 A}{b}=\frac{\not b \boldsymbol{h}}{\not b} \\
& \boldsymbol{h}=\frac{2 A}{b}
\end{aligned}
$$

P. 296: 27. $\quad V=\frac{1}{3} \pi r^{2} h$, solve for h.

Solution: Since there is a denominator of 3 , multiply both sides by ${ }^{3}$ to clear the fraction!

$$
\begin{aligned}
3 \bullet V & =3 \bullet \frac{1}{3} \pi r^{2} h \\
3 V & =\pi r^{2} h
\end{aligned}
$$

Next, remember that you are solving for h, and the h has been multiplied by π and r^{2}. In order to "undo" the multiplication, you must divide both sides by π and r^{2} :

$$
\begin{aligned}
\frac{3 V}{\pi r^{2}} & =\frac{\hbar \nu^{2} h}{\not t y^{2}} \\
\frac{3 V}{\pi r^{2}} & =h \\
h & =\frac{3 V}{\pi r^{2}}
\end{aligned}
$$

P. 296: 28. $\quad V=\frac{1}{3} \pi r^{2} h$, solve for r.

Solution: Since there is a denominator of 3 , multiply both sides by 3 to clear the fraction!

$$
\begin{aligned}
3 \bullet V & =3 \bullet \frac{1}{3} \pi r^{2} h \\
3 V & =\pi r^{2} h
\end{aligned}
$$

Next, remember that you are solving for r, and the r^{2} has been multiplied by π and h. In order to "undo" the multiplication, you must divide both sides by π and h :

$$
\begin{aligned}
& \frac{3 V}{\pi h}=\frac{\not t r^{2} \not \hbar}{\not t h h} \\
& \frac{3 V}{\pi h}=r^{2} \\
& r^{2}=\frac{3 V}{\pi h}
\end{aligned}
$$

P. 296: 31.

$$
F=\frac{9}{5} C+32, \text { solve for } C .
$$

There are at least two ways to solve for C in this problem. Both are equally correct, but one is much easier than the other. The easy way to solve this is to notice that the C has had two operations performed on it.

METHOD I:
First, C is multiplied by the fraction $\frac{9}{5}$, and then 32 was added. To solve for C, you must UNDO these two operations in reverse order. So, first undo the +32 , by subtracting 32 from each side:

$$
\begin{aligned}
F & =\frac{9}{5} C+32 \\
F-32 & =\frac{9}{5} C+32-32 \\
F-32 & =\frac{9}{5} C
\end{aligned}
$$

Now, undo the multiplication by $\frac{9}{5}$ by multiplying both sides of the equation by the reciprocal of $\frac{9}{5}$ which is $\frac{5}{9}$:

$$
\begin{aligned}
F-32 & =\frac{9}{5} C \\
\frac{5}{9} \bullet(F-32) & =\frac{5}{9} \bullet\left(\frac{9}{5} C\right) \\
\frac{5}{9} \bullet(F-32) & =C
\end{aligned}
$$

METHOD II:

The other method involves multiplying both sides of the equation by the denominator which is 5 :

$$
\begin{aligned}
& F=\frac{9}{5} C+32 \\
& 5 \cdot F=5 \cdot \frac{9}{5} C+5 \cdot 32 \\
& 5 F=9 C+160
\end{aligned}
$$

Subtract $\mathbf{1 6 0}^{\text {from each side: }}$
$5 F-160=9 C+160-160$
$5 F-160=9 C$
To solve for C just divide both sides by ${ }^{9}$:
$\frac{5 F-160}{9}=\frac{9 C}{9}$
$C=\frac{5 F-160}{9}$
This is a slightly different form of the answer obtained in the first method, if you factor out the 5 , the answer will be the same as above:
$C=\frac{5(F-32)}{9}$.

$$
\text { P. 296. \# 32. } \quad C=\frac{5}{9}(F-32) \text {, solve for } F \text {. }
$$

Notice that this problem is the same as the answer to \#31, so the problem will be solved in reverse!

$$
C=\frac{5}{9}(F-32)
$$

Begin by "undoing" the fraction $\frac{5}{9}$ by multiplying both sides by $\frac{9}{5}$.

$$
\begin{aligned}
& \frac{9}{5} C=\frac{9}{5} \bullet \frac{5}{9}(F-32) \\
& \frac{9}{5} C=F-32
\end{aligned}
$$

Next, "undo" the $\mathbf{- 3 2}$ by adding a $+\mathbf{3 2}$ to each side of the equation.

$$
\begin{aligned}
& \frac{9}{5} C=F-32 \\
& \frac{9}{5} C+32=F-32+32 \\
& \frac{9}{5} C+32=F \\
& F=\frac{9}{5} C+32
\end{aligned}
$$

In conclusion, notice that the problem for \#11 is the answer for \#12, and viceversa.
33. $\frac{1}{F}=\frac{1}{S}+\frac{1}{U}$

The first step is to find the LCD, which is FSU (to all the Florida Gator and Miami Hurricane fans out there, GO FLORIDA STATE!!)

$$
F S U \cdot \frac{\mathbf{1}}{\boldsymbol{F}}=F S U \cdot \frac{\mathbf{1}}{\boldsymbol{S}}+F S U \cdot \frac{\mathbf{1}}{\boldsymbol{U}}
$$

In the first position, the F divides out, leaving SU.
In the second position the S divides out, leaving UF!
In the third position, the U divides out, leaving FS.

$$
\begin{aligned}
F^{\prime} S U \cdot \frac{1}{\not Y^{\prime}} & =F S U \cdot \frac{1}{S^{\prime}}+F S \not \subset \cdot \frac{1}{\not ㇒} \\
S U & =U F+F S
\end{aligned}
$$

Now, in order to solve for S, you have to get all the S terms on one side of the equation. You can do that by subtracting FS from each side of the equation.

$$
\begin{array}{cc}
S \dot{U}=\boldsymbol{U F}+F S \\
-F S & \\
\hline S U-F S=\boldsymbol{U F}
\end{array}
$$

Now, to solve for S, you have to factor out the S on the left side of the equation:

$$
\begin{gathered}
S \boldsymbol{U}-\boldsymbol{F S}=\boldsymbol{U} \boldsymbol{F} \\
S(\boldsymbol{U}-\boldsymbol{F})=\boldsymbol{U} \boldsymbol{F}
\end{gathered}
$$

and divide both sides by $(U-F): \frac{S(U-F)}{(U-F)}=\frac{U F}{(U-F)}$

$$
S=\frac{U F}{U-F}
$$

IMPORTANT NOTE: This problem is very much like my own career, in that after I started (and graduated!) at FSU and I ended up (and graduated also!) at UFexcept that I did NOT change colors!!

Extra Problems: \#17, 21,31,37,53

17. $P=2 L+2 W$, solve for L.

Solution: Since you are solving for L, you must isolate the L term. Begin by eliminating the $2 W$ by subtracting $2 W$ from each side:

$$
\begin{aligned}
& P-2 W=2 L+2 W-2 W \\
& P-2 W=2 L
\end{aligned}
$$

This equation can be written

$$
2 L=P-2 W
$$

Next, divide both sides by 2

$$
\frac{2 L}{2}=\frac{P-2 W}{2}
$$

You can divide out the 2 factors on the left side, but NOT on the right side, since the $2 W$ is a "TERM." NEVER DIVIDE OUT TERMS!!!

$$
\begin{aligned}
& \frac{2 L}{2}=\frac{P-2 W}{2} \\
& L=\frac{P-2 W}{2}
\end{aligned}
$$

Final Answer!! (Other forms are also acceptable!!)
21. $A=\frac{1}{2} b h$, solve for h.

Solution: Since there is a denominator of 2 , multiply both sides by 2 to clear the fraction!

$$
\begin{aligned}
& 2 \cdot A=\not 2 \cdot \frac{1}{\not 2} b h \\
& 2 A=b h
\end{aligned}
$$

Next, remember that you are solving for \boldsymbol{h}, and the \boldsymbol{h} has been multiplied by b. In order to "undo" the multiplication, you must divide both sides by b :

$$
\begin{aligned}
& \frac{2 A}{b}=\frac{\not b \boldsymbol{h}}{\not b} \\
& \boldsymbol{h}=\frac{2 A}{b}
\end{aligned}
$$

31. $F=\frac{9}{5} C+32$, solve for C.

There are at least two ways to solve for C in this problem. Both are equally correct, but one is much easier than the other. The easy way to solve this is to notice that the C has had two operations performed on it.

METHOD I:

First, C is multiplied by the fraction $\frac{9}{5}$, and then 32 was added. To solve for C , you must UNDO these two operations in reverse order. So, first undo the +32 , by subtracting $\mathbf{3 2}$ from each side:

$$
\begin{aligned}
F & =\frac{9}{5} C+32 \\
F-32 & =\frac{9}{5} C+32-32 \\
F-32 & =\frac{9}{5} C
\end{aligned}
$$

Now, undo the multiplication by $\frac{9}{5}$ by multiplying both sides of the equation by the reciprocal of $\frac{9}{5}$ which is $\frac{5}{9}$:

$$
\begin{aligned}
F-32 & =\frac{9}{5} C \\
\frac{5}{9} \cdot(F-32) & =\frac{5}{9} \bullet\left(\frac{9}{5} C\right) \\
\frac{5}{9} \bullet(F-32) & =C
\end{aligned}
$$

METHOD II:

The other method involves multiplying both sides of the equation by the denominator which is 5 :

$$
\begin{aligned}
& F=\frac{9}{5} C+32 \\
& 5 \cdot F=5 \cdot \frac{9}{5} C+5 \cdot 32 \\
& 5 F=9 C+160
\end{aligned}
$$

Subtract $\mathbf{1 6 0}^{\text {from each side: }}$
$5 F-160=9 C+160-160$
$5 F-160=9 C$
To solve for C just divide both sides by ${ }^{9}$:
$\frac{5 F-160}{9}=\frac{9 C}{9}$
$C=\frac{5 F-160}{9}$
This is a slightly different form of the answer obtained in the first method, if you factor out the 5 , the answer will be the same as above:
$C=\frac{5(F-32)}{9}$.
37.

$$
R=r+\frac{400(W-L)}{N}, \text { solve for } L
$$

Solution: Since you are solving for L, you must isolate the L term. First, let's eliminate the fraction from the problem by multiplying both sides of the equation by the denominator N.

$$
N \circ R=N \bullet r+N \cdot \frac{400(W-L)}{N}
$$

As you can see, the denominator divides out:

$$
\begin{aligned}
& N \cdot R=N \bullet r+\not \searrow \cdot \frac{400(W-L)}{\not V} \\
& N \cdot R=N \bullet r+400(W-L)
\end{aligned}
$$

Next, remove the parentheses by the Distributive Property:

$$
N R=N r+400 W-400 L
$$

In order to solve for L, it might help to get the L term on the left side of the equation (to make the coefficient positive!). Add $400 L$ to each side:

$$
\begin{aligned}
& N R+400 L=N r+400 W-400 L+400 L \\
& N R+400 L=N r+400 W
\end{aligned}
$$

Next, in order to isolate the $400 L$, subtract $N R$ from each side:

$$
\begin{aligned}
N R-N R+400 L & =N r-N R+400 W \\
400 L & =N r-N R+400 W
\end{aligned}
$$

Finally, divide both sides by $\mathbf{4 0 0}$:

$$
\frac{400 L}{400}=\frac{N r-N R+400 W}{400}
$$

37. Continued

The $\mathbf{4 0 0}$ on the left side divides out, but NOT on the right side. Remember, on the right side the 400 W is a TERM, and you NEVER divide out terms!!!

$$
\frac{400 L}{40 \sigma}=\frac{N r-N R+400 W}{400}
$$

The final answer is $\quad L=\frac{N r-N R+400 W}{400}$
By the way, several other forms of the answer are equally acceptable. For example, the three terms in the numerator can be arranged in ANY order!

$$
\text { 53. Solve for } \mathrm{c}: \quad a c=b c+d \text {. }
$$

Solution: First, get all the c terms on the left side by subtracting $b c$ from each side.

$$
\begin{gathered}
a c=b c+d \\
-b c-b c \\
a c-b c=d
\end{gathered}
$$

Next, you have to get the ${ }^{c}$ in one place, so use the distributive property (factor out the common factor of ${ }^{c}$!) to write

$$
c(a-b)=d
$$

Finally, since the c has been multiplied by $(a-b)$, you must divide both sides of the equation by $(a-b)$.

$$
\begin{aligned}
& \frac{c \cdot(a-b)}{(a-b)}=\frac{d}{(a-b)} \\
& c=\frac{d}{a-b}
\end{aligned}
$$

