3.07 Literal Equations

Basic Algebra: One Step at a Time, Page 293-296: #9, 10, plus 2 extra problems, 12, 22, 25, 27, 28, 31, 32, 33.

Extra Problems: 17, 21, 31, 37, 53.

Dr. Robert J. Rapalje, Retired Central Florida, USA

See Section 3.07, with explanations, examples, exercises, and answers, coming soon!

9. Solve for x: a(x+b)=c(x+d).

Solution: First, remove parentheses by the distributive property.

$$ax + ab = cx + cd$$

Next, get all the $^{\mathcal{X}}$ terms on the left side by subtracting $^{\mathcal{C}\mathcal{X}}$ from each side. At the same time, subtract ab to each side to get all the non- $^{\mathcal{X}}$ terms on the right side of the equation

$$ax + ab = cx + cd$$

$$-cx - ab = cx - ab$$

$$ax - cx = cd - ab$$

Now, factor the common factor of x:

$$x(a-c) = cd - ab$$

Finally, since the x has been multiplied by (a-c), you must divide both sides of the equation by (a-c).

$$\frac{x \bullet (a - c)}{(a - c)} = \frac{cd - ab}{(a - c)}$$
$$x = \frac{cd - ab}{a - c}$$

NOTE: Don't be tempted to divide out the **a** or the **c**! These are "terms"! Never divide out TERMS--only FACTORS!!

10. Solve for x: a(x-b)=c(d-x).

Solution: First, remove parentheses by the distributive property.

$$ax - ab = cd - cx$$

Next, get all the $^{\mathcal{X}}$ terms on the left side by adding $^{\mathcal{C}\mathcal{X}}$ from each side. At the same time, add ab to each side to get all the non- $^{\mathcal{X}}$ terms on the right side of the equation

$$ax - ab = cd - cx$$

$$+cx + ab + ab + cx$$

$$ax + cx = cd + ab$$

Now, factor the common factor of x:

$$x(a+c) = cd + ab$$

Finally, since the x has been multiplied by (a+c), you must divide both sides of the equation by (a+c).

$$\frac{x \bullet (a+c)}{(a+c)} = \frac{ab+cd}{(a+c)}$$

$$x = \frac{ab + cd}{a + c}$$

NOTE: Don't be tempted to divide out the **a** or the **c**! These are "terms"! Never divide out TERMS--only FACTORS!!

Extra Problem (from Chris).

Solve for x: a(x-b) = cx + ab.

Solution: First, remove parentheses by the distributive property.

$$ax - ab = cx + ab$$

Next, get all the x terms on the left side by subtracting cx from each side. At the same time, add +ab to each side to get all the non-x terms on the right side of the equation

$$\begin{array}{rcl}
ax - ab &= cx + ab \\
\underline{-cx + ab} &- cx + ab \\
ax - cx &= 2ab
\end{array}$$

Now, factor the common factor of x:

$$x(a-c) = 2ab$$

Finally, since the x has been multiplied by (a-c), you must divide both sides of the equation by (a-c).

$$\frac{x \bullet (a - c)}{(a - c)} = \frac{2ab}{(a - c)}$$

$$x = \frac{2ab}{a - c}$$

Extra Problem #2

Solve for **x**:
$$1-3xy = 7(5xz + y)$$
.

Solution: First, remove parentheses by the distributive property.

$$1 - 3xy = 35xz + 7y$$

Next, get all the x terms on the right side by adding 3xy from each side. At the same time, subtract 7y from each side to get all the non-x terms on the left side of the equation

$$\begin{array}{r}
 1 \quad -3xy = 35xz + 7y \\
 -7y \quad +3xy \quad +3xy \quad -7y \\
 \hline
 1-7y \quad = 35xz + 3xy
 \end{array}$$

Now, factor the common factor of x:

$$1 - 7y = 35xz + 3xy$$

$$1-7y = x(35z + 3y)$$

Finally, since the x has been multiplied by (35z + 3y), you must divide both sides of the equation by (35z + 3y).

$$\frac{1-7y}{(35z+3y)} = \frac{x(35z+3y)}{(35z+3y)}$$

$$x = \frac{1 - 7y}{35z + 3y}$$

12. Solve for x: Y - a = m(x - b).

Solution: First, remove parentheses by the distributive property.

$$Y-a=mx-mb$$

Next, notice that there is only one $^{\chi}$ term, which is on the right side of the equation. Therefore, you must get the non- $^{\chi}$ terms all on the left side by adding mb from each side.

$$Y-a = mx - mb$$

$$+ mb \qquad + mb$$

$$Y-a + mb = mx$$

Finally, in order to solve for x,

$$Y-a + mb = mx$$

you must divide both sides of the equation by m.

$$\frac{Y-a + mb}{m} = \frac{m x}{m}$$

$$x = \frac{Y - a + mb}{m}$$

NOTE: Don't be tempted to divide out the m! The m in the numerator is a "term"! Never divide out TERMS--only FACTORS!!

22. $C = 2\pi r$, solve for r.

Solution: Since you are solving for r, and the r has been multiplied by 2π , you must "undo" the multiplication, by dividing both sides by 2π :

$$\frac{C}{2\pi} = \frac{2\pi r}{2\pi}$$

$$\frac{C}{2\pi} = \frac{2\pi r}{2\pi}$$

$$r = \frac{C}{2\pi}$$

 $A = \frac{1}{2}bh, \text{ solve for } h.$

Solution: Since there is a denominator of $\frac{2}{2}$, multiply both sides by $\frac{2}{2}$ to clear the fraction!

$$2 \bullet A = \cancel{2} \bullet \frac{1}{\cancel{2}} bh$$

$$2A = bh$$

Next, remember that you are solving for h, and the h has been multiplied by h. In order to "undo" the multiplication, you must divide both sides by h:

$$\frac{2A}{b} = \frac{b/h}{b'}$$

$$h = \frac{2A}{h}$$

$$V = \frac{1}{3}\pi r^2 h$$
, solve for h .

Solution: Since there is a denominator of 3 , multiply both sides by 3 to clear the fraction!

$$3 \bullet V = 3 \bullet \frac{1}{3} \pi r^2 h$$
$$3V = \pi r^2 h$$

Next, remember that you are solving for h, and the h has been multiplied by π and r^2 . In order to "undo" the multiplication, you must divide both sides by π and r^2 :

$$\frac{3V}{\pi r^2} = \frac{\pi v^2 h}{\pi v^2}$$

$$\frac{3V}{\pi r^2} = h$$

$$h = \frac{3V}{\pi r^2}$$

P. 296: 28.

$$V = \frac{1}{3}\pi r^2 h$$
, solve for r .

Solution: Since there is a denominator of 3, multiply both sides by 3 to clear the fraction!

$$3 \bullet V = 3 \bullet \frac{1}{3} \pi r^2 h$$
$$3V = \pi r^2 h$$

Next, remember that you are solving for r, and the r^2 has been multiplied by π and h. In order to "undo" the multiplication, you must divide both sides by π and h:

$$\frac{3V}{\pi h} = \frac{\pi r^2 h}{\pi h}$$

$$\frac{3V}{\pi h} = r^2$$

$$r^2 = \frac{3V}{\pi h}$$

P. 296: 31. $F = \frac{9}{5}C + 32$, solve for C.

There are at least two ways to solve for C in this problem. Both are equally correct, but one is much easier than the other. The easy way to solve this is to notice that the C has had two operations performed on it.

METHOD I:

First, C is multiplied by the fraction $\frac{1}{5}$, and then $\frac{32}{5}$ was added. To solve for C, you must UNDO these two operations in reverse order. So, first undo the $\frac{+32}{5}$, by subtracting $\frac{32}{5}$ from each side:

$$F = \frac{9}{5}C + 32$$

$$F - 32 = \frac{9}{5}C + 32 - 32$$

$$F - 32 = \frac{9}{5}C$$

Now, undo the multiplication by $\frac{9}{5}$ by multiplying both sides of the equation by

the reciprocal of $\frac{2}{5}$ which is $\frac{2}{9}$:

$$F-32=\frac{9}{5}C$$

$$\frac{5}{9} \circ \left(F - 32\right) = \frac{5}{9} \circ \left(\frac{9}{5}C\right)$$

$$\frac{5}{9} \circ (F - 32) = C$$

METHOD II:

The other method involves multiplying both sides of the equation by the denominator which is 5:

$$F = \frac{9}{5}C + 32$$

$$5 \bullet F = 5 \bullet \frac{9}{5}C + 5 \bullet 32$$

$$5F = 9C + 160$$

Subtract 160 from each side:

$$5F - 160 = 9C + 160 - 160$$

$$5F - 160 = 9C$$

To solve for C just divide both sides by 9:

$$\frac{5F-160}{9} = \frac{9C}{9}$$

$$C = \frac{5F - 160}{9}$$

This is a slightly different form of the answer obtained in the first method, if you factor out the 5, the answer will be the same as above:

$$C = \frac{5(F-32)}{9}$$

P. 296. # 32. $C = \frac{5}{9}(F - 32)$, solve for F.

Notice that this problem is the same as the answer to #31, so the problem will be solved in reverse!

$$C = \frac{5}{9}(F - 32)$$

Begin by "undoing" the fraction $\frac{5}{9}$ by multiplying both sides by $\frac{9}{5}$.

$$\frac{9}{5}C = \frac{9}{5} \bullet \frac{5}{9}(F - 32)$$

$$\frac{9}{5}C = F - 32$$

Next, "undo" the -32 by adding a +32 to each side of the equation.

$$\frac{9}{5}C = F - 32$$

$$\frac{9}{5}C + 32 = F - 32 + 32$$

$$\frac{9}{5}C + 32 = F$$

$$F = \frac{9}{5}C + 32$$

In conclusion, notice that the problem for #11 is the answer for #12, and viceversa.

33.
$$\frac{1}{F} = \frac{1}{S} + \frac{1}{U}$$

The first step is to find the LCD, which is FSU (to all the Florida Gator and Miami Hurricane fans out there, GO FLORIDA STATE!!)

$$FSU \bullet \frac{1}{F} = FSU \bullet \frac{1}{S} + FSU \bullet \frac{1}{U}$$

In the first position, the F divides out, leaving SU.

In the second position the S divides out, leaving UF!

In the third position, the U divides out, leaving FS.

$$F SU \circ \frac{1}{F} = F SU \circ \frac{1}{S} + FS V \circ \frac{1}{V}$$

$$SU = UF + FS$$

Now, in order to solve for S, you have to get all the S terms on one side of the equation. You can do that by subtracting FS from each side of the equation.

$$SU = UF + FS$$

$$-FS - FS$$

$$SU - FS = UF$$

Now, to solve for S, you have to factor out the S on the left side of the equation:

$$SU - FS = UF$$

$$S(U-F)=UF$$

and divide both sides by
$$(U-F)$$
:
$$\frac{S(U-F)}{(U-F)} = \frac{UF}{(U-F)}$$
$$S = \frac{UF}{U-F}$$

IMPORTANT NOTE: This problem is very much like my own career, in that after I started (and graduated!) at FSU and I ended up (and graduated also!) at UF—except that I did NOT change colors!!

Extra Problems: #17, 21, 31, 37, 53

17.
$$P = 2L + 2W$$
, solve for L .

Solution: Since you are solving for $oldsymbol{L}$, you must isolate the $oldsymbol{L}$ term. Begin by eliminating the $\frac{2W}{W}$ by subtracting $\frac{2W}{W}$ from each side:

$$P - 2W = 2L + 2W - 2W$$

$$P - 2W = 2L$$

This equation can be written

$$2L = P - 2W$$

Next, divide both sides by $\frac{2}{3}$

$$\frac{2L}{2} = \frac{P - 2W}{2}$$

You can divide out the 2 factors on the left side, but NOT on the right side, since the 2W is a "TERM." NEVER DIVIDE OUT TERMS!!!

$$\frac{\cancel{2}L}{\cancel{2}} = \frac{P-2W}{2}$$

$$L = \frac{P - 2W}{2}$$
 Final Answer!! (Other forms are also acceptable!!)

21.
$$A = \frac{1}{2}bh$$
, solve for h .

Solution: Since there is a denominator of $\frac{2}{2}$, multiply both sides by $\frac{2}{2}$ to clear the fraction!

$$2 \bullet A = \cancel{2} \bullet \frac{1}{\cancel{2}} bh$$

$$2A = bh$$

Next, remember that you are solving for h, and the h has been multiplied by b. In order to "undo" the multiplication, you must divide both sides by b:

$$\frac{2A}{b} = \frac{b/h}{b'}$$

$$h = \frac{2A}{b}$$

31. $F = \frac{9}{5}C + 32$, solve for C.

There are at least two ways to solve for C in this problem. Both are equally correct, but one is much easier than the other. The easy way to solve this is to notice that the C has had two operations performed on it.

METHOD I:

First, C is multiplied by the fraction $\frac{32}{5}$, and then $\frac{32}{5}$ was added. To solve for C, you must UNDO these two operations in reverse order. So, first undo the $\frac{+32}{5}$, by subtracting $\frac{32}{5}$ from each side:

$$F = \frac{9}{5}C + 32$$

$$F - 32 = \frac{9}{5}C + 32 - 32$$

$$F - 32 = \frac{9}{5}C$$

Now, undo the multiplication by $\frac{9}{5}$ by multiplying both sides of the equation by

the reciprocal of $\frac{5}{5}$ which is $\frac{9}{5}$:

$$F-32=\frac{9}{5}C$$

$$\frac{5}{9} \bullet \left(F - 32 \right) = \frac{5}{9} \bullet \left(\frac{9}{5} C \right)$$

$$\frac{5}{9} \circ (F - 32) = C$$

METHOD II:

The other method involves multiplying both sides of the equation by the denominator which is 5:

$$F = \frac{9}{5}C + 32$$

$$5 \bullet F = 5 \bullet \frac{9}{5}C + 5 \bullet 32$$

$$5F = 9C + 160$$

Subtract 160 from each side:

$$5F - 160 = 9C + 160 - 160$$

$$5F - 160 = 9C$$

To solve for C just divide both sides by 9:

$$\frac{5F-160}{9} = \frac{9C}{9}$$

$$C = \frac{5F - 160}{9}$$

This is a slightly different form of the answer obtained in the first method, if you factor out the 5, the answer will be the same as above:

$$C = \frac{5(F-32)}{9}$$

37.
$$R = r + \frac{400(W - L)}{N}$$
, solve for L .

Solution: Since you are solving for L, you must isolate the L term. First, let's eliminate the fraction from the problem by multiplying both sides of the equation by the denominator N.

$$N \bullet R = N \bullet r + N \bullet \frac{400(W - L)}{N}$$

As you can see, the denominator divides out:

$$N \bullet R = N \bullet r + \mathcal{N} \bullet \frac{400(W - L)}{\mathcal{N}}$$

$$N \bullet R = N \bullet r + 400(W - L)$$

Next, remove the parentheses by the Distributive Property:

$$NR = Nr + 400W - 400L$$

In order to solve for L, it might help to get the L term on the left side of the equation (to make the coefficient positive!). Add $\frac{400L}{L}$ to each side:

$$NR + 400L = Nr + 400W - 400L + 400L$$

 $NR + 400L = Nr + 400W$

Next, in order to isolate the 400L , subtract ${}^{N\!R}$ from each side:

$$NR - NR + 400L = Nr - NR + 400W$$

 $400L = Nr - NR + 400W$

Finally, divide both sides by 400:

$$\frac{400L}{400} = \frac{Nr - NR + 400W}{400}$$

37. Continued

The 400 on the left side divides out, but NOT on the right side. Remember, on the right side the 400W is a TERM, and you NEVER divide out terms!!!

$$\frac{400L}{400} = \frac{Nr - NR + 400W}{400}$$

$$L = \frac{Nr - NR + 400W}{400}$$

The final answer is

By the way, several other forms of the answer are equally acceptable. For example, the three terms in the numerator can be arranged in ANY order!

53. Solve for c: ac = bc + d

Solution: First, get all the c terms on the left side by subtracting bc from each side.

$$ac = bc + d$$

$$-bc - bc$$

$$ac - bc = d$$

Next, you have to get the c in one place, so use the distributive property (factor out the common factor of c !) to write

$$c(a-b)=d$$

Finally, since the c has been multiplied by $^{(a-b)}$, you must divide both sides of the equation by $^{(a-b)}$.

$$\frac{c \bullet (a - b)}{(a - b)} = \frac{d}{(a - b)}$$

$$c = \frac{d}{a - b}$$