Math in Living C O L O R !!

To see Section 5.03 with explanations, examples, and exercises, click here!

5.03 Adding and Subtracting Square Roots

Basic Algebra: One Step at a Time. Page 413-418: \#28, 29, 37, 38, 41.

Dr. Robert J. Rapalje
Central Florida, USA
p. 416: 28. $\sqrt{125}+\sqrt{50}$

Solution: Make two separate radicals for each of the radicals above:

$$
\sqrt{\bullet} \cdot \sqrt{ }+\sqrt{ } \cdot \sqrt{ }
$$

Find a perfect square factor in each of the numbers, and place it in the (first) RED radical.

$$
\sqrt{25} \cdot \sqrt{ }+\sqrt{25} \cdot \sqrt{ }
$$

Place the other factor that is "left-over" in the (second) BLUE radical.

$$
\sqrt{25} \cdot \sqrt{5}+\sqrt{25} \bullet \sqrt{2}
$$

Take square roots of the perfect squares:

$$
5 \cdot \sqrt{5}+5 \cdot \sqrt{2}
$$

Since these are NOT LIKE radicals, you CANNOT combine them.
Final answer:

$$
5 \cdot \sqrt{5}+5 \cdot \sqrt{2}
$$

Calculator check: $\sqrt{\mathbf{1 2 5}}+\sqrt{\mathbf{5 0}}=18.251$

$$
5 \cdot \sqrt{5}+5 \cdot \sqrt{2}=18.251
$$

P. 416: 29. $\quad \sqrt{72}+\sqrt{50}$

Solution: Make two separate radicals for each of the radicals above:

$$
\sqrt{\bullet} \cdot \sqrt{ }+\sqrt{ } \bullet \sqrt{ }
$$

Find a perfect square factor in each of the numbers, and place it in the (first) RED radical.

$$
\sqrt{36} \cdot \sqrt{ }+\sqrt{25} \cdot \sqrt{ }
$$

Place the other factor that is "left-over" in the (second) BLUE radical.

$$
\sqrt{36} \cdot \sqrt{2}+\sqrt{25} \cdot \sqrt{2}
$$

Take square roots of the perfect squares:

$$
6 \cdot \sqrt{2}+5 \cdot \sqrt{2}
$$

Since these are LIKE radicals, you can combine them:
Final answer: $\quad 11 \cdot \sqrt{2}$
Calculator check: $\sqrt{72}+\sqrt{50}=15.556$

$$
11 \cdot \sqrt{2}=15.556
$$

P. 417: 37.

$$
3 \sqrt{75}-4 \sqrt{48}-8 \sqrt{8}
$$

Solution: Make two separate radicals for each of the radicals above:

$$
3 \sqrt{ } \cdot \sqrt{ }-4 \sqrt{ } \cdot \sqrt{ }-8 \sqrt{ } \cdot \sqrt{ }
$$

Find a perfect square factor in each of the numbers, and place it in the (first) RED radical.

$$
3 \sqrt{25} \bullet \sqrt{-4} \sqrt{16} \bullet \sqrt{ }-8 \sqrt{4} \bullet \sqrt{ }
$$

Place the other factor that is "left-over" in the (second) BLUE radical.

$$
3 \sqrt{25} \cdot \sqrt{3}-4 \sqrt{16} \cdot \sqrt{3}-8 \sqrt{4} \cdot \sqrt{2}
$$

Take square roots of the perfect squares:

$$
3 \cdot 5 \cdot \sqrt{3}-4 \cdot 4 \cdot \sqrt{3}-8 \cdot 2 \cdot \sqrt{2}
$$

Multiply the numbers together:

$$
15 \cdot \sqrt{3}-16 \cdot \sqrt{3}-16 \cdot \sqrt{2}
$$

Notice that the first two terms are both $\sqrt{3}$ terms? Combine these.

Final answer:

$$
-\sqrt{3}-16 \sqrt{2}
$$

Calculator check: $\quad 3 \sqrt{75}-4 \sqrt{48}-8 \sqrt{8}=-24.359$

$$
-\sqrt{3}-16 \sqrt{2}=-24.359
$$

P. 417: 38.

$$
4 \sqrt{72}-8 \sqrt{50}+3 \sqrt{98}
$$

Solution: Make two separate radicals for each of the radicals above:

$$
4 \sqrt{\bullet} \cdot \sqrt{ }-8 \sqrt{ } \cdot \sqrt{ }+3 \sqrt{ } \bullet \sqrt{ }
$$

Find a perfect square factor in each of the numbers, and place it in the (first) RED radical.

$$
\begin{gathered}
4 \sqrt{72}-8 \sqrt{50}+3 \sqrt{98} \\
4 \sqrt{36} \bullet \sqrt{ }-8 \sqrt{25} \bullet \sqrt{ }+3 \sqrt{49} \bullet \sqrt{ }
\end{gathered}
$$

Place the other factor that is "left-over" in the (second) BLUE radical.

$$
4 \sqrt{36} \bullet \sqrt{2}-8 \sqrt{25} \bullet \sqrt{2}+3 \sqrt{49} \bullet \sqrt{2}
$$

Take square roots of the perfect squares:

$$
4 \bullet 6 \cdot \sqrt{2}-8 \cdot 5 \cdot \sqrt{2}+3 \cdot 7 \cdot \sqrt{2}
$$

Multiply the numbers together:

$$
24 \cdot \sqrt{2}-40 \cdot \sqrt{2}+21 \cdot \sqrt{2}
$$

Notice that they are all $\sqrt{2}$ terms? Combine all like terms: $(24-40+21=5)$
Final answer:

$$
5 \cdot \sqrt{2}
$$

Calculator check:

$$
\begin{aligned}
4 \sqrt{72}-8 \sqrt{50}+3 \sqrt{98} & =7.071 \\
5 \cdot \sqrt{2} & =7.071
\end{aligned}
$$

P. 417: 41.

$$
5 \sqrt{63}+7 \sqrt{28}-8 \sqrt{175}
$$

Solution: Make two separate radicals for each of the radicals above:

$$
5 \sqrt{\bullet} \cdot \sqrt{ }+7 \sqrt{ } \cdot \sqrt{ }-8 \sqrt{ } \cdot \sqrt{ }
$$

Find a perfect square factor in each of the numbers, and place it in the (first) RED radical.

$$
5 \sqrt{9} \bullet \sqrt{ }+7 \sqrt{4} \bullet \sqrt{ }-8 \sqrt{25} \bullet \sqrt{ }
$$

Place the other factor that is "left-over" in the (second) BLUE radical.

$$
5 \sqrt{9} \bullet \sqrt{7}+7 \sqrt{4} \bullet \sqrt{7}-8 \sqrt{25} \bullet \sqrt{7}
$$

Take square roots of the perfect squares:

$$
5 \cdot 3 \bullet \sqrt{7}+7 \cdot 2 \cdot \sqrt{7}-8 \cdot 5 \cdot \sqrt{7}
$$

Multiply the numbers together:

$$
15 \cdot \sqrt{7}+14 \cdot \sqrt{7}-40 \cdot \sqrt{7}
$$

Notice that they are all $\sqrt{7}$ terms? Combine all like terms: ($15+14-40=-11$)

$$
-11 \cdot \sqrt{7}
$$

Calculator check: $\quad 5 \sqrt{63}+7 \sqrt{28}-8 \sqrt{175}=-29.103$

$$
-11 \cdot \sqrt{7} \quad=-29.103
$$

