1.07 Laws of Exponents ## Dr. Robert J. Rapalje # More FREE help available from my website at www.mathinlivingcolor.com ANSWERS TO ALL EXERCISES ARE INCLUDED AT THE END OF THIS PAGE We will begin with a summary of the laws of exponents. You are probably familiar with these laws from your previous algebra background. #### LAWS OF EXPONENTS #### **GENERALIZATION** $X^m \cdot X^n = X^{(m+n)}$ - When you multiply (with the same base number), you add exponents. - number, you add exponents. - 2. When you divide (with the same base $\frac{X^m}{X^n} = X^{(m-n)}$ number), you subtract exponents. - 3. When you raise a power to a power, you $(X^m)^n = X^{mn}$ multiply exponents. - 4. When a product or a quotient is raised to a power, you raise each factor to the power. $(XY)^m = X^m \cdot Y^m$ $(\frac{X}{V})^m = \frac{X^m}{V^m}$ - 5. Any non-zero number raised to the zero $X^0 = 1$ power is 1. - 6. Any number raised to a negative power is 1 divided by that number raised to the positive power. $X^{-n} = \frac{1}{X^n}$ - 7. One (1) divided by any number raised to a negative power is that number raised to the positive power. $\frac{1}{X^{-n}} = X^n$ - 8. A fraction raised to a negative power is the reciprocal of the fraction raised to the positive power. $(\frac{X}{Y})^{-n} = (\frac{Y}{X})^{n}$ ### "QUICKIES" Simplify each of the following. Express without negative exponents. 1. $$X^4 \cdot X^7 =$$ 2. $\frac{X^8}{Y^2} =$ 3. $(X^4)^7 =$ 2. $$\frac{X^8}{X^2} =$$ _____ 3. $$(X^4)^7 =$$ _____ 4. $$\left(X^{3}\right)^{0} = \underline{\qquad} 5. \frac{X^{10}}{Y^{5}} = \underline{\qquad} 6. X^{4} \cdot X^{0} = \underline{\qquad}$$ 5. $$\frac{X^{10}}{V^5} =$$ _____ 6. $$X^4 \cdot X^0 =$$ _____ 7. $$2^4 \cdot 2^6 =$$ 8. $$\left(2^3\right)^6 =$$ _____ 7. $$2^4 \cdot 2^6 =$$ 8. $\left(2^3\right)^6 =$ 9. $\frac{2^{10}}{2^5} =$ 10. $$\frac{X^3}{Y^{-2}} =$$ _____ 11. $$\frac{1}{v^{-3}} =$$ _____ 10. $$\frac{X^3}{X^{-2}} = \frac{1}{X^{-3}} \frac{1}{X^{-3}}$$ 13. $$(X^3 Y^4)^3 =$$ _____ 13. $$\left(X^3 Y^4\right)^3 =$$ _____ 14. $\left(\frac{X^4 Y^2}{Z^5}\right)^2 =$ _____ 15. $\left(\frac{X^2}{Y^3}\right)^0 =$ _____ 15. $$\left(\frac{X^2}{Y^3}\right)^0 =$$ _____ 16. $$X^{-3} =$$ _____ 17. $Y^{-5} =$ ____ 18. $2^{-3} =$ ____ 17. $$Y^{-5} =$$ 18. $$2^{-3} =$$ 19. $$3^{-2} =$$ _____ 20. $$3X^0 =$$ _____ 19. $$3^{-2} =$$ _____ 20. $3X^{0} =$ ____ 21. $(3X)^{0} =$ ____ 22. $$(3X)^{-1} =$$ 23. $$3X^{-1} =$$ 22. $$(3X)^{-1} =$$ 23. $3X^{-1} =$ 24. $(3X)^{-2} =$ 25. $$(3X)^{-4} =$$ 26. $$3X^{-3} =$$ _____ 25. $$(3X)^{-4} =$$ _____ 26. $3X^{-3} =$ ____ 27. $(3X^{-1})^{-2} =$ ____ #### "TWO-STEP" 28. $$(X^4 \cdot X^3)^3 =$$ 29. $(X^6 \cdot X^{-2})^3 =$ 30. $(X^5 \cdot X^{-2})^6 =$ 29. $$(X^6 \cdot X^{-2})^3 =$$ _____ 30. $$(X^5 \cdot X^{-2})^6 =$$ _____ 31. $$\left(\frac{X^8}{X^2}\right)^5 =$$ 32. $\left(\frac{X^4}{X^{-2}}\right)^7 =$ 33. $\frac{X^4 \cdot X^{10}}{X^{-6}} =$ 32. $$\left(\frac{X^4}{Y^{-2}}\right)^7 =$$ _____ 33. $$\frac{X^4 \cdot X^{10}}{Y^{-6}} =$$ _____ $$34. \frac{X^{-4} \cdot X^{10}}{Y^{-6}} = \underline{\hspace{1cm}}$$ $$\cdot \frac{X^4 \cdot X^{-10}}{X^{-6}} = \underline{\hspace{1cm}}$$ 34. $$\frac{X^{-4} \cdot X^{10}}{X^{-6}} =$$ 35. $\frac{X^{4} \cdot X^{-10}}{X^{-6}} =$ 36. $\frac{X^{-4} \cdot X^{-10}}{X^{-6}} =$ _____ "WATCH YOUR STEP!" 37. $$(2X^3)^4 \cdot (X^4Y^{-3})^2$$ 38. $$(3X^3Y^{-2})^2 \cdot (2X^{-4}Y^5)^2$$ 39. $$(3^{-1}X^3Y^{-2})^{-2} \cdot (2X^{-4}Y^5)^{-2}$$ 40. $$(3X^{-3}Y^2)^2 \cdot (2^{-1}X^4Y^{-5})^{-2}$$ 41. $$\frac{X^{-11} (X^{-2})^4}{(X^2)^{-6}}$$ 42. $$\frac{2^{-7} \cdot X^4}{2^{-9} \cdot X^{-4}}$$ 43. $$\frac{(3X^{-3}Y^2)^{-2}}{(3^{-1}X^4Y^{-5})^{-2}}$$ 44. $$\frac{(3^{-1}X^4Y^{-5})^{-2}}{(3X^{-3}Y^2)^{-2}}$$ In the next exercises remember, the rules are exactly the same--but the level of abstraction has increased. Now there are variables in the exponents, which give the exercises a slightly different (more complicated) appearance. Just know and obey the laws of exponents, and combine like terms when possible (in the exponents). EXAMPLE 1: $$\frac{X^{3a} X^{2b}}{X^{3c}}$$ EXAMPLE 2: $$\frac{X^{3p} X^{2p-4}}{X^{6-3p}}$$ $$= \frac{X^{3a+2b}}{X^{3c}}$$ ADD EXPONENTS! $$= \frac{X^{3p+2p-4}}{X^{6-3p}}$$ $$= X^{3a+2b-3c}$$ SUBTRACT EXPONENTS! $$= X^{5p-4-(6-3p)}$$ $$= X^{5p-4-6+3p}$$ $$= X^{8p-10}$$ 45. $2^{3X} \cdot 2^{2Y}$ 46. $\frac{2^{3X}}{2^{2Y}}$ 47. $2^{X-4} \cdot 2^{X+6}$ 48. $\frac{2^{3X}}{2^{X+4}}$ $$45. \ 2^{3X} \cdot 2^{2Y} \qquad 46. \ \frac{2}{2^{2Y}} \qquad 47. \ 2^{X-4} \cdot 2^{X+6} \qquad 48. \ \frac{2}{2^{X+4}} = \underline{\qquad} = \underline{\qquad} = \underline{\qquad} = \underline{\qquad}$$ 49. $$\frac{2^{X} 2^{Y}}{2^{Z}} = \underline{\qquad}$$ 50. $\frac{2^{X}}{2^{Y} 2^{Z}} = \underline{\qquad}$ 51. $$\frac{X^{3p+2} X^{4p-6}}{X^{2p+4}} = \underline{\qquad \qquad 52. \frac{Y^{2q-5} Y^{6-3q}}{Y^{2-4q}}} = \underline{\qquad \qquad }$$ #### ANSWERS 1.07 p.92-95: 1. $$X^{11}$$; 2. X^{6} ; 3. X^{28} ; 4. 1; 5. X^{5} ; 6. X^{4} ; 7. 2^{10} ; 8. 2^{18} ; 9. 2⁵ or 32; 10. X^5 ; 11. X^3 ; 12. $\frac{X^8}{Y^{12}}$; 13. X^9Y^{12} ; 14. $\frac{X^8Y^4}{Z^{10}}$; 15. 1; 16. $\frac{1}{X^3}$; 17. $\frac{1}{Y^5}$; 18. 1/8; 19. 1/9; 20. 3; 21. 1; 22. $\frac{1}{3X}$; 23. $\frac{3}{X}$; 24. $\frac{1}{9X^2}$; 25. $\frac{1}{81X^4}$; 26. $\frac{3}{X^3}$; 27. $\frac{X^2}{9}$; 28. X^{21} ; 29. X^{12} ; 30. X^{18} ; 31. X^{30} ; 32. X^{42} ; 33. X^{20} ; 34. X^{12} ; 28. X²²; 29. X²²; 30. X²³; 31. X³³; 32. X²³; 33. X²³; 34. X²²; 35. 1; 36. $\frac{1}{X^8}$; 37. $\frac{16X^{20}}{Y^6}$; 38. $\frac{36Y^6}{X^2}$; 39. $\frac{9X^2}{4Y^6}$; 40. $\frac{36Y^{14}}{X^{14}}$; **41.** $\frac{1}{X^7}$; **42.** $4X^8$; **43.** $\frac{X^{14}}{81Y^{14}}$; **44.** $\frac{81Y^{14}}{X^{14}}$; **45.** 2^{X+2Y} ; **46.** 2^{3x-2y} ; **47.** 2^{2x+2} ; **48.** 2^{2x-4} ; **49.** 2^{x+y-z} ; **50.** 2^{x-y-z} ; **51.** X^{5p-8} ; **52.** Y^{3q-1} .