1.07 Laws of Exponents

Dr. Robert J. Rapalje

More FREE help available from my website at www.mathinlivingcolor.com ANSWERS TO ALL EXERCISES ARE INCLUDED AT THE END OF THIS PAGE

We will begin with a summary of the laws of exponents. You are probably familiar with these laws from your previous algebra background.

LAWS OF EXPONENTS

GENERALIZATION

 $X^m \cdot X^n = X^{(m+n)}$

- When you multiply (with the same base number), you add exponents.
 - number, you add exponents.
- 2. When you divide (with the same base $\frac{X^m}{X^n} = X^{(m-n)}$ number), you subtract exponents.
- 3. When you raise a power to a power, you $(X^m)^n = X^{mn}$ multiply exponents.
- 4. When a product or a quotient is raised to a power, you raise each factor to the power. $(XY)^m = X^m \cdot Y^m$ $(\frac{X}{V})^m = \frac{X^m}{V^m}$
- 5. Any non-zero number raised to the zero $X^0 = 1$ power is 1.
- 6. Any number raised to a negative power is 1 divided by that number raised to the positive power. $X^{-n} = \frac{1}{X^n}$
- 7. One (1) divided by any number raised to a negative power is that number raised to the positive power. $\frac{1}{X^{-n}} = X^n$
- 8. A fraction raised to a negative power is the reciprocal of the fraction raised to the positive power. $(\frac{X}{Y})^{-n} = (\frac{Y}{X})^{n}$

"QUICKIES"

Simplify each of the following. Express without negative exponents.

1.
$$X^4 \cdot X^7 =$$
 2. $\frac{X^8}{Y^2} =$ 3. $(X^4)^7 =$

2.
$$\frac{X^8}{X^2} =$$

3.
$$(X^4)^7 =$$

4.
$$\left(X^{3}\right)^{0} = \underline{\qquad} 5. \frac{X^{10}}{Y^{5}} = \underline{\qquad} 6. X^{4} \cdot X^{0} = \underline{\qquad}$$

5.
$$\frac{X^{10}}{V^5} =$$

6.
$$X^4 \cdot X^0 =$$

7.
$$2^4 \cdot 2^6 =$$

8.
$$\left(2^3\right)^6 =$$

7.
$$2^4 \cdot 2^6 =$$
 8. $\left(2^3\right)^6 =$ 9. $\frac{2^{10}}{2^5} =$

10.
$$\frac{X^3}{Y^{-2}} =$$

11.
$$\frac{1}{v^{-3}} =$$

10.
$$\frac{X^3}{X^{-2}} = \frac{1}{X^{-3}} = \frac{1}{X^{-3}}$$

13.
$$(X^3 Y^4)^3 =$$

13.
$$\left(X^3 Y^4\right)^3 =$$
 _____ 14. $\left(\frac{X^4 Y^2}{Z^5}\right)^2 =$ _____ 15. $\left(\frac{X^2}{Y^3}\right)^0 =$ _____

15.
$$\left(\frac{X^2}{Y^3}\right)^0 =$$

16.
$$X^{-3} =$$
 _____ 17. $Y^{-5} =$ ____ 18. $2^{-3} =$ ____

17.
$$Y^{-5} =$$

18.
$$2^{-3} =$$

19.
$$3^{-2} =$$

20.
$$3X^0 =$$

19.
$$3^{-2} =$$
 _____ 20. $3X^{0} =$ ____ 21. $(3X)^{0} =$ ____

22.
$$(3X)^{-1} =$$

23.
$$3X^{-1} =$$

22.
$$(3X)^{-1} =$$
 23. $3X^{-1} =$ 24. $(3X)^{-2} =$

25.
$$(3X)^{-4} =$$

26.
$$3X^{-3} =$$

25.
$$(3X)^{-4} =$$
 _____ 26. $3X^{-3} =$ ____ 27. $(3X^{-1})^{-2} =$ ____

"TWO-STEP"

28.
$$(X^4 \cdot X^3)^3 =$$
 29. $(X^6 \cdot X^{-2})^3 =$ 30. $(X^5 \cdot X^{-2})^6 =$

29.
$$(X^6 \cdot X^{-2})^3 =$$

30.
$$(X^5 \cdot X^{-2})^6 =$$

31.
$$\left(\frac{X^8}{X^2}\right)^5 =$$
 32. $\left(\frac{X^4}{X^{-2}}\right)^7 =$ 33. $\frac{X^4 \cdot X^{10}}{X^{-6}} =$

32.
$$\left(\frac{X^4}{Y^{-2}}\right)^7 =$$

33.
$$\frac{X^4 \cdot X^{10}}{Y^{-6}} =$$

$$34. \frac{X^{-4} \cdot X^{10}}{Y^{-6}} = \underline{\hspace{1cm}}$$

$$\cdot \frac{X^4 \cdot X^{-10}}{X^{-6}} = \underline{\hspace{1cm}}$$

34.
$$\frac{X^{-4} \cdot X^{10}}{X^{-6}} =$$
 35. $\frac{X^{4} \cdot X^{-10}}{X^{-6}} =$ 36. $\frac{X^{-4} \cdot X^{-10}}{X^{-6}} =$ _____

"WATCH YOUR STEP!"

37.
$$(2X^3)^4 \cdot (X^4Y^{-3})^2$$

38.
$$(3X^3Y^{-2})^2 \cdot (2X^{-4}Y^5)^2$$

39.
$$(3^{-1}X^3Y^{-2})^{-2} \cdot (2X^{-4}Y^5)^{-2}$$

40.
$$(3X^{-3}Y^2)^2 \cdot (2^{-1}X^4Y^{-5})^{-2}$$

41.
$$\frac{X^{-11} (X^{-2})^4}{(X^2)^{-6}}$$

42.
$$\frac{2^{-7} \cdot X^4}{2^{-9} \cdot X^{-4}}$$

43.
$$\frac{(3X^{-3}Y^2)^{-2}}{(3^{-1}X^4Y^{-5})^{-2}}$$

44.
$$\frac{(3^{-1}X^4Y^{-5})^{-2}}{(3X^{-3}Y^2)^{-2}}$$

In the next exercises remember, the rules are exactly the same--but the level of abstraction has increased. Now there are variables in the exponents, which give the exercises a slightly different (more complicated) appearance. Just know and obey the laws of exponents, and combine like terms when possible (in the exponents).

EXAMPLE 1:
$$\frac{X^{3a} X^{2b}}{X^{3c}}$$
 EXAMPLE 2:
$$\frac{X^{3p} X^{2p-4}}{X^{6-3p}}$$

$$= \frac{X^{3a+2b}}{X^{3c}}$$
 ADD EXPONENTS!
$$= \frac{X^{3p+2p-4}}{X^{6-3p}}$$

$$= X^{3a+2b-3c}$$
 SUBTRACT EXPONENTS!
$$= X^{5p-4-(6-3p)}$$

$$= X^{5p-4-6+3p}$$

$$= X^{8p-10}$$
45. $2^{3X} \cdot 2^{2Y}$ 46. $\frac{2^{3X}}{2^{2Y}}$ 47. $2^{X-4} \cdot 2^{X+6}$ 48. $\frac{2^{3X}}{2^{X+4}}$

$$45. \ 2^{3X} \cdot 2^{2Y} \qquad 46. \ \frac{2}{2^{2Y}} \qquad 47. \ 2^{X-4} \cdot 2^{X+6} \qquad 48. \ \frac{2}{2^{X+4}} = \underline{\qquad} = \underline{\qquad} = \underline{\qquad} = \underline{\qquad}$$

49.
$$\frac{2^{X} 2^{Y}}{2^{Z}} = \underline{\qquad}$$
 50. $\frac{2^{X}}{2^{Y} 2^{Z}} = \underline{\qquad}$

51.
$$\frac{X^{3p+2} X^{4p-6}}{X^{2p+4}} = \underline{\qquad \qquad 52. \frac{Y^{2q-5} Y^{6-3q}}{Y^{2-4q}}} = \underline{\qquad \qquad }$$

ANSWERS 1.07

p.92-95:

1.
$$X^{11}$$
; 2. X^{6} ; 3. X^{28} ; 4. 1; 5. X^{5} ; 6. X^{4} ; 7. 2^{10} ; 8. 2^{18} ;

9. 2⁵ or 32; 10. X^5 ; 11. X^3 ; 12. $\frac{X^8}{Y^{12}}$; 13. X^9Y^{12} ; 14. $\frac{X^8Y^4}{Z^{10}}$;

15. 1; 16. $\frac{1}{X^3}$; 17. $\frac{1}{Y^5}$; 18. 1/8; 19. 1/9; 20. 3; 21. 1;

22. $\frac{1}{3X}$; 23. $\frac{3}{X}$; 24. $\frac{1}{9X^2}$; 25. $\frac{1}{81X^4}$; 26. $\frac{3}{X^3}$; 27. $\frac{X^2}{9}$; 28. X^{21} ; 29. X^{12} ; 30. X^{18} ; 31. X^{30} ; 32. X^{42} ; 33. X^{20} ; 34. X^{12} ;

28. X²²; 29. X²²; 30. X²³; 31. X³³; 32. X²³; 33. X²³; 34. X²²;

35. 1; 36. $\frac{1}{X^8}$; 37. $\frac{16X^{20}}{Y^6}$; 38. $\frac{36Y^6}{X^2}$; 39. $\frac{9X^2}{4Y^6}$; 40. $\frac{36Y^{14}}{X^{14}}$;

41. $\frac{1}{X^7}$; **42.** $4X^8$; **43.** $\frac{X^{14}}{81Y^{14}}$; **44.** $\frac{81Y^{14}}{X^{14}}$; **45.** 2^{X+2Y} ;

46. 2^{3x-2y} ; **47.** 2^{2x+2} ; **48.** 2^{2x-4} ; **49.** 2^{x+y-z} ; **50.** 2^{x-y-z} ; **51.** X^{5p-8} ; **52.** Y^{3q-1} .