5.05 Inequalities in Two Variables/ Systems of Inequalities

Dr. Robert J. Rapalje

More FREE help available from my website at www.mathinlivingcolor.com ANsWERS TO ALL EXERCISES ARE INCLUDED AT THE END OF THIS PAGE

Solving a linear equation in one variable, like $3 \mathrm{X}+6=12$, usually resulted in a single solution, like $\mathbf{x}=2$. The graph was represented by a single point on a numberline. A corresponding inequality, like $3 x+6<12$, required shading the numberline to the left of the solution, not including the endpoint. The inequality $3 x+6>12$ required shading to the right, not inclucing the endpoint. The inequalities $3 x+6 \leq 12$ and $3 x+6 \geq 12$ also require shading, but the solution to these include the endpoints.

In two dimensions, the equation $3 \mathbf{X}+\mathbf{Y}=12$ represents a line that can be graphed in the $X Y$ plane. As the point $\mathbf{X}=2$ divides the numberline into two regions, the line $3 X+Y=12$ divides the XY plane into two regions, above and below (or right and left) of the line. It should be clear that $3 X+\mathbf{Y}<12$ represents the shading on one side of the line, while $3 X+\mathbf{Y}>12$ represents the shading on the other side. The inequalities $3 X+Y<12$ and $3 X+Y>12$ do not include the line itself, and therefore are represented by dotted lines. The inequalities $3 X+Y \leq 12$ and $3 X+Y \geq 12$ do include the line and are represented by solid lines. The only question that remains is, "Which side of the the line should be shaded?" Probably the easiest way to decide is to solve the inequality for Y. For example, $3 X+Y<12$ can be written as $\mathbf{Y}<-3 X+12$. The values of Y are measured up and down the Y-axis, with values of $\mathbf{Y}=-\mathbf{3 X}+12$ representing values on the line. Therefore, it seems reasonable that $\mathbf{Y}<-3 X+12$ represents values that are below the line $Y=-3 X+12$, and $Y>-3 X+12$ represents values that are above the line.

Remember that when graphing a line whose equation is in the form $\mathbf{Y}=\mathbf{m X}+\mathbf{b}$, it is usually easiest to use the Y-intercept and slope to draw the line. If the equation is in standard form, $\mathbf{A X}+\mathbf{B Y}=\mathbf{C}$, then it is usually easiest to graph by finding the \mathbf{X} and Y-intercepts.

When graphing a linear inequality there are three steps:
I. Change the inequality to an equation and graph the line.
A. If $\mathbf{Y}=\mathbf{m X}+\mathbf{b}$, then use \mathbf{Y}-intercept/slope method.
B. If $\mathbf{A X}+\mathbf{B Y}=\mathbf{C}$ form, then use intercepts method.
II. Decide whether the line is included or not included.
A. If "<" or ">", then use a dotted line.
B. If "s" or " \geq ", then use a solid line.
III. Decide whether to shade above or below the line.
A. If the equation has a positive \mathbf{Y}-coefficient and "<" or " \leq ", then shade below the graph of the line.
B. If the equation has a positive \mathbf{Y}-coefficient and ">" or " \geq ", then shade above the graph of the line.
C. If the equation has a negative Y-coefficient, then multiply both sides of the inequality by -1 , which reverses the direction of the inequality sign. Then shade above or below as indicated.

EXAMPLE 1: Graph $Y>-2 X+6 \quad$ EXAMPLE 2: Graph $Y \leq \frac{4}{3} X-2$
Solution: I. Graph $Y=-2 X+6$
Easiest to use slope-intercept method Y-int $=(0,6) ; m=-2$

Solution: I. Graph $Y=\frac{4}{3} X-2$ Easiest to use slope-int method Y -int $=(0,-2)$
(See below!)
$m=\frac{4}{3}$
II. Use a dotted line
III. Since $+Y>$, you must shade above the line.

EXERCISES. Graph each of the following inequalities. Shade the appropriate areas.

1. $Y<3 X+2$

Y-int__
$\mathrm{m}=$ \qquad
Type line
Shade \qquad

2. $Y>-2 X+4$

Y-int \qquad
$\mathrm{m}=$ \qquad
Type line \qquad
Shade \qquad
3. $Y \geq-X-4$

Y-int \qquad
$\mathrm{m}=$ \qquad

Type line \qquad
Shade \qquad
4. $Y \leq 2 X-4$

Y-int \qquad
m = \qquad

Type line \qquad
Shade \qquad
6. $Y \geq \frac{3}{2} X-2$

Y-int \qquad
m = \qquad
Type line \qquad
Shade \qquad

EXAMPLE 3: Graph $2 X+3 Y>-6$
Solution: I. Graph $2 X+3 Y=-6$
Easiest to use two intercepts method
X -int $=(-3,0)$
Y-int $=(0,-2)$
II. Use a dotted line
III. Since $+Y>$, you must shade above the line.

EXAMPLE 4: Graph $-X+3 Y \leq 6$
Solution: I. Graph $-X+3 Y=6$ Easiest to use two intercepts method
X -int $=(-6,0)$
Y -int $=(0,2)$
II. Use a solid line
III. Since $+\mathrm{Y} \leq$, shade

7. $-X+3 Y \geq 6$

X	Y
0	2
-6	0

Type line: \qquad
Shade: \qquad
9. $3 X+Y<-6$

Type line: \qquad
Shade: \qquad
8. $3 X+2 Y>-12$
 Shade: \qquad
10. $-2 X+Y \leq 8$

Type line: \qquad
Shade: \qquad
11. $-3 X+4 Y>-12$

Type line: \qquad
Shade: \qquad
12. $-3 X+2 Y \geq 12$

Type line: \qquad
Shade: \qquad

EXAMPLE 5: Graph $2 X-3 Y \leq 6$
Solution:
I. Graph $2 X-3 Y=6$

Easiest to use two int. method
X -int $=(3,0) ; \quad \mathrm{Y}$-int $=(0,-2)$
II. Use a solid line

III. Since -Y s, divide both sides by -1 . This means $+Y \geq$, so shade above line.
13. $3 \mathrm{X}-\mathrm{Y}<-6$

Type line: \qquad
Shade: \qquad
15. $3 \mathrm{X}-4 \mathrm{Y} \geq 12$

Type line: \qquad
Shade: \qquad
14. $-2 X-Y \leq 8$

Type line: \qquad

Shade:
16. $3 X-2 Y>-12$

Type line: \qquad
Shade: \qquad

17. $Y>-3 X-4$

18. $Y \geq X$

19. $\mathrm{X}-3 \mathrm{Y}<-6$

21. $\quad Y \geq \frac{3}{2} X+5$

22. $Y<-3$

23. $\mathrm{X} \leq 4$

24. $X>-4$

It is frequently necessary to graph a system of inequalities-that is, two or more inequalities with two unknowns. In such problems, there will be two or more regions to graph, with instructions to shade the union or the intersection of the regions. As before, remember that the union includes all shaded regions, while the intersection of the regions includes only the regions common to both (or all) of the shadings. It will be very helpful to use colored pencils, using a different color for each equation/ shaded region.

EXAMPLE 6a) Graph the region represented by the union of

$$
\begin{aligned}
3 X-2 Y & >6 \\
X+3 Y & \geq 3
\end{aligned}
$$

$3 X-2 Y$	
\mathbf{X}	\mathbf{Y}
0	-3
2	0

Dotted Line Shade below

UNION is everything that is shaded.
EXAMPLE 6b) Graph the intersection:

$$
\begin{aligned}
3 X-2 Y & >6 \\
X+3 Y & \geq 3
\end{aligned}
$$

INTERSECTION is only what is common to BOTH.

In 25 - 28, find the region represented by the unions of the following inequalities.
25. $Y>X+2$ $\mathbf{Y}<-\mathbf{X}$

26. $4 X+Y \leq-8$ $X-2 Y \leq-4$

28. $Y<4 X-4$ $Y>-2 X+4$

In 29 - 32, find the region represented by the intersections of each of the following.
29. $\begin{aligned} & \mathrm{Y} \leq-\mathrm{X}+2 \\ & \mathrm{Y} \geq \mathrm{X}\end{aligned}$

30. $4 \mathrm{X}-\mathrm{Y}>-8$
$X+2 Y<-4$

31. $2 X-3 Y<-12$
$-Y>4 X-8$

32. $Y \geq-4 X+4$
$Y \leq 2 X-4$

EXAMPLE 7: Graph the region represented by the intersection of
$3 x+2 y=12$

$$
\begin{array}{rlr}
3 X+2 Y & <12 \\
X & \geq 0 \\
Y & \geq-3
\end{array}
$$

$$
\begin{array}{ll}
x=0 & y=-3 \\
\text { Maxis } & \text { Horizontal Line } \\
& \text { Region }=\text { TRIANGLE }
\end{array}
$$

In $33-34$, graph the region represented by the intersections of each of the following inequalities.
33. $3 X-2 Y \leq 12$
$X \geq 0$
$\mathbf{Y} \leq 0$
34. $\begin{aligned} \mathrm{X}+3 \mathrm{Y} & >-6 \\ \mathrm{X} & <2 \\ \mathrm{Y} & <3\end{aligned}$

ANSWERS 5.05

$$
\begin{aligned}
& \text { p.420-426: } \\
& \text { 1. }
\end{aligned}
$$

3. (1///, x
4.

11.

14.

15.

17.

18.

19.

20.

ANSWERS 5.05 (Continued)

Dr. Robert J. Rapalje
More FREE help available from my website at www.mathinlivingcolor.com ANSWERS TO ALL EXERCISES ARE INCLUDED AT THE END OF THIS PAGE

