3.06 Polynomial and
 Fractional Inequalities

Dr. Robert J. Rapalje

More FREE help available from my website at www.mathinlivingcolor.com ANSWERS TO ALL EXERCISES ARE INCLUDED AT THE END OF THIS PAGE

The topic of inequalities (linear, quadratic, and absolute value) was previously introduced in section 1.11. Now, after the study of polynomial equations and functions, it is appropriate to continue with a more advanced section on inequalities, which includes polynomial and fractional expressions.

The strategy, as before, is to:

1. find all endpoints
2. set the inequality to zero, and graph "Y1= \qquad ."
3. determine which intervals between the endpoints are above or below the X -axis.
4. determine if the endpoints are included or not included
5. give the final solution in interval notation.

For polynomial inequalities, the endpoints are obtained by simply solving the corresponding polynomial equation. For fractional equations, the there will be "asymptotes" so the graphs and the process in general is somewhat more complicated. More on that later . . .

When graphing Y1 >0, shade ABOVE the X -axis.
When graphing $\mathrm{Y} 1 \geq 0$, shade ON or ABOVE the X -axis.
When graphing $\mathrm{Y} 1<0$, shade BELOW the X -axis.
When graphing $Y 1 \leq 0$, shade ON or BELOW the X -axis.

EXAMPLE I. $(x-4)(x+2)(x-6)<0 \quad$ BELOw x-arís Change to equation: $(x-4)(x+2)(x-6)=0$

Find endpoints: $\quad X=4 ; X=-2 ; X=6$
On numberline:

Test one point from each interval in the original inequality:

$$
\begin{aligned}
& x=7: \quad(7-4)(7+2)(7-6)<0 \\
& +\quad+\quad<0 \text { False } \\
& X=5: \quad(5-4)(5+2)(5-6)<0 \\
& +\quad+\quad<0 \text { True } \\
& x=3: \quad(3-4)(3+2)(3-6)<0 \\
& +\quad-\quad<0 \text { False } \\
& X=-3: \quad(-3-4)(-3+2)(-3-6)<0 \\
& <0 \text { True }
\end{aligned}
$$

Indicate the "True" intervals on the numberline:

Notice that endpoints are not included (because of "<"). Give answer in interval notation: $(-\infty,-2) \cup(4,6)$

Did you notice that in the above example, the intervals alternated "False," "True," "False," "True." This alternating occurred because each endpoint was a root of odd multiplicity. Thus, it was only necessary to test one interval, and then alternate "False," "True," "False," etc.

Easier way to solve Example I:
Change to equation: $(x-4)(x+2)(x-6)=0$
Find endpoints: $\quad X=4 ; X=-2 ; X=6$
Multiplicity: odd odd odd
On numberline:

Test $X=7: \quad(7-4)(7+2)(7-6)<0 \quad$ False
Because of odd multiplicities, the intervals alternate:

EXAMPLE II. $(x-4)^{2}(x+2)(x-6) \leq 0$ On or Below $x-a x i 5$.
Change to equation: $\quad(X-4)^{2}(X+2)(X-6)=0$
Find endpoints: $\quad X=4 ; X=-2 ; X=6$
On numberline:

Test one point from each interval in the original inequality:

$$
\begin{aligned}
& \mathbf{X}=7: \quad(7-4)^{2}(7+2)(7-6) \leq 0 \\
& +\quad+\quad \leq 0 \text { False } \\
& \mathbf{X}=5: \quad(5-4)^{2}(5+2)(5-6) \leq 0 \\
& +\quad+\quad \leq 0 \text { True } \\
& X=3: \quad(3-4)^{2}(3+2)(3-6) \leq 0 \\
& +\quad+\quad-\quad \leq 0 \text { True } \\
& X=-3: \quad(-3-4)^{2}(-3+2)(-3-6) \leq 0 \\
& +\quad-\quad \leq 0 \text { False }
\end{aligned}
$$

Indicate the "True" intervals on the numberline:

Notice that endpoints are included (because of " \leq ").
Give answer in interval notation $[-2,6]$
Did you notice that in this the intervals did not alternate? The intervals did not alternate because of the even multiplicity of the root at $X=4$. Again, this provides a shortcut, and again, it is not necessary to test a point in each interval. Rather, just alternate "True/False" at endpoints of odd multiplicity, and keep the truth value the same (True/True or False/False) at endpoints of even multiplicity, as follows:

Easier way to solve trample II:

Change to equation: $\quad(x-4)^{2}(x+2)(x-6)=0$
Find endpoints: $\quad X=4 ; x=-2 ; X=6$
Multiplicity: even odd odd
On numberline:

Test $X=7: \quad(7-4)^{2}(7+2)(7-6) \leq 0 \quad$ False
Intervals alternate except at $X=4$.


```
exercises: \(\quad\) y above \(x\) axis! \(\quad\) y) below \(x\) ariel
1. \((x+2)(x-1)(x+5)>0 \quad 2\). \((x-2)(x+3)(x-4)<0\)
Endpts:
    Mule:
Include endpts?
```

N'line:

Test $\mathrm{x}=2$:
Test $\mathrm{x}=5$:
Interval notation:

41 on or below x axis!
3. $(x-5)(x+2)(x-1) \leq 0 \quad 4$.
$(x+2)(x+4)(x-3) \geq 0$

```
5. (x + 2)(x-1)(x+5) 2}>
6. (x-2)2}(x+3)(x-4)<
Endpts:
    Mult:
Include endpts?
```


Test $\mathrm{X}=2$:

Test $\mathrm{X}=5$:
7. $(x-5)^{3}(x+2)(x-1)^{2} \leq 0$
8. $(x+2)^{3}(x+4)^{2}(x-3) \geq 0$
11. $X^{3}-4 X^{2}-4 X+16 \leq 0$
12. $x^{3}+2 x^{2}-9 x-18 \geq 0$
13. $x^{3}+4 x^{2}-16 x-64<0$
14. $x^{3}-3 x^{2}-9 x+27 \geq 0$
15. $x^{4}-10 x^{2}+9 \geq 0$
16. $x^{4}-10 x^{2}+9<0$

For fractional inequalities, there are two sources of endpoints:

1. solve corresponding equations (as before with polynomial inequalities), and
2. set denominators not equal to zero.

Exercises and examples to illustrate these concepts continue on the next page.
17.

$$
\frac{X^{2}-9}{X} \leq 0
$$

Denom endpt:
$\begin{array}{cc}x \neq 0 & \text { on or Below } \\ x \text { arris! }\end{array}$

$$
x^{2}-9=0
$$

Other endpts: (Included!)

N'line:
Test $\mathrm{X}=5$:
Intervals alternate! Yes
Interval notation: $(,] \cup($,
19. $\frac{X^{2}-9}{X^{2}-4 X}<0$
20. $\frac{X^{2}-4 X}{X^{2}-9} \geq 0$
18. $\frac{X}{X^{2}-9} \geq 0$ y he bones
$x-a x i s!$
23. $\frac{X^{3}(X-3)^{4}}{X^{2}-4} \geq 0$
24. $\frac{X^{3}(X-3)^{4}}{X^{2}-4}<0$

Consider the innocent-looking problem $\frac{4}{X}<2$. The obvious approach (and wrong!!) is to multiply both sides of the equation by the variable x. Remember that if you multiply both sides of an inequality by a negative number, then you must reverse the direction of the inequality sign. However, if you multiply both sides of an inequality by a positive number, then you do not reverse the direction of the inequality sign! So, what if you multiply both sides of an inequality by a variable, which could be either positive or negative? You just don't know!! Therefore, you should never multiply both sides of an inequality by a variable, unless you know that the variable is always positive (or negative)!

PRTNCTPRE:

fiever militiply both sides of an inequalitity by a/ variable, unlesse. the variablem is known. to. be..alluays.. positilue.. (oranalluays negativel!

Example III on the next page illustrates a correct method of

```
solving the problem 史}<2\mathrm{ following the general summary for
inequalities below.
```


SOIVING INEQUATITITES SUMMARY

I/ת Find all endpoints.
A. Set inequall/to 0. and simplify. Set numeratorns equall. to. 0.
B. Set denominators not equal to 0.

IT. Determine. iff.endpoints. are. included. orr. not included.
A. Denominator. endpoints are NEVER inciuded.
 not included fortafor $>$.

IItIA. Detemmine which intervals between endpoints are. "Irue". and which are "False."
A. You may either. test one point in elach intervall/ on
B. Use. minultuplicity of nootisl". to. determine "sign" changes."

TV. Give answer: in interval. notation.

EXAMPLE III.

$$
\frac{4}{\bar{X}}<2
$$

I. Find all endpoints:
A. Set inequality to 0 : Below x -axis!

$$
\frac{4-2 X}{X}<0
$$

Set numerator $=0: \quad 4-2 x=0$

$$
X=2 \text { (Endpt not included!) }
$$

B. Set denominator $\neq 0: \quad X \neq 0$ (Denom endpts never included!) Summary of endpoints: $\quad \mathbf{X}=2 ; \quad \mathbf{X}=0$. multiplicity: odd odd
Numberline:

Test $X=3: \quad \frac{4}{3}<2$, True (Intervals alternate)

Interval notation $(-\infty, 0) \cup(2, \infty)$
I. Find all endpoints:

$$
\frac{9}{X} \leq X
$$

A. Set inequality to $0: \quad \frac{9}{x}-x \leq 0$ on or be bo a-ayis:

$$
\frac{9-X^{2}}{X} \leq 0
$$

Set numerator $=0: \quad X= \pm 3$ (Endpts included!)
B. Set denominator $\neq 0: \quad X \neq 0$ (Denom endpts never included!)

Summary of endpoints: $\quad X=3 ; \quad X=-3 ; \quad x \neq 0$. multiplicity: odd odd odd

Numberline:

Test $X=4: \frac{9}{4} \leq 4$, Que (Intervals alternate)
Numberline:

25.

$$
\frac{4}{X} \geq 2
$$

(On or Above!)
Find endpts:

$$
\begin{aligned}
& \frac{4}{x}-2 \geq 0 \\
& \frac{4-2 x}{x} \geq 0
\end{aligned}
$$

B. Denom $\neq 0$:
28. $\frac{12}{X} \geq 3 X$
29. $\frac{12}{X^{2}-4 X}>1$
30. $\frac{12}{X^{2}+4 X}<1$
31. $\frac{12}{X^{2}+4 X} \leq 1$
32. $\frac{12}{X^{2}-4 X} \geq 1$
33. $\frac{6}{X^{2}+4 X} \geq \frac{1}{X}$
34. $\frac{6}{X^{2}-4 X} \geq \frac{1}{X}$

ANSWERS 3.06

p. 416-424:

1. $(-5,-2) \cup(1, \infty)$; 2. $(-\infty,-3) \cup(2,4) ; 3$. $(-\infty,-2] \cup[1,5]$;
2. $[-4,-2] \cup(3, \infty)$; 5. $(-\infty,-5) \cup(-5,-2) \cup(1, \infty)$;
3. $(-3,2) \cup(2,4) ; 7$. $[-2,5] ; 8 .(-\infty,-2] \cup[3, \infty) ; 9$. $[-5, \infty)$
4. $(-\infty,-3) \cup(-3,2) ; 11$. $(-\infty,-2] \cup[2,4] ; 12$. $[-3,-2] \cup[3, \infty)$;
5. $(-\infty,-4) \cup(-4,4) ; 14 .(-3, \infty) ; 15 .(-\infty,-3] \cup[-1,1] \cup(3, \infty)$;
6. $(-3,-1) \cup(1,3)$; 17. $(-\infty,-3] \cup(0,3) ; 18 .(-3,0) \cup(3, \infty)$;
7. $(-3,0) \cup(3,4) ; 20,(-\infty,-3) \cup[0,3) \cup[4, \infty)$;
8. $(-\infty,-2] \cup[0,4) \cup(4, \infty) ; 22$. $(-\infty,-2) \cup(0, \infty)$;
9. $(-2,0] \cup(2, \infty) ; 24$. $(-\infty,-2) \cup(0,2) ; 25 .(0,2]$;
10. $(-\infty, 0) \cup(4, \infty) ; 27 .(-2,0) \cup(2, \infty) ; 28 .(-\infty,-2) \cup(0,2]$;
11. $(-2,0) \cup(4,6) ; 30 .(-\infty,-6) \cup(-4,0) \cup(2, \infty)$;
12. $(-\infty,-6] \cup(-4,0) \cup[2, \infty) ; 32$. $[-2,0) \cup(4,6]$;
13. $(-\infty,-4) \cup(0,21 ; 34 .\{(-\infty, 0) \cup(4,10)$.

Dr. Robert J. Rapalje
More FREE help available from my website at www.mathinlivingcolor.com ANSWERS TO ALL EXERCISES ARE INCLUDED AT THE END OF THIS PAGE

