Dr. Robert J. Rapalje

More FREE help available from my website at www.mathinlivingcolor.com ANSWERS TO ALL EXERCISES ARE INCLUDED AT THE END OF THIS PAGE

In the previous section you solved 2 equations and 2 unknowns by the method of elimination, the method of substitution, and by Cramer's Rule. Now, in this section, you will be solving systems of equations involving 3 unknowns (variables). Usually, when there are 3 variables, there will be 3 equations, but not always. Geometrically, it will require 3 dimensions to describe an equation involving 3 variables. As always, it is helpful to recall what you know to be true, and then to speculate beyond this:

From this illustration it should be no quantum leap of faith to see that the linear equation in 3 variables $\mathbf{A X}+\mathbf{B Y}+\mathbf{C Z}=\mathbf{D}$ is indeed a plane. Can you see that two planes, if they intersect, will intersect in a line? Then, if there is a third plane that intersects the line of intersection of the first two planes, the result is usually (but not always!) a point of intersection. Therefore, 3 planes usually intersect in a point.

The problem at hand, then, is to solve systems of 3 equations and 3 unknowns, by the elimination method. Or, if you would rather, try the $T I$ 85/86 using [2 ${ }^{\text {nd }] ~[s i m u l t], ~ u s i n g ~ " N u m b e r " ~}$ equal to [3]!

EXAMPLE. Solve the system:
I: $3 X+Y+Z=8$
II: $2 \mathrm{X}+2 \mathrm{Y}-\mathrm{Z}=10$
III: $X-3 Y+2 Z=-4$

SOLUTION: If you just add the first two equations together, you get $5 X+3 Y+18$. The problem is that there are still two variables, X and Y. What it takes to solve equations with two variables is two equations. In other words, you need another equation with the same variable \mathbf{z} eliminated. Therefore, to eliminate the Z-variable again, you should multiply equation II by 2 , and add this to equation III. It will be helpful to organize the work as follows:

$$
\begin{aligned}
5 X+3 Y & =18 \\
-1 \begin{array}{l}
5 X+Y
\end{array} & =16) \\
5 X+3 Y & =18 \\
-5 X-Y & =-16 \\
\hline 2 Y & =2 \\
Y & =1
\end{aligned}
$$

Now, use Y to solve for X :

$$
\begin{aligned}
5 X+3 Y & =18 \\
5 X+3(1) & =18 \\
5 X & =15 \\
X & =3
\end{aligned}
$$

Finally, go back to one of the original equations and, using $X=3$ and $Y=1$, solve for Z :

$$
\begin{aligned}
3 X+Y+Z & =8 \\
3(3)+(1)+Z & =8 \\
10+Z & =8 \\
Z & =-2
\end{aligned}
$$

You may check the by substituting the values of X, Y, and Z into equation III (or equation II):

$$
\begin{aligned}
X-3 y+2 z & =-4 \\
(3)-3(1)+2(-2) & =-4 \\
-4 & =-4
\end{aligned}
$$

SUMMARY: When solving 3 equations with 3 unknowns, you must eliminate one variable, that is the SAME variable, twice. This gives 2 equations and 2 unknowns which then must be solved.

EXERCISES: Solve the systems for X, Y, and Z.

1. (It looks like Y will be the easiest to eliminate.)

I: $\quad 2 X+3 Y-3 Z=9$
II: $\quad 5 X-2 Y-8 Z=6$

Now, solve the two equations and two unknowns:

$$
9\binom{14 x-18 z=6}{(-3 x+2 z=8}
$$

Solve for

$$
x \text { and } z \text { ! }
$$

Now, substitute the values of X and Z into the first equation:

$$
\text { I: } 2 X+3 Y-3 Z=9 \quad \text { and solve for } Y \text { : }
$$

Now, check by substituting X, Y, and Z into third equation:
III: $\quad 4 \mathrm{X},-\mathrm{Y},-5 \mathrm{~F},=-1$
Does it check??
2.

$$
\begin{aligned}
3 X+Y+Z & =8 \\
2 X+2 Y-Z & =10 \\
X-3 Y+2 Z & =-4
\end{aligned}
$$

3.

$$
\begin{aligned}
X-5 Y+Z & =14 \\
-2 X+Y+2 Z & =-6 \\
4 X+4 Y-Z & =3
\end{aligned}
$$

4.

$\begin{array}{ll}3 X+2 Y+Z & =23 \\ 2 X+Y+Z & =11 \\ -X+3 Y+Z & =-10\end{array}$
5.
$\begin{array}{rlr}4 X-Y+3 Z & = & 0 \\ 2 X+3 Y-Z & = & 4 \\ X+2 Y+6 Z & =-18\end{array}$
6.

$$
\begin{aligned}
X+2 Y+Z & =-1 \\
2 X+3 Y+2 Z & =5 \\
-X+Y+5 Z & =4
\end{aligned}
$$

7.

$\begin{aligned} 3 X-Y-Z & =-5 \\ X+5 Y+2 Z & =8 \\ 4 X+2 Y-Z & =5\end{aligned}$
8.
$\begin{aligned} 3 X+4 Y+Z & =2 \\ 7 X+2 Y+4 Z & =5 \\ -2 X+Y-2 Z & =-6\end{aligned}$
9.
$4 X+5 Y-3 Z=-5$
$2 X-3 Y-2 Z=1$
$7 X+4 Y-4 Z=1$
10.

$$
\begin{aligned}
& 3 X+5 Y-2 Z=4 \\
& 5 X+2 Y-6 Z=2 \\
& 4 X+3 Y-5 Z=5
\end{aligned}
$$

11.

$3 X+2 Y-4 Z=5$
$\begin{aligned} 2 X-2 Y+4 Z & =10 \\ -6 X+3 Y+2 Z & =0\end{aligned}$
12.

$$
\begin{aligned}
X+2 Y-Z & =2 \\
X-2 Y+Z & =6 \\
3 X+5 Y+3 Z & =-4
\end{aligned}
$$

In the next problem, since the first equation is in X and Y only (the z-term is missing!), use the first equation as is, and eliminate the Z-term using equations II and III.
13.

$$
\begin{aligned}
3 X-5 Y & =1 \\
2(4 X+3 Z & =0 \\
-3(3 Y+2 Z & =2)
\end{aligned}
$$

You finish:
14.

$$
\begin{aligned}
3 X+2 Y & =-2 \\
2 Y-3 Z & =1 \\
X-2 Y+2 Z & =4
\end{aligned}
$$

15.

$\begin{aligned} 8 X+3 Y+2 Z & =3 \\ 4 X+5 Y & =7 \\ 2 Y-3 Z & =-9\end{aligned}$
16.

$$
\begin{aligned}
3 X+2 Y+5 Z & =2 \\
2 X-3 Y+2 Z & =-4 \\
X+4 Y+2 Z & =2
\end{aligned}
$$

17.

$$
\begin{aligned}
-2 X+5 Y+4 Z & =4 \\
5 X-2 Y-Z & =2 \\
3 X+3 Y+2 Z & =0
\end{aligned}
$$

18.

$\begin{aligned} 4 X+2 Y+3 Z & =6 \\ X-Y+Z & =2 \\ -X+4 Z & =8\end{aligned}$
19. If you solve a system of 3 equations and 3 unknowns by eliminating the same variable twice, reducing the problem to 2 equations and 2 unknowns, then how would you solve a system of 4 equations and 4 unknowns? Can you see how Cramer's Rule might apply? Is Cramer's Rule a good idea in the next exercise?
20. Solve the system:
$\begin{array}{rrr}\text { I: } & W+2 X+\mathbf{Y}+3 Z=0 \\ \text { II: } & -W+X+\mathbf{Y}+\mathbf{Z}= & -4 \\ \text { III: } & 2 W-2 X-3 Y+2 Z= & 1 \\ \text { IV: } & 2 W+X-Y+2 Z= & 5\end{array}$

ANSWERS 3.09

$$
\begin{aligned}
& \text { p.462-471: } \begin{array}{rlrl}
\text { 1. }(-6,2,-5) ; & \text { 2. }(3,1,-2) ; & \text { 3. }(3,-2,1) ; \\
\text { 4. }(9,3,-10) ; & \text { 5. }(2,-1,-3) ; & \text { 6. }(9,-7,4) ; \\
\text { 7. }(-2,4,-5) ; & \text { 8. }(-5,2,9) ; & \text { 9. }(3,-1,4) ; \\
\text { 10. }(-4,2,-3) ; & \text { 11. }(3,4,3) ; & \text { 12. }(4,-2,-2) ; \\
\text { 13. }(-3,-2,4) ; & \text { 14. }(2,-4,-3) ; 15 .(-2,3,5) ; \\
\text { 16. }(-6,0,4) ; & 17 .(0,-4,6) ; & 18 .(0,0,2) ; \\
\text { 19. Eliminate the sAMR unknown } 3 \text { times in order to } \\
& \text { reduce the problem to } 3 \text { equations and } 3 \text { unknowns. } \\
& \text { Be sure to eliminate the SAME variable. . . }
\end{array} \\
& \text { 20. } \begin{array}{l}
\text { W, } x, y, z \\
\\
(3,2,-1,-2) .
\end{array}
\end{aligned}
$$

Dr. Robert J. Rapalje
More FREE help available from my website at www.mathinlivingcolor.com ANSWERS TO ALL EXERCISES ARE INCLUDED AT THE END OF THIS PAGE

